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1 Wstep

Procesy narodzin i émierci z czasem dyskretnym sa szczegolna klasg taiicuchéw Markowa z
czasem dyskretnym okreslonych na ponumerowanej przestrzeni stanéw, w ktorych mozliwe sa
przejscia wytacznie pomiedzy sasiednimi stanami. Gdy stan uktadu zwieksza sie o jeden to ma-
my do czynienia z narodzinami, a gdy zmniejsza sie o jeden ze $miercig. Cho¢ nazwa jest dosé
sugestywna i dobrze oddaje charakter tychze proceséw, to sam stan uktadu nie musi koniecznie
oznaczaé licznosci pewnej populacji. Procesy narodzin i $§mierci poza naturalnym zastosowa-
niem w naukach biologicznych sg rowniez wykorzystywane w teorii systemow kolejkowych, a
takze miedzy innymi do modelowania proceséow fizycznych i bladzen przypadkowych.

W niniejszej pracy skupimy sie na procesach okreslonych na skoriczonej przestrzeni stanow i
jednorodnych w czasie, ktore to opisane sa przy pomocy macierzy przejs¢ w jednym kroku.
Wprowadzimy niezbedne pojecia dotyczace teorii wartosci i wektorow wlasnych, a takze ich za-
stosowanie w analizie istotnych wtasno$ci lancuchow Markowa. Zaprezentujemy stochastyczng
interpretacje wartosci wtasnych poprzez ich zwiazek z tempem zbieznosci do stacjonarno$ci nie-
okresowych i nieredukowalnych proceséw narodzin i Smierci. Podamy takze zwigzek wartosci i
wektoréw wlasnych z rozkladem prawdopodobienstwa warunkowego przejé¢ pomiedzy stanami
w n krokach.

Nastepnie, przedstawimy kilka klasycznych i dobrze znanych przykladéw proceséw narodzin i
$mierci takich jak poste bladzenie losowe w zbiorze Z N [0, N|, proces urnowy Ehrenfestow, a
takze proces urnowy Bernoulliego Laplace’a. Wyliczymy analitycznie ich warto$ci wtasne, a w
przypadku procesu prostego bladzenia losowego z ekranami elastycznymi w zbiorze Z N [0, N|
takze wektory wlasne. Postuzymy sie wlasno$ciami macierzy Toeplitza, macierzy Kaca, a takze
macierzy sasiedztwa grafu hiperkostki, ktore to okazg sie $cisle powigzane z rozwazanymi pro-
cesami narodzin i $mierci.

W gltoéwnej czesci pracy wykorzystamy teorie taficuchow Strong Stationary Dual do wyznacze-
nia warto$ci wlasnych pewnego zupelnie nowego procesu narodzin i $mierci X*. W tym celu
policzymy wartosci wtasne procesu X btadzenia losowego po hiperkostce, ktory nie jest proce-
sem narodzin i $mierci, a nastepnie udowodnimy, ze procesy X*, X maja takie same wartosci
wlasne.

Praca ta bedzie wiec ilustracja zastosowan algebry liniowej, gtownie teorii wartosci i wektorow

wlasnych, w rachunku prawdopodobienistwa.



2 Wprowadzenie teoretyczne

2.1 Wartosci i wektory wlasne

Definicja 2.1. Niech dana bedzie macierz kwadratowa A stopnia n > 1. Wielomianem cha-

rakterystycznym macierzy A nazywamy wielomian n-teqo stopnia okreslony wzorem
Wa(A) = det (A — NI, (1)

gdzie I jest macierzq jednostkowaq stopnia n. Ponadto, rownaniem charakterystycznym macierzy

A nazywamy réwnanie nastepujgce; postaci
Wa(A) = 0. (2)
Definicja 2.2. Niech dana bedzie macierz kwadratowa A stopnia n > 1.

1. Wartosciq wtasng macierzy A nazywamy kazdg liczbe \ bedgcq rozwigzaniem réwnania

charakterystycznego tej macierzy.

2. Wektor @ = (21,29, ..., 2|7 # 0 nazywamy wektorem wltasnym macierzy A stowarzy-

szonym z wartosciqg wlasng A, jesli spelniony jest nastepujgcy warunek

AT =)\7. (3)

—
3. Wektor f = [f1, fo,..., fn] # 0 nazywamy lewostronnym wektorem wtasnym macierzy

A stowarzyszonym z warto$cig wtasng X, jesli spetniony jest nastepujgcy warunek

TA=)T. (4)

Kazda macierz kwadratowa A stopnia n > 1 posiada wiec n wartosci wlasnych Ay, ..., \, (nie-
koniecznie roznych). Niech 7'; bedzie wektorem whasnym odpowiadajacym wartoéci whasnej \;,
wtedy Z; jest liniowo niezalezny od wszystkich wektoréw wiasnych odpowiadajacych warto-
Sciom wlasnym roznym od \;. Zatem, jesli wszystkie wartosci wltasne i, Ao, ..., A, sg rézne, to

odpowiadajace im wektory wlasne 2’1, 2’9, ..., &', tworzg zbidr liniowo niezalezny.

Definicja 2.3. Niech dana bedzie macierz kwadratowa A stopnia n > 1. Ponadto, niech \;
bedzie wartoscig wtasng macierzy A stowarzyszong z wektorem wtasnym T;, i = 1,...,n.

Mowimy, ze A jest diagonalizowalna, gdy mozna jg przedstawié w postaci iloczynu
A =PDP !, (5)

gdzie D jest macierzq diagonalng z wartosciami wtasnymi Ay, Ao, ..., A\, na gltownej przekgtnej,

a i-ta kolumna macierzy P jest wektorem wtasnym T ; stowarzyszonym z wartoscig wlasng \;.



Zauwazmy, ze gdy wartosci wlasne i, Ao, ..., \, macierzy A s3a rézne to macierz P jest od-
wracalna. Stad macierz A jest diagonalizowalna gdy jej wszystkie warto$ci wlasne sa rozne.
Mozliwo$¢ przedstawienia macierzy kwadratowej A w postaci (5) jest bardzo przydatna, gdy
chcemy podniesé ja do pewnej potegi. Jesli A = PDP~!, to A2 = PDP'PDP! = PD?P!

oraz poprzez indukcje otrzymujemy, ze Vk € N
A" = PDFP. (6)

Twierdzenie 2.1. Niech dana bedzie macierz kwadratowa A stopnia n > 1 z wartoSciami

wltasnymi Ay, ..., \,. Wtedy Vk € N

A =3 N, (7)
i=1
gdzie tr(A) oznacza Slad macierzy A.

Dowdd Twierdzenia 2.1.
Niech B oraz C beda macierzami kwadratowymi stopnia n > 1. Wtedy

n n n n

= 3 (OB) i.0) = 3306 0)B. i) = 3 3B, ) = 3 BO(,j) = 1x(BO).

=1 i=1j=1 i=1j=1

Zatem, zakladajac, ze macierz A mozna przedstawié¢ w postaci (5) otrzymujemy
tr(A*) = tr(P(D"P7)) = tr(D"P~'P) = tr(D¥) = > AL
0

Definicja 2.4. Macierz kwadratowg A nazywamy regularng jesli istnieje k € Z* takie, ze

macierz AF ma wszystkie wyrazy dodatnie.
Dowod nastepujacego twierdzenia mozna znalezé w [2].

Twierdzenie 2.2. (Perron-Frobenius) Niech dana bedzie macierz kwadratowa A stopnian > 1

z wartoSciami wltasnymi Ay, ..., \,. Jesli A jest reqularna, wtedy
1. |/\1| > ])\i|,i:2,...,n,
2. \1 € R+,

3. wektor wtasny T, odpowiadajgcy wartosci wtasnej \v ma wszystkie sktadowe scisle do-
datnie i jest wyznaczony jednoznacznie z doktadnosciqg do statej przez ktorg moze zostaé

POMNOZONY.



Twierdzenie 2.3. Niech A bedzie macierzq kwadratowq oraz niech \ bedzie wartosciqg wtasng

macierzy A. Wtedy a) jest wartoscig wtasng macierzy aA, a € R.

Dowdd Twierdzenia 2.5.

Niech 7~ # 0 bedzie wektorem wlasnym macierzy A stowarzyszonym z wartos$ciag wlasng A.
Wtedy
(@A) T =a(AZ) =a (A7) = (a\) 7.

Stad 7’ # 0 jest wektorem wtlasnym macierzy aA stowarzyszonym z wartoscig wlasna aA. [

Twierdzenie 2.4. Niech A bedzie macierzq kwadratowq stopnia n € N oraz niech \ bedzie
wartoscig wtasna macierzy A. Wtedy al + (3 jest wartoscig wtasng macierzy aA + (1, gdzie 1

jest macierzqg jednostkowq stopnia n oraz o, 3 € R.

Dowod Twierdzenia 2.4.
Niech 7~ # 0 bedzie wektorem wlasnym macierzy A stowarzyszonym z wartos$cig wlasng A.

Wtedy
(A +BD) T =(A)T + ()T =a(AT)+B(I7) =a)\T + 7 = (aA+8) 7.

Stad @ # 0 jest wektorem wtasnym macierzy aA + (1 stowarzyszonym z wartoscig wtasna

al+ f. n

Twierdzenie 2.5. Niech dana bedzie macierz kwadratowa A stopnia n > 1 z wartosciami
wltasnymi Ay, ..., A\,, wektorams wtasnymi x'1,..., *', ¢ lewostronnymi wektorami wtasnymai

— — . , , —T _
fis-.os [ Jesli macierz A jest symetryczna, to '] = f;,i=1,...,n.

Dowdd Twierdzenia 2.5.

Jesli \; jest warto$cia wlasna macierzy A stowarzyszona z wektorem wlasnym 7';, to
AT, =\7T,.
Stad, transponujac obie strony powyzszego rownania otrzymujemy
(A7) =7TAT =7TA =)\77.

— . . P
Zatem T'7 jest lewostronnym wektorem wlasnym macierzy A stowarzyszonym z wartoScia

wlasna \;. O



2.1.1 Reprezentacja spektralna

Niech dana bedzie macierz kwadratowa A stopnia n > 1. Ponadto, niech \; oznacza wartosc¢

wlasng macierzy A stowarzyszona z wektorem wlasnym 7'; = [z5(1),...,25(n)]" oraz z lewo-
—

stronnym wektorem wlasnym f; = [f;(1),..., fi(n)], i = 1,...,n. Zalozmy, ze macierz A jest

diagonalizowalna. Wowczas, macierz A moze byé¢ wyrazona jako iloczyn A = PDP ™!, gdzie

P— . . ,D _ ,P_l _ . .
z1(n) ... zp(n) 0 An fu(l) oo fu(n)
Ponadto, PP~ = I, gdzie I jest macierzg jednostkows odpowiednich wymiaréw. Stad
Fi@e =" fi(0)n(i) = , (8)
i 1, gdy j=k.

Niech Bj bedzie macierza powstata poprzez wymnozenie wektora wlasnego ') przez lewo-

H
stronny wektor wlasny f

(1) (D) fe(1) .. m(1) fr(n)
z(n) ze(n) fi(1) .. ax(n) fu(n)

7 roéwnania (8) wynika, ze

BB.=7,f,;Tufs= (10)
Bj, gdyj=
Zatem
£ (£P0.0060) Py o 5 (£ P0.0DGD) Pt
i=1 \j= i=1 \j=
A=PDP!'=

@
Il
—_
-
Il
N

_.

.
Il
_



Przedstawienie macierzy A w postaci sumy

nazywamy reprezentacja spektralna. Ponadto, z whasnosci (10) otrzymujemy, ze Vk € N

AF = (\By+ ..+ M\B)F = MB 4.+ B, (12)

2.1.2 Troéjdiagonalne macierze Toeplitza

Definicja 2.5. Macierz Toeplitza to macierz kwadratowa majgca takie same wartosci na po-

szezegolnych przekgtnych, to jest macierz postaci

Jak tatwo zauwazy¢, kazda macierz kwadratowa stopnia n € N posiada 2n — 1 przekatnych,

dlatego przy pomocy 2n — 1 wartosci aq, .

stopnia n. Przyjmujemy ponadto konwencje, zgodnie z ktora

Qp Ap+1 Q2n, A2n—1
Qp—1 Qp, A2n—1 Q2n
a2 as Qp, Qp+1
| @ Q2 Gn-1 an |

.., Q9,_1 jesteSmy w stanie opisa¢ macierz Toeplitza

ap  Ap41 A2n  G2pn—1
Ap—1 an Aon—1 A2n
Tn(al, ag,...,Aon, agn_1) ==
a9 as Qp, An+1
L aq Qa9 Ap—1 (079

Udowodniono [15], 7e kazda macierz kwadratowa stopnia n moze zosta¢ przedstawiona jako

iloczyn r macierzy Toeplitza, gdzie r < 4|[n/2] + 5.

Definicja 2.6. Macierz wstegowa to kwadratowa macierz rzadka, ktorej wszystkie elementy sq
zerowe poza diagonalg © wstegq ztozong z przekgtnych wokdt niej. Majac dang macierz kwadra-
towq stopnia n € N, jej elementy a, ; sq zerowe gdy j < i — ky lub j > i+ ko, gdzie ki, ko > 0

determinujq szerokosé wstegi.

Szczegblnym przyktadem macierzy wstegowej jest macierz trojdiagonalna, czyli macierz wste-

gowa, dla ktorej ky = ko = 1.



Definicja 2.7. Trdjdiagonalna macierz Toeplitza stopnian € N to macierz nastepujgceej postaci

_b c 0_
a
T.(a,b,c) =
c
0 a b

Trojdiagonalne macierze Toeplitza sg szczegodlnie interesujace, bo sa one jednymi z nielicznych
nietrywialnych struktur, dla ktorych jesteSmy w stanie wyznaczyé¢ analitycznie wzory na ich

wartosci i wektory wlasne.

Twierdzenie 2.6. Wartosci wtasne tréjdiagonalnej macierzy Toeplitza T,,(a,b, c) sq postaci

/\i:b—l—QC\/Ecos( il >z:1n (13)
c n—+1

Ponadto, wektor wtasny x; stowarzyszony z wartoscig wltasng \;,i = 1,...,n jest postaci

1
a\2 . lim
(2)" sin (%)
2
a2 o 2im
(2)"sin (25)

Pomyst ponizszego dowodu zostal zaczerpniety z [14], Przyktad 7.2.5.

Dowod Twierdzenia 2.6.
Niech A bedzie wartoscia wlasna macierzy T, (a,b,c), ac # 0 stowarzyszona z wektorem wla-
snym 7 = [x1,To,...,7,]7. Wtedy, dla pary (\, Z') spetniony jest uklad ztozony z n réwnar

liniowych

azp—1+ (b= Nag +crpn =0 k=1,....n,
(Tn(a7b7c)—)\1>?:0 — k-1 ( ) k k+1

o = Tpt1 = 0.

Stad, dzielac przez c i podstawiajac k := k + 1, otrzymujemy jednorodne réwnanie réznicowe

drugiego stopnia o stalych wspoétczynnikach, wraz z warunkami brzegowymi

b—A a _ o
T2 + Q3k+1+;$k—0,/€—0,...,n—1,

o = Tp+1 = 0.

10



Rozwiazania rownania (15) poszukujemy wérod funkeji potegowych postaci z, = ar®, gdzie
a,r € C sa pewnymi stalymi. Podstawiajac tak okreslone rozwiazanie do rownania (15) i

dzielac przez ar® otrzymujemy rownanie kwadratowe

b— M\ a

r? + r+—=(r—nr)(r—ry)=0, gdzie r1,7, € C.
c

Wtedy, ogdlne rozwiazanie rozwazanego ukladu jest postaci

k k
oqry + aarsy, dy 11 # ro,
alrg + agkn“’o“, gdy r1=1ry =1y,

gdzie aq,as € C sg dowolnymi statymi. Zauwazmy ponadto, ze r; oraz ry musza byé¢ rozne.
W przeciwnym przypadku x;, = a;75 + aokrf wraz z warunkami brzegowymi xg = 7,1 = 0
implikuje x;, = 0, k = 1,...,n co nie jest mozliwe, gdyz @ jest wektorem wlasnym macierzy

T,(a,b,c), zatem T # 0. Stad

— ik k _
T = qr] + Qaory o] = —Qoy r\ ! o
= = (— =——=1, (17)
o = Tp+1 = 0 0= OQT{H_I + 0627”3—'—1 T2 Q2
- nt1 27l
zatem L = V1 = en+1 dla pewnego | € NN [0,n + 1]. Ponadto
b—\
5 b—2A a LTy = =77,
e+ r+-—=(r—-r)(r—ry) =
C C __a
rro = P
Mamy wiec uklad, z ktorego mozemy wyznaczyé¢ r oraz ro
2mil 2mil a il
ri = roentl r1 = roentl r= \Fewl,
= _ c (18)
_a 2 _a 72”1” _ Ja 77”1l
riry = ¢ ry = et T2 = fcemt
. . ’ . . _b*A
Podstawiajac (18) do réwnania r; + 7, = —>-= otrzymamy

a il —Til b_)\
rL+re= f(enﬂ—i—enﬂ):— .
c a

Korzystajac z tozsamosci €'® = cos ¢ + i sin ¢

a 7l o 7l —l o —l b— M\
— | cos 4+ 728In 4+ cos 4+ 72 81n = — .
c n+1 n+1 n+1 n+1 a

Ze wzgledu na parzysto$é¢ cosinusa i nieparzysto$é¢ sinusa otrzymujemy

2\/Ecos m :—b_)\:>)\=b—l—2a\/acos ml )
& n+1 a c n+1

Dlatego, wartosci wtasne trojdiagonalnej macierzy Toeplitza T,,(a, b, ¢) musza by¢ postaci

/\i:b+20\/ﬁcos <m>,i:1,...,n,
c n—+1

11




co koriczy dowdd pierwszej czesci Twierdzenia 2.6. Wszystkie wartosci wlasne \;,71 = 1,...,n
macierzy T,(a,b,c) sa rozne, poniewaz cos(f) jest funkcja $cisle malejaca 6 na odcinku (0, )
oraz ac # 0, dlatego T,(a,b,c) jest diagonalizowalna. Zauwazmy ponadto, ze z rownania (17)
wynika, ze k-ty element wektora wlasnego stowarzyszonego z wartoScig wlasng \; wyrazony

jest wzorem 1z, = « (rf - ré), gdzie 1,79 sa takie jak w (18). Stad

k k .
2 mikj —mikj 2 k
T =« (a)2 <€nff —e n+lij> = 2t <a)2 sin ( i ) ,dla pewnego o € C.
c c n+1

Potézmy a = —%i, wtedy otrzymujemy, ze wektor wtasny trojdiagonalnej macierzy Toeplitza

T.(a,b,c) stowarzyszony z wartoscia wlasna \;,i = 1...,n jest postaci

&l

co koriczy dowdod. O

Twierdzenie 2.7. Niech dana bedzie trdjdiagonalna macierz Toeplitza T, (a,b,c), ac # 0 stop-

nia n > 1, wowczas zachodzi zwigzek rekurencyjny

detT_1(a,b,c) =0,
det Ty(a, b, c) = 1, (19)
det T,,(a,b,c) = bdet T,,_1(a,b,c) — acdet T,,_s(a,b,c),n > 1.

Dowod Twierdzenia 2.7.
Rozwazmy trzy przypadki, gdy n = 1,n = 2 lub n > 3. Na potrzeby tego dowodu przyjmijmy
takze konwencje, zgodnie z ktora det T),(a, b, c) = 7,,.

Dlan=1
Mamy Ti(a,b,c) = [b], stad 7y = b. Ponadto, na mocy Twierdzenia 2.7 7, = b7, —
acT 1 <= b=0b1ly—aclTy <= 0=0>b(7y— 1) — acT_,. Aby teza twierdzenia bytla

spetniona dla n =1 to 7y = 1, stad 0 = ac7_4, a poniewaz ac # 0, zatem 7_; = 0.

Dla n =2
Mamy Ts(a,b,c) = [°¢], stad 7o = b* — ac. Ponadto, na mocy Twierdzenia 2.7 T, =

12



b7, — acTy. Wiadomo takze, ze T, = b, stad b —ac =0* —acly <= 0=ac(Tp—1), a

poniewaz ac # 0 zatem 7y = 1.

Dlan >3
Teza twierdzenia wynika wprost z rozwiniecia Laplace’a T),(a, b, ¢) wzgledem pierwszego

wiersza.

2.1.3 Troé6jdiagonalne pseudo macierze Toeplitza

Praca ta poswiecona jest wartoSciom wlasnym proceséw narodzin i Smierci. Procesy te opisane
sa przy pomocy macierzy stochastycznych. Z tego powodu teoria dotyczaca trojdiagonalnych
macierzy Toeplitza T),(a, b, ¢), ac # 0 nie ma tu bezposredniego zastosowania. Niemniej, istnieje

mozliwos¢ wykorzystania wlasnosci trojdiagonalnych pseudo macierzy Toeplitza.

Definicja 2.8. Trdjdiagonalna pseudo macierz Toeplitza TN (a,b,c),ac # 0 to kwadratowa

ni

macierz blokowa stopnia N > 3 postaci

A, @
a
N i .
Tn1 (CL, b7 C) - Tn1 (CL, b, C) y gdzze
C
i| Bu,
by ¢ 0 bNt1-ns CN41-ns 0
ag - AN+2-n3
Ang = ) Bng = )
Cny—1 - " CN—1
0 Any an 0 an bN

oraz N = ni + nqg + na.

Szczegolnie interesujacy jest dla nas przypadek gdy ne = ng =1 oraz A; = [a1] 1 By = [by]

]|

a1

' 2(a,b,c) = | a Tn(a,b,c) c |- (20)

13



Twierdzenie 2.8. Niech dana bedzie trojdiagonalna pseudo macierz Toeplitza stopnia N =

n—+2,n > 1 postaci

blc+a
T"2(a,b,c) = | q T,(a,b,c) c |,

a+cl|bd

oraz miech a + b+ ¢ = 1. Wtedy macierz T"*(a,b,c) posiada n + 2 rdézne wartosci wltasne

Aoy Apao. Ponadto Ay = 1, M09 =20—1, a A, ..., A\, sq warto$ciami wtasnymi trdjdia-

gonalnej macierzy Toeplitza T, (a,b, c).

Dowdd Twierdzenia 2.8.

Na potrzeby tego dowodu przyjmijmy nastepujace oznaczenie det(7,(a,b—\, ¢)) = 7,,, wowczas

b—A|lc+a
det (T,?”(a,b, c) — )\I) = a T,(a,b— X\ c) c =0
a+clb—\

Stosujac rozwiniecie Laplace’a wzgledem pierwszego wiersza |

Tn(a,b—/\,c)‘ c Tn_l(a,b—)\,c)‘ c

(b—X) —0

—a(a+c)

a—i—c‘b—/\ a—i—c‘b—)\

Stosujac rozwiniecie Laplace’a wzgledem ostatniego wiersza
b=N>’T, —c(b=N(a+)Tp1—ab—N)(a+c)Ti+ac(a+c)Tpo=0

—= b-NT,—b-N(a+c)’T, 1 +ac(a+c)’T =0

—= (b-NT,—(a+¢)?[b—N Ty —acT,_5] =0
Tn

= b-N'T—(a+ )’ T, =T, ((b- 2~ (a+¢)°) =0

— T,(b+ta+c—ANb—a—c—N)=T,(1-N)][(2b—-1)—A] =0

]

Twierdzenie 2.9. Niech dana bedzie tréjdiagonalna pseudo macierz Toeplitza stopnia N =

n—+2,n>1 postaci

b+alc
T 2(a,b,c) = a T,(a,b,c) c ,

alb+c
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oraz niech a + b+ ¢ = 1. Wiedy macierz T""?(a,b, c) posiada n + 2 rézne wartosci wlasne
ALy ooy Anaa. Ponadto Ao =1, a Ay, ..., A\py1 8¢ wartoSciami wtasnymi tréjdiagonalne; ma-

cierzy Toeplitza T, 11(a, b, c).

Dowdd Twierdzenia 2.9.

Na potrzeby dowodu przyjmijmy nastepujace oznaczenie det(7,(a,b — X, ¢)) = 7, woéwczas

b+a—)\|c
det (Tg“(a, b,c) — )\I) - a

T, (a,b— A\ c)

Stosujac rozwiniecie Laplace’a wzgledem pierwszego wiersza

Tn-1(a,b— X c) ‘ c

Tn(a,b— X\ c) ‘ c
a ‘ b+c—A

=0

— ac

(b+a—2N)
a‘b—l—c—/\

Stosujac rozwiniecie Laplace’a wzgledem ostatniego wiersza
(b+a—Nb+c—NT, —aclb+a— N7, —aclb+c— N7, 1+ a*c*T, 5 =0

= (b+a—-Nb+c—NT, —ac(l+b—2\)T,_, +a*c*T,_5 =0

Podstawiajac acZ,—2 = (b—NT,—1 — 7,
b1 =X = X1-=XN]T,—ac(1=NT,1=1-XN)(b—-NT,—ac(l1—=N7T,_1=0

Wprost z Twierdzenia 2.7 J
(I =N)7p41=0

2.1.4 Macierz Kaca

Definicja 2.9. Macierz Kaca stopnia N € N to macierz trdjdiagonalna nastepujgcej postaci

0N 0 0 0 0 0
10 N—1 0 0 00
02 0 N-=2 0 0 0
Ky =
00 0 0 N-1 0 1
00 0 0 0 N O
L N+1xN+1
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Suma poszczegbdlnych wierszy macierzy Kaca Ky jest rowna N, zatem macierz %KN jest ma-
cierza stochastyczng. Ze wzgledu na szczegolng postaé¢ macierzy Kaca Ky, dla kazdego N € N
jesteSmy w stanie analitycznie wyznaczy¢ jej wartosci wlasne. Jak sie pézniej okaze, pomocna

bedzie ponizsza wtasno$é¢ macierzy klatkowych.

Twierdzenie 2.10. Niech dana bedzie nastepujgca macierz klatkowa

A B
E = s gdzie A = [aij] i=1,...k , B = [bw] i=1,....k , C = [Cl‘j]izl ,,,,, n7D = [dl]] i=1,...,n .

C D Jj=1,...,k j=1,...,n Jj=1,...,k Jj=1,...,n

Wowezas:

1. Jesli macierz C jest macierz zerowg (C' = Op,xk), to

A B
det =det Adet D.
0 D

2. Jesli macierz B jest macierz zerowq (B = Okyxy,), to

A 0
det =det Adet D.
C D

Dowdd Twierdzenia 2.10.

Niech Iy oznacza macierz jednostkowa stopnia N. Zauwazmy, ze:

A B Iy O A B
0 D 0 D||o0 I |
ponadto, stosujac rozwiniecie Laplace’a kolejno wzgledem pierwszych k i ostatnich n

wierszy otrzymujemy

I, 0 A B
det =det D, det = det A.
0 D 0 I,
A 0 B A 0 I, O
C D c L ||o D]

ponadto, stosujac rozwiniecie Laplace’a kolejno wzgledem ostatnich n i pierwszych k

wierszy otrzymujemy

A 0 I, 0
det =det A, det =det D.

¢ I, 0 D
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Wtedy na mocy twierdzenia Cauchy’ego o wyznacznikach otrzymujemy teze Twierdzenia 2.10.

m
Twierdzenie 2.11. Wartosci wtasne macierzy Kaca Ky sq¢ postaci

Me=N—2k k=0,... N. (21)

Udowodnimy powyzsze twierdzenie wyznaczajac miejsca zerowe wielomianu charakterystycz-

nego macierzy Ky.

Dowod Twierdzenia 2.11.
Na potrzeby tego dowodu przyjmijmy nastepujace oznaczenia dotyczace operacji elementarnych

na wierszach i kolumnach:
e w; := w; + w; zamiana ¢—tego wiersza na sume i—tego oraz j—tego wiersza,
® k; := k; + k; zamiana i—tej kolumny na sume i—tej oraz j—tej kolumny.

Analogicznie dla r6znicy wierszy i kolumn. Wéwczas

-\ N 0 0 0 0 0

1 -\ N-1 0 0 0 0
R R a pt

0 0 0 0 ... N—1 =)\ 1

0 0 0 0 0 N =)

ﬁkﬁzzklﬂ-kz_gylzg,,N—f—l

-A N -\ N
1 =2 N
0 2 N
=0
0 N =X
N—-1 -\ N
0 0 0 N =)
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Pwi=w +wy,i=1,...,N

1-A N—X N—-X N-)\ N—-X N—-X N-)\

1 2—X N—-X N-)A N—-X N-X N-=-)A\

0 2 3—A N-A\ N—-X N-X N-=-)\ 0
0 0 0 0 N—-1 N—-X N-)\

0 0 0 0 0 N —-A

Ky_s ‘ On—1x2

¢ | D

Y

gdzie Kn_o jest macierza Kaca stopnia N — 2, On_1x2 jest macierza zerowa odpowiednich

0...0N71]‘

oraz C =[] o™,

wymiarow, D = {NZQ’\ N:)\’\}

{ na mocy Twierdzenia 2.10 prawdziwa jest nastepujaca rekurencja
[ K| N = (N+A) (N =) [Kns| =0,

wraz 7z warunkami poczatkowymi

‘K0| ==\,
K1l =1 =X (1+X).

Co koniczy dowod. O
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2.2 FLancuchy Markowa z czasem dyskretnym

Definicja 2.10. Niech (2, F,P) bedzie przestrzeniq probabilistyczng, (E,E) bedzie przestrzeniq
mierzalng, zas T dowolnym podzbiorem liczb naturalnych. Procesem stochastycznym z czasem
dyskretnym o wartosciach w E, okreslonym na zbiorze T nazywamy cigg zmiennych losowych

X ={X;,t € T} przyjmujacych wartosci w zbiorze E.

Indeks t ma zazwyczaj znaczenie czasu. Stad, jesli zachodzi zdarzenie { X, = i}, to mowimy, ze
proces znajduje sie w chwili ¢ w stanie ¢ € E, a zbior wartoSci F/ procesu nazywamy przestrzenia

stanow.

Uwaga 2.1. Od tego momentu piszqgc proces stochastyczny bedziemy maieli na mysli proces z

czasem dyskretnym.

Definicja 2.11. Proces stochastyczny X = {X;,t € N} nazywamy jednorodnym taricuchem
Markowa z czasem dyskretnym okreslonym na skoriczonej przestrzeni stanow E, jesli Vig, ... in, 1, ] €

E orazn e N
P(Xn+1 = j|Xn - i;Xn—l - in—ly e ,XO - Zo) = P(Xn+1 = j|Xn = Z) = Pzg (22)

Prawdopodobienistwo warunkowe P(X,, 1 = j|X,, = i) = P;; nazywamy prawdopodobienstwem

przejécia ze stanu ¢ do stanu j w jednym kroku.

Definicja 2.12. Niech dany bedzie taricuch Markowa X = {X;,t € N} okreslony na ponume-

rowanej przestrzeni stancw E = {0,1,... ,n}. Macierz P postaci
Po For ... Pon
P]_O Pl]_ .« .. P].TL
P— , (23)
PnO Pnl s Pnn

nazywamy macierzqg prawdopodobienstw przejsé w jednym kroku.

Zauwazmy, Ze poniewaz Pj; sa prawdopodobiefistwami, a taficuch Markowa musi w kazdej chwili
znajdowac si¢ w pewnym stanie, wigc P jest macierzg stochastyczna, to znaczy Vi,j € E P;; > 0

orazVie I/ Y P = 1.

JEE
Uwaga 2.2. Od tego momentu piszqc taricuch Markowa bedziemy mieli na mysl jednorodny

tancuch Markowa z czasem dyskretnym okreslony na skoniczonej przestrzeni stanow.
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Definicja 2.13. Niech dany bedzie taricuch Markowa X = { X, t € N} okreslony na przestrzeni

stanow E. Wowczas Yn,m € N oraz Vi, j € E prawdopodobieristwo warunkowe postaci
nazywamy prawdopodobienstwem przejécia ze stanu i do stanu j w m krokach.

Twierdzenie 2.12. Niech dany bedzie taricuch Markowa X = {X,;,t € N} okreslony na prze-
strzeni standw E. Dla m,n € N oraz i,j € E zachodzi réwnosé
keE

Wtasnosé (25) nazywamy réwnaniem Chapmana-Kotmogorowa.

Dowod Twierdzenia 2.12.
Rozwazmy prawdopodobienstwo warunkowe po lewej stronie rownania (25)

Pij<m+n):P<Xn+m:j‘X0:i):ZP( mtn = J, X —k|XO_Z>

keE

=Y P(Xpin = j|Xn =k, Xo = i) P(X,, = k| X = 1)

keE

= Z P(Xpin = j|Xn =k)P(X,, = k| Xy =1) Z Py, (n)Pyi(m).

keE keE

]

Macierz P" utworzona z prawdopodobienistw P;;(n) nazywamy macierza prawdopodobienstw

przejsé w n krokach. Zauwazmy, ze rownosé (25) w zapisie macierzowym przyjmuje postac
Pt = P"P™, (26)

Definicja 2.14. Niech dany bedzie taricuch Markowa X = { X, t € N} okreslony na przestrzeni
standw E. Rozktad prawdopodobienistwa P(Xy =1) = v(i), i € E taki, ze Vi € E v(i) > 0 oraz

> v(k) =1 nazywamy rozktadem poczatkowym taricucha Markowa.
kEE

Znajac poczatkowy rozklad prawdopodobienstwa v tancucha Markowa X = {X;,t € N} z prze-
strzenig standéw E i macierza przej$¢ P mozemy wyznaczy¢ prawdopodobiefistwo wystapienia

zdarzenia {X,, = j}

P(X,=j) =3 P(X,=j|Xo=k) =3 Py(n)v(k). (27)

kek keE
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Definicja 2.15. Niech dany bedzie taricuch Markowa X = { X, t € N} okreslony na przestrzeni
stanow E z macierzqg przejsé P. Mowimy, ze stany i, j € E komunikujg sie ze sobg i oznaczamy

1 <> 7 jesli istnieje n € N takie, Ze
P(Xpin =jlXm =1) >0 oraz P(X 10 = 1| X, = j) > 0. (28)
W zapisie macierzowym oznacza to tyle, zZe
P"(j,7) > 0 oraz P"(i,j) > 0, (29)
dla pewnego n.

Definicja 2.16. Niech dany bedzie taricuch Markowa X = { X, t € N} okreslony na przestrzeni

stanow E. Mowimy, ze X jest nieredukowalny jesli Vi, i € E i < j.

Nietrudno zauwazy¢, ze tanicuch Markowa z macierza przejs¢ P jest nieredukowalny jesli macierz

P jest regularna.

Definicja 2.17. Niech dany bedzie taricuch Markowa X = {X,t € N} okreslony na przestrzeni

stanow E. Okresem stanu i € F nazywamy liczbe
0, = NWD {n : P"(i,i) > 0}, (30)

gdzie NWD(A) oznacza najwiekszy wspdlny dzielnik zbioru A. Ponadto, stan i nazywamy okre-

sowym gdy o; > 1 lub nieokresowym, gdy o; = 1.

Dodatkowo, tancuch Markowa nazywamy nieokresowym, gdy wszystkie jego stany sa nieokre-
sowe. Mozna takze pokazac¢ [2], ze jesli tancuch Markowa jest nieredukowalny to jego wszystkie

stany maja taki sam okres.

Definicja 2.18. Niech dany bedzie taricuch Markowa X = {X,t € N} okreslony na przestrzeni
stanow E = {1,...,n} z macierzq przejsé P. Wektor m = [my,...,m,| nazywamy rozktadem

stacjonarnym taricucha X jesli spetnione sq nastepujoce warunksi
1. Vie Enm >0,

2.

7Ti:1,

o8

i=1

3. 7P =m.
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2.2.1 Tempo zbieznoéci ergodycznych laricuchéw Markowa do stacjonarnoéci

Twierdzenie 2.13. Niech dany bedzie taricuch Markowa X = {X;,t € N} okreslony na prze-
strzeni stanow E z macierzq przejsé P, rozktadem stacjonarnym m 1 wartoSciams wltasnymi

A=A > ... > N\, Jesli X jest nieredukowalny 1 nieokresowy, wtedy Vi, 7 € E

lim P*(i, ) = n(j) > 0, (31)

k—oo

rozktad stacjonarny w jest okreslony jednoznacznie oraz taricuch X nazywamy ergodycznym.
Dodatkowo, predkosé zbieznosci wyrazenia (31) do granicy jest geometryczna. Istnieje stata
a >0 taka, ze

PX(i, ) — m(j)] < alXe|" b =1,2,... (32)

Dowod powyzszego twierdzenia, a takze wiele wiecej mozemy znalez¢ w [2|. Zauwazmy, ze
dla tancucha Markowa X = {X;,t € N} okreslonego na przestrzeni stanow E = {1,...,n} z
macierza przej$é¢ P i rozktadem poczatkowym v, 7, = vP¥ jest rozkladem prawdopodobienstwa
zmiennej X,,. Ponadto, jesli X jest nieredukowalny i nieokresowy, to istnieje jednoznacznie

okreslony rozklad stacjonarny 7 tanicucha X taki, ze Vi € E 7(i) > 0 oraz

lim 7(i) = 7(i), (33)

k—o0

niezaleznie od rozkladu poczatkowego v.

Definicja 2.19. Niech m;,m; bedg rozktadami prawdopodobienstwa na przestrzeni standw E.

Wowczas, definiujemy dwie gtowne miary odlegtosci pomiedzy rozktadamsi
1. Total variation distance
d(m;, 75) = max |mi(A) — m;(A)], (34)
gdzie mi(A) = ¥ mi(k).

keA

2. Separation distance

s(m, ;) = sup (1 - Wf(k)> . (35)

Zauwazmy, ze

d(m;, mj) = max |m;(A) — m;(A)| = max| Z mi(k) — (k)| = Z mi(k) — (k)
7 ACE ’ ACE A ! ke oy (k)>m; (k) ’
1
= > mi(k) — mi(k) = 5 > Imi(k) — (k).
kGE:ﬂ']’(k)>7Ti(k) keE
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Ponadto,

d(mi,mj) = D (mik) —m(k)) . = D milk) (1 B 77:22)

keE keE

< 3 m (k) max (1 - ) ) — s(mm) Y () = s(moy),

keE = i keE

gdzie (x), = max(0,z). Zatem d(m;, ;) < s(m;, ;).

+

Definicja 2.20. Niech dany bedzie taricuch Markowa X = { X, t € N} okreslony na przestrzeni
stanow E = {1,...,n} z macierzq przejs¢ P i rozktadem poczqtkowym v. Ponadto, niech X
bedzie nieredukowalny i nieokresowy z rozktadem stacjonarnym w. Wowczas, Strong Statio-
nary Time jest czasem zatrzymania T tancucha X takim, ze zmienna losowa X1 ma rozktad

stacjonarny 7 1 jest niezalezna od T
Nastepujace twierdzenie zostato udowodnione w [1].

Twierdzenie 2.14. Niech dany bedzie nieredukowalny i nieokresowy taricuch Markowa X =
{X;,t € N} okreslony na przestrzeni standw E = {1,...,n} z macierzq przejs¢ P, rozktadem

poczgtkowym v i rozktadem stacjonarnym w. Ponadto, niech m, = vP*. Wowczas

1. Jesli T jest Strong Stationary Time wtedy Vn € N

$(mp,m) < P(T > n). (36)

2. Jednoczesnie istnieje Strong Stationary Time T taki, ze w (36) zachodzi réwno$é, a takie

T nazywamy czasem do stacjonarnosc.

2.2.2 Procesy narodzin i $§mierci z czasem dyskretnym

Definicja 2.21. Niech dany bedzie taricuch Markowa X = {X;,t € N} z czasem dyskretnym

okreslony na skotriczonej przestrzeni stanow E z macierzqg przejs¢ P = [Pij]ijeE' Wowczas X
jest procesem narodzin 1 $mierci z czasem dyskretnym, jesli Vi,j € E
pi, gdy j =1+1,
i, gdy j =1i—1,
Fij = (37)
L—qi—pi, gdyj=1,

gdzie¥i € F pi,q; 2 0 oraz p; +¢q; < 1.
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Procesy narodzin i Smierci sg wiec szczegblnymi przypadkami taficuchéw Markowa, w ktorych
mozliwe sg wylacznie przejscia miedzy sasiednimi stanami. Lancuchy narodzin i $mierci sa
czesto uzywane do modelowania zmian liczebnosci pewnej populacji w czasie przy zalozeniu, ze
liczebno$¢ populacji w jednym kroku moze zwickszy¢ lub zmniejszy¢ sie o jeden albo pozostac
bez zmian. Stad p; oraz ¢; nazywamy odpowiednio intensywnosciag narodzin i intensywnoscia

$mierci.
Uwaga 2.3. Macierz przejsé procesu narodzin i sSmierci jest macierzq trojdiagonalng.
Mozna pokazaé [3|, ze prawdziwe jest nastepujace twierdzenie.

Twierdzenie 2.15. Niech X = { X}, t € N} bedzie nieredukowalnym procesem narodzin i Smier-
ci okreslonym na przestrzeni standw E = {0,1,...,n} z macierzq przejs¢ P startujacym z zera
(v(0) = 1). Ponadto, niech Vi <n p; + qi11 < 1. Wiedy, macierz P ma n+ 1 réznych wartosci
wtasnych 1, Ay, ..., A\, takich, ze =1 < \; <1 dlai=1,...,n, a funkcja tworzqca prawdopodo-

bienstwa czasu do stacjonarno$ci jest nastepujgcej postaci

gt = T30 )

Jesli wartosci wtasne A1, ..., \, sq¢ nieujemne, wtedy czas do stacjonarnosci ma rozktad sumy n

niezaleznych zmiennych losowych o rozktadzie geometrycznym z prawdopodobienstwami sukcesu

(D VSRR R W

2.2.3 Warto$ci wlasne dualnych laiicuchéw Markowa

Definicja 2.22. Niech dany bedzie ergodyczny taricuch Markowa X = {Xy,t > 0} z przestrze-
nig standw E = {ey, ..., e,}, macierzq przejsé P i rozktadem poczgtkowym v. Ponadto, niech
bedzie rozktadem stacjonarnym tarncucha X. Niech X* = { X[, t > 0} bedzie taricuchem Marko-
wa z rozktadem poczgtkowym v*, przestrzeniq standw E* = {ey, ... e’} i macierzq przejsé P*
takim, Ze stan €}, jest pochtaniajgcy. Co wiecej, niech A bedzie macierzq stochastyczng rozmiaru
n xm taka, ze A(e},, ) = w(-). Mowimy, iz X* jest Strong Stationary Dual dla taricucha X

z linkiem A, jesli

v ="Uv*A,

AP = P*A.

(39)

Lancuchy dualne sa stosowane gtéwnie do badania predkosci zbieznosci tancuchéw Markowa do
stacjonarnosci. Jak bowiem udowodniono [3], jesli tanicuch X* jest Strong Stationary Dual dla

taricucha X oraz T™ jest czasem do pochtoniecia w X*, to T™ jest Strong Stationary Time dla
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X. W niniejszej pracy podejmujemy tematyke wartosci wtasnych proceséw narodzin i $mierci.

W tym kontekscie zastosowanie tancuchow dualnych bedzie wynikalo z nastepujacego lematu.

Lemat 2.1. Niech dany bedzie ergodyczny tanicuch Markowa X = {Xy,t > 0} z przestrzeniq sta-
now E = {ey,...,e,} i macierzq przeji¢ P. Ponadto, niech taricuch Markowa X* = {X},t > 0}
z przestrzeniq standw E* = {e},... e"} i macierzq przejsé P* bedzie Strong Stationary Dual
taricucha X. Wowezas, jesli A jest wartoscig wtasng macierzy P, to jest tez wartoscig wtasng

macierzy P*.

Dowod Lematu 2.1.
Lancuchy Markowa X oraz X* sg Strong Stationary Dual zatem istnieje macierz A taka, ze
zachodzi rownos¢ (39). Zalozmy, ze A € C jest wartoscia wlasna macierzy P stowarzyszona z
wektorem wlasnym 7~ # 0. Wtedy

P7 =)\7.

Mnozac obie strony réwnania (39) przez wektor Z° otrzymujemy

(AP)Z = A (P7) =)M7T =P*A7.
N——
\T

Zatem ) jest wartoécia wlasna macierzy P* stowarzyszona z wektorem wlasnym A7 . O]

Definicja 2.23. Niech dana bedzie macierz prostokgtna C o wymiarach mxn oraz niech n # m

wtedy macierz C™1 o wymiarach n x m takq, ze
c'c=1,,

gdzie 1, jest macierzq jednostkowq odpowiednich wymiardw, nazywamy lewostronng odwrotno-

Sciqg macierzy C.

Definicja 2.24. Niech A bedzie macierzg o wymiarach n X m, wtedy jodrem A nazywamy
przestrzen

ker(A) = {b € R": Ab = 0 }.

Twierdzenie 2.16. Niech dana bedzie macierz prostokgtna C o wymiarach m X n, m > n oraz

niech rank C = n wtedy istnieje lewostronna odwrotnosé macierzy C.

Dowdd Twierdzenia 2.16.

Zauwazmy, ze jesli macierz CTC jest odwracalna to

(cTc)"'c’Cc =1,
—_———
c-1
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gdzie I, jest macierza jednostkowa odpowiednich wymiaréw. Stad, jedli det CTC # 0, to ist-
nieje lewostronna odwrotnosé macierzy C. Wystarczy wiec udowodnié, ze jesli rank C = n, to
det CTC # 0. W tym celu pokazemy, ze ker(C) = ker(C” C). Poniewaz rank C = n, to kolumny

macierzy C sa liniowo niezalezne, zatem ker(C) = 0. Zalozmy, ze a € ker(CTC), wtedy
C'Ca=0 <= a’C’Ca=0 += ||Cal|?=0 < Ca= 0,

— —
zatem a € ker(C), a poniewaz ker(C) = 0, wiec ker(CTC) = ker(C) = 0. Stad, kolumny

macierzy kwadratowej CTC sa liniowo niezalezne oraz det CTC # 0. O

Twierdzenie 2.17. Niech dany bedzie ergodyczny taricuch Markowa ze skoniczong przestrzenig
stanow E = {ey,...,e,} i macierzq przejsé P. Jesli P jest macierzq podwdjnie stochastyczng
to rozktad jednostajny m(i) = %,i =1,...,n jest rozktadem stacjonarnym tancucha Markowa z

tq macierzq.

Dowod Twierdzenia 2.17.
Whprost z definicji. Rozklad prawdopodobienstw m = [my, 79, ..., m,] na przestrzeni stanéow FE =

{e1,...,e,} jest stacjonarny wtedy i tylko wtedy, gdy
P =T.

Dla 7 = [1 Lo 1}, gdy macierz P jest macierza podwdjnie stochastyczng mamy

1 & 1 & 1 1
TP = ln;pﬂ,---an;pm] = [n""’n} =T.

]

Definicja 2.25. Niech dany bedzie ergodyczny taricuch Markowa X = {Xy,t > 0} z przestrze-

nig stanow E = {ey,...,e,}, macierzq przejs¢ P = [p;j]i=1..n i rozktadem stacjonarnym .

j=1,...,n

Wowczas, taricuch X jest odwracalny, gdy
Vi,j=1,....n 7(i)p;j = 7(j)pji- (40)
Ponadto, gdy spetniony jest warunek (40) to tancuch Markowa X Z macierzq przejsé
p = . T/ qe
P = (diag(r))”' P’ (diag()), (41)

gdzie diag(m) jest macierzq diagonalng z wektorem m na gltownej przekqtnej, nazywamy taricu-

chem Markowa odwrdiconym w czasie.
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Jesli macierz przej$¢ P ergodycznego tancucha Markowa X = {X;,t > 0} jest symetryczna
(P = PT), to jest podwdjnie stochastyczna oraz na mocy Twierdzenia 2.17 rozkltad stacjonarny
7 tego procesu jest jednostajny. Wtedy proces X jest odwracalny oraz P =P W praktyce,
najwiekszym problemem okazuje si¢ znalezienie dla danego tanicucha X tancucha dualnego X*,
tj. przestrzeni E*, rozktadu poczatkowego v*, linku A oraz macierzy przej$¢ P*. Diaconis i Fill
w [3] podaja taki przepis tylko w sytuacji, gdy tancuch odwrocony w czasie X jest stochastycz-
nie monotoniczny wzgledem porzadku liniowego. Lorek, Szekli w [11] formuluja rozszerzenie
takiego twierdzenia do przestrzeni czesciowo uporzadkowanej. Doktadniej, przy pewnym zato-
zeniu na lancuch odwrécony w czasie (tzw. monotonicznosé Mdébiusa) pokazujac konstrukeje
tancucha dualnego okreslonego na tej samej przestrzeni stanéw E* = E. Ponizej przedstawiamy
uogo6lnienie tego twierdzenia na dowolng przestrzen stanow E£*. Idea polega na wprowadzeniu,

przy pomocy macierzy Cgy, "porzadku" pomiedzy dwoma przestrzeniami standw.

Twierdzenie 2.18. Niech dany bedzie ergodyczny taricuch Markowa X = { Xy, t > 0} z prze-
strzeniq standw E = {ey,...,e,}, macierzq przejs¢ P i rozktadem poczgtkowym v. Zatdzimy
takze, ze taricuch startuje ze stanu e; (v(e;) = 1). Ponadto, niech dana bedzie macierz Cy o

wymiarach n X m (m odpowiada przestrzeni standw E* = {e},... e} }), taka ze

V(ei c E) Co(ei, e;kn)
V(e;k € E*) Co(el,e;‘)
V(e; #e;,) Colen €])

L,
1,
0,

oraz rank Cy = m. Wtedy istnieje macierz Cy' o wymiarach m x n bedgca lewostronng odwrot-
noscig macierzy Cy. Niech

C;'PCy >0, (42)

— —

gdzie P jest macierzq przejsé taricucha Markowa odwrotnego do X oraz Cy' P Cy > 0 oznacza,
«—

ze wszystkie elementy macierzy Cy' P Cy sq niewjemne. Wtedy istnieje taricuch Markowa Strong

Stationary Dual X* = { X[, t > 0} z przestrzeniq standw E*, rozktadem poczgtkowym v*, takim

ze v*(e}) = 1 oraz linkiem nastepujgcej postaci
A = diag(mC,)~'Cl diag(n).
Wowezas macierz przejsé tancucha dualnego wyraza sie nastepujgcym wzorem
P* = APA~! = (diag(7C,)Cy" P Co(diag(rCo)) ™17, (43)
gdzie diag(m) jest macierzq diagonalng z wektorem m na gldwnej przekgtney.
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Uwaga 2.4. Dia E* = E macierz Cy jest kwadratowa, a warunek (42) oznacza doktadnie

L-Mibius monotonicznosé taricucha odwréconego w czasie (por. [11]).
Przeksztalcajac rownanie (43) otrzymujemy

P* = (Codiag(7Co) )7 P 7 (diag(rCy)C; )"
Nastepnie, korzystajac z rownania (41) mamy

P* = (diag(nC,) 'C! diag(n)) P (diag(n) ' (C; ') diag(7Cy)) .

A A-1

Twierdzenie 2.18 wskazuje wiec w jaki sposob szuka¢ tancuchow Strong Stationary Dual. Nalezy
znalez¢ macierz Cy, ktora spetnia zalozenia Twierdzenia 2.18, a nastepnie wyznaczy¢ macierze

A oraz A~! wiedzac, ze

A = diag(wCy)~'Cl diag(n),

(44)
A~! = diag(7)~1(Cy!) T diag(7Cy).
Dodatkowo, gdy rozktad stacjonarny 7 tanicucha X; jest jednostajny, to
A = diag(17C,)"!C?,
g( 0) 0 (45)

Al = (CyH)Tdiag(17Cy),

gdzie 1 jest wektorem kolumnowym odpowiednich wymiaréw ztozonym z samych jedynek. W
tym miejscu mozemy juz przedstawi¢ idee gtownej czedci tej pracy, gdzie pokazemy jakie sa
warto$ci wlasne pewnego nietrywialnego procesu urodzin i $mierci. Zaprezentujemy taricuch
Markowa bladzenia losowego po hiperkostce, wyliczymy jego wartosci wlasne, a nastepnie przy
pomocy Twierdzenia 2.18 wykazemy, iz wspomniany proces narodzin i $émierci jest jego Strong

Stationary Dual. Z kolei z Lematu 2.1 oba procesy maja te same warto$ci wlasne.

2.3 Teoria graféow

Definicja 2.26. Graf nieskierowany G(V, E) jest to para ztozona z niepustego zbioru wierz-
chotkow V' oraz zbioru krawedzi F, bedgcego rodzing dwuelementowych podzbioréw zbioru wierz-
chotkow E C {{u,v} : u,v € V,u # v}. Ponadto, gdy graf G nie zawiera petli i krawedzi wielo-

krotnych to nazywamy go grafem nieskierowanym prostym.

Definicja 2.27. lloczynem kartezjariskim grafow Gq(Vi, Ey) oraz Ge(Va, Es) nazywamy graf
G10Gy = G(Vi x Vo, E), gdzie Vi X Vy oznacza iloczyn kartezjariski zbiorow Vi,V oraz E =

{{(vl,vg), (Ul,UQ)} : (’Ul = U1 A {UQ,UQ} c EQ) V (UQ = U9 VAN {vl,ul} S El)}
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Grafem hiperkostki nazywamy graf nieskierowany prosty @),, bedacy rzutem hiperkostki H,, na
plaszczyzne jednowymiarows. Graf @, sktada sie wiec z 2" wierzchotkéw oraz 2" 'n krawedzi.

Graf @, zdefiniowaé¢ mozna takze w sposob rekurencyjny [7].

Definicja 2.28. Graf petny K, jest grafem nieskierowanym prostym ztozZonym z n wierzchot-

kow, w ktorym kazda para wierzchotkow polgczona jest krawedziq.

Definicja 2.29. Niech Ky bedzie grafem pelnym oraz niech n > 2, wtedy graf Q, definiujemy
nastepujqco
1 = Ko,
Qn = Ko0Qn-1.
Definicja 2.30. Niech dany bedzie graf prosty G(V, E), gdzie V. = {e1,...,e,}. Macierz sq-

stedztwa A grafu G to macierz kwadratowa stopnia n, taka ze
17 gdy {eiaej} S E7
0, gdy {ei,ej} ¢ E.

Nietrudno zauwazy¢, ze gdy graf jest nieskierowany, to macierz sasiedztwa tego grafu jest sy-

aij =

metryczna.

Definicja 2.31. Niech dane bedg macierze A = [a;j|i=1..n oraz B = [b;]i=1..0, wowczas
j=1,...,n j=1,...,q

tloczynem Kroneckera macierzy A i B nazywamy macierz klatkowg AR B o wymiarach mpxnq

nastepujqce) postaci

a11b11 Ce anblq e alnbn Ce (lmblq
CLllB c alnB anbpl c. anbpq C alnbpl c. ambpq
ARB= . =
amlB Ce amnB am1b11 c. amlblq Ce amnbn c. amnblq
L amlbpl c. amlbpq C amnbpl c. amnbpq |

Mozna pokazaé [8], ze prawdziwe jest nastepujace twierdzenie.

Twierdzenie 2.19. Niech G1(V1, E1) oraz Go(Va, Es) bedg nieskierowanymi grafami prostymi
z macierzami sgsiedztwa odpowiednio Ay oraz As. Ponadto niech |Vi| = ny oraz |Va| = na,

wtedy macierz sqsiedztwa grafu G = G1U0Gy wyraza sie wzorem
A=A @A =A,QL,+1, ®A,, (46)

gdzie @ oznacza iloczyn Kroneckera oraz L, jest macierzq jednostkowq rzedu n.
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3  Wartosci wlasne wybranych proceséw narodzin i $§mierci

3.1 Proste bladzenie losowe na Z N [0, V]

Proste btadzenie losowe na ZN [0, N| jest szczegdlnym przypadkiem jednowymiarowego bladze-

nia przypadkowego na proste;.

Definicja 3.1. Niech X1, Xy, ... bedq oznaczaé cigg niezaleznych zmiennych losowych o tym
samym rozktadzie F, takim ze 0 < F(0) < 1. Wowczas proces stochastyczny {S,,n € N}, dla
ktorego Sy = sg oraz S, = sog+ X1+ ...+ X, = S,_1 + X,, nazywamy jednowymiarowym

btgdzeniem losowym na prostej rzeczywiste], rozpoczynajgcym sie w punkcie Sg.

Tak zdefiniowane btadzenie losowe mozemy interpretowa¢ jako poruszanie sie punktu po prostej.

Wowezas S5, oznacza potozenie punktu w chwili n.

Definicja 3.2. Niech X, Xo, ... bedq oznaczaé niezalezne zmienne losowe o tym samym roz-
ktadzie F, takim ze P(X; = 1) =p, P(X; = -1)=¢q, P(X; =0) =r orazp+q+r = 1.
Wowezas, proces stochastyczny S = {S,,n € N}, dla ktérego Sy = 0 oraz S,, = S,_1+ X, nazy-
wamy btgdzeniem losowym na Z o poczgtku w zerze. Ponadto, gdy p = q to blgdzenie nazywamy

prostym.

Zastanowmy sie wiec jak wygladatoby takie btadzenie po pewnym podzbiorze liczb catkowitych
Z N [0, N], gdzie N € N. Pomocna moze okaza¢ sie ponizsza ilustracja. Niech N € N wtedy

Po q p Y
0 N
® ® ® ® ® ® ® ® ® ® ®
K E [

Rysunek 1: Bladzenie losowe po zbiorze Z N [0, N].

zbior ZN [0, N| sktada si¢ z N + 1 elementéw roztozonych réwnomiernie na odcinku [0, N|. Dla
btadzenia losowego na zbiorze ZN |0, N] zastosowanie ma Definicja 3.2 z pewnymi odstepstwami
na brzegach przedziatu [0, N]. Gdy w pewnej chwili czasowej n znajdujemy sie w stanie S,, = 0,
to z prawdopodobienstwem ry zostaniemy w zerze lub z prawdopodobienstwem py w chwili n+1
znajdowadé sie bedziemy w jedynce. Analogicznie, gdy w chwili czasowej n znajdujemy sie w
stanie S, = N, to z prawdopodobieristwem ry zostaniemy w tym punkcie, lub z prawdopo-

dobienistwem qy,w chwili n + 1 bedziemy znajdowa¢ sie w punkcie N — 1. Stany 0 oraz N sa
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stanami barierowymi, ktére wyznaczaja obszar btadzenia losowego. Tak zdefiniowany proces

stochastyczny btadzenia losowego na zbiorze Z N [0, N] tworzy tancuch Markowa ze skoriczona

przestrzenia stanow E = {0,1,2,..., N} i macierza przejs¢ P = (p;;)

Po
Dij =
To
qgN

N

ij=0,1,..,N? gdzie

daj=i—1,4=1...,N—1
daj=i+1,i=1,...,N—1
dlaj=i i=1,...,N—1

dlat=0,7=1
dlat=35=0
dlai=N,j=N -1
dlai=75=N

0 w pozostatych przypadkach

Macierz P jest wiec nastepujacej postaci

To Do 0 0 0
q r p ... 0 0
0O g r ... 0 0
0O 00 ... r p
0 0o 0 ... aqn TN

3.1.1 Proste bladzenie losowe z ekranami odbijajacymi

Definicja 3.3. Rozwazmy proces S = {S,,n € N} prostego blgdzenia losowego w zbiorze

Z N [0,N] z przestrzenig stanow E = {0,1,..

., N} i macierzq przejs¢ postaci (47). Proces

ten nazywamy prostym blgdzeniem losowym z ekranami odbijajgcymi, gdy po = gy = 1 oraz

ro =1y = 0. Ponadto, gdy p = q bladzenie nazywamy symetrycznym.
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Czesto spotykanym przyktadem prostego, symetrycznego btadzenia losowego z ekranami odbi-

jajacymi w zbiorze Z N [0, N] jest proces stochastyczny opisany macierza przejs¢ postaci

Zgodnie z Twierdzeniem 2.8 proces ten ma N 41 r6znych wartosci wtasnych Aq, ..

o

O N

10 00 0]
01 00 0
20 000
00 ..01%0
0 0 1ol
0 0 010

- N+1xN+1

A1 = COS (%)
A9 = COS (QW’T)

3.1.2 Proste bladzenie losowe z ekranami pochlaniajgcymi

Definicja 3.4. Rozwazmy proces S

Z N [0,N] z przestrzeniq stanow E = {0,1,..

-y AN+1, gdzie

{Sn,n € N} prostego bladzenia losowego w zbiorze

., N} i macierzq przejsé postaci (47). Proces

ten nazywamy prostym blgdzeniem losowym z ekranami pochtaniajgeymi, gdy ro =ry =1 oraz

po =qn = 0.

Rozwazmy szczegblny przypadek symetrycznego bladzenia losowego z ekranami pochlaniajacy-

mi w zbiorze Z N [0, N| opisany macierza przej$¢ postaci

—_

O NI

o O

- Nl

o

O N

e}

O N

0 0
0 0
0 0 110

=2 a0y |
5 0 01
0 1
0 1
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Jak wida¢ wielomian charakterystyczny macierzy P wyraza si¢ wzorem

1
det (P — AT) = (1 — A)? - det Ty 4 ( A, ) .

Stad na mocy Twierdzenia 2.6 proces ten ma N — 1 wartoéci wlasnych Aq, ..

27 "9

jeden i jedna dwukrotng wartos¢ wlasng Ay, gdzie

A1 = COS (%)
A9 = COS (%’T)

3.1.3 Proste bladzenie losowe z ekranami elastycznymi

., An—1 krotnosci

Definicja 3.5. Rozwazmy proces S = {S,,n € N} prostego blgdzenia losowego w zbiorze Z N

[0, N] z przestrzeniq stanow E = {0,1,..

., N} i macierzq przejsé postaci (47). Proces ten

nazywamy prostym bladzeniem losowym z ekranami elastycznymi, gdy 0 < rg=1—pg < 1 oraz

O<TN:1—qN<1.

Rozwazmy szczeg6lny przypadek symetrycznego bladzenia losowego z ekranami elastycznymi

w zbiorze Z N [0, N] opisany macierza przejs¢ postaci

Zgodnie z Twierdzeniem 2.9 proces ten ma N + 1 r6znych wartosci wlasnych A, . .

Ponadto, jestesmy w stanie wyznaczy¢ analitycznie wektory wlasne tego procesu.

O N N

O N

c NI

0 000
> 000
0 000
0 ...0 %o
0 3 0 3
0 011

- N+1xN+1

)\0 =1

A1 = COS (NLH)
A9 = COS (NZ—L)
AN = COS (NN—J:H) )
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Twierdzenie 3.1. Niech dany bedzie proces S = {S,,n € N} prostego blgdzenia losowego w
zbiorze 7.0 [0, N| z ekranami elastycznymi okreslony na przestrzeni stanéw E = {0,1,..., N}
7 macierzq przejié takg jok w (48). Wowczas, wektor wltasny T stowarzyszony z wartoscig

wtasng A\, 1 =0,..., N jest nastepujgcej postaci

=l

(50)

Il
@)
o
n
I/
2|
=+ pol=
==
3
——

Dowod Twierdzenia 3.1.
Przeprowadzimy analogiczne rozumowanie jak w dowodzie Twierdzenia 2.6. Niech \; bedzie
wartoécia wlasng macierzy P stowarzyszong z wektorem wtasnym z'; = [z, o, ..., 2n41]7, 1 =

0,...,N. Wtedy, dla pary ()\;, 7';) spelniony jest uklad ztozony z N + 1 réwnai liniowych
1 1 _
3Th—1 — AT + 5Tpq1 = 0,
P-AN)ZT,=0 < { z0=u1,
NN+2 = TN+1,

gdzie k =1,..., N+1. Stad, mnozac przez 2 i podstawiajac k := k+1, otrzymujemy jednorodne

rownanie roznicowe drugiego stopnia o statych wspotczynnikach, wraz z warunkami brzegowymi

Thio — 2N Tpq1 + 11 = 0,
Lo = T, (51)
NN+2 = TN+1,
gdzie k = 0,..., N. Rozwiazania rownania (51) poszukujemy wsrod funkeji potegowych postaci
1, = ar®, gdzie a,r € C sy pewnymi stalymi. Podstawiajac tak okreslone rozwigzanie do

réwnania (51) i dzielac przez ar® otrzymujemy réwnanie kwadratowe

=2 r+1=(r—r)(r—ry) =0, (52)

ktorego pierwiastki sa dane wzorem 1,179 = \; + \/(Al — 1)(\ + 1). Wtedy, ogolne rozwiazanie

rozwazanego uktadu jest postaci

k k
oqry + aary, dy 11 # ro,
- 177 2T’y gdy 71 # 1o (53)

k k o
agrg + akry, gdy =1y =19,
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gdzie aq, s € C sa dowolnymi statymi. Jako pierwszy rozwazmy przypadek gdy r; = ry = 7g.
Jak wiemy —1 nie jest wartoscia wlasng macierzy (48), zatem A, = 1 oraz ro = 1. Stad
rozwigzanie ogélne uktadu (51) jest postaci xp = oy + agk oraz state ap,an € C mozna wy-
znaczy¢ z warunkow brzegowych. Warunek xy = z; implikuje, ze ay = 0 oraz xp = oy dla
k=1,...,N + 1. Kladac oy = 1 otrzymujemy, ze jesli \; = 1 to 2'; = 1y, gdzie 1y4q
jest wektorem kolumnowym odpowiednich rozmiaréw ztozonym z samych jedynek. Rozwazmy
teraz przypadek, gdy A\ # 11 1 # ro. Wowcezas rozwigzanie ogolne uktadu (51) jest postaci
Tp = ¥ + aors k= 1,..., N + 1. Ponadto, skoro 7,7, sa pierwiastkami trojmianu kwadra-
towego (52), to riry = 1 = ry = ri b Stad, 2 = ayr? +aor7®, k=1,..., N +1 oraz z warunku
poczatkowego xo = xy otrzymujemy oy + as = aqr; + agrfl = g = q71. Zatem rozwigzanie
ogoélne uktadu (51) jest postaci z; = a4 (r’f + r%_k) Jk=1,...,N + 1. Zauwazmy, ze oy # 0,
bo w przeciwnym przypadku z; = ﬁ, co nie jest mozliwe gdyz 7'; jest wektorem wtasnym.

Warunek brzegowy xy.o = xn11 implikuje, ze

V24 Tl_(N+1) =iVt e, (54)

Mnozac obie strony réwnania (54) przez ri' ' otrzymujemy
PN L = NP2 ) = NP ) = — 1, (55)

. . 27l il .
a poniewaz N # 1, to r1 # 1. Stad, 72N "2 =1 oraz ry = *VW/1 = e28+2 = eN+1. Mamy wiec

kil A—k)mil
T =y (eNFTl 4 e N T ). (56)

il

Ktadac o = %e_ IN+Z otrzymujemy

1 (k= Lymal (k—Lymit k— Yl
Tk =5 (e NI 4T N ) = cos <(N—E)17T> ; (57)

co koriczy dowdod. O

Wyznaczylismy wartos$ci 1 wektory wlasne procesu prostego bladzenia losowego z ekranami
elastycznymi w zbiorze Z N [0, N]. Dzieki temu dla kazdego k € N oraz dla dowolnych dwoch
stanéw 4, j mozemy podaé¢ wprost prawdopodobiefistwo warunkowe P,;(k) przejscia ze stanu i do
stanu 7 w k krokach. W tym celu postuzymy sie reprezentacja spektralng macierzy przejsé¢ tego
procesu. Przedstawimy macierz P* w postaci (12). Zauwazmy, ze macierz P jest symetryczna,
stad na mocy Twierdzenia 2.5 wektory wtasne sa réwne lewostronnym wektorom wlasnym

macierzy P. Rozwazmy macierz B;,[ = 0,..., N wyrazong wzorem (10)
— 7 — =T
Bl:l‘lfl:l'll‘l.
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Stad

N +1 N+1

N i \" (i — 0.5)ir (j — 0.5)ir
Z)\lBle ZCOS<N+1> COS<M>COS<M>.

3.2 Model urnowy Ehrenfestow

Bu(i, ) = Ti(i) () = cos ((‘05””) ((3‘0"’)“) ,

oraz

Rozwazmy nastepujacy model urnowy. Zatézmy, ze mamy N czastek i kazdg wkltadamy do po-
jemnika A lub B z jednakowym prawdopodobieristwem. Niech w chwili n > 0, k czastek bedzie
w pojemniku A. Wtedy, w chwili n+1 wybierana jest jedna z N czastek i przektada do drugiego
pojemnika. Zatem w chwili n + 1 w pojemniku A mamy k — 1 albo k + 1 czastek. Niech X,
oznacza liczbe czastek w pojemniku A w chwili n, wtedy P(i,j) = P(X,, = j| X, = i) oznacza
prawdopodobienistwo warunkowe, ze w chwili n + 1 w pojemniku A bedzie j kul jesli w chwili
wczedéniej byto w nim ¢ kul. Tak zdefiniowany proces stochastyczny tworzy taiicuch Markowa ze

skoriczona przestrzenia stanow S = {0,1,2,..., N} i macierza przejs¢ P = (pij)ij:O L gdzie

,,,,,,

L o dlaj=i—-1,i=2,...,N+1
pij={ &4 dlaj=i+1,i=1,...,N

0 dla|i—j|#1

Macierz P jest wiec postaci

0 1 0 0 0 0 0
1 N-1
v~ 0 & 0 0 0
b 0o 2 o0 &2 0 0 0 L
= . : =y
N-1 1
0 0 0 0 ... % 0 %
0 0 0 o ... 0 1 0
Jest to znormalizowana macierz Kaca stopnia N. Zatem na mocy Twierdzenia 2.11 oraz Twier-
dzenia 2.3 proces urnowy Ehrenfestow posiada N + 1 roznych warto$ci wtasnych A, ..., Ay,
gdzie
A =1
n = 2
A1 = =55
Ay = —1



3.3 Model urnowy Bernoulliego Laplace’a

Rozwazmy nastepujacy model urnowy. N czarnych i N biatych kul rozmieszczono w dwdch
urnach A oraz B tak, ze kazda urna zawiera N kul. Niech w chwili n > 0, k& czarnych kul
znajduje sie w pojemniku A. Wtedy, w chwili n + 1 z kazdej urny wybieramy losowo po jednej
kuli i dwie tak wybrane kule zamieniamy miejscami. Zatem w chwili n + 1 w pojemniku A
mamy k — 1, k albo k 4+ 1 czarnych kul. Niech X, oznacza liczbe czarnych kul w pojemniku
A w chwili n, wtedy P(i,7) = P(X,, = j|X,, = i) oznacza prawdopodobieristwo warunkowe, ze
w chwili n + 1 w pojemniku A bedzie j czarnych kul jesli w chwili weze$niej byto w nim ¢ kul
tego koloru.

Tak zdefiniowany proces stochastyczny tworzy tancuch Markowa ze skoriczona przestrzenia

stanow S = {0,1,2,..., N} i macierza przejs¢ Px = (pij), j_o, .

(N) dlaj=i—-1,i=1,...,N
(54)° dlaj=i+1,i=0,... N1
2+ N) dlaj=1i,1=0,...,N
0 dla |i —j] > 1
Macierz Py jest wiec postaci
0 1 0 0 0 0 0
1\2 2 (N1 N-1)2
(%) % (NQ) (*+) 0 0 0
N— N—
- o (% ¥ (%) (%) 0 0 0
N - . . . .
N-1)\%2 (N-1)2 [(1)?
0 0 (%) ()% (3)
0 0 0 0 1 0
Twierdzenie 3.2. Niech dana bedzie macierz
0 N? 0 0 0
12 2(N—-1) (N-1)" ... 0 0 0
. 0 22 4(N—-2) ... 0 0 0
Py=NPy=| R R R
0 0 0 . (N=1)?® (N-1)2 17
0 0 0 0 N? 0
Wartosci wtasne macierzy f’N 5¢ postaci
M=N—k(2N+1—k), k=0,...,N. (59)
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Udowodnimy powyzsze twierdzenie wyznaczajac miejsca zerowe wielomianu charakterystycz-

nego macierzy Py.

Dowdd Twierdzenia 3.2.

A N2 0 0 0 0
12 2(N=1)—Xx (N-1) 0 0 0
3 0 2? 4(N —2) =\ 0 0 0
det (Py — M) =
0 0 0 (N-1? (N—12-X 12
0 0 0 0 N2 -\
@kZ:kZ—FkZ,l,Z:Q,,N—l—l
~A N2\ N2 — ) N2—X  N2—-)X N2-)
12 2N —1—-X  N2—)\ N2—X N2—)Xx N2-)\
0 22 4(N —1) =\ N2—X N2—-)Xx N2-) .
0 0 0 (N—1)> N>’—1—-X N?2—-)\
0 0 0 0 N2 N2 — )
ﬁ W; = W; —-U%+1,i 221,...,pJ
—1-X N?241-2N 0 0 0 0
12 ON—1—X N2—4(N-1) 0 0 0
0 22 4(N—=1) =\ 0 0 0
=0
0 0 0 (N—=1?% —1=X| 0
0 0 0 0 N2 | N2 -\
)
Pry_1 — In_1xn— ‘o _
N-1 N—-1xN-1 N—-1x1 IO, gdzie

C N2 — )

Onx1 jest macierza zerowa, In_1xy_1 jest macierzg jednostkowa, oraz C' = [0 .. 0 N2].

{ na mocy Twierdzenia 2.10 prawdziwa jest nastepujaca rekurencja

oraz

Pyt =TIy v (N2 = A) =0

~

Pyl =—A\.
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Stad na mocy Twierdzenia 2.4 otrzymujemy teze. O]

Zatem na mocy Twierdzenia 3.2 proces urnowy Bernoulliego Laplace’a posiada N + 1 réznych

wartodci wlasnych Ao, ..., Ay, gdzie

Ao
A1

3.4 Bladzenie po hiperkostce i dualny proces narodzin i Smierci

Definicja 3.6. Rozwazmy przestrzen R"™. Hiperkostka H, o krawedziach dtugosci a > 0 jest

zbiorem punktow, ktorych wspdtrzedne (1, xo, . .. x,) spetniajq uktad nierdwnosci

T a

0
0

VANAN
VANV

i) a

0

N
VA

T, < a

Ponadto gdy a = 1, to hiperkostke H, nazywamy jednostkowq.

Tak zdefiniowana jednostkowa hiperkostka H, posiada 2" wierzchotkéw o wspolrzednych w

zbiorze {0,1}". Kazdy wierzcholek e hiperkostki H, moze by¢ przedstawiony poprzez se-

011

111

010

110

001

000

101

100

Rysunek 2: Hiperkostka jednostkowa Hs.

1

7€n

kwencje € = (e, €eg,...,¢6,), gdzie e; € {0,1}. Dwa wierzchotki e; (el,ed, ..., el) oraz

62

rn

e, = (e2,e2,...,€2) sa polaczone krawedzig wtedy i tylko wtedy, gdy S0, |el — €?| = 1.

Odleglosé¢ pomiedzy wierzchotkami e; i e; wynosi |e; —es| = 37, |el —€?| i jest to najmniejsza

liczba krawedzi, ktore trzeba pokonaé¢ by przejé¢ pomiedzy tymi dwoma wierzchotkami.
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Definicja 3.7. Niech dany bedzie proces stochastyczny X = {X,,,n > 0} z przestrzeniq standw

VvV =Ho, l}d Aozong z 2% wektorow e; = (e, eb, ... el),i=1,...,2% taki ze:
P(e;,ej) = ﬁa gdy le; —ej| =1,
P<ei7ej) = %7 gdy ’ei - ej| = Oa
P(ei7ej) = Oa gdy ’ei - ej| > 27

gdzie P(e;, e;) oznacza prawdopodobiernstwo przejscia w jednym kroku z wierzchotka e; do wierz-
chotka e;, to jest P(e;,e;) = P(X,11 = €| X, = ;). Wowczas proces stochastyczny X nazy-

wamy procesem blgdzenia losowego po hiperkostce.

Proces btadzenia losowego po hiperkostce nie jest procesem narodzin i Smierci, niemniej bedzie
on pomocny przy wyznaczaniu wartosci wlasnych pewnego nowego procesu narodzin i $mierci.
Zauwazmy, ze jesli przestrzen stanow V = {0, 1}d procesu btadzenia losowego po hiperkostce
‘H,4 bedzie uporzadkowana zgodnie z porzadkiem wierzchotkéw grafu hiperkostki ()4 to macierz
przejsé tego procesu jest postaci

1 1
Pyg=—A -1
d 2d d+ 9 2d, (60)

gdzie Ioa oznacza macierz jednostkows rzedu 2¢ oraz A, jest macierza sasiedztwa grafu rozpie-
tego na wierzchotkach hiperkostki. Zgodnie z Twierdzeniem 2.4 aby wyznaczy¢ warto$ci wlasne
procesu bladzenia losowego po hiperkostce wystarczy wiec wyliczy¢ wartosci wlasne macie-
rzy sasiedztwa A,. Ponadto, na mocy Twierdzenia 2.19 macierz sasiedztwa A, grafu @, jest

nastepujaca macierza klatkowa

Anfl ‘ Izn—l
Anfl

OQn—l

Ign—l An,1 ‘ 02n—1
+ —
An,1 IQn— 1

A, = : (61)

IQn—l 02n—1 02n—1

gdzie 0,, jest macierzg zerowa oraz L, jest macierza jednostkowa rzedu n.

Twierdzenie 3.3. Niech dany bedzie graf Qg rozpiety na wierzchotkach hiperkostki jednostko-
wej Hy. Macierz sgsiedztwa Ay grafu Qg posiada d + 1 réznych wartosci wtasnych \; wraz z

krotnoSciamin;, i =0,...,d
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Dowod Twierdzenia 3.5.
Macierz sasiedztwa Ay grafu Q) jest macierza klatkowa postaci (61). Stad otrzymujemy naste-

pujaca zaleznosé rekurencyjng
det(Ay — Mya) = det(Ag_1 + Ipa-1 — Mpa—1) det(Ag—y — Ipa-1 — Alga-1). (62)
Dowiedziemy tezy Twierdzenia 3.3 poprzez indukcje wzgledem d.
Sprawdzenie prawdziwo$ci twierdzenia dla d = 1.
Ar=[94] = det(A = AD) = |} L] =0 <= N=-L\ =1

Zatem, dla d = 1 twierdzenie jest prawdziwe.
Zalozenie prawdziwosci twierdzenia dla d > 1 i dowéd prawdziwosci dla d + 1.

det(Agi1 —AI) = det(Ag+I— M) det(Ay;—I—AI) =det(Ay;— (A—1)I)det(As— (A+1DI)

Stad na mocy Twierdzenia 2.4 wraz z zalozeniem indukcyjnym macierz Ay, posiada

wartogci wlasne A}, \? wraz z krotnosciami n;, i = 0,...,d

M=X—1=—-d—1, no = (§)

A =X —1=—d—1+2k, nk:<d)

A=N—-1=d-1, ”d:@)
NM=X+1=—-d+1, nOZ(g)

AN=MN+1=—-d+1+2k, nk:(d)

N=X\N+1=d+1, nd:(z)

gdzie \;,;i = 0,...,d sa wartoSciami wlasnymi macierzy A,. Zauwazmy ponadto, ze dla

k=0,....,d—1
No=—d+142k=—-d+1-2+2+2k=—(d+1)+2(k+1) =\
Dodatkowo dla k =1,...,d prawdziwa jest rownosé
d+1\ (d n d
k) \k k—1)
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Zatem, macierz A, ; posiada d + 2 r6zne wartosci wltasne A wraz z krotnosciami n},7 =

0,...,d+1

Ny = A= —(d+1), ny=(5) = (%)
N=MAA =@+ +2 n= () +(9) = ()

Me=MA+M L =—@+1)+2k np=()+ (%) = (")

Ni= A+ A =d—1, ng = (Z) + (di) = (dji-l)
Npp1 =\ =d+1, na=(3) = (45)-

Co koniczy dowdd.

[]

Macierz P4 procesu bladzenia losowego po hiperkostce Hy jest postaci (46). Na mocy Twier-
dzenia 2.4 oraz Twierdzenia 3.3 macierz P, posiada wiec d + 1 r6znych wartosci wlasnych \;

wraz z krotnosciami n;,i =0,...,d

)\d = 1, Ng = (Z)
3.4.1 Nowy proces narodzin i $§mierci

Rozwazmy macierz kwadratowa P* = [P*(k,[)]x=0....« nastepujacej postaci
= d

,,,,,

— = dlak<dl=k+1,

P*(k,1) = Qdi (@ (63)
1=0
ol dlak <d,l=k,
1, dlak=d, 1=k,
0, dla [l — k| > 1.
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Macierz P* jest wiec trojdiagonalna. Sprawdzmy, ze P* jest macierza stochastyczna, Vk,l €
d

Zqv1 P*(k,1) > 0 wystarczy zatem pokazaé, ze Vk € Zq1 Y. P*(k,l) = 1. Rozwazmy nastepu-
1=0

jace przypadki

1.k=0
S P(0,1) = P*(0,0) + P*(0,1) = L= 50) _d-1drl
- v ’ S 2d 0 2 2d
20 ()
2.0<k<d
Zde*(k,l) =P (k,k— 1)+ P*(k, k) + P*(k,k + 1)
=0
=0 (@) 44 ®k+DX ()
_ dkl_z + 57+ dk“z
243 (7) 243 (7)
S, d=h Lfo(d)_(z)]Jr(kH) Lfo(d)Jr(kil)]
T2 + 2dzk:(d)
=0 ‘
Cd-1 dr1 kD) -@-RE) ety - T o
=t 5 T Qdfj(f) =1+ 2di(§)
=0 =0
d!—d!
14 k!(d;k—l)! _1
Qdi;)(f)
3. k=d
d
S P(d, 1) = P*(d,d) = 1.
=0

Macierz P* jest trojdiagonalna i stochastyczna, jest wiec macierza przejS¢ pewnego nowego

procesu narodzin i $mierci X* = {X* n > 0}.

Twierdzenie 3.4. Niech dany bedzie proces narodzin i Smierci X* = {X* n > 0} okreslony na
przestrzeni standw E = {0,1,...,d} z macierzq przejsé P* postaci (63). Proces X* ma d + 1

roznych wartoscit wtasnych \; = g,z' =0,...,d.

Udowodnimy powyzsze twierdzenie wykorzystujac teorie tancuchéow Strong Stationary Dual.

Pokazemy, ze proces X* z macierza przejs¢ P* postaci (63) jest lanicuchem Strong Stationary
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Dual procesu X btadzenia po hiperkostce H,. Ponadto, jak wykazaliSmy wcze$niej proces X
posiada d+ 1 roznych wartoséci wtasnych. Stad, na mocy Lematu 2.1 oba procesy maja te same

wartosci wlasne.

Dowod Twierdzenia 3.4.
Niech dana bedzie hiperkostka jednostkowa H, ze zbiorem wierzchotkow E = {ey,... e} =
{0,1}4. Niech S : E — Z,4,, bedzie funkcja okreslong na zbiorze E wyrazong wzorem

d

S(e) =D _e(i),

i=0
gdzie e(i) oznacza i-ta wspolrzedna wierzchotka e € E. Ponadto, niech funkcja k : ExE — Z:{H
bedzie dana wzorem

k(ei, ;) = min{k : e;(k) # e;(k)}.

Wtedy, przy pomocy funkeji S(e) i k, zdefiniowaé¢ mozemy silny porzadek liniowy < okreslony

na zbiorze F
Vei,ej € <€ — S(GZ) < S(ej) V (S(el) = S(ej) N ei(k(ei,ej)) = 1) .
Podzielmy zbiér F na d + 1 roztacznych podzbiorow

Ek:{eiEEZS(ei):k’},k’ZO,...,d,

wtedy, niech e®  oraz e*

mazx min

oznaczaja odpowiednio maksymalny i minimalny element zbioru
E). wzgledem porzadku liniowego <.

Rozwazmy proces stochastyczny X = {X,,,n > 0} btadzenia losowego po hiperkostce jednostko-
wej Hg okreslony na przestrzeni stanéw E = {ey,. .., .} = {0, 1} uporzadkowanej zgodnie z
porzadkiem liniowym <, startujacy z wierzchotka e; = (0,...,0)T (toznaczy v = (1,0, ...,0)7).
Niech P = [P(e;, €;)]e,c;er bedzie macierza przejs¢ tego procesu z prawdopodobienstwami

P(e;, e;) okreslonymi w Definicji 3.7. Zauwazmy, ze
‘v’ei,ej ek P(ei,ej) = P(ej,el-) — P = PT,

H
stad macierz P = P jest podwo6jnie stochastyczna oraz na mocy Twierdzenia 2.17 rozktad

stacjonarny 7w macierzy P jest jednostajny. Wezmy macierz Cy = [Co(e;, k)]s

,,,,,

k=0,...,d

Co(e;, k) = 1(S(e;) < k). Wtedy Cy jest macierza schodkowa taka, ze rank Cy = d+1 i na mocy
macierzy Cy (macierz Cy ' nie jest okreslona jednoznacznie). Niech Cy ' (k, e;) = 1 (ei =ef )—

1(k<d)A (ei = ek“), wtedy Vk,l € Zg.s

min

(C3'Co) (k1) = > Cg' (k,e)Cole,l) = Y [1(e=ek,,) —1(k<d)A(e=elil)] 1(S(e) <)

eckE eck
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=1(S(ef,,) <1) =1 (S(efi) <) =1(k <) -1 (k+1<1),

wiec
1, dy k=1
(C'Co) (k) =¢ = &
0, edy k£l

gdzie I, jest macierza jednostkowa stopnia d + 1. Tak okre§lona macierz Cy' jest wiec le-

= CEICO = Id+1,

wostronng odwrotnoscia macierzy Cy. Sprawdzmy takze, ze zachodzi warunek (42), to jest

Vk,l e Lg i1
(Cy'PCy) (k1) = Y Cy' (k,e) [Z P (e,&) Cy (&, z)] >0

eckE eck

— ZP( Cmaz> )CO (1) ZP( ]:ntrlné) Coe, )= > P(efmx,é)—P (e’;#l,é) > 0.

&eE scE:S(8)<!

Zauwazmy, ze z kazdego wierzchotka e hiperkostki Hy; wychodzi doktadnie d krawedzi oraz, jesli
S(e) = k, to k z tych krawedzi prowadzi do k& wierzchotkéw ze zbioru Ej_1, a d — k pozostale
krawedzie prowadza do d — k wierzchotk6w ze zbioru Fj . Stad,

l.dlal<k—1
Ve € E:S(e) <l P (e} &) =0, zatem (Cy'PCy) (1) >0,

man?

2.dlal =k

(CSlPCO) (k. k) = éeE:%Eé)SkP (ek é) -P (efnt'}“ é) =5t % =% 20,

s.dlal=Fk+1
(CT'PCo) (ki +1) =

d—(k+1)
20 20,

4. dlal > k+2
(Co'PCy) (k1) = > P(eb,,.8) —P(ehihe) =1-1=0.

scE:S(s)<!
Warunek (42) jest spelniony, a wiec na mocy Twierdzenia 2.18 istnieje tanicuch Strong Statio-
nary Dual, wzgledem procesu btadzenia po hiperkostce H,y, okreSlony na przestrzeni standow
E* ={0,1,...,d} z macierza przej$¢ P*, taka ze zachodzi réwnos¢ (39) oraz A i A~! takie jak
w (45). Zauwazmy, ze <1TCO) (k) = Xk: <”il>, k=0,...,d, stad

=0

=> (dlag (17Cy)~ ) (k,1)Co(e,l) =

=0

(17Co) (k)

oraz analogicznie

=Y Cg'(l,e) (diag(17Co)) (I, k) = Cy' (k,e) > <d>. (65)

=0 =0
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Dlatego macierz P* wyraza si¢ wzorem

P (k1) =>_ [Z A(k,é)P(é,e)] A (e l) = S Cg(é(’ I;>P(e,e) Cal(l,e)z (f)
ecE leeE ecE |ecE go Cil i=0

M~
-
ISH
=

I
i
M
l—l
g
o
O
CD
??‘
.L.
a
=
e

%
ZE:O (Z> eck LecFkE
> (1)
=22 Gl (@ ) - Cofe (el
)3 (f) ecE
=0
> (%)
= 120 [ Z P( €, maz) - P(évegﬁz)]
S (f) GcE:S(e
=0
Stad
l.dlak>1oraz Il < k-2
> (9 > ()
P (k1) = =2 [ Y P(eel,,) — P(é,efﬁn)] == —(1-1)=0,
> (f) scE:S(e)<k > (‘j)
=0 1=0

2. dlak>1orazl=%k—-1

T

w
A
&=
E
|
—_
SN—
ﬁ
o —_
—
~oQ,
~
1
)
~~
ol
©)
el
—
SN—
|
)
~~
o
©)
el
SN—
| S
|
ﬂ ES
oL
/N
SoQ,
SN—
7 N
|
| —
|
| =
~

fo (4) Leerstorr io @ 2 2
(d— k) 'f*l (d)
= kZ: s
245 Y
3.dlal=F
> (%)
P*(k k) = =2 [ P(e,el,,,) — P(g, eﬁfii)]
> (Cf) scE:S(a)<k
1=0
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4. dlak<dorazl=k+1

-.
Il
-
Il
=)

Pk k+1) =

N
Ut
/N
S Q
N——

~—
I

E

+

—
Y
.Q
N——

=
~
ISH
~
[o]]
m
S|
w0
iDl
N
o
=
~
<.
~

I
=)
~
Il
=)

5.dlal >k +2

5 () 5 ()
PGk = 2 P(e.el.) — Ple.elil)| = -2 (0-0) =0,
g:o (l) ecE:S(8)<k > (2)

Macierz P* jest wiec taka jak w (63). Dowiedli$my zatem, ze proces X* z macierza przejs¢ P*
jest tancuchem Strong Stationary Dual procesu X bladzenia po hiperkostce H,. Ponadto, jak
wykazaliSmy wczedniej proces X posiada d 4+ 1 roznych wartosci wiasnych. Zatem, na mocy
Lematu 2.1 proces narodzin i §mierci X* posiada d + 1 réznych wartosci wtasnych \; =

0,...,d. Co koniczy dowod.

7
't

U
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4 Podsumowanie

W niniejszej pracy podjelismy tematyke wartosci wlasnych proces6w narodzin i Smierci z czasem
dyskretnym. Przedstawiliémy klasyczne, dobrze znane z literatury, przyktady tychze procesow
i wyliczyliSmy analitycznie ich warto$ci wlasne.

W przypadku procesu prostego bladzenia losowego w zbiorze Z N [0, N] wskazaliSmy Scisty
zwigzek z teorig macierzy Toeplitza. Postugujac sie teorig réwnan réznicowych wyznaczyliSmy
og6lng posta¢ wartosci i wektorow wtasnych tréjdiagonalnych macierzy Toeplitza, a nastepnie
sformutowalismy i udowodniliSmy dwa twierdzenia dotyczace pseudo macierzy Toepliza, ktore
maja bezposrednie zastosowanie do interesujacej nas podklasy macierzy stochastycznych. Roz-
wazyliSmy trzy, rozne ze wzgledu na charakter ekranéw, rodzaje proceséw prostego btadzenia
losowego w zbiorze Z N [0, N]: btadzenie losowe 7 ekranami odbijajacymi, btadzenie losowe 7
ekranami pochtaniajacymi oraz bladzenie losowe z ekranami elastycznymi.

Nastepnie omowiliSmy dwa modele urnowe: model urnowy Ehrenfestéw oraz model urnowy
Bernoulliego Laplace’a. Pokazalismy takze, ze macierz przej$¢ procesu urnowego Ehrenfestow
jest znormalizowana macierza Kaca.

W gloéwnej czesci pracy zdefiniowaliémy zupelnie nowy proces narodzin i §mierci X*, dla ktorego
wartos$ci wtasne nie sa powszechnie znane. Nastepnie postuzyliSmy sie procesem X btadzenia
losowego po hiperkostce, ktory nie jest procesem narodzin i $mierci do wyznaczenia wartosci
wtasnych procesu X*. Wskazalidmy zwiazek pomiedzy macierza przejs¢ procesu X oraz macie-
rzg sasiedztwa grafu hiperkostki i wyliczyliémy ich wartosci wtasne. Ostatecznie, positkujac sie
teorig taricuchéw strong stationary dual dowiedliSmy, ze proces X* jest lancuchem dualnym
procesu X, a co za tym idzie X* oraz X majg te same wartosci wlasne.

Naturalng kontynuacja tejze pracy byloby uzupelnienie opisanych proceséw o wektory wlasne,
a takze podanie innych przyktadéw proceséw narodzin i §mierci. Niezwykle interesujace mogty-
by sie okaza¢ poszukiwania tancuchéw Strong Stationary Dual podanych proceséw narodzin i
$mierci. Jak bowiem udowodniono [3] tanicuch dualny do procesu narodzin i §mierci jest rowniez

procesem narodzin i $mierci okre§lonym na tej samej przestrzeni stanow.
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