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1 Wst¦p

Procesy narodzin i ±mierci z czasem dyskretnym s¡ szczególn¡ klas¡ ªa«cuchów Markowa z

czasem dyskretnym okre±lonych na ponumerowanej przestrzeni stanów, w których mo»liwe s¡

przej±cia wyª¡cznie pomi¦dzy s¡siednimi stanami. Gdy stan ukªadu zwi¦ksza si¦ o jeden to ma-

my do czynienia z narodzinami, a gdy zmniejsza si¦ o jeden ze ±mierci¡. Cho¢ nazwa jest do±¢

sugestywna i dobrze oddaje charakter tych»e procesów, to sam stan ukªadu nie musi koniecznie

oznacza¢ liczno±ci pewnej populacji. Procesy narodzin i ±mierci poza naturalnym zastosowa-

niem w naukach biologicznych s¡ równie» wykorzystywane w teorii systemów kolejkowych, a

tak»e mi¦dzy innymi do modelowania procesów �zycznych i bª¡dze« przypadkowych.

W niniejszej pracy skupimy si¦ na procesach okre±lonych na sko«czonej przestrzeni stanów i

jednorodnych w czasie, które to opisane s¡ przy pomocy macierzy przej±¢ w jednym kroku.

Wprowadzimy niezb¦dne poj¦cia dotycz¡ce teorii warto±ci i wektorów wªasnych, a tak»e ich za-

stosowanie w analizie istotnych wªasno±ci ªa«cuchów Markowa. Zaprezentujemy stochastyczn¡

interpretacj¦ warto±ci wªasnych poprzez ich zwi¡zek z tempem zbie»no±ci do stacjonarno±ci nie-

okresowych i nieredukowalnych procesów narodzin i ±mierci. Podamy tak»e zwi¡zek warto±ci i

wektorów wªasnych z rozkªadem prawdopodobie«stwa warunkowego przej±¢ pomi¦dzy stanami

w n krokach.

Nast¦pnie, przedstawimy kilka klasycznych i dobrze znanych przykªadów procesów narodzin i

±mierci takich jak poste bª¡dzenie losowe w zbiorze Z ∩ [0, N ], proces urnowy Ehrenfestów, a

tak»e proces urnowy Bernoulliego Laplace'a. Wyliczymy analitycznie ich warto±ci wªasne, a w

przypadku procesu prostego bª¡dzenia losowego z ekranami elastycznymi w zbiorze Z ∩ [0, N ]

tak»e wektory wªasne. Posªu»ymy si¦ wªasno±ciami macierzy Toeplitza, macierzy Kaca, a tak»e

macierzy s¡siedztwa grafu hiperkostki, które to oka»¡ si¦ ±ci±le powi¡zane z rozwa»anymi pro-

cesami narodzin i ±mierci.

W gªównej cz¦±ci pracy wykorzystamy teori¦ ªa«cuchów Strong Stationary Dual do wyznacze-

nia warto±ci wªasnych pewnego zupeªnie nowego procesu narodzin i ±mierci X∗. W tym celu

policzymy warto±ci wªasne procesu X bª¡dzenia losowego po hiperkostce, który nie jest proce-

sem narodzin i ±mierci, a nast¦pnie udowodnimy, »e procesy X∗, X maj¡ takie same warto±ci

wªasne.

Praca ta b¦dzie wi¦c ilustracj¡ zastosowa« algebry liniowej, gªównie teorii warto±ci i wektorów

wªasnych, w rachunku prawdopodobie«stwa.
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2 Wprowadzenie teoretyczne

2.1 Warto±ci i wektory wªasne

De�nicja 2.1. Niech dana b¦dzie macierz kwadratowa A stopnia n ­ 1. Wielomianem cha-

rakterystycznym macierzy A nazywamy wielomian n-tego stopnia okre±lony wzorem

WA(λ) = det (A− λI) , (1)

gdzie I jest macierz¡ jednostkow¡ stopnia n. Ponadto, równaniem charakterystycznym macierzy

A nazywamy równanie nast¦puj¡cej postaci

WA(λ) = 0. (2)

De�nicja 2.2. Niech dana b¦dzie macierz kwadratowa A stopnia n ­ 1.

1. Warto±ci¡ wªasn¡ macierzy A nazywamy ka»d¡ liczb¦ λ b¦d¡c¡ rozwi¡zaniem równania

charakterystycznego tej macierzy.

2. Wektor −→x = [x1, x2, . . . , xn]T 6= −→0 nazywamy wektorem wªasnym macierzy A stowarzy-

szonym z warto±ci¡ wªasn¡ λ, je±li speªniony jest nast¦puj¡cy warunek

A−→x = λ−→x . (3)

3. Wektor
−→
f = [f1, f2, . . . , fn] 6= −→0 nazywamy lewostronnym wektorem wªasnym macierzy

A stowarzyszonym z warto±ci¡ wªasn¡ λ, je±li speªniony jest nast¦puj¡cy warunek

−→
f A = λ

−→
f . (4)

Ka»da macierz kwadratowa A stopnia n ­ 1 posiada wi¦c n warto±ci wªasnych λ1, . . . , λn (nie-

koniecznie ró»nych). Niech −→x i b¦dzie wektorem wªasnym odpowiadaj¡cym warto±ci wªasnej λi,

wtedy −→x i jest liniowo niezale»ny od wszystkich wektorów wªasnych odpowiadaj¡cych warto-

±ciom wªasnym ró»nym od λi. Zatem, je±li wszystkie warto±ci wªasne λ1, λ2, ..., λn s¡ ró»ne, to

odpowiadaj¡ce im wektory wªasne −→x 1,
−→x 2, ...,

−→x n tworz¡ zbiór liniowo niezale»ny.

De�nicja 2.3. Niech dana b¦dzie macierz kwadratowa A stopnia n ­ 1. Ponadto, niech λi

b¦dzie warto±ci¡ wªasn¡ macierzy A stowarzyszon¡ z wektorem wªasnym −→x i, i = 1, . . . , n.

Mówimy, »e A jest diagonalizowalna, gdy mo»na j¡ przedstawi¢ w postaci iloczynu

A = PDP−1, (5)

gdzie D jest macierz¡ diagonaln¡ z warto±ciami wªasnymi λ1, λ2, ..., λn na gªównej przek¡tnej,

a i-ta kolumna macierzy P jest wektorem wªasnym −→x i stowarzyszonym z warto±ci¡ wªasn¡ λi.
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Zauwa»my, »e gdy warto±ci wªasne λ1, λ2, ..., λn macierzy A s¡ ró»ne to macierz P jest od-

wracalna. St¡d macierz A jest diagonalizowalna gdy jej wszystkie warto±ci wªasne s¡ ró»ne.

Mo»liwo±¢ przedstawienia macierzy kwadratowej A w postaci (5) jest bardzo przydatna, gdy

chcemy podnie±¢ j¡ do pewnej pot¦gi. Je±li A = PDP−1, to A2 = PDP−1PDP−1 = PD2P−1

oraz poprzez indukcj¦ otrzymujemy, »e ∀k ∈ N

Ak = PDkP−1. (6)

Twierdzenie 2.1. Niech dana b¦dzie macierz kwadratowa A stopnia n ­ 1 z warto±ciami

wªasnymi λ1, . . . , λn. Wtedy ∀k ∈ N

tr(Ak) =
n∑
i=1

λki , (7)

gdzie tr(A) oznacza ±lad macierzy A.

Dowód Twierdzenia 2.1.

Niech B oraz C b¦d¡ macierzami kwadratowymi stopnia n ­ 1. Wtedy

tr(CB) =
n∑
i=1

(CB) (i, i) =
n∑
i=1

n∑
j=1

C(i, j)B(j, i) =
n∑
i=1

n∑
j=1

B(j, i)C(i, j) =
n∑
j=1

BC(j, j) = tr(BC).

Zatem, zakªadaj¡c, »e macierz A mo»na przedstawi¢ w postaci (5) otrzymujemy

tr(Ak) = tr(P(DkP−1)) = tr(DkP−1P) = tr(Dk) =
n∑
i=1

λki .

De�nicja 2.4. Macierz kwadratow¡ A nazywamy regularn¡ je±li istnieje k ∈ Z+ takie, »e

macierz Ak ma wszystkie wyrazy dodatnie.

Dowód nast¦puj¡cego twierdzenia mo»na znale¹¢ w [2].

Twierdzenie 2.2. (Perron-Frobenius) Niech dana b¦dzie macierz kwadratowa A stopnia n ­ 1

z warto±ciami wªasnymi λ1, . . . , λn. Je±li A jest regularna, wtedy

1. |λ1| > |λi|, i = 2, ..., n,

2. λ1 ∈ R+,

3. wektor wªasny −→x 1 odpowiadaj¡cy warto±ci wªasnej λ1 ma wszystkie skªadowe ±ci±le do-

datnie i jest wyznaczony jednoznacznie z dokªadno±ci¡ do staªej przez któr¡ mo»e zosta¢

pomno»ony.
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Twierdzenie 2.3. Niech A b¦dzie macierz¡ kwadratow¡ oraz niech λ b¦dzie warto±ci¡ wªasn¡

macierzy A. Wtedy αλ jest warto±ci¡ wªasn¡ macierzy αA, α ∈ R.

Dowód Twierdzenia 2.3.

Niech −→x 6= −→0 b¦dzie wektorem wªasnym macierzy A stowarzyszonym z warto±ci¡ wªasn¡ λ.

Wtedy

(αA)−→x = α (A−→x ) = α (λ−→x ) = (αλ)−→x .

St¡d −→x 6= −→0 jest wektorem wªasnym macierzy αA stowarzyszonym z warto±ci¡ wªasna αλ.

Twierdzenie 2.4. Niech A b¦dzie macierz¡ kwadratow¡ stopnia n ∈ N oraz niech λ b¦dzie

warto±ci¡ wªasna macierzy A. Wtedy αλ+ β jest warto±ci¡ wªasn¡ macierzy αA + βI, gdzie I

jest macierz¡ jednostkow¡ stopnia n oraz α, β ∈ R.

Dowód Twierdzenia 2.4.

Niech −→x 6= −→0 b¦dzie wektorem wªasnym macierzy A stowarzyszonym z warto±ci¡ wªasn¡ λ.

Wtedy

(αA + βI)−→x = (αA)−→x + (βI)−→x = α (A−→x ) + β (I−→x ) = αλ−→x + β−→x = (αλ+ β)−→x .

St¡d −→x 6= −→0 jest wektorem wªasnym macierzy αA + βI stowarzyszonym z warto±ci¡ wªasna

αλ+ β.

Twierdzenie 2.5. Niech dana b¦dzie macierz kwadratowa A stopnia n ­ 1 z warto±ciami

wªasnymi λ1, . . . , λn, wektorami wªasnymi −→x 1, . . . ,
−→x n i lewostronnymi wektorami wªasnymi

−→
f 1, . . . ,

−→
f n. Je±li macierz A jest symetryczna, to −→x T

i =
−→
f i, i = 1, . . . , n.

Dowód Twierdzenia 2.5.

Je±li λi jest warto±ci¡ wªasn¡ macierzy A stowarzyszon¡ z wektorem wªasnym −→x i, to

A−→x i = λi
−→x i.

St¡d, transponuj¡c obie strony powy»szego równania otrzymujemy

(A−→x i)
T = −→x T

i AT = −→x T
i A = λi

−→x T
i .

Zatem −→x T
i jest lewostronnym wektorem wªasnym macierzy A stowarzyszonym z warto±ci¡

wªasna λi.
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2.1.1 Reprezentacja spektralna

Niech dana b¦dzie macierz kwadratowa A stopnia n ­ 1. Ponadto, niech λi oznacza warto±¢

wªasn¡ macierzy A stowarzyszon¡ z wektorem wªasnym −→x i = [xi(1), . . . , xi(n)]T oraz z lewo-

stronnym wektorem wªasnym
−→
f i = [fi(1), . . . , fi(n)], i = 1, . . . , n. Zaªó»my, »e macierz A jest

diagonalizowalna. Wówczas, macierz A mo»e by¢ wyra»ona jako iloczyn A = PDP−1, gdzie

P =


x1(1) . . . xn(1)
... . . .

...

x1(n) . . . xn(n)

 ,D =


λ1 0

. . .

0 λn

 ,P−1 =


f1(1) . . . f1(n)
... . . .

...

fn(1) . . . fn(n)

 .

Ponadto, PP−1 = I, gdzie I jest macierz¡ jednostkow¡ odpowiednich wymiarów. St¡d

−→
f j
−→x k =

∑
i

fj(i)xk(i) =

 0, gdy j 6= k,

1, gdy j = k.
(8)

Niech Bk b¦dzie macierz¡ powstaªa poprzez wymno»enie wektora wªasnego −→x k przez lewo-

stronny wektor wªasny
−→
f k

Bk =


xk(1)
...

xk(n)


[
fk(1), . . . , fk(n)

]
=


xk(1)fk(1) . . . xk(1)fk(n)

... . . .
...

xk(n)fk(1) . . . xk(n)fk(n)

 (9)

Z równania (8) wynika, »e

BjBk = −→x j

−→
f j
−→x k

−→
f k =

 0, gdy j 6= k,

Bj, gdy j = k.
(10)

Zatem

A = PDP−1 =



n∑
i=1

(
n∑
j=1

P(1, j)D(j, i)
)

P−1(i, 1) . . .
n∑
i=1

(
n∑
j=1

P(1, j)D(j, i)
)

P−1(i, n)

... . . .
...

n∑
i=1

(
n∑
j=1

P(n, j)D(j, i)
)

P−1(i, 1) . . .
n∑
i=1

(
n∑
j=1

P(n, j)D(j, i)
)

P−1(i, n)



=



n∑
i=1

P(1, i)D(i, i)P−1(i, 1) . . .
n∑
i=1

P(1, i)D(i, i)P−1(i, n)

... . . .
...

n∑
i=1

P(n, i)D(i, i)P−1(i, 1) . . .
n∑
i=1

P(n, i)D(i, i)P−1(i, n)



=



n∑
i=1

λixi(1)fi(1) . . .
n∑
i=1

λixi(1)fi(n)

... . . .
...

n∑
i=1

λixi(n)fi(1) . . .
n∑
i=1

λixi(n)fi(n)

 = λ1B1 + ...+ λnBn.
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Przedstawienie macierzy A w postaci sumy

A = λ1B1 + ...+ λnBn (11)

nazywamy reprezentacj¡ spektraln¡. Ponadto, z wªasno±ci (10) otrzymujemy, »e ∀k ∈ N

Ak = (λ1B1 + ...+ λnBn)k = λk1B1 + ...+ λknBn. (12)

2.1.2 Trójdiagonalne macierze Toeplitza

De�nicja 2.5. Macierz Toeplitza to macierz kwadratowa maj¡ca takie same warto±ci na po-

szczególnych przek¡tnych, to jest macierz postaci

an an+1 . . . a2n a2n−1

an−1 an . . . a2n−1 a2n

...
...

. . .
...

...

a2 a3 . . . an an+1

a1 a2 . . . an−1 an


.

Jak ªatwo zauwa»y¢, ka»da macierz kwadratowa stopnia n ∈ N posiada 2n − 1 przek¡tnych,

dlatego przy pomocy 2n− 1 warto±ci a1, . . . , a2n−1 jeste±my w stanie opisa¢ macierz Toeplitza

stopnia n. Przyjmujemy ponadto konwencj¦, zgodnie z któr¡

Tn(a1, a2, . . . , a2n, a2n−1) =



an an+1 . . . a2n a2n−1

an−1 an . . . a2n−1 a2n

...
...

. . .
...

...

a2 a3 . . . an an+1

a1 a2 . . . an−1 an


.

Udowodniono [15], »e ka»da macierz kwadratowa stopnia n mo»e zosta¢ przedstawiona jako

iloczyn r macierzy Toeplitza, gdzie r ¬ 4bn/2c+ 5.

De�nicja 2.6. Macierz wst¦gowa to kwadratowa macierz rzadka, której wszystkie elementy s¡

zerowe poza diagonal¡ i wst¦g¡ zªo»on¡ z przek¡tnych wokóª niej. Maj¡c dan¡ macierz kwadra-

tow¡ stopnia n ∈ N, jej elementy ai,j s¡ zerowe gdy j < i − k1 lub j > i + k2, gdzie k1, k2 ­ 0

determinuj¡ szeroko±¢ wst¦gi.

Szczególnym przykªadem macierzy wst¦gowej jest macierz trójdiagonalna, czyli macierz wst¦-

gowa, dla której k1 = k2 = 1.
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De�nicja 2.7. Trójdiagonalna macierz Toeplitza stopnia n ∈ N to macierz nast¦puj¡cej postaci

Tn(a, b, c) =



b c 0

a
. . .

. . .

. . .
. . . c

0 a b


.

Trójdiagonalne macierze Toeplitza s¡ szczególnie interesuj¡ce, bo s¡ one jednymi z nielicznych

nietrywialnych struktur, dla których jeste±my w stanie wyznaczy¢ analitycznie wzory na ich

warto±ci i wektory wªasne.

Twierdzenie 2.6. Warto±ci wªasne trójdiagonalnej macierzy Toeplitza Tn(a, b, c) s¡ postaci

λi = b+ 2c
√
a

c
cos

(
iπ

n+ 1

)
, i = 1, . . . , n. (13)

Ponadto, wektor wªasny −→x i stowarzyszony z warto±ci¡ wªasn¡ λi, i = 1, . . . , n jest postaci

−→x i =



(
a
c

) 1
2 sin

(
1iπ
n+1

)
(
a
c

) 2
2 sin

(
2iπ
n+1

)
...(

a
c

) k
2 sin

(
kiπ
n+1

)
...(

a
c

)n
2 sin

(
niπ
n+1

)



. (14)

Pomysª poni»szego dowodu zostaª zaczerpni¦ty z [14], Przykªad 7.2.5.

Dowód Twierdzenia 2.6.

Niech λ b¦dzie warto±ci¡ wªasn¡ macierzy Tn(a, b, c), ac 6= 0 stowarzyszon¡ z wektorem wªa-

snym −→x = [x1, x2, . . . , xn]T . Wtedy, dla pary (λ, −→x ) speªniony jest ukªad zªo»ony z n równa«

liniowych

(Tn(a, b, c)− λI)−→x = 0 ⇐⇒

 axk−1 + (b− λ)xk + cxk+1 = 0 k = 1, . . . , n,

x0 = xn+1 = 0.

St¡d, dziel¡c przez c i podstawiaj¡c k := k + 1, otrzymujemy jednorodne równanie ró»nicowe

drugiego stopnia o staªych wspóªczynnikach, wraz z warunkami brzegowymi xk+2 + b−λ
c
xk+1 + a

c
xk = 0, k = 0, . . . , n− 1,

x0 = xn+1 = 0.
(15)
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Rozwi¡zania równania (15) poszukujemy w±ród funkcji pot¦gowych postaci xk = αrk, gdzie

α, r ∈ C s¡ pewnymi staªymi. Podstawiaj¡c tak okre±lone rozwi¡zanie do równania (15) i

dziel¡c przez αrk otrzymujemy równanie kwadratowe

r2 +
b− λ
c

r +
a

c
= (r − r1)(r − r2) = 0, gdzie r1, r2 ∈ C.

Wtedy, ogólne rozwi¡zanie rozwa»anego ukªadu jest postaci

xk =

 α1r
k
1 + α2r

k
2 , gdy r1 6= r2,

α1r
k
0 + α2kr

k
0 , gdy r1 = r2 = r0,

(16)

gdzie α1, α2 ∈ C s¡ dowolnymi staªymi. Zauwa»my ponadto, »e r1 oraz r2 musz¡ by¢ ró»ne.

W przeciwnym przypadku xk = α1r
k
0 + α2kr

k
0 wraz z warunkami brzegowymi x0 = xn+1 = 0

implikuje xk = 0, k = 1, . . . , n co nie jest mo»liwe, gdy» −→x jest wektorem wªasnym macierzy

Tn(a, b, c), zatem −→x 6= −→0 . St¡d xk = α1r
k
1 + α2r

k
2

x0 = xn+1 = 0
⇒

 α1 = −α2

0 = α1r
n+1
1 + α2r

n+1
2

⇒
(
r1

r2

)n+1

= −α1

α2
= 1, (17)

zatem r1
r2

= n+1
√

1 = e
2πil
n+1 dla pewnego l ∈ N ∩ [0, n+ 1]. Ponadto

r2 +
b− λ
c

r +
a

c
= (r − r1)(r − r2)⇒

 r1 + r2 = − b−λ
a
,

r1r2 = a
c
.

Mamy wi¦c ukªad, z którego mo»emy wyznaczy¢ r1 oraz r2

 r1 = r2e
2πil
n+1

r1r2 = a
c

⇒

 r1 = r2e
2πil
n+1

r2
2 = a

c
e
−2πil
n+1

⇒

 r1 =
√

a
c
e
πil
n+1 ,

r2 =
√

a
c
e
−πil
n+1 .

(18)

Podstawiaj¡c (18) do równania r1 + r2 = − b−λ
a

otrzymamy

r1 + r2 =
√
a

c

(
e
πil
n+1 + e

−πil
n+1

)
= −b− λ

a
.

Korzystaj¡c z to»samo±ci eiφ = cosφ+ i sinφ√
a

c

(
cos

(
πl

n+ 1

)
+ i sin

(
πl

n+ 1

)
+ cos

(
−πl
n+ 1

)
+ i sin

(
−πl
n+ 1

))
= −b− λ

a
.

Ze wzgl¦du na parzysto±¢ cosinusa i nieparzysto±¢ sinusa otrzymujemy

2
√
a

c
cos

(
πl

n+ 1

)
= −b− λ

a
⇒ λ = b+ 2a

√
a

c
cos

(
πl

n+ 1

)
.

Dlatego, warto±ci wªasne trójdiagonalnej macierzy Toeplitza Tn(a, b, c) musz¡ by¢ postaci

λi = b+ 2c
√
a

c
cos

(
iπ

n+ 1

)
, i = 1, . . . , n,

11



co ko«czy dowód pierwszej cz¦±ci Twierdzenia 2.6. Wszystkie warto±ci wªasne λi, i = 1, . . . , n

macierzy Tn(a, b, c) s¡ ró»ne, poniewa» cos(θ) jest funkcj¡ ±ci±le malej¡c¡ θ na odcinku (0, π)

oraz ac 6= 0, dlatego Tn(a, b, c) jest diagonalizowalna. Zauwa»my ponadto, »e z równania (17)

wynika, »e k-ty element wektora wªasnego stowarzyszonego z warto±ci¡ wªasn¡ λj wyra»ony

jest wzorem xk = α
(
rk1 − rk2

)
, gdzie r1, r2 s¡ takie jak w (18). St¡d

rk = α
(
a

c

) k
2
(
e
πikj
n+1 − e

−πikj
n+1

)
= 2iα

(
a

c

) k
2

sin
(
πkj

n+ 1

)
, dla pewnego α ∈ C.

Poªó»my α = −1
2i, wtedy otrzymujemy, »e wektor wªasny trójdiagonalnej macierzy Toeplitza

Tn(a, b, c) stowarzyszony z warto±ci¡ wªasn¡ λi, i = 1 . . . , n jest postaci

−→x =



(
a
c

) 1
2 sin

(
1iπ
n+1

)
(
a
c

) 2
2 sin

(
2iπ
n+1

)
...(

a
c

) k
2 sin

(
kiπ
n+1

)
...(

a
c

)n
2 sin

(
niπ
n+1

)



,

co ko«czy dowód.

Twierdzenie 2.7. Niech dana b¦dzie trójdiagonalna macierz Toeplitza Tn(a, b, c), ac 6= 0 stop-

nia n ­ 1, wówczas zachodzi zwi¡zek rekurencyjny
detT−1(a, b, c) = 0,

detT0(a, b, c) = 1,

detTn(a, b, c) = b detTn−1(a, b, c)− ac detTn−2(a, b, c), n ­ 1.

(19)

Dowód Twierdzenia 2.7.

Rozwa»my trzy przypadki, gdy n = 1, n = 2 lub n ­ 3. Na potrzeby tego dowodu przyjmijmy

tak»e konwencj¦, zgodnie z któr¡ detTn(a, b, c) ≡ Tn.

Dla n = 1

Mamy T1(a, b, c) = [b], st¡d T1 = b. Ponadto, na mocy Twierdzenia 2.7 T1 = bT0 −

acT−1 ⇐⇒ b = bT0 − acT−1 ⇐⇒ 0 = b (T0 − 1) − acT−1. Aby teza twierdzenia byªa

speªniona dla n = 1 to T0 = 1, st¡d 0 = acT−1, a poniewa» ac 6= 0, zatem T−1 = 0.

Dla n = 2

Mamy T2(a, b, c) = [ b ca b ], st¡d T2 = b2 − ac. Ponadto, na mocy Twierdzenia 2.7 T2 =

12



bT1 − acT0. Wiadomo tak»e, »e T1 = b, st¡d b2 − ac = b2 − acT0 ⇐⇒ 0 = ac (T0 − 1) , a

poniewa» ac 6= 0 zatem T0 = 1.

Dla n ­ 3

Teza twierdzenia wynika wprost z rozwini¦cia Laplace'a Tn(a, b, c) wzgl¦dem pierwszego

wiersza.

2.1.3 Trójdiagonalne pseudo macierze Toeplitza

Praca ta po±wi¦cona jest warto±ciom wªasnym procesów narodzin i ±mierci. Procesy te opisane

s¡ przy pomocy macierzy stochastycznych. Z tego powodu teoria dotycz¡c¡ trójdiagonalnych

macierzy Toeplitza Tn(a, b, c), ac 6= 0 nie ma tu bezpo±redniego zastosowania. Niemniej, istnieje

mo»liwo±¢ wykorzystania wªasno±ci trójdiagonalnych pseudo macierzy Toeplitza.

De�nicja 2.8. Trójdiagonalna pseudo macierz Toeplitza TNn1(a, b, c), ac 6= 0 to kwadratowa

macierz blokowa stopnia N ­ 3 postaci

TNn1(a, b, c) =



An2 c̄

a

Tn1(a, b, c)

c

ā Bn3


, gdzie

An2 =



b1 c1 0

a2
. . .

. . .

. . .
. . . cn2−1

0 an2 bn2


, Bn3 =



bN+1−n3 cN+1−n3 0

aN+2−n3
. . .

. . .

. . .
. . . cN−1

0 aN bN


,

oraz N = n1 + n2 + n3.

Szczególnie interesuj¡cy jest dla nas przypadek gdy n2 = n3 = 1 oraz A1 = [a1] i B1 = [bN ]

T n+2
n (a, b, c) =


a1 c̄

a Tn(a, b, c) c

ā bN

 . (20)
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Twierdzenie 2.8. Niech dana b¦dzie trójdiagonalna pseudo macierz Toeplitza stopnia N =

n+ 2, n ­ 1 postaci

T n+2
n (a, b, c) =


b c+ a

a Tn(a, b, c) c

a+ c b

 ,

oraz niech a + b + c = 1. Wtedy macierz T n+2
n (a, b, c) posiada n + 2 ró»ne warto±ci wªasne

λ1, . . . , λn+2. Ponadto λn+1 = 1, λn+2 = 2b − 1, a λ1, . . . , λn s¡ warto±ciami wªasnymi trójdia-

gonalnej macierzy Toeplitza Tn(a, b, c).

Dowód Twierdzenia 2.8.

Na potrzeby tego dowodu przyjmijmy nast¦puj¡ce oznaczenie det(Tn(a, b−λ, c)) ≡ Tn, wówczas

det
(
T n+2
n (a, b, c)− λI

)
=

∣∣∣∣∣∣∣∣∣∣∣
b− λ c+ a

a Tn(a, b− λ, c) c

a+ c b− λ

∣∣∣∣∣∣∣∣∣∣∣
= 0

Stosuj¡c rozwini¦cie Laplace'a wzgl¦dem pierwszego wiersza m

(b− λ)

∣∣∣∣∣∣∣
Tn(a, b− λ, c) c

a+ c b− λ

∣∣∣∣∣∣∣− a (a+ c)

∣∣∣∣∣∣∣
Tn−1(a, b− λ, c) c

a+ c b− λ

∣∣∣∣∣∣∣ = 0

Stosuj¡c rozwini¦cie Laplace'a wzgl¦dem ostatniego wiersza m

(b− λ)2 Tn − c (b− λ) (a+ c) Tn−1 − a (b− λ) (a+ c) Tn−1 + ac (a+ c)2 Tn−2 = 0

⇐⇒ (b− λ)2 Tn − (b− λ) (a+ c)2 Tn−1 + ac (a+ c)2 Tn−2 = 0

⇐⇒ (b− λ)2 Tn − (a+ c)2 [(b− λ) Tn−1 − acTn−2]︸ ︷︷ ︸
Tn

= 0

⇐⇒ (b− λ)2 Tn − (a+ c)2 Tn = Tn
(
(b− λ)2 − (a+ c)2

)
= 0

⇐⇒ Tn (b+ a+ c− λ) (b− a− c− λ) = Tn (1− λ) [(2b− 1)− λ] = 0

Twierdzenie 2.9. Niech dana b¦dzie trójdiagonalna pseudo macierz Toeplitza stopnia N =

n+ 2, n ­ 1 postaci

T n+2
n (a, b, c) =


b+ a c

a Tn(a, b, c) c

a b+ c

 ,
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oraz niech a + b + c = 1. Wtedy macierz T n+2
n (a, b, c) posiada n + 2 ró»ne warto±ci wªasne

λ1, . . . , λn+2. Ponadto λn+2 = 1, a λ1, . . . , λn+1 s¡ warto±ciami wªasnymi trójdiagonalnej ma-

cierzy Toeplitza Tn+1(a, b, c).

Dowód Twierdzenia 2.9.

Na potrzeby dowodu przyjmijmy nast¦puj¡ce oznaczenie det(Tn(a, b− λ, c)) ≡ Tn, wówczas

det
(
T n+2
n (a, b, c)− λI

)
=

∣∣∣∣∣∣∣∣∣∣∣
b+ a− λ c

a Tn(a, b− λ, c) c

a b+ c− λ

∣∣∣∣∣∣∣∣∣∣∣
= 0

Stosuj¡c rozwini¦cie Laplace'a wzgl¦dem pierwszego wiersza m

(b+ a− λ)

∣∣∣∣∣∣∣
Tn(a, b− λ, c) c

a b+ c− λ

∣∣∣∣∣∣∣− ac
∣∣∣∣∣∣∣

Tn−1(a, b− λ, c) c

a b+ c− λ

∣∣∣∣∣∣∣ = 0

Stosuj¡c rozwini¦cie Laplace'a wzgl¦dem ostatniego wiersza m

(b+ a− λ)(b+ c− λ)Tn − ac(b+ a− λ)Tn−1 − ac(b+ c− λ)Tn−1 + a2c2Tn−2 = 0

⇐⇒ (b+ a− λ)(b+ c− λ)Tn − ac(1 + b− 2λ)Tn−1 + a2c2Tn−2 = 0

Podstawiaj¡c acTn−2 = (b− λ)Tn−1 − Tn m

[b(1− λ)− λ(1− λ)] Tn − ac(1− λ)Tn−1 = (1− λ)(b− λ)Tn − ac(1− λ)Tn−1 = 0

Wprost z Twierdzenia 2.7 m

(1− λ)Tn+1 = 0

2.1.4 Macierz Kaca

De�nicja 2.9. Macierz Kaca stopnia N ∈ N to macierz trójdiagonalna nast¦puj¡cej postaci

KN =



0 N 0 0 . . . 0 0 0

1 0 N − 1 0 . . . 0 0 0

0 2 0 N − 2 . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . N − 1 0 1

0 0 0 0 . . . 0 N 0


N+1×N+1
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Suma poszczególnych wierszy macierzy Kaca KN jest równa N , zatem macierz 1
N
KN jest ma-

cierz¡ stochastyczn¡. Ze wzgl¦du na szczególn¡ posta¢ macierzy Kaca KN , dla ka»dego N ∈ N

jeste±my w stanie analitycznie wyznaczy¢ jej warto±ci wªasne. Jak si¦ pó¹niej oka»e, pomocna

b¦dzie poni»sza wªasno±¢ macierzy klatkowych.

Twierdzenie 2.10. Niech dana b¦dzie nast¦puj¡ca macierz klatkowa

E =

 A B

C D

 , gdzie A = [aij] i=1,...,k
j=1,...,k

, B = [bij] i=1,...,k
j=1,...,n

, C = [cij] i=1,...,n
j=1,...,k

, D = [dij] i=1,...,n
j=1,...,n

.

Wówczas:

1. Je±li macierz C jest macierz zerow¡ (C = 0n×k), to

det

 A B

0 D

 = detA detD.

2. Je±li macierz B jest macierz zerow¡ (B = 0k×n), to

det

 A 0

C D

 = detA detD.

Dowód Twierdzenia 2.10.

Niech IN oznacza macierz jednostkow¡ stopnia N . Zauwa»my, »e:

1.  A B

0 D

 =

 Ik 0

0 D


 A B

0 In

 ,
ponadto, stosuj¡c rozwini¦cie Laplace'a kolejno wzgl¦dem pierwszych k i ostatnich n

wierszy otrzymujemy

det

 Ik 0

0 D

 = detD, det

 A B

0 In

 = detA.

2.  A 0

C D

 =

 A 0

C In


 Ik 0

0 D

 ,
ponadto, stosuj¡c rozwini¦cie Laplace'a kolejno wzgl¦dem ostatnich n i pierwszych k

wierszy otrzymujemy

det

 A 0

C In

 = detA, det

 Ik 0

0 D

 = detD.
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Wtedy na mocy twierdzenia Cauchy'ego o wyznacznikach otrzymujemy tez¦ Twierdzenia 2.10.

Twierdzenie 2.11. Warto±ci wªasne macierzy Kaca KN s¡ postaci

λk = N − 2k, k = 0, . . . , N. (21)

Udowodnimy powy»sze twierdzenie wyznaczaj¡c miejsca zerowe wielomianu charakterystycz-

nego macierzy KN .

Dowód Twierdzenia 2.11.

Na potrzeby tego dowodu przyjmijmy nast¦puj¡ce oznaczenia dotycz¡ce operacji elementarnych

na wierszach i kolumnach:

• wi := wi + wj zamiana i−tego wiersza na sum¦ i−tego oraz j−tego wiersza,

• ki := ki + kj zamiana i−tej kolumny na sum¦ i−tej oraz j−tej kolumny.

Analogicznie dla ró»nicy wierszy i kolumn. Wówczas

det (KN − λI) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ N 0 0 . . . 0 0 0

1 −λ N − 1 0 . . . 0 0 0

0 2 −λ N − 2 . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . N − 1 −λ 1

0 0 0 0 . . . 0 N −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

m ki := ki + ki−2, i = 3, . . . , N + 1∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ N −λ N
.. .

. . .

1 −λ N
.. .

. . .
. . .

0 2
. . .

. . .
. . . N

0
. . .

. . .
. . . N −λ

. . .
. . .

. . . N − 1 −λ N

0
. . . 0 0 N −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0
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m wi := wi + wi+1, i = 1, . . . , N∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− λ N − λ N − λ N − λ . . . N − λ N − λ N − λ

1 2− λ N − λ N − λ . . . N − λ N − λ N − λ

0 2 3− λ N − λ . . . N − λ N − λ N − λ
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . N − 1 N − λ N − λ

0 0 0 0 . . . 0 N −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

m wi := wi − wi+1, i = 1, . . . , N − 1 ∣∣∣∣∣∣∣
KN−2 0N−1×2

C D

∣∣∣∣∣∣∣ = 0,

gdzie KN−2 jest macierz¡ Kaca stopnia N − 2, 0N−1×2 jest macierz¡ zerow¡ odpowiednich

wymiarów, D =
[
N−λ N−λ
N −λ

]
oraz C = [ 0 ... 0 N−1

0 ... 0 0 ] .

m na mocy Twierdzenia 2.10 prawdziwa jest nast¦puj¡ca rekurencja

|KN−2|

∣∣∣∣∣∣∣
N − λ N − λ

N −λ

∣∣∣∣∣∣∣ = (N + λ) (N − λ) |KN−2| = 0,

wraz z warunkami pocz¡tkowymi  |K0| = −λ,

|K1| = (1− λ) (1 + λ) .

Co ko«czy dowód.
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2.2 �a«cuchy Markowa z czasem dyskretnym

De�nicja 2.10. Niech (Ω,F ,P) b¦dzie przestrzeni¡ probabilistyczn¡, (E, E) b¦dzie przestrzeni¡

mierzaln¡, za± T dowolnym podzbiorem liczb naturalnych. Procesem stochastycznym z czasem

dyskretnym o warto±ciach w E, okre±lonym na zbiorze T nazywamy ci¡g zmiennych losowych

X = {Xt, t ∈ T} przyjmuj¡cych warto±ci w zbiorze E.

Indeks t ma zazwyczaj znaczenie czasu. St¡d, je±li zachodzi zdarzenie {Xt = i}, to mówimy, »e

proces znajduje si¦ w chwili t w stanie i ∈ E, a zbiór warto±ci E procesu nazywamy przestrzeni¡

stanów.

Uwaga 2.1. Od tego momentu pisz¡c proces stochastyczny b¦dziemy mieli na my±li proces z

czasem dyskretnym.

De�nicja 2.11. Proces stochastyczny X = {Xt, t ∈ N} nazywamy jednorodnym ªa«cuchem

Markowa z czasem dyskretnym okre±lonym na sko«czonej przestrzeni stanów E, je±li ∀i0, . . . , in, i, j ∈

E oraz n ∈ N

P (Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = P (Xn+1 = j|Xn = i) = Pij. (22)

Prawdopodobie«stwo warunkowe P (Xn+1 = j|Xn = i) = Pij nazywamy prawdopodobie«stwem

przej±cia ze stanu i do stanu j w jednym kroku.

De�nicja 2.12. Niech dany b¦dzie ªa«cuch Markowa X = {Xt, t ∈ N} okre±lony na ponume-

rowanej przestrzeni stanów E = {0, 1, . . . , n}. Macierz P postaci

P =



P00 P01 . . . P0n

P10 P11 . . . P1n

...
...

. . .
...

Pn0 Pn1 . . . Pnn


, (23)

nazywamy macierz¡ prawdopodobie«stw przej±¢ w jednym kroku.

Zauwa»my, »e poniewa» Pij s¡ prawdopodobie«stwami, a ªa«cuch Markowa musi w ka»dej chwili

znajdowa¢ si¦ w pewnym stanie, wi¦c P jest macierz¡ stochastyczn¡, to znaczy ∀i, j ∈ E Pij ­ 0

oraz ∀i ∈ E ∑
j∈E

Pij = 1.

Uwaga 2.2. Od tego momentu pisz¡c ªa«cuch Markowa b¦dziemy mieli na my±li jednorodny

ªa«cuch Markowa z czasem dyskretnym okre±lony na sko«czonej przestrzeni stanów.
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De�nicja 2.13. Niech dany b¦dzie ªa«cuch Markowa X = {Xt, t ∈ N} okre±lony na przestrzeni

stanów E. Wówczas ∀n,m ∈ N oraz ∀i, j ∈ E prawdopodobie«stwo warunkowe postaci

P (Xn+m = j|Xn = i) = Pij(m), (24)

nazywamy prawdopodobie«stwem przej±cia ze stanu i do stanu j w m krokach.

Twierdzenie 2.12. Niech dany b¦dzie ªa«cuch Markowa X = {Xt, t ∈ N} okre±lony na prze-

strzeni stanów E. Dla m,n ∈ N oraz i, j ∈ E zachodzi równo±¢

Pij(m+ n) =
∑
k∈E

Pik(n)Pkj(m). (25)

Wªasno±¢ (25) nazywamy równaniem Chapmana-Koªmogorowa.

Dowód Twierdzenia 2.12.

Rozwa»my prawdopodobie«stwo warunkowe po lewej stronie równania (25)

Pij(m+ n) = P (Xn+m = j|X0 = i) =
∑
k∈E

P (Xm+n = j,Xn = k|X0 = i)

=
∑
k∈E

P (Xm+n = j|Xn = k,X0 = i)P (Xn = k|X0 = i)

=
∑
k∈E

P (Xm+n = j|Xn = k)P (Xn = k|X0 = i) =
∑
k∈E

Pik(n)Pkj(m).

Macierz Pn utworzon¡ z prawdopodobie«stw Pij(n) nazywamy macierz¡ prawdopodobie«stw

przej±¢ w n krokach. Zauwa»my, »e równo±¢ (25) w zapisie macierzowym przyjmuje posta¢

Pn+m = PnPm. (26)

De�nicja 2.14. Niech dany b¦dzie ªa«cuch Markowa X = {Xt, t ∈ N} okre±lony na przestrzeni

stanów E. Rozkªad prawdopodobie«stwa P (X0 = i) = ν(i), i ∈ E taki, »e ∀i ∈ E ν(i) ­ 0 oraz∑
k∈E

ν(k) = 1 nazywamy rozkªadem pocz¡tkowym ªa«cucha Markowa.

Znaj¡c pocz¡tkowy rozkªad prawdopodobie«stwa ν ªa«cucha Markowa X = {Xt, t ∈ N} z prze-

strzeni¡ stanów E i macierz¡ przej±¢ P mo»emy wyznaczy¢ prawdopodobie«stwo wyst¡pienia

zdarzenia {Xn = j}

P (Xn = j) =
∑
k∈E

P (Xn = j|X0 = k) =
∑
k∈E

Pkj(n)ν(k). (27)
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De�nicja 2.15. Niech dany b¦dzie ªa«cuch Markowa X = {Xt, t ∈ N} okre±lony na przestrzeni

stanów E z macierz¡ przej±¢ P. Mówimy, »e stany i, j ∈ E komunikuj¡ si¦ ze sob¡ i oznaczamy

i↔ j je±li istnieje n ∈ N takie, »e

P (Xm+n = j|Xm = i) > 0 oraz P (Xm+n = i|Xm = j) > 0. (28)

W zapisie macierzowym oznacza to tyle, »e

Pn(j, i) > 0 oraz Pn(i, j) > 0, (29)

dla pewnego n.

De�nicja 2.16. Niech dany b¦dzie ªa«cuch Markowa X = {Xt, t ∈ N} okre±lony na przestrzeni

stanów E. Mówimy, »e X jest nieredukowalny je±li ∀i, i ∈ E i↔ j.

Nietrudno zauwa»y¢, »e ªa«cuch Markowa z macierz¡ przej±¢ P jest nieredukowalny je±li macierz

P jest regularna.

De�nicja 2.17. Niech dany b¦dzie ªa«cuch Markowa X = {Xt, t ∈ N} okre±lony na przestrzeni

stanów E. Okresem stanu i ∈ E nazywamy liczb¦

oi = NWD {n : Pn(i, i) > 0} , (30)

gdzie NWD(A) oznacza najwi¦kszy wspólny dzielnik zbioru A. Ponadto, stan i nazywamy okre-

sowym gdy oi > 1 lub nieokresowym, gdy oi = 1.

Dodatkowo, ªa«cuch Markowa nazywamy nieokresowym, gdy wszystkie jego stany s¡ nieokre-

sowe. Mo»na tak»e pokaza¢ [2], »e je±li ªa«cuch Markowa jest nieredukowalny to jego wszystkie

stany maj¡ taki sam okres.

De�nicja 2.18. Niech dany b¦dzie ªa«cuch Markowa X = {Xt, t ∈ N} okre±lony na przestrzeni

stanów E = {1, . . . , n} z macierz¡ przej±¢ P. Wektor π = [π1, . . . , πn] nazywamy rozkªadem

stacjonarnym ªa«cucha X je±li speªnione s¡ nast¦puj¡ce warunki

1. ∀i ∈ E πi ­ 0,

2.
n∑
i=1

πi = 1,

3. πP = π.
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2.2.1 Tempo zbie»no±ci ergodycznych ªa«cuchów Markowa do stacjonarno±ci

Twierdzenie 2.13. Niech dany b¦dzie ªa«cuch Markowa X = {Xt, t ∈ N} okre±lony na prze-

strzeni stanów E z macierz¡ przej±¢ P, rozkªadem stacjonarnym π i warto±ciami wªasnymi

λ1 ­ λ2 ­ . . . ­ λn. Je±li X jest nieredukowalny i nieokresowy, wtedy ∀i, j ∈ E

lim
k→∞

Pk(i, j) = π(j) > 0, (31)

rozkªad stacjonarny π jest okre±lony jednoznacznie oraz ªa«cuch X nazywamy ergodycznym.

Dodatkowo, pr¦dko±¢ zbie»no±ci wyra»enia (31) do granicy jest geometryczna. Istnieje staªa

α > 0 taka, »e

|Pk(i, j)− π(j)| ¬ α|λ2|k, k = 1, 2, . . . (32)

Dowód powy»szego twierdzenia, a tak»e wiele wi¦cej mo»emy znale¹¢ w [2]. Zauwa»my, »e

dla ªa«cucha Markowa X = {Xt, t ∈ N} okre±lonego na przestrzeni stanów E = {1, . . . , n} z

macierz¡ przej±¢ P i rozkªadem pocz¡tkowym ν, πk = νPk jest rozkªadem prawdopodobie«stwa

zmiennej Xn. Ponadto, je±li X jest nieredukowalny i nieokresowy, to istnieje jednoznacznie

okre±lony rozkªad stacjonarny π ªa«cucha X taki, »e ∀i ∈ E π(i) > 0 oraz

lim
k→∞

πk(i) = π(i), (33)

niezale»nie od rozkªadu pocz¡tkowego ν.

De�nicja 2.19. Niech πi, πj b¦d¡ rozkªadami prawdopodobie«stwa na przestrzeni stanów E.

Wówczas, de�niujemy dwie gªówne miary odlegªo±ci pomi¦dzy rozkªadami

1. Total variation distance

d(πi, πj) = max
A⊂E
|πi(A)− πj(A)|, (34)

gdzie πi(A) =
∑
k∈A

πi(k).

2. Separation distance

s(πi, πj) = sup
k∈E

(
1− πi(k)

πj(k)

)
. (35)

Zauwa»my, »e

d(πi, πj) = max
A⊂E
|πi(A)− πj(A)| = max

A⊂E
|
∑
k∈A

(πi(k)− πj(k)) | =
∑

k∈E:πi(k)>πj(k)

πi(k)− πj(k)

=
∑

k∈E:πj(k)>πi(k)

πj(k)− πi(k) =
1
2

∑
k∈E
|πi(k)− πj(k)|.
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Ponadto,

d(πi, πj) =
∑
k∈E

(πi(k)− πj(k))+ =
∑
k∈E

πi(k)
(

1− πj(k)
πi(k)

)
+

¬
∑
k∈E

πi(k) max
l∈E

(
1− πj(l)

πi(l)

)
= s(πi, πj)

∑
k∈E

πi(k) = s(πi, πj),

gdzie (x)+ = max(0, x). Zatem d(πi, πj) ¬ s(πi, πj).

De�nicja 2.20. Niech dany b¦dzie ªa«cuch Markowa X = {Xt, t ∈ N} okre±lony na przestrzeni

stanów E = {1, . . . , n} z macierz¡ przej±¢ P i rozkªadem pocz¡tkowym ν. Ponadto, niech X

b¦dzie nieredukowalny i nieokresowy z rozkªadem stacjonarnym π. Wówczas, Strong Statio-

nary Time jest czasem zatrzymania T ªa«cucha X takim, »e zmienna losowa XT ma rozkªad

stacjonarny π i jest niezale»na od T .

Nast¦puj¡ce twierdzenie zostaªo udowodnione w [1].

Twierdzenie 2.14. Niech dany b¦dzie nieredukowalny i nieokresowy ªa«cuch Markowa X =

{Xt, t ∈ N} okre±lony na przestrzeni stanów E = {1, . . . , n} z macierz¡ przej±¢ P, rozkªadem

pocz¡tkowym ν i rozkªadem stacjonarnym π. Ponadto, niech πk = νPk. Wówczas

1. Je±li T jest Strong Stationary Time wtedy ∀n ∈ N

s(πn, π) ¬ P (T > n). (36)

2. Jednocze±nie istnieje Strong Stationary Time T taki, »e w (36) zachodzi równo±¢, a takie

T nazywamy czasem do stacjonarno±ci.

2.2.2 Procesy narodzin i ±mierci z czasem dyskretnym

De�nicja 2.21. Niech dany b¦dzie ªa«cuch Markowa X = {Xt, t ∈ N} z czasem dyskretnym

okre±lony na sko«czonej przestrzeni stanów E z macierz¡ przej±¢ P = [Pij]i,j∈E. Wówczas X

jest procesem narodzin i ±mierci z czasem dyskretnym, je±li ∀i, j ∈ E

Pi,j =



pi, gdy j = i+ 1,

qi, gdy j = i− 1,

1− qi − pi, gdy j = i,

0, gdy |j − i| ­ 2,

(37)

gdzie ∀i ∈ E pi, qi ­ 0 oraz pi + qi ¬ 1.
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Procesy narodzin i ±mierci s¡ wi¦c szczególnymi przypadkami ªa«cuchów Markowa, w których

mo»liwe s¡ wyª¡cznie przej±cia mi¦dzy s¡siednimi stanami. �a«cuchy narodzin i ±mierci s¡

cz¦sto u»ywane do modelowania zmian liczebno±ci pewnej populacji w czasie przy zaªo»eniu, »e

liczebno±¢ populacji w jednym kroku mo»e zwi¦kszy¢ lub zmniejszy¢ si¦ o jeden albo pozosta¢

bez zmian. St¡d pi oraz qi nazywamy odpowiednio intensywno±ci¡ narodzin i intensywno±ci¡

±mierci.

Uwaga 2.3. Macierz przej±¢ procesu narodzin i ±mierci jest macierz¡ trójdiagonaln¡.

Mo»na pokaza¢ [3], »e prawdziwe jest nast¦puj¡ce twierdzenie.

Twierdzenie 2.15. Niech X = {Xt, t ∈ N} b¦dzie nieredukowalnym procesem narodzin i ±mier-

ci okre±lonym na przestrzeni stanów E = {0, 1, . . . , n} z macierz¡ przej±¢ P startuj¡cym z zera

(ν(0) = 1). Ponadto, niech ∀i < n pi + qi+1 ¬ 1. Wtedy, macierz P ma n+ 1 ró»nych warto±ci

wªasnych 1, λ1, . . . , λn takich, »e −1 < λi < 1 dla i = 1, . . . , n, a funkcja tworz¡ca prawdopodo-

bie«stwa czasu do stacjonarno±ci jest nast¦puj¡cej postaci

G(u) =
n∏
i=1

(1− λi)u
1− λiu

. (38)

Je±li warto±ci wªasne λ1, . . . , λn s¡ nieujemne, wtedy czas do stacjonarno±ci ma rozkªad sumy n

niezale»nych zmiennych losowych o rozkªadzie geometrycznym z prawdopodobie«stwami sukcesu

1− λ1, . . . , 1− λn.

2.2.3 Warto±ci wªasne dualnych ªa«cuchów Markowa

De�nicja 2.22. Niech dany b¦dzie ergodyczny ªa«cuch Markowa X = {Xt, t ­ 0} z przestrze-

ni¡ stanów E = {e1, . . . , en}, macierz¡ przej±¢ P i rozkªadem pocz¡tkowym ν. Ponadto, niech π

b¦dzie rozkªadem stacjonarnym ªa«cucha X. Niech X∗ = {X∗t , t ­ 0} b¦dzie ªa«cuchem Marko-

wa z rozkªadem pocz¡tkowym ν∗, przestrzeni¡ stanów E∗ = {e1, . . . , e∗m} i macierz¡ przej±¢ P∗

takim, »e stan e∗m jest pochªaniaj¡cy. Co wi¦cej, niech Λ b¦dzie macierz¡ stochastyczn¡ rozmiaru

n×m tak¡, »e Λ(e∗m, ·) = π(·). Mówimy, i» X∗ jest Strong Stationary Dual dla ªa«cucha X

z linkiem Λ, je±li

 ν = ν∗Λ,

ΛP = P∗Λ.
(39)

�a«cuchy dualne s¡ stosowane gªównie do badania pr¦dko±ci zbie»no±ci ªa«cuchów Markowa do

stacjonarno±ci. Jak bowiem udowodniono [3], je±li ªa«cuch X∗ jest Strong Stationary Dual dla

ªa«cucha X oraz T ∗ jest czasem do pochªoni¦cia w X∗, to T ∗ jest Strong Stationary Time dla
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X. W niniejszej pracy podejmujemy tematyk¦ warto±ci wªasnych procesów narodzin i ±mierci.

W tym kontek±cie zastosowanie ªa«cuchów dualnych b¦dzie wynikaªo z nast¦puj¡cego lematu.

Lemat 2.1. Niech dany b¦dzie ergodyczny ªa«cuch Markowa X = {Xt, t ­ 0} z przestrzeni¡ sta-

nów E = {e1, . . . , en} i macierz¡ przej±¢ P. Ponadto, niech ªa«cuch Markowa X∗ = {X∗t , t ­ 0}

z przestrzeni¡ stanów E∗ = {e∗1, . . . , e∗m} i macierz¡ przej±¢ P∗ b¦dzie Strong Stationary Dual

ªa«cucha X. Wówczas, je±li λ jest warto±ci¡ wªasn¡ macierzy P, to jest te» warto±ci¡ wªasn¡

macierzy P∗.

Dowód Lematu 2.1.

�a«cuchy Markowa X oraz X∗ s¡ Strong Stationary Dual zatem istnieje macierz Λ taka, »e

zachodzi równo±¢ (39). Zaªó»my, »e λ ∈ C jest warto±ci¡ wªasn¡ macierzy P stowarzyszon¡ z

wektorem wªasnym −→x 6= −→0 . Wtedy

P−→x = λ−→x .

Mno»¡c obie strony równania (39) przez wektor −→x otrzymujemy

(ΛP)−→x = Λ (P−→x )︸ ︷︷ ︸
λ−→x

= λΛ−→x = P∗Λ−→x .

Zatem λ jest warto±ci¡ wªasn¡ macierzy P∗ stowarzyszon¡ z wektorem wªasnym Λ−→x .

De�nicja 2.23. Niech dana b¦dzie macierz prostok¡tna C o wymiarach m×n oraz niech n 6= m

wtedy macierz C−1 o wymiarach n×m tak¡, »e

C−1C = In,

gdzie In jest macierz¡ jednostkow¡ odpowiednich wymiarów, nazywamy lewostronn¡ odwrotno-

±ci¡ macierzy C.

De�nicja 2.24. Niech A b¦dzie macierz¡ o wymiarach n × m, wtedy j¡drem A nazywamy

przestrze«

ker(A) = {b ∈ Rn : Ab =
−→
0 }.

Twierdzenie 2.16. Niech dana b¦dzie macierz prostok¡tna C o wymiarach m×n, m ­ n oraz

niech rank C = n wtedy istnieje lewostronna odwrotno±¢ macierzy C.

Dowód Twierdzenia 2.16.

Zauwa»my, »e je±li macierz CTC jest odwracalna to

(CTC)−1CT︸ ︷︷ ︸
C−1

C = In,
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gdzie In jest macierz¡ jednostkow¡ odpowiednich wymiarów. St¡d, je±li det CTC 6= 0, to ist-

nieje lewostronna odwrotno±¢ macierzy C. Wystarczy wi¦c udowodni¢, »e je±li rank C = n, to

det CTC 6= 0. W tym celu poka»emy, »e ker(C) = ker(CTC). Poniewa» rank C = n, to kolumny

macierzy C s¡ liniowo niezale»ne, zatem ker(C) =
−→
0 . Zaªó»my, »e a ∈ ker(CTC), wtedy

CTCa =
−→
0 ⇐⇒ aTCTCa = 0 ⇐⇒ ‖Ca‖2 = 0 ⇐⇒ Ca =

−→
0 ,

zatem a ∈ ker(C), a poniewa» ker(C) =
−→
0 , wi¦c ker(CTC) = ker(C) =

−→
0 . St¡d, kolumny

macierzy kwadratowej CTC s¡ liniowo niezale»ne oraz det CTC 6= 0.

Twierdzenie 2.17. Niech dany b¦dzie ergodyczny ªa«cuch Markowa ze sko«czon¡ przestrzeni¡

stanów E = {e1, . . . , en} i macierz¡ przej±¢ P. Je±li P jest macierz¡ podwójnie stochastyczn¡

to rozkªad jednostajny π(i) = 1
n
, i = 1, . . . , n jest rozkªadem stacjonarnym ªa«cucha Markowa z

t¡ macierz¡.

Dowód Twierdzenia 2.17.

Wprost z de�nicji. Rozkªad prawdopodobie«stw π = [π1, π2, . . . , πn] na przestrzeni stanów E =

{e1, . . . , en} jest stacjonarny wtedy i tylko wtedy, gdy

πP = π.

Dla π =
[

1
n
, 1
n
, . . . , 1

n

]
, gdy macierz P jest macierz¡ podwójnie stochastyczn¡ mamy

πP =
[

1
n

n∑
i=1

pi1, . . . ,
1
n

n∑
i=1

pin

]
=
[ 1
n
, . . . ,

1
n

]
= π.

De�nicja 2.25. Niech dany b¦dzie ergodyczny ªa«cuch Markowa X = {Xt, t ­ 0} z przestrze-

ni¡ stanów E = {e1, . . . , en}, macierz¡ przej±¢ P = [pij] i=1,...,n
j=1,...,n

i rozkªadem stacjonarnym π.

Wówczas, ªa«cuch X jest odwracalny, gdy

∀i, j = 1, . . . , n π(i)pij = π(j)pji. (40)

Ponadto, gdy speªniony jest warunek (40) to ªa«cuch Markowa
←−
X z macierz¡ przej±¢

←−
P = (diag(π))−1PT (diag(π)), (41)

gdzie diag(π) jest macierz¡ diagonaln¡ z wektorem π na gªównej przek¡tnej, nazywamy ªa«cu-

chem Markowa odwróconym w czasie.
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Je±li macierz przej±¢ P ergodycznego ªa«cucha Markowa X = {Xt, t ­ 0} jest symetryczna

(P = PT ), to jest podwójnie stochastyczna oraz na mocy Twierdzenia 2.17 rozkªad stacjonarny

π tego procesu jest jednostajny. Wtedy proces X jest odwracalny oraz
←−
P = P. W praktyce,

najwi¦kszym problemem okazuje si¦ znalezienie dla danego ªa«cucha X ªa«cucha dualnego X∗,

tj. przestrzeni E∗, rozkªadu pocz¡tkowego ν∗, linku Λ oraz macierzy przej±¢ P∗. Diaconis i Fill

w [3] podaj¡ taki przepis tylko w sytuacji, gdy ªa«cuch odwrócony w czasie
←−
X jest stochastycz-

nie monotoniczny wzgl¦dem porz¡dku liniowego. Lorek, Szekli w [11] formuªuj¡ rozszerzenie

takiego twierdzenia do przestrzeni cz¦±ciowo uporz¡dkowanej. Dokªadniej, przy pewnym zaªo-

»eniu na ªa«cuch odwrócony w czasie (tzw. monotoniczno±¢ Möbiusa) pokazuj¡c konstrukcj¦

ªa«cucha dualnego okre±lonego na tej samej przestrzeni stanów E∗ = E. Poni»ej przedstawiamy

uogólnienie tego twierdzenia na dowoln¡ przestrze« stanów E∗. Idea polega na wprowadzeniu,

przy pomocy macierzy C0, "porz¡dku" pomi¦dzy dwoma przestrzeniami stanów.

Twierdzenie 2.18. Niech dany b¦dzie ergodyczny ªa«cuch Markowa X = {Xt, t ­ 0} z prze-

strzeni¡ stanów E = {e1, . . . , en}, macierz¡ przej±¢ P i rozkªadem pocz¡tkowym ν. Zaªó»my

tak»e, »e ªa«cuch startuje ze stanu e1 (ν(e1) = 1). Ponadto, niech dana b¦dzie macierz C0 o

wymiarach n×m (m odpowiada przestrzeni stanów E∗ = {e∗1, . . . , e∗m}), taka »e
∀(ei ∈ E) C0(ei, e∗m) = 1,

∀(e∗i ∈ E∗) C0(e1, e∗i ) = 1,

∀(e∗i 6= e∗m) C0(en, e∗i ) = 0,

oraz rank C0 = m. Wtedy istnieje macierz C−1
0 o wymiarach m×n b¦d¡ca lewostronn¡ odwrot-

no±ci¡ macierzy C0. Niech

C−1
0
←−
PC0 ­ 0, (42)

gdzie
←−
P jest macierz¡ przej±¢ ªa«cucha Markowa odwrotnego do X oraz C−1

0
←−
PC0 ­ 0 oznacza,

»e wszystkie elementy macierzy C−1
0
←−
PC0 s¡ nieujemne. Wtedy istnieje ªa«cuch Markowa Strong

Stationary Dual X∗ = {X∗t , t ­ 0} z przestrzeni¡ stanów E∗, rozkªadem pocz¡tkowym ν∗, takim

»e ν∗(e∗1) = 1 oraz linkiem nast¦puj¡cej postaci

Λ = diag(πC0)−1CT
0 diag(π).

Wówczas macierz przej±¢ ªa«cucha dualnego wyra»a si¦ nast¦puj¡cym wzorem

P∗ = ΛPΛ−1 = (diag(πC0)C−1
0
←−
PC0(diag(πC0))−1)T , (43)

gdzie diag(π) jest macierz¡ diagonaln¡ z wektorem π na gªównej przek¡tnej.
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Uwaga 2.4. Dla E∗ = E macierz C0 jest kwadratowa, a warunek (42) oznacza dokªadnie

↓-Möbius monotoniczno±¢ ªa«cucha odwróconego w czasie (por. [11]).

Przeksztaªcaj¡c równanie (43) otrzymujemy

P∗ = (C0diag(πC0)−1)T
←−
PT (diag(πC0)C−1

0 )T .

Nast¦pnie, korzystaj¡c z równania (41) mamy

P∗ = (diag(πC0)−1CT
0 diag(π))︸ ︷︷ ︸

Λ

P (diag(π)−1(C−1
0 )Tdiag(πC0))︸ ︷︷ ︸
Λ−1

.

Twierdzenie 2.18 wskazuje wi¦c w jaki sposób szuka¢ ªa«cuchów Strong Stationary Dual. Nale»y

znale¹¢ macierz C0, która speªnia zaªo»enia Twierdzenia 2.18, a nast¦pnie wyznaczy¢ macierze

Λ oraz Λ−1 wiedz¡c, »e  Λ = diag(πC0)−1CT
0 diag(π),

Λ−1 = diag(π)−1(C−1
0 )Tdiag(πC0).

(44)

Dodatkowo, gdy rozkªad stacjonarny π ªa«cucha Xt jest jednostajny, to Λ = diag(1TC0)−1CT
0 ,

Λ−1 = (C−1
0 )Tdiag(1TC0),

(45)

gdzie 1 jest wektorem kolumnowym odpowiednich wymiarów zªo»onym z samych jedynek. W

tym miejscu mo»emy juz przedstawi¢ ide¦ gªównej cz¦±ci tej pracy, gdzie poka»emy jakie s¡

warto±ci wªasne pewnego nietrywialnego procesu urodzin i ±mierci. Zaprezentujemy ªa«cuch

Markowa bª¡dzenia losowego po hiperkostce, wyliczymy jego warto±ci wªasne, a nast¦pnie przy

pomocy Twierdzenia 2.18 wyka»emy, i» wspomniany proces narodzin i ±mierci jest jego Strong

Stationary Dual. Z kolei z Lematu 2.1 oba procesy maja te same warto±ci wªasne.

2.3 Teoria grafów

De�nicja 2.26. Graf nieskierowany G(V,E) jest to para zªo»ona z niepustego zbioru wierz-

choªków V oraz zbioru kraw¦dzi E, b¦d¡cego rodzin¡ dwuelementowych podzbiorów zbioru wierz-

choªków E ⊆ {{u, v} : u, v ∈ V, u 6= v}. Ponadto, gdy graf G nie zawiera p¦tli i kraw¦dzi wielo-

krotnych to nazywamy go grafem nieskierowanym prostym.

De�nicja 2.27. Iloczynem kartezja«skim grafów G1(V1, E1) oraz G2(V2, E2) nazywamy graf

G1�G2 = G(V1 × V2, E), gdzie V1 × V2 oznacza iloczyn kartezja«ski zbiorów V1, V2 oraz E =

{{(v1, v2), (u1, u2)} : (v1 = u1 ∧ {v2, u2} ∈ E2) ∨ (v2 = u2 ∧ {v1, u1} ∈ E1)}.
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Grafem hiperkostki nazywamy graf nieskierowany prosty Qn b¦d¡cy rzutem hiperkostki Hn na

pªaszczyzn¦ jednowymiarow¡. Graf Qn skªada si¦ wi¦c z 2n wierzchoªków oraz 2n−1n kraw¦dzi.

Graf Qn zde�niowa¢ mo»na tak»e w sposób rekurencyjny [7].

De�nicja 2.28. Graf peªny Kn jest grafem nieskierowanym prostym zªo»onym z n wierzchoª-

ków, w którym ka»da para wierzchoªków poª¡czona jest kraw¦dzi¡.

De�nicja 2.29. Niech K2 b¦dzie grafem peªnym oraz niech n ­ 2, wtedy graf Qn de�niujemy

nast¦puj¡co

Q1 = K2,

Qn = K2�Qn−1.

De�nicja 2.30. Niech dany b¦dzie graf prosty G(V,E), gdzie V = {e1, . . . , en}. Macierz s¡-

siedztwa A grafu G to macierz kwadratowa stopnia n, taka »e

aij =

 1, gdy {ei, ej} ∈ E,

0, gdy {ei, ej} /∈ E.

Nietrudno zauwa»y¢, »e gdy graf jest nieskierowany, to macierz s¡siedztwa tego grafu jest sy-

metryczna.

De�nicja 2.31. Niech dane b¦d¡ macierze A = [aij] i=1,...,m
j=1,...,n

oraz B = [bij] i=1,...,p
j=1,...,q

, wówczas

iloczynem Kroneckera macierzy A i B nazywamy macierz klatkow¡ A⊗B o wymiarach mp×nq

nast¦puj¡cej postaci

A⊗B =


a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 =



a11b11 . . . a11b1q . . . a1nb11 . . . ainb1q

...
. . .

...
...

. . .
...

a11bp1 . . . a11bpq . . . a1nbp1 . . . ainbpq
...

...
...

...

am1b11 . . . am1b1q . . . amnb11 . . . amnb1q

...
. . .

...
...

. . .
...

am1bp1 . . . am1bpq . . . amnbp1 . . . amnbpq



.

Mo»na pokaza¢ [8], »e prawdziwe jest nast¦puj¡ce twierdzenie.

Twierdzenie 2.19. Niech G1(V1, E1) oraz G2(V2, E2) b¦d¡ nieskierowanymi grafami prostymi

z macierzami s¡siedztwa odpowiednio A1 oraz A2. Ponadto niech |V1| = n1 oraz |V2| = n2,

wtedy macierz s¡siedztwa grafu G = G1�G2 wyra»a si¦ wzorem

A = A1 ⊗A2 = A1 ⊗ In2 + In1 ⊗A2, (46)

gdzie ⊗ oznacza iloczyn Kroneckera oraz In jest macierz¡ jednostkow¡ rz¦du n.
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3 Warto±ci wªasne wybranych procesów narodzin i ±mierci

3.1 Proste bª¡dzenie losowe na Z ∩ [0, N ]

Proste bª¡dzenie losowe na Z∩ [0, N ] jest szczególnym przypadkiem jednowymiarowego bª¡dze-

nia przypadkowego na prostej.

De�nicja 3.1. Niech X1, X2, . . . b¦d¡ oznacza¢ ci¡g niezale»nych zmiennych losowych o tym

samym rozkªadzie F , takim »e 0 ¬ F(0) < 1. Wówczas proces stochastyczny {Sn, n ∈ N}, dla

którego S0 = s0 oraz Sn = s0 + X1 + . . . + Xn = Sn−1 + Xn nazywamy jednowymiarowym

bª¡dzeniem losowym na prostej rzeczywistej, rozpoczynaj¡cym si¦ w punkcie s0.

Tak zde�niowane bª¡dzenie losowe mo»emy interpretowa¢ jako poruszanie si¦ punktu po prostej.

Wówczas Sn oznacza poªo»enie punktu w chwili n.

De�nicja 3.2. Niech X1, X2, . . . b¦d¡ oznacza¢ niezale»ne zmienne losowe o tym samym roz-

kªadzie F , takim »e P (Xi = 1) = p, P (Xi = −1) = q, P (Xi = 0) = r oraz p + q + r = 1.

Wówczas, proces stochastyczny S = {Sn, n ∈ N}, dla którego S0 = 0 oraz Sn = Sn−1 +Xn nazy-

wamy bª¡dzeniem losowym na Z o pocz¡tku w zerze. Ponadto, gdy p = q to bª¡dzenie nazywamy

prostym.

Zastanówmy si¦ wi¦c jak wygl¡daªoby takie bª¡dzenie po pewnym podzbiorze liczb caªkowitych

Z ∩ [0, N ], gdzie N ∈ N. Pomocna mo»e okaza¢ si¦ poni»sza ilustracja. Niech N ∈ N wtedy

p0 qN

r0 rN

q p

r

0 N

Rysunek 1: Bª¡dzenie losowe po zbiorze Z ∩ [0, N ].

zbiór Z∩ [0, N ] skªada si¦ z N + 1 elementów rozªo»onych równomiernie na odcinku [0, N ]. Dla

bª¡dzenia losowego na zbiorze Z∩[0, N ] zastosowanie ma De�nicja 3.2 z pewnymi odst¦pstwami

na brzegach przedziaªu [0, N ]. Gdy w pewnej chwili czasowej n znajdujemy si¦ w stanie Sn = 0,

to z prawdopodobie«stwem r0 zostaniemy w zerze lub z prawdopodobie«stwem p0 w chwili n+1

znajdowa¢ si¦ b¦dziemy w jedynce. Analogicznie, gdy w chwili czasowej n znajdujemy si¦ w

stanie Sn = N , to z prawdopodobie«stwem rN zostaniemy w tym punkcie, lub z prawdopo-

dobie«stwem qN ,w chwili n + 1 b¦dziemy znajdowa¢ si¦ w punkcie N − 1. Stany 0 oraz N s¡
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stanami barierowymi, które wyznaczaj¡ obszar bª¡dzenia losowego. Tak zde�niowany proces

stochastyczny bª¡dzenia losowego na zbiorze Z ∩ [0, N ] tworzy ªa«cuch Markowa ze sko«czon¡

przestrzeni¡ stanów E = {0, 1, 2, . . . , N} i macierz¡ przej±¢ P = (pij)i,j=0,1,...,N , gdzie

pij =



q dla j = i− 1, i = 1, . . . , N − 1

p dla j = i+ 1, i = 1, . . . , N − 1

r dla j = i, i = 1, . . . , N − 1

p0 dla i = 0, j = 1

r0 dla i = j = 0

qN dla i = N, j = N − 1

rN dla i = j = N

0 w pozostaªych przypadkach

Macierz P jest wi¦c nast¦puj¡cej postaci

P =



r0 p0 0 . . . 0 0

q r p . . . 0 0

0 q r . . . 0 0
...

...
...
. . .

...
...

0 0 0 . . . r p

0 0 0 . . . qN rN


. (47)

3.1.1 Proste bª¡dzenie losowe z ekranami odbijaj¡cymi

De�nicja 3.3. Rozwa»my proces S = {Sn, n ∈ N} prostego bª¡dzenia losowego w zbiorze

Z ∩ [0, N ] z przestrzeni¡ stanów E = {0, 1, . . . , N} i macierz¡ przej±¢ postaci (47). Proces

ten nazywamy prostym bª¡dzeniem losowym z ekranami odbijaj¡cymi, gdy p0 = qN = 1 oraz

r0 = rN = 0. Ponadto, gdy p = q bª¡dzenie nazywamy symetrycznym.

31



Cz¦sto spotykanym przykªadem prostego, symetrycznego bª¡dzenia losowego z ekranami odbi-

jaj¡cymi w zbiorze Z ∩ [0, N ] jest proces stochastyczny opisany macierz¡ przej±¢ postaci

P =



0 1 0 . . . 0 0 0
1
2 0 1

2 . . . 0 0 0

0 1
2 0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . 0 1
2 0

0 0 0 . . . 1
2 0 1

2

0 0 0 . . . 0 1 0


N+1×N+1

Zgodnie z Twierdzeniem 2.8 proces ten ma N+1 ró»nych warto±ci wªasnych λ1, . . . , λN+1, gdzie

λ1 = cos
(
π
N

)
λ2 = cos

(
2π
N

)
...

λN−1 = cos
(

(N−1)π
N

)
λN = 1

λN+1 = −1.

3.1.2 Proste bª¡dzenie losowe z ekranami pochªaniaj¡cymi

De�nicja 3.4. Rozwa»my proces S = {Sn, n ∈ N} prostego bª¡dzenia losowego w zbiorze

Z ∩ [0, N ] z przestrzeni¡ stanów E = {0, 1, . . . , N} i macierz¡ przej±¢ postaci (47). Proces

ten nazywamy prostym bª¡dzeniem losowym z ekranami pochªaniaj¡cymi, gdy r0 = rN = 1 oraz

p0 = qN = 0.

Rozwa»my szczególny przypadek symetrycznego bª¡dzenia losowego z ekranami pochªaniaj¡cy-

mi w zbiorze Z ∩ [0, N ] opisany macierz¡ przej±¢ postaci

P =



1 0 0 . . . 0 0 0
1
2 0 1

2 . . . 0 0 0

0 1
2 0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . 0 1
2 0

0 0 0 . . . 1
2 0 1

2

0 0 0 . . . 0 0 1



=


1 0
1
2 TN−1(1

2 , 0,
1
2) 1

2

0 1

 .
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Jak wida¢ wielomian charakterystyczny macierzy P wyra»a si¦ wzorem

det (P− λI) = (1− λ)2 · detTN−1

(1
2
,−λ, 1

2

)
.

St¡d na mocy Twierdzenia 2.6 proces ten ma N − 1 warto±ci wªasnych λ1, . . . , λN−1 krotno±ci

jeden i jedn¡ dwukrotn¡ warto±¢ wªasn¡ λN , gdzie

λ1 = cos
(
π
N

)
λ2 = cos

(
2π
N

)
...

λN−1 = cos
(

(N−1)π
N

)
λN = 1

3.1.3 Proste bª¡dzenie losowe z ekranami elastycznymi

De�nicja 3.5. Rozwa»my proces S = {Sn, n ∈ N} prostego bª¡dzenia losowego w zbiorze Z ∩

[0, N ] z przestrzeni¡ stanów E = {0, 1, . . . , N} i macierz¡ przej±¢ postaci (47). Proces ten

nazywamy prostym bª¡dzeniem losowym z ekranami elastycznymi, gdy 0 < r0 = 1− p0 < 1 oraz

0 < rN = 1− qN < 1.

Rozwa»my szczególny przypadek symetrycznego bª¡dzenia losowego z ekranami elastycznymi

w zbiorze Z ∩ [0, N ] opisany macierz¡ przej±¢ postaci

P =



1
2

1
2 0 . . . 0 0 0

1
2 0 1

2 . . . 0 0 0

0 1
2 0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . 0 1
2 0

0 0 0 . . . 1
2 0 1

2

0 0 0 . . . 0 1
2

1
2


N+1×N+1

(48)

Zgodnie z Twierdzeniem 2.9 proces ten ma N + 1 ró»nych warto±ci wªasnych λ0, . . . , λN , gdzie

λ0 = 1

λ1 = cos
(

π
N+1

)
λ2 = cos

(
2π
N+1

)
...

λN = cos
(
Nπ
N+1

)
.

(49)

Ponadto, jeste±my w stanie wyznaczy¢ analitycznie wektory wªasne tego procesu.
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Twierdzenie 3.1. Niech dany b¦dzie proces S = {Sn, n ∈ N} prostego bª¡dzenia losowego w

zbiorze Z ∩ [0, N ] z ekranami elastycznymi okre±lony na przestrzeni stanów E = {0, 1, . . . , N}

z macierz¡ przej±¢ tak¡ jak w (48). Wówczas, wektor wªasny −→x l stowarzyszony z warto±ci¡

wªasn¡ λl, l = 0, . . . , N jest nast¦puj¡cej postaci

−→x l =



cos
(
1
2 lπ

N+1

)
cos

(
(2− 12 )lπ
N+1

)
...

cos
(

(k− 12 )lπ
N+1

)
...

cos
(

(N− 12 )lπ
N+1

)



. (50)

Dowód Twierdzenia 3.1.

Przeprowadzimy analogiczne rozumowanie jak w dowodzie Twierdzenia 2.6. Niech λl b¦dzie

warto±ci¡ wªasn¡ macierzy P stowarzyszon¡ z wektorem wªasnym −→x l = [x1, x2, . . . , xN+1]T , l =

0, . . . , N . Wtedy, dla pary (λl,
−→x l) speªniony jest ukªad zªo»ony z N + 1 równa« liniowych

(P− λlI)−→x l = 0 ⇐⇒


1
2xk−1 − λlxk + 1

2xk+1 = 0,

x0 = x1,

nN+2 = xN+1,

gdzie k = 1, . . . , N+1. St¡d, mno»¡c przez 2 i podstawiaj¡c k := k+1, otrzymujemy jednorodne

równanie ró»nicowe drugiego stopnia o staªych wspóªczynnikach, wraz z warunkami brzegowymi


xk+2 − 2λlxk+1 + xk = 0,

x0 = x1,

nN+2 = xN+1,

(51)

gdzie k = 0, . . . , N . Rozwi¡zania równania (51) poszukujemy w±ród funkcji pot¦gowych postaci

xk = αrk, gdzie α, r ∈ C s¡ pewnymi staªymi. Podstawiaj¡c tak okre±lone rozwi¡zanie do

równania (51) i dziel¡c przez αrk otrzymujemy równanie kwadratowe

r2 − 2λlr + 1 = (r − r1)(r − r2) = 0, (52)

którego pierwiastki s¡ dane wzorem r1, r2 = λl ±
√

(λl − 1)(λl + 1). Wtedy, ogólne rozwi¡zanie

rozwa»anego ukªadu jest postaci

xk =

 α1r
k
1 + α2r

k
2 , gdy r1 6= r2,

α1r
k
0 + α2kr

k
0 , gdy r1 = r2 = r0,

(53)
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gdzie α1, α2 ∈ C s¡ dowolnymi staªymi. Jako pierwszy rozwa»my przypadek gdy r1 = r2 = r0.

Jak wiemy −1 nie jest warto±ci¡ wªasn¡ macierzy (48), zatem λl = 1 oraz r0 = 1. St¡d

rozwi¡zanie ogólne ukªadu (51) jest postaci xk = α1 + α2k oraz staªe α1, α2 ∈ C mo»na wy-

znaczy¢ z warunków brzegowych. Warunek x0 = x1 implikuje, »e α2 = 0 oraz xk = α1 dla

k = 1, . . . , N + 1. Kªad¡c α1 = 1 otrzymujemy, »e je±li λl = 1 to −→x l = 1N+1, gdzie 1N+1

jest wektorem kolumnowym odpowiednich rozmiarów zªo»onym z samych jedynek. Rozwa»my

teraz przypadek, gdy λl 6= 1 i r1 6= r2. Wówczas rozwi¡zanie ogólne ukªadu (51) jest postaci

xk = α1r
k
1 + α2r

k
2 , k = 1, . . . , N + 1. Ponadto, skoro r1, r2 s¡ pierwiastkami trójmianu kwadra-

towego (52), to r1r2 = 1⇒ r2 = r−1
1 . St¡d, xk = α1r

k
1 +α2r

−k
1 , k = 1, . . . , N + 1 oraz z warunku

pocz¡tkowego x0 = x1 otrzymujemy α1 + α2 = α1r1 + α2r
−1
1 ⇒ α2 = α1r1. Zatem rozwi¡zanie

ogólne ukªadu (51) jest postaci xk = α1

(
rk1 + r1−k

1

)
, k = 1, . . . , N + 1. Zauwa»my, »e α1 6= 0,

bo w przeciwnym przypadku −→x l =
−→
0 , co nie jest mo»liwe gdy» −→x l jest wektorem wªasnym.

Warunek brzegowy xN+2 = xN+1 implikuje, »e

rN+2
1 + r

−(N+1)
1 = rN+1

1 + r−N1 . (54)

Mno»¡c obie strony równania (54) przez rN+1
1 otrzymujemy

r2N+3
1 + 1 = r2N+2

1 + r1 ⇐⇒ r2N+2
1 (r1 − 1) = r1 − 1, (55)

a poniewa» λl 6= 1, to r1 6= 1. St¡d, r2N+2
1 = 1 oraz r1 = 2N+2

√
1 = e

2πil
2N+2 = e

πil
N+1 . Mamy wi¦c

xk = α1

(
e
kπil
N+1 + e

(1−k)πil
N+1

)
. (56)

Kªad¡c α1 = 1
2e
− πil
2N+2 otrzymujemy

xk =
1
2

(
e
(k− 12 )πil
N+1 + e−

(k− 12 )πil
N+1

)
= cos

(
(k − 1

2)πl
N + 1

)
, (57)

co ko«czy dowód.

Wyznaczyli±my warto±ci i wektory wªasne procesu prostego bª¡dzenia losowego z ekranami

elastycznymi w zbiorze Z ∩ [0, N ]. Dzi¦ki temu dla ka»dego k ∈ N oraz dla dowolnych dwóch

stanów i, j mo»emy poda¢ wprost prawdopodobie«stwo warunkowe Pij(k) przej±cia ze stanu i do

stanu j w k krokach. W tym celu posªu»ymy si¦ reprezentacj¡ spektraln¡ macierzy przej±¢ tego

procesu. Przedstawimy macierz Pk w postaci (12). Zauwa»my, »e macierz P jest symetryczna,

st¡d na mocy Twierdzenia 2.5 wektory wªasne s¡ równe lewostronnym wektorom wªasnym

macierzy P. Rozwa»my macierz Bl, l = 0, . . . , N wyra»on¡ wzorem (10)

Bl = −→x l

−→
f l = −→x l

−→x T
l .
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St¡d

Bl(i, j) = −→x l(i)−→x l(j) = cos
(

(i− 0.5)lπ
N + 1

)
cos

(
(j − 0.5)lπ
N + 1

)
,

oraz

Pk(i, j) =
N∑
l=0

λkl Bl(i, j) =
N∑
l=0

cos
(

lπ

N + 1

)k
cos

(
(i− 0.5)lπ
N + 1

)
cos

(
(j − 0.5)lπ
N + 1

)
.

3.2 Model urnowy Ehrenfestów

Rozwa»my nast¦puj¡cy model urnowy. Zaªó»my, »e mamy N cz¡stek i ka»d¡ wkªadamy do po-

jemnika A lub B z jednakowym prawdopodobie«stwem. Niech w chwili n ­ 0, k cz¡stek b¦dzie

w pojemniku A. Wtedy, w chwili n+1 wybierana jest jedna z N cz¡stek i przekªada do drugiego

pojemnika. Zatem w chwili n + 1 w pojemniku A mamy k − 1 albo k + 1 cz¡stek. Niech Xn

oznacza liczb¦ cz¡stek w pojemniku A w chwili n, wtedy P (i, j) = P (Xn = j|Xn = i) oznacza

prawdopodobie«stwo warunkowe, »e w chwili n + 1 w pojemniku A b¦dzie j kul je±li w chwili

wcze±niej byªo w nim i kul. Tak zde�niowany proces stochastyczny tworzy ªa«cuch Markowa ze

sko«czon¡ przestrzeni¡ stanów S = {0, 1, 2, . . . , N} i macierz¡ przej±¢ P = (pij)i,j=0,1,...,N , gdzie

pij =


i
N

dla j = i− 1, i = 2, . . . , N + 1
N−i
N

dla j = i+ 1, i = 1, . . . , N

0 dla |i− j| 6= 1

Macierz P jest wi¦c postaci

P =



0 1 0 0 . . . 0 0 0
1
N

0 N−1
N

0 . . . 0 0 0

0 2
N

0 N−2
N

. . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . N−1
N

0 1
N

0 0 0 0 . . . 0 1 0


=

1
N
KN .

Jest to znormalizowana macierz Kaca stopnia N . Zatem na mocy Twierdzenia 2.11 oraz Twier-

dzenia 2.3 proces urnowy Ehrenfestów posiada N + 1 ró»nych warto±ci wªasnych λ0, . . . , λN ,

gdzie

λ0 = 1

λ1 = N−2
N

...

λN−1 = −N−2
N

λN = −1
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3.3 Model urnowy Bernoulliego Laplace'a

Rozwa»my nast¦puj¡cy model urnowy. N czarnych i N biaªych kul rozmieszczono w dwóch

urnach A oraz B tak, »e ka»da urna zawiera N kul. Niech w chwili n ­ 0, k czarnych kul

znajduje si¦ w pojemniku A. Wtedy, w chwili n+ 1 z ka»dej urny wybieramy losowo po jednej

kuli i dwie tak wybrane kule zamieniamy miejscami. Zatem w chwili n + 1 w pojemniku A

mamy k − 1, k albo k + 1 czarnych kul. Niech Xn oznacza liczb¦ czarnych kul w pojemniku

A w chwili n, wtedy P (i, j) = P (Xn = j|Xn = i) oznacza prawdopodobie«stwo warunkowe, ze

w chwili n + 1 w pojemniku A b¦dzie j czarnych kul je±li w chwili wcze±niej byªo w nim i kul

tego koloru.

Tak zde�niowany proces stochastyczny tworzy ªa«cuch Markowa ze sko«czon¡ przestrzeni¡

stanów S = {0, 1, 2, . . . , N} i macierz¡ przej±¢ PN = (pij)i,j=0,1,...,N , gdzie

pij =



(
i
N

)2
dla j = i− 1, i = 1, . . . , N(

N−i
N

)2
dla j = i+ 1, i = 0, . . . , N − 1

2 i
N

(
N−i
N

)
dla j = i, i = 0, . . . , N

0 dla |i− j| > 1

Macierz PN jest wi¦c postaci

PN =



0 1 0 0 . . . 0 0 0(
1
N

)2 2
N

(
N−1
N

) (
N−1
N

)2
0 . . . 0 0 0

0
(

2
N

)2 4
N

(
N−2
N

) (
N−2
N

)2
. . . 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 . . .
(
N−1
N

)2 (
N−1
N

)
2
N

(
1
N

)2

0 0 0 0 . . . 0 1 0


.

Twierdzenie 3.2. Niech dana b¦dzie macierz

P̂N = N2PN =



0 N2 0 . . . 0 0 0

12 2 (N − 1) (N − 1)2 . . . 0 0 0

0 22 4 (N − 2) . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . (N − 1)2 (N − 1) 2 12

0 0 0 . . . 0 N2 0


. (58)

Warto±ci wªasne macierzy P̂N s¡ postaci

λk = N2 − k (2N + 1− k) , k = 0, . . . , N. (59)
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Udowodnimy powy»sze twierdzenie wyznaczaj¡c miejsca zerowe wielomianu charakterystycz-

nego macierzy P̂N .

Dowód Twierdzenia 3.2.

det
(
P̂N − λI

)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ N2 0 . . . 0 0 0

12 2 (N − 1)− λ (N − 1)2 . . . 0 0 0

0 22 4 (N − 2)− λ . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . (N − 1)2 (N − 1) 2− λ 12

0 0 0 . . . 0 N2 −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

m ki := ki + ki−1, i = 2, . . . , N + 1∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ N2 − λ N2 − λ . . . N2 − λ N2 − λ N2 − λ

12 2N − 1− λ N2 − λ . . . N2 − λ N2 − λ N2 − λ

0 22 4 (N − 1)− λ . . . N2 − λ N2 − λ N2 − λ
...

...
...

. . .
...

...
...

0 0 0 . . . (N − 1)2 N2 − 1− λ N2 − λ

0 0 0 . . . 0 N2 N2 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

m wi := wi − wi+1, i = 1, . . . , N∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1− λ N2 + 1− 2N 0 . . . 0 0 0

12 2N − 1− λ N2 − 4 (N − 1) . . . 0 0 0

0 22 4 (N − 1)− λ . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . (N − 1)2 −1− λ 0

0 0 0 . . . 0 N2 N2 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

m ∣∣∣∣∣∣∣
P̂N−1 − IN−1×N−1 0N−1×1

C N2 − λ

∣∣∣∣∣∣∣ = 0, gdzie

0N×1 jest macierz¡ zerow¡, IN−1×N−1 jest macierz¡ jednostkow¡, oraz C = [ 0 ... 0 N2 ] .

m na mocy Twierdzenia 2.10 prawdziwa jest nast¦puj¡ca rekurencja∣∣∣P̂N−1 − IN−1×N−1

∣∣∣ (N2 − λ
)

= 0

oraz ∣∣∣P̂0

∣∣∣ = −λ.
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St¡d na mocy Twierdzenia 2.4 otrzymujemy tez¦.

Zatem na mocy Twierdzenia 3.2 proces urnowy Bernoulliego Laplace'a posiada N + 1 ró»nych

warto±ci wªasnych λ0, . . . , λN , gdzie

λ0 = 1

λ1 = N−2
N

...

λi = 1− i(2N−i+1)
N2

...

λN = − 1
N

3.4 Bª¡dzenie po hiperkostce i dualny proces narodzin i ±mierci

De�nicja 3.6. Rozwa»my przestrze« Rn. Hiperkostka Hn o kraw¦dziach dªugo±ci a > 0 jest

zbiorem punktów, których wspóªrz¦dne (x1, x2, . . . xn) speªniaj¡ ukªad nierówno±ci

0 ¬ x1 ¬ a

0 ¬ x2 ¬ a

. . .

0 ¬ xn ¬ a

Ponadto gdy a = 1, to hiperkostk¦ Hn nazywamy jednostkow¡.

Tak zde�niowana jednostkowa hiperkostka Hn posiada 2n wierzchoªków o wspóªrz¦dnych w

zbiorze {0, 1}n. Ka»dy wierzchoªek e hiperkostki Hn mo»e by¢ przedstawiony poprzez se-

000 100

010 110

001 101

011 111

Rysunek 2: Hiperkostka jednostkowa H3.

kwencj¦ e = (e1, e2, . . . , en), gdzie ei ∈ {0, 1}. Dwa wierzchoªki e1 = (e1
1, e

1
2, . . . , e

1
n) oraz

e2 = (e2
1, e

2
2, . . . , e

2
n) s¡ poª¡czone kraw¦dzi¡ wtedy i tylko wtedy, gdy

∑n
i=1 |e1

i − e2
i | = 1.

Odlegªo±¢ pomi¦dzy wierzchoªkami e1 i e2 wynosi |e1−e2| =
∑n
i=1 |e1

i −e2
i | i jest to najmniejsza

liczba kraw¦dzi, które trzeba pokona¢ by przej±¢ pomi¦dzy tymi dwoma wierzchoªkami.
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De�nicja 3.7. Niech dany b¦dzie proces stochastyczny X = {Xn, n ­ 0} z przestrzeni¡ stanów

V = {0, 1}d zªo»on¡ z 2d wektorów ei = (ei1, e
i
2, . . . , e

i
d), i = 1, . . . , 2d, taki »e:

P (ei, ej) = 1
2d , gdy |ei − ej| = 1,

P (ei, ej) = 1
2 , gdy |ei − ej| = 0,

P (ei, ej) = 0, gdy |ei − ej| ­ 2,

gdzie P (ei, ej) oznacza prawdopodobie«stwo przej±cia w jednym kroku z wierzchoªka ei do wierz-

choªka ej, to jest P (ei, ej) = P (Xn+1 = ej|Xn = ei). Wówczas proces stochastyczny X nazy-

wamy procesem bª¡dzenia losowego po hiperkostce.

Proces bª¡dzenia losowego po hiperkostce nie jest procesem narodzin i ±mierci, niemniej b¦dzie

on pomocny przy wyznaczaniu warto±ci wªasnych pewnego nowego procesu narodzin i ±mierci.

Zauwa»my, »e je±li przestrze« stanów V = {0, 1}d procesu bª¡dzenia losowego po hiperkostce

Hd b¦dzie uporz¡dkowana zgodnie z porz¡dkiem wierzchoªków grafu hiperkostki Qd to macierz

przej±¢ tego procesu jest postaci

Pd =
1
2d

Ad +
1
2
I2d , (60)

gdzie I2d oznacza macierz jednostkow¡ rz¦du 2d oraz Ad jest macierz¡ s¡siedztwa grafu rozpi¦-

tego na wierzchoªkach hiperkostki. Zgodnie z Twierdzeniem 2.4 aby wyznaczy¢ warto±ci wªasne

procesu bª¡dzenia losowego po hiperkostce wystarczy wi¦c wyliczy¢ warto±ci wªasne macie-

rzy s¡siedztwa Ad. Ponadto, na mocy Twierdzenia 2.19 macierz s¡siedztwa An grafu Qn jest

nast¦puj¡c¡ macierz¡ klatkow¡

An =

 02n−1 I2n−1

I2n−1 02n−1

+

 An−1 02n−1

02n−1 An−1

 =

 An−1 I2n−1

I2n−1 An−1

 , (61)

gdzie 0n jest macierz¡ zerow¡ oraz In jest macierz¡ jednostkow¡ rz¦du n.

Twierdzenie 3.3. Niech dany b¦dzie graf Qd rozpi¦ty na wierzchoªkach hiperkostki jednostko-

wej Hd. Macierz s¡siedztwa Ad grafu Qd posiada d + 1 ró»nych warto±ci wªasnych λi wraz z

krotno±ciami ni, i = 0, . . . , d

λ0 = −d, n0 =
(
d
0

)
λ1 = −d+ 2, n1 =

(
d
1

)
...

λk = −d+ 2k, nk =
(
d
k

)
...

λd = d, nd =
(
d
d

)
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Dowód Twierdzenia 3.3.

Macierz s¡siedztwa Ad grafu Qd jest macierz¡ klatkow¡ postaci (61). St¡d otrzymujemy nast¦-

puj¡c¡ zale»no±¢ rekurencyjn¡

det(Ad − λI2d) = det(Ad−1 + I2d−1 − λI2d−1) det(Ad−1 − I2d−1 − λI2d−1). (62)

Dowiedziemy tezy Twierdzenia 3.3 poprzez indukcj¦ wzgl¦dem d.

Sprawdzenie prawdziwo±ci twierdzenia dla d = 1.

A1 = [ 0 1
1 0 ]⇒ det(A1 − λI) =

∣∣∣ −λ 1
1 −λ

∣∣∣ = 0 ⇐⇒ λ0 = −1, λ1 = 1.

Zatem, dla d = 1 twierdzenie jest prawdziwe.

Zaªo»enie prawdziwo±ci twierdzenia dla d ­ 1 i dowód prawdziwo±ci dla d+ 1.

det(Ad+1−λI) = det(Ad+I−λI) det(Ad−I−λI) = det(Ad−(λ−1)I) det(Ad−(λ+1)I)

St¡d na mocy Twierdzenia 2.4 wraz z zaªo»eniem indukcyjnym macierz Ad+1 posiada

warto±ci wªasne λ1
i , λ

2
i wraz z krotno±ciami ni, i = 0, . . . , d

λ1
0 = λ0 − 1 = −d− 1, n0 =

(
d
0

)
...

λ1
k = λk − 1 = −d− 1 + 2k, nk =

(
d
k

)
...

λ1
d = λd − 1 = d− 1, nd =

(
d
d

)
λ2

0 = λ0 + 1 = −d+ 1, n0 =
(
d
0

)
...

λ2
k = λk + 1 = −d+ 1 + 2k, nk =

(
d
k

)
...

λ2
d = λd + 1 = d+ 1, nd =

(
d
d

)
gdzie λi, i = 0, . . . , d s¡ warto±ciami wªasnymi macierzy Ad. Zauwa»my ponadto, »e dla

k = 0, . . . , d− 1

λ2
k = −d+ 1 + 2k = −d+ 1− 2 + 2 + 2k = −(d+ 1) + 2(k + 1) = λ1

k+1.

Dodatkowo dla k = 1, . . . , d prawdziwa jest równo±¢(
d+ 1
k

)
=
(
d

k

)
+
(

d

k − 1

)
.
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Zatem, macierz Ad+1 posiada d+ 2 ró»ne warto±ci wªasne λ∗i wraz z krotno±ciami n∗i , i =

0, . . . , d+ 1

λ∗0 = λ1
0 = −(d+ 1), n∗0 =

(
d
0

)
=
(
d+1

0

)
λ∗1 = λ1

1 + λ2
0 = −(d+ 1) + 2, n∗1 =

(
d
1

)
+
(
d
0

)
=
(
d+1

1

)
...

λ∗k = λ1
k + λ2

k−1 = −(d+ 1) + 2k, n∗k =
(
d
k

)
+
(

d
k−1

)
=
(
d+1
k

)
...

λ∗d = λ1
d + λ2

d−1 = d− 1, n∗d =
(
d
d

)
+
(

d
d−1

)
=
(
d+1
d

)
λ∗d+1 = λ2

d = d+ 1, nd =
(
d
d

)
=
(
d+1
d+1

)
.

Co ko«czy dowód.

Macierz Pd procesu bª¡dzenia losowego po hiperkostce Hd jest postaci (46). Na mocy Twier-

dzenia 2.4 oraz Twierdzenia 3.3 macierz Pd posiada wi¦c d + 1 ró»nych warto±ci wªasnych λi

wraz z krotno±ciami ni, i = 0, . . . , d

λ0 = 0, n0 =
(
d
0

)
λ1 = 1

d
, n1 =

(
d
1

)
...

λk = k
d
, nk =

(
d
k

)
...

λd = 1, nd =
(
d
d

)
.

3.4.1 Nowy proces narodzin i ±mierci

Rozwa»my macierz kwadratow¡ P∗ = [P∗(k, l)] k=0,...,d
l=0,...,d

nast¦puj¡cej postaci

P∗(k, l) =



(d−k)
k−1∑
i=0

(di)

2d
k∑
i=0

(di)
, dla k ­ 1, l = k − 1,

(k+1)
k+1∑
i=0

(di)

2d
k∑
i=0

(di)
dla k < d, l = k + 1,

d−1
2d , dla k < d, l = k,

1, dla k = d, l = k,

0, dla |l − k| > 1.

(63)
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Macierz P∗ jest wi¦c trójdiagonalna. Sprawd¹my, »e P∗ jest macierz¡ stochastyczn¡, ∀k, l ∈

Zd+1 P∗(k, l) ­ 0 wystarczy zatem pokaza¢, »e ∀k ∈ Zd+1
d∑
l=0

P∗(k, l) = 1. Rozwa»my nast¦pu-

j¡ce przypadki

1. k = 0

d∑
l=0

P∗(0, l) = P∗(0, 0) + P∗(0, 1) =
d− 1

2d
+

1∑
i=0

(
d
i

)
2d

0∑
i=0

(
d
i

) =
d− 1

2d
+
d+ 1

2d
= 1,

2. 0 < k < d

d∑
l=0

P∗(k, l) = P∗(k, k − 1) + P∗(k, k) + P∗(k, k + 1)

=
(d− k)

k−1∑
i=0

(
d
i

)
2d

k∑
i=0

(
d
i

) +
d− 1

2d
+

(k + 1)
k+1∑
i=0

(
d
i

)
2d

k∑
i=0

(
d
i

)

=
d− 1

2d
+

(d− k)
[
k∑
i=0

(
d
i

)
−
(
d
k

)]
+ (k + 1)

[
k∑
i=0

(
d
i

)
+
(

d
k+1

)]

2d
k∑
i=0

(
d
i

)

=
d− 1

2d
+
d+ 1

2d
+

(k + 1)
(

d
k+1

)
− (d− k)

(
d
k

)
2d

k∑
i=0

(
d
i

) = 1 +
k+1

1
d!

(k+1)!(d−k−1)! −
d−k

1
d!

k!(d−k)!

2d
k∑
i=0

(
d
i

)

= 1 +
d!−d!

k!(d−k−1)!

2d
k∑
i=0

(
d
i

) = 1,

3. k = d

d∑
l=0

P∗(d, l) = P∗(d, d) = 1.

Macierz P∗ jest trójdiagonalna i stochastyczna, jest wi¦c macierz¡ przej±¢ pewnego nowego

procesu narodzin i ±mierci X∗ = {X∗n, n ­ 0}.

Twierdzenie 3.4. Niech dany b¦dzie proces narodzin i ±mierci X∗ = {X∗n, n ­ 0} okre±lony na

przestrzeni stanów E = {0, 1, . . . , d} z macierz¡ przej±¢ P∗ postaci (63). Proces X∗ ma d + 1

ró»nych warto±ci wªasnych λi = i
d
, i = 0, . . . , d.

Udowodnimy powy»sze twierdzenie wykorzystuj¡c teori¦ ªa«cuchów Strong Stationary Dual.

Poka»emy, »e proces X∗ z macierz¡ przej±¢ P∗ postaci (63) jest ªa«cuchem Strong Stationary
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Dual procesu X bª¡dzenia po hiperkostce Hd. Ponadto, jak wykazali±my wcze±niej proces X

posiada d+ 1 ró»nych warto±ci wªasnych. St¡d, na mocy Lematu 2.1 oba procesy maj¡ te same

warto±ci wªasne.

Dowód Twierdzenia 3.4.

Niech dana b¦dzie hiperkostka jednostkowa Hd ze zbiorem wierzchoªków E = {e1, . . . , e2d} =

{0, 1}d. Niech S : E → Zd+1 b¦dzie funkcj¡ okre±lon¡ na zbiorze E wyra»on¡ wzorem

S(e) =
d∑
i=0

e(i),

gdzie e(i) oznacza i-t¡ wspóªrz¦dn¡ wierzchoªka e ∈ E. Ponadto, niech funkcja k : E×E → Z+
d+1

b¦dzie dana wzorem

k(ei, ej) = min {k : ei(k) 6= ej(k)} .

Wtedy, przy pomocy funkcji S(e) i k, zde�niowa¢ mo»emy silny porz¡dek liniowy ≺ okre±lony

na zbiorze E

∀ei, ej ei ≺ ej ⇐⇒ S(ei) < S(ej) ∨ (S(ei) = S(ej) ∧ ei(k(ei, ej)) = 1) .

Podzielmy zbiór E na d+ 1 rozª¡cznych podzbiorów

Ek = {ei ∈ E : S(ei) = k} , k = 0, . . . , d,

wtedy, niech ekmax oraz ekmin oznaczaj¡ odpowiednio maksymalny i minimalny element zbioru

Ek wzgl¦dem porz¡dku liniowego ≺.

Rozwa»my proces stochastyczny X = {Xn, n ­ 0} bª¡dzenia losowego po hiperkostce jednostko-

wej Hd okre±lony na przestrzeni stanów E = {e1, . . . , e2d} = {0, 1}d uporz¡dkowanej zgodnie z

porz¡dkiem liniowym≺, startuj¡cy z wierzchoªka e1 = (0, . . . , 0)T (to znaczy ν = (1, 0, . . . , 0)T ).

Niech P = [P (ei, ej)]ei,ej∈E b¦dzie macierz¡ przej±¢ tego procesu z prawdopodobie«stwami

P (ei, ej) okre±lonymi w De�nicji 3.7. Zauwa»my, »e

∀ei, ej ∈ E P (ei, ej) = P (ej, ei) ⇐⇒ P = PT ,

st¡d macierz P =
←−
P jest podwójnie stochastyczna oraz na mocy Twierdzenia 2.17 rozkªad

stacjonarny π macierzy P jest jednostajny. We¹my macierz C0 = [C0(ei, k)] i=1,...,2d
k=0,...,d

tak¡, »e

C0(ei, k) = 1 (S(ei) ¬ k). Wtedy C0 jest macierz¡ schodkow¡ tak¡, »e rank C0 = d+1 i na mocy

Twierdzenia 2.16 istnieje macierz C−1
0 = [C−1

0 (k, ei)] k=0,...,d
i=1,...,2d

b¦d¡ca lewostronn¡ odwrotno±ci¡

macierzy C0 (macierz C−1
0 nie jest okre±lona jednoznacznie). Niech C−1

0 (k, ei) = 1

(
ei = ekmax

)
−

1 (k < d) ∧
(
ei = ek+1

min

)
, wtedy ∀k, l ∈ Zd+1(

C−1
0 C0

)
(k, l) =

∑
e∈E

C−1
0 (k, e) C0 (e, l) =

∑
e∈E

[
1

(
e = ekmax

)
− 1 (k < d) ∧

(
e = ek+1

min

)]
1 (S(e) ¬ l)
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= 1

(
S(ekmax) ¬ l

)
− 1

(
S(ek+1

min) ¬ l
)

= 1 (k ¬ l)− 1 (k + 1 ¬ l) ,

wi¦c (
C−1

0 C0

)
(k, l) =

 1, gdy k = l

0, gdy k 6= l
⇒ C−1

0 C0 = Id+1,

gdzie Id+1 jest macierz¡ jednostkow¡ stopnia d + 1. Tak okre±lona macierz C−1
0 jest wi¦c le-

wostronn¡ odwrotno±ci¡ macierzy C0. Sprawd¹my tak»e, »e zachodzi warunek (42), to jest

∀k, l ∈ Zd+1 (
C−1

0 PC0

)
(k, l) =

∑
e∈E

C−1
0 (k, e)

[∑
ē∈E

P (e, ē) C0 (ē, l)
]
­ 0

⇐⇒
∑
ē∈E

P
(
ekmax, ē

)
C0 (ē, l)−

∑
ē∈E

P
(
ek+1
min, ē

)
C0 (ē, l) =

∑
ē∈E:S(ē)¬l

P
(
ekmax, ē

)
−P

(
ek+1
min, ē

)
­ 0.

Zauwa»my, »e z ka»dego wierzchoªka e hiperkostki Hd wychodzi dokªadnie d kraw¦dzi oraz, je±li

S(e) = k, to k z tych kraw¦dzi prowadzi do k wierzchoªków ze zbioru Ek−1, a d− k pozostaªe

kraw¦dzie prowadz¡ do d− k wierzchoªków ze zbioru Ek+1. St¡d,

1. dla l ¬ k − 1

∀ē ∈ E : S(ē) ¬ l P
(
ek+1
min, ē

)
= 0, zatem

(
C−1

0 PC0

)
(k, l) ­ 0,

2. dla l = k(
C−1

0 PC0

)
(k, k) =

∑
ē∈E:S(ē)¬k

P
(
ekmax, ē

)
−P

(
ek+1
min, ē

)
= 1

2 + k
2d −

k+1
2d = d−1

2d ­ 0,

3. dla l = k + 1(
C−1

0 PC0

)
(k, k + 1) =

∑
ē∈E:S(ē)¬k+1

P
(
ekmax, ē

)
−P

(
ek+1
min, ē

)
= 1

2 + k
2d + d−k

2d −
1
2 + k+1

2d =

d−(k+1)
2d ­ 0,

4. dla l ­ k + 2(
C−1

0 PC0

)
(k, l) =

∑
ē∈E:S(ē)¬l

P
(
ekmax, ē

)
−P

(
ek+1
min, ē

)
= 1− 1 = 0.

Warunek (42) jest speªniony, a wi¦c na mocy Twierdzenia 2.18 istnieje ªa«cuch Strong Statio-

nary Dual, wzgl¦dem procesu bª¡dzenia po hiperkostce Hd, okre±lony na przestrzeni stanów

E∗ = {0, 1, . . . , d} z macierz¡ przej±¢ P∗, tak¡ »e zachodzi równo±¢ (39) oraz Λ i Λ−1 takie jak

w (45). Zauwa»my, »e
(
1TC0

)
(k) =

k∑
i=0

(
d
i

)
, k = 0, . . . , d, st¡d

Λ(k, e) =
d∑
l=0

(
diag(1TC0)−1

)
(k, l)C0(e, l) =

1
(1TC0) (k)

C0(e, k) =
C0(e, k)
k∑
i=0

(
d
i

) , (64)

oraz analogicznie

Λ−1(e, k) =
d∑
l=0

C−1
0 (l, e)

(
diag(1TC0)

)
(l, k) = C−1

0 (k, e)
k∑
i=0

(
d

i

)
. (65)
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Dlatego macierz P∗ wyra»a si¦ wzorem

P∗(k, l) =
∑
e∈E

[∑
ē∈E

Λ(k, ē)P(ē, e)
]

Λ−1(e, l) =
∑
e∈E

∑
ē∈E

C0(ē, k)
k∑
i=0

(
d
i

) P(ē, e)

C−1
0 (l, e)

l∑
i=0

(
d

i

)

=

l∑
i=0

(
d
i

)
k∑
i=0

(
d
i

) ∑
e∈E

[∑
ē∈E

C0(ē, k)P(ē, e)
]

C−1
0 (l, e)

=

l∑
i=0

(
d
i

)
k∑
i=0

(
d
i

)
[∑

ē∈E
C0(ē, k)P(ē, elmax)−C0(ē, k)P(ē, el+1

min)
]

=

l∑
i=0

(
d
i

)
k∑
i=0

(
d
i

)
 ∑

ē∈E:S(ē)¬k
P(ē, elmax)−P(ē, el+1

min)

 .
St¡d

1. dla k ­ 1 oraz l ¬ k − 2

P∗(k, l) =

l∑
i=0

(
d
i

)
k∑
i=0

(
d
i

)
 ∑

ē∈E:S(ē)¬k
P(ē, elmax)−P(ē, el+1

min)

 =

l∑
i=0

(
d
i

)
k∑
i=0

(
d
i

) (1− 1) = 0,

2. dla k ­ 1 oraz l = k − 1

P∗(k, k − 1) =

k−1∑
i=0

(
d
i

)
k∑
i=0

(
d
i

)
 ∑

ē∈E:S(ē)¬k
P(ē, ek−1

max)−P(ē, ekmin)

 =

k−1∑
i=0

(
d
i

)
k∑
i=0

(
d
i

)
(

1− 1
2
− k

2d

)

=
(d− k)

k−1∑
i=0

(
d
i

)
2d

k∑
i=0

(
d
i

) ,

3. dla l = k

P∗(k, k) =

k∑
i=0

(
d
i

)
k∑
i=0

(
d
i

)
 ∑

ē∈E:S(ē)¬k
P(ē, ekmax)−P(ē, ek+1

min)



=
1
2

+
k

2d
− k + 1

2d
1 (k < d) =


d−1
2d , dla k < d,

1, dla k = d,
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4. dla k < d oraz l = k + 1

P∗(k, k + 1) =

k+1∑
i=0

(
d
i

)
k∑
i=0

(
d
i

)
 ∑

ē∈E:S(ē)¬k
P(ē, ek+1

max)−P(ē, ek+2
min)

 =

k+1∑
i=0

(
d
i

)
k∑
i=0

(
d
i

)
(
k + 1

2d
− 0

)

=
(k + 1)

k+1∑
i=0

(
d
i

)
2d

k∑
i=0

(
d
i

) ,

5. dla l ­ k + 2

P∗(k, l) =

l∑
i=0

(
d
i

)
k∑
i=0

(
d
i

)
 ∑

ē∈E:S(ē)¬k
P(ē, elmax)−P(ē, el+1

min)

 =

l∑
i=0

(
d
i

)
k∑
i=0

(
d
i

) (0− 0) = 0.

Macierz P∗ jest wi¦c taka jak w (63). Dowiedli±my zatem, »e proces X∗ z macierz¡ przej±¢ P∗

jest ªa«cuchem Strong Stationary Dual procesu X bª¡dzenia po hiperkostce Hd. Ponadto, jak

wykazali±my wcze±niej proces X posiada d + 1 ró»nych warto±ci wªasnych. Zatem, na mocy

Lematu 2.1 proces narodzin i ±mierci X∗ posiada d + 1 ró»nych warto±ci wªasnych λi = i
d
, i =

0, . . . , d. Co ko«czy dowód.
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4 Podsumowanie

W niniejszej pracy podj¦li±my tematyk¦ warto±ci wªasnych procesów narodzin i ±mierci z czasem

dyskretnym. Przedstawili±my klasyczne, dobrze znane z literatury, przykªady tych»e procesów

i wyliczyli±my analitycznie ich warto±ci wªasne.

W przypadku procesu prostego bª¡dzenia losowego w zbiorze Z ∩ [0, N ] wskazali±my ±cisªy

zwi¡zek z teori¡ macierzy Toeplitza. Posªuguj¡c si¦ teori¡ równa« ró»nicowych wyznaczyli±my

ogóln¡ posta¢ warto±ci i wektorów wªasnych trójdiagonalnych macierzy Toeplitza, a nast¦pnie

sformuªowali±my i udowodnili±my dwa twierdzenia dotycz¡ce pseudo macierzy Toepliza, które

maj¡ bezpo±rednie zastosowanie do interesuj¡cej nas podklasy macierzy stochastycznych. Roz-

wa»yli±my trzy, ró»ne ze wzgl¦du na charakter ekranów, rodzaje procesów prostego bª¡dzenia

losowego w zbiorze Z ∩ [0, N ]: bª¡dzenie losowe z ekranami odbijaj¡cymi, bª¡dzenie losowe z

ekranami pochªaniaj¡cymi oraz bª¡dzenie losowe z ekranami elastycznymi.

Nast¦pnie omówili±my dwa modele urnowe: model urnowy Ehrenfestów oraz model urnowy

Bernoulliego Laplace'a. Pokazali±my tak»e, »e macierz przej±¢ procesu urnowego Ehrenfestów

jest znormalizowan¡ macierz¡ Kaca.

W gªównej cz¦±ci pracy zde�niowali±my zupeªnie nowy proces narodzin i ±mierci X∗, dla którego

warto±ci wªasne nie s¡ powszechnie znane. Nast¦pnie posªu»yli±my si¦ procesem X bª¡dzenia

losowego po hiperkostce, który nie jest procesem narodzin i ±mierci do wyznaczenia warto±ci

wªasnych procesu X∗. Wskazali±my zwi¡zek pomi¦dzy macierz¡ przej±¢ procesu X oraz macie-

rz¡ s¡siedztwa grafu hiperkostki i wyliczyli±my ich warto±ci wªasne. Ostatecznie, posiªkuj¡c si¦

teori¡ ªa«cuchów strong stationary dual dowiedli±my, »e proces X∗ jest ªa«cuchem dualnym

procesu X, a co za tym idzie X∗ oraz X maj¡ te same warto±ci wªasne.

Naturaln¡ kontynuacj¡ tej»e pracy byªoby uzupeªnienie opisanych procesów o wektory wªasne,

a tak»e podanie innych przykªadów procesów narodzin i ±mierci. Niezwykle interesuj¡ce mogªy-

by si¦ okaza¢ poszukiwania ªa«cuchów Strong Stationary Dual podanych procesów narodzin i

±mierci. Jak bowiem udowodniono [3] ªa«cuch dualny do procesu narodzin i ±mierci jest równie»

procesem narodzin i ±mierci okre±lonym na tej samej przestrzeni stanów.
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