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Lista nr 5
Paweł Lorek

(Stała Poincarego). Niech X o macierzy przejść P będzie odwracalnym łańcuchem
Markowa na grafie G = (V,K), gdzie V = {e1, . . . , eM} (wierzchołki) oraz K =
{(ei, ej) : P(ei, ej) > 0} (krawędzie). Dla skierowanej krawędzi k̃ = (ei, ej) (o wierz-
chołkach ei - początkowy, i ej -końcowy) zdefiniujmy Λ(k̃) = π(ei)P(ei, ej).
Dla ustalonych wierzchołków ei oraz ej ustalamy deterministyczną, jednoznaczną scieżkę
od ei do ej oznaczoną Γ(ei, ej). Dla ustalonej ścieżki jej długość definiujemy jako:
|Γ(ei, ej)| =

∑
k̃∈Γ(ei,ej)

1. Stałą Poincarego definijemy jako:

γP := max
k̃

 1

Λ(k̃)

∑
(ei,ej):k̃∈Γ(ei,ej)

|Γ(ei, ej)|π(ei)π(ej)


(dla ustalonego k̃ suma jest po wszystkich wierzchołkach (ei, ej) takich, że krawędź k̃
należy do ścieżki Γ(ei, ej))

Niech λ2 oznacza drugą (co do wart. bezwzgl.) wartość własną macierzyP odwracalnego
łańcucha Markowa X. Przypomnijmy dwa twierdzenia z wykładu:

Twierdzenie A.
|λ2| ≤ 1− 1

γP

Również dla odwracalnego, ergodycznego łańcuchaX ∼ P definiujemy stałą Cheegera

γC := min
A⊂E:π(A)≤1/2

∑
ei∈A

∑
ej∈AC

π(ei)P(ei, ej)

π(A)

Twierdzenie B.
|λ2| ≤ 1− 1

2
γ2
C

Twierdzenie C1. Dla odwracalnego łańcucha X ∼ P mamy

dTV (δeP
n, π) ≤ 1

2

1√
π(e)
|λ2|n

(δePn to rozkład łańcucha w n−tym kroku, takiego, który zaczął ze stanu e)
Twierdzenie C2. Dla dowolnego (niekoniecznie odwracalnego) łańcucha X ∼ P mamy

dTV (δeP
n, π) ≤ 1

2

1√
π(e)
|λ2(M)|

n
2 ,

gdzie λ2(M) jest drugą (co do wartości bezwzględnej) wartością własną macierzy M =
PP̃.
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1. Dla φ : E→ R zdefiniowaliśmyy V ar(φ) =
∑
e

φ2(e)π(e)−
∑
e

π(e).

Pokaż, że V ar(φ) =
1

2

∑
ei,ej∈E

(φ(ei)− φ(ej))
2π(ei)π(ej).

2. Niech n(ε) oznacza taką liczbę kroków, po której norma całkowitego wahania jest
mniejsza od ε, tzn. dTV (δeP

n(ε), π) ≤ ε.

Pokaż, że dTV (δeP
nγP (ε), π) ≤ ε dla nγP (ε) = γP log

(
1

2ε
√
π(e)

)
(gdzie γP jest

stałą Poincarego)

3. Pokaż, że dTV (δeP
nγC (ε), π) ≤ ε dla nγC (ε) =

2

γ2
C

log

(
1

2ε
√
π(e)

)
(gdzie γC jest

stałą Cheegera)

4. NiechP będzie macierzą przejścia ergodycznego łańcuchaX z rozkładem stacjonarnym
π. Macierz łańcucha odwróconego w czasie X̃ definiuje się następująco P̃(e2, e1) =
π(e1)

π(e2)
P(e1, e2) (łańcuch jest odwracalny jeśli P = P̃). Pokaż, że rozkładem

stacjonarnym łańcucha X̃ jest również π.

5. NiechP będzie macierzą przejścia ergodycznego łańcuchaX z rozkładem stacjonarnym
π. Zdefiniujmy: M := P · P̃. Pokaż, że

• M jest macierzą stochastyczną

• π jest rozkładem stacjonarnym łańcucha o macierzy przejść M. Czy łańuch
ten jest odwracalny?

6. Rozważmy następujące symetryczne błądzenie po okręgu: E = {0, 1, . . . , n− 1}.

P =



1− 2p p 0 0 . . . 0 0 p

p 1− 2p p 0 . . . 0 0 0

0 p 1− 2p p 0 . . . 0 0

. . .

p 0 0 0 0 . . . p 1− 2p


,

gdzie p < 1/2.

Policz (lub oszacuj) stałą γP .

7. Policz (lub oszacuj) stałą γC dla błądzenia z zadania 6.

8. Dla jakiego p γC jest “lepsza” od γP dla wyników otrzymanych w zadaniach 6 i 7?
Poprzez “lepsza” rozumiemy, iż daje lepsze oszacowanie w Twierdzeniu B.
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9. Rozważmy następujące błądzenie po okręgu: E = {0, 1, . . . , n− 1}.

P =



1− p p 0 0 . . . 0 0 0

0 1− p p 0 . . . 0 0 0

0 p 1− p p 0 . . . 0 0

. . .

p 0 0 0 0 . . . p 1− p


,

Pokaż, iż licząc macierz M = PP̃ zadanie liczenia/szacowania γC i γP sprowadza
się do zadań 6 i 7. Podaj stosowne oszacowania.

10. Niech X będzie prostym błądzeniem po grafie G = (V,K), gdzie V = {v1, . . . , vM}
to zbiór wierzchołków, a K to zbiór krawędzi. Prawdopodobieństwa przejść:
P(vi, vj) = 1/d(vi) jeśli (vi, vj) ∈ K (d(vi) to stopień wierzchołka vi). Niech
Γ(v, v′) oznacza jakiś wybór ścieżki z v do v′, który nie ma powtarzających się
krawędzi. Zdefiniujmy:

d∗ = max
v
d(v), s∗ = max

v,v′
|Γ(v, v′)|, η∗ = max

k̃∈K
#{(v, v′) ∈ V 2 : k̃ ∈ Γ(v, v′)}

Pokaż, że γP ≤
(d∗)2s∗η∗

|K|
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