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Abstract. We construct strong stationary dual chains for non-

symmetric random walks on square lattice, for random walks on hyper-

cube and for some Ising models on the circle. The strong stationary dual

chains are all sharp and have the same state space as original chains. We use

Möbius monotonicity of these chains with respect to some natural orderings

of the corresponding state spaces. This method provides an alternative way

to study mixing times for studied models.
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1. INTRODUCTION

Consider an ergodic Markov chain X = (Xn)n­0 on a discrete (finite or count-

able) state space E with transition matrix P and initial distribution ν. One way of

studying the speed of convergence of X to its stationary distribution π is to find

(and bound its tail) so-called Strong Stationary Time (SST), i.e. such a stopping

∗ Work of both authors supported by NCN Research Grant DEC-2011/01/B/ST1/01305



2 P. Lorek and R. Szekl i

time T (T implicitly depends on ν) that it is independent fromXT , andXT has dis-

tribution π. SST’s were introduced by Aldous and Diaconis [2, 3], who also gave

examples of SST and their applications. Many examples can also be found in Dia-

conis [4]. First examples of SST’s were created by ad hoc methods. A general ap-

proach was invented by Diaconis and Fill [5] who introduced dual processes. They

showed that for X there always exists so-called Strong Stationary Dual (SSD) ab-

sorbing chain X∗, such that its time to absorption T ∗ is equal, in distribution, to a

SST T for X. Their proof is an existence type argument which does not show how

to construct a dual chain in general. They showed one tractable case [5, Theorem

4.6], where the state space is linearly ordered. Under the condition of stochastic

monotonicity (related to the linear order) of the corresponding time-reversed chain

(and some assumptions on the initial distribution) they gave a recipe of how to

construct a dual chain on the same state space. A special, and important, case is a

stochastically monotone birth-and-death chain for which the dual chain is an ab-

sorbing birth-and-death chain.

Strong stationary dual chains have a variety of applications. Diaconis and Fill

[6] gave an extension of this theory to countable state spaces. Fill [12] gave a

stochastic proof of a well-known theorem (usually attributed to Keilson), which

states that the first passage time from 0 to M of a stochastically monotone birth-

and-death process on {0, . . . ,M} is equal, in distribution, to a sum of geometric

random variables related to the spectral values of X. Similar results for continuous

time birth-and-death processes were obtained by Diaconis and Miclo [7]. Diaco-

nis and Saloff-Coste [8] studied cut-off phenomena for birth-and-death chains by

using SSD theory. Different dualities in Markov chains are utilized in a variety of

contexts, see, e.g., Huillet and Martinez [16].

All the mentioned examples above (although very interesting) somehow rely

on Theorem 4.6 of [5] which involves linearly ordered states space. That is why
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most of the known examples are related to birth-and-death chains. The main under-

lying assumption is (classical) stochastic monotonicity of the time-reversed chain.

Although this monotonicity is defined also for partially ordered state spaces, it is

not sufficient for an analogous construction of a SSD chain as in Diaconis and Fill

[5]. Lorek and Szekli [20] gave a recipe of how to construct dual chains on par-

tially ordered state spaces with a special feature that the duals have the same state

space as original chains. The assumption of the classical stochastic monotonicity

was replaced by the assumption of Möbius monotonicity. This extension (to par-

tially ordered state spaces) opens a new way of finding SSD chains defined for

not linearly ordered state spaces. The purpose of this paper is to get a new SSD

insight to some classical examples of finite state Markov chains. In section 2 we

recall needed definitions and facts about Möbius monotone chains. In section 3 we

present strong stationary duals for non-symmetric random walk on a square lattice,

for a random walk on the hypercube, and some Ising models on the circle. For the

latter one we give duals for specific cases, and conjecture the general case.

In section 4 we give proofs of the main results. We believe that the presented

method should be applicable for many other examples and can be used to find

bounds on the speed of convergence to stationarity, and to study cut-off phenom-

ena.

2. MÖBIUS MONOTONICITY AND DUALITY

In this section we recall needed results on SSD and Möbius monotone chains.

For a more complete material on duality see Diaconis and Fill [5], and for results

on Möbius monotone chains, see Lorek and Szekli [20].

2.1. Strong Stationary Duality. For an ergodic Markov chain X = (Xn)n­0

with the transition matrix P and initial distribution ν, we are interested in bounding

a distance between νPk (a distribution of a chain at step k) and its stationary
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distribution π. Often used distance is the total variation distance dTV (νPk, π) =

maxA⊂E |νPk(A) − π(A)|. Another useful distance is the separation distance s

defined as follows: s(νPk, π) = maxe∈E(1− νPk(e)/π(e)). For random times T

which are SST, Aldous and Diaconis [3] show that dTV (νPk, π) ¬ s(νPk, π) ¬

P (T > n).

Let X∗ be a Markov chain with transition matrix P∗, initial distribution ν∗

and a state space E∗, with an absorbing state e∗a. Let Λ ≡ Λ(e∗, e), e∗ ∈ E∗, e ∈ E

be a stochastic kernel (called a link), such that Λ(e∗a, ·) = π, for e∗a ∈ E∗. X∗ is a

Strong Stationary Dual (SSD) chain for X if

(2.1) ν = ν∗Λ and ΛP = P∗Λ.

Diaconis and Fill [5] proved that the absorption time T ∗ of X∗ is a SST for X.

Thus, the problem of finding SST for X translates into the problem of studying the

absorption time of X∗.

DEFINITION 2.1. Strong Stationary Dual chain X∗ is called sharp if s(νPn, π) =

P (T ∗ > n).

REMARK 2.1. The relation (2.1) implies that for finite E and E∗, P and P∗

have the same set of eigenvalues.

It turns out, that in some examples we can easily identify the eigenvalues of

P∗, and thus, by the above remark, we will also obtain the eigenvalues of P which

are usually not easy to obtain directly.

2.2. Duality for Möbius monotone chains. In this section we recall how to

construct a SSD chain for finite partially ordered state spaces. We shall consider

a finite state space E = {e1, . . . , eM} with a partial ordering �. From the very

beginning we shall choose an enumeration of E such that ei � ej implies i < j

(which is always possible). We call such an enumeration consistent with �. With
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this enumeration the partial ordering can by represented by an upper-triangular,

0-1 valued matrix C. The inversion C−1 represents (in the incidence algebra) the

so called Möbius function, usually denoted by µ, see Rota [23]. The Möbius func-

tion allows for the following calculus: it is possible to recover f from the relation

F̄ (e) =
∑

e:e�ei f(e), namely f(ei) =
∑

e:e�ei µ(ei, e)F̄ (e).

DEFINITION 2.2. Let P be a transition matrix with enumaration of states

consistent with C. We say that P (or alternatively, X) is ↓-Möbius monotone (
↑-Möbius monotone) if C−1PC ­ 0 ( (CT )−1PCT ­ 0) (each entry is nonnega-

tive).

We say that f : E→ RM is ↓-Möbius monotone (↑-Möbius monotone) if f(CT )−1 ­

0 (fC−1 ­ 0). In terms of the transition probabilities, we have

↓-Möbius monotonicity: ∀(ei, ej ∈ E)
∑

e:e�ei µ(ei, e) P(e, {ej}↓) ­ 0,

↑-Möbius monotonicity: ∀(ei, ej ∈ E)
∑

e:e�ej P(e, {ei}↑)µ(e, ej) ­ 0,

where {ej}↓ = {e : e � ej}, {ej}↑ = {e : e � ej}, and P(e, A) =
∑

e′∈AP(e, e′).

We recall the SSD result of Lorek and Szekli [20] (
←−
X denotes the time-reversed

process).

THEOREM 2.1 (Lorek and Szekli [20]). Let X be an ergodic Markov chain

on a finite state space E = {e1, . . . , eM}, which is partially ordered with �, and

has a unique maximal state eM . For the stationary distribution π and an initial

distribution ν we assume that

(i) g(e) = ν(e)
π(e) is ↓-Möbius monotone,

(ii)
←−
X is ↓-Möbius monotone.

Then there exists a Strong Stationary Dual chain X∗ on E∗ = E with link being

a truncated stationary distribution Λ(ej , ei) = I(ei � ej)
π(ei)
H(ej)

, where H(ej) =∑
e:e�ej π(e). The initial distribution and transitions of X∗ are given, respectively,
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by

ν∗(ei) = H(ei)
∑

e:e�ei
µ(ei, e)g(e),

P∗(ei, ej) =
H(ej)

H(ei)

∑
e:e�ej

µ(ej , e)
←−
P(e, {ei}↓).(2.2)

REMARK 2.2. Following Remark 2.39 of Diaconis and Fill [5] and the termi-

nology used there, the Strong Stationary Dual X∗ in Theorem 2.1 is sharp, and the

corresponding strong stationary time is the time to stationarity, i.e., s(νPn, π) =

P (T > n). The reason for this is that Λ(e∗, eM ) = 0 for all, e∗ 6= eM ∈ E∗.

REMARK 2.3. Theorem 2.1 is stated for ↓-Möbius monotonicity, but it can be

similarly stated for ↑-Möbius monotonicity (see Corollary 3.1 in [20]). The other

formulation is potentially useful, because a chain can be, e.g., ↓-Möbius monotone

but not ↑-Möbius monotone.

REMARK 2.4. The assumption on the initial distribution is not very restrictive,

for example if e1 is a unique minimal state and ν = δe1(·), then the assumption is

fulfilled, and also ν∗ = δe1(·). For simplicity of presentation, in all subsequent

examples the initial distribution will be the single atom at the minimal element

(this assumption may be relaxed).

In order to find and use the above constructed SSD chains one has to find an

approperiate ordering (w.r.t which the chain is Möbius monotone). It is worth men-

tioning, that for linearly ordered state space ↑-Möbius monotonicity is equivalent

to the usual stochastic monotonicity, in general partially ordered spaces this is not

the case. It turns out that for partially ordered spaces some natural orderings work.

A non-symmetric random walk on the unit cube is an example presented in [20].

In the next section we shall give new examples.
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3. MÖBIUS MONOTONE MARKOV CHAINS: EXAMPLES

3.1. Random walk on weighted directed graph. Consider a random walk on

a directed weighted graph G = (V,E) with vertices V = {v1, v2, . . . , vn}, edges

E = {(i, j) : edge from vi to vj} and with a weighting function w : E → [0,∞).

Denote by wi,j the nonnegative weight of the directed edge from node vi to vj . If

there is no edge between these nodes, i.e., (i, j) /∈ E, then wi,j = 0. We allow wi,i

be nonzero.

Let N (i) = {j : (i, j) ∈ E} be a set of neighbours of node vi. Random walk

may be viewed as a process of sequential vertex visiting. We assume that weights

are normalized, i.e., for all i ∈ {1, . . . , n} we have wi,i +
∑

r∈N (i)wi,r = 1. The

probability of a single step from node i to j is then given by P (i, j) = wi,j .

In this section we consider the following example: Let V = {0, 1, . . . , N}2

with edges

(3.1) ((x1, y1), (x2, y2)) ∈ E ⇐⇒ |x1 − x2|+ |y1 − y2| = 1

for x1, x2, y1, y2 ∈ {0, . . . , N}. Thus, for each node there are at most four edges in

four directions: up, down, left, right plus a possible self-loop. The weighting func-

tion depends only on the direction in the following way: for ((x1, y1), (x2, y2)) ∈

E and nonnegative parameters λ1, λ2, µ1, µ2 such that λ1 + λ2 + µ1 + µ2 ¬ 1

(3.2)

w((x1,y1),(x2,y2)) =



λ1 if x2 = x1 + 1, y2 = y1,

µ1 if x2 = x1 − 1, y2 = y1,

λ2 if x2 = x1, y2 = y1 + 1,

µ2 if x2 = x1, y2 = y1 − 1,

1−
∑

(x,y)∈N ((x1,y1))

w((x1,y1),(x,y)) if x2 = x1, y2 = y1.
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We associate weights directly with one step probabilities:

P((x1, y1), (x2, y2)) = w((x1,y1),(x2,y2)).

Roughly speaking, we consider a random walk on square lattice {0, . . . , N}2, at

each step we can move (if feasible): right with probability λ1, left with probability

µ1, up with probability λ2 and down with probability µ2. With remnant probability

we stay at a given vertex. For convenience, we let ρ1 := λ1/µ1, and ρ2 := λ2/µ2.

Denote the transition matrix of a corresponding Markov chain X by P. The chain

is time-reversible (i.e.
←−
P = P) and has (time-reversibility equations can be easily

checked) the stationary distribution on V

π((x, y)) = C−1ρx1ρ
y
2

for (x, y) ∈ V = {0, . . . , N}2, where the normalizing constant C for ρ1 6= 1 and

ρ2 6= 1 is given by

C =
1− ρN+1

1

1− ρ1
· 1− ρN+1

2

1− ρ2
,

and C for other cases can be obtained by obvious modifications.

We shall use the coordinate-wise partial ordering (x1, y1) � (x2, y2) ⇐⇒

x1 ¬ x2 and y1 ¬ y2. Then we have unique minimal element e1 = (0, 0) and the

maximal one eM = (N,N), where M = (N + 1)2. It turns out that X is Möbius

monotone for any set of parameters λ1, µ1, λ2, µ2 > 0, such that λ1 + λ2 + µ1 +

µ2 ¬ 1, and applying Theorem 2.1 we have:

THEOREM 3.1. Let X be a random walk on directed weighted graph with

G = (V,E), with V = {0, . . . , N}2, and E given in (3.1), weights given in (3.2)

and with positive parameters λ1 6= µ1, λ2 6= µ2, such that λ1 + λ2 + µ1 + µ2 ¬ 1.

Assume, that X starts at e1 = (0, 0). Then there exists sharp SSD chain X∗ which

is an absorbing Markov chain (with eM = (N,N) being the single absorbing state)

on the state space E∗ = E = {0, . . . , N}2, starting at e1 = (0, 0), with the follow-
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ing transition probabilities (for x, x′, y, y′ ∈ {0, . . . , N})

(3.3)

P∗((x, y), (x′, y′)) =

1−ρx+2
1

1−ρx+1
1

· µ1 if x′ = x+ 1, y′ = y

1−ρy+2
2

1−ρy+1
2

· µ2 if y′ = y + 1, x′ = x

1−ρy2
1−ρy+1

2

· λ2 if x′ = x, y′ = y − 1, y 6= N

1−ρx1
1−ρx+1

1

· λ1 if y′ = y, x′ = x− 1, x 6= N

1− (λ1 + λ2 + µ1 + µ2) if x′ = x, y′ = y, (x, y) ∈ {0, . . . , N − 1}2

1− (λ2 + µ2) if x′ = x = N, y′ = y, y ∈ {0, . . . , N − 1}

1− (λ1 + µ1) if x′ = x, y′ = y = N, x ∈ {0, . . . , N − 1}

1 if x′ = x = y = y = N

Thus, the SSD chain X∗ is again a chain on E, with feasible moves in the

same directions as X except for movements on the upper borders of this square

lattice. Once the chain hits the border (·, N) ( or (N, ·)), then it can only move left

or right (up or down) until it hits the absorbing state (N,N). Note that probability

of changing i-th coordinate, i = 1, 2, is independent of the value of (3 − i)-th

coordinate. The chain X∗, for a suitable selection of the parameters, can have a

drift towards the absorbing state. Note that the case ρ1 = 1, and/or ρ2 = 1 can be

obtained by obvious modifications in computing H(x, y) (see the proof in section

4.1).

One can study the time to absorption T ∗ in the following way: it is the time

of hitting a border (·, N) or (N, ·) plus the time for the one dimensional birth-

and-death chain with birth probability λ1 and death probability µ1 (or λ2 and µ2

respectively) to reach the state N (worst cases scenarios can be used).
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3.2. Random change of single coordinate on a cube. Let us consider a dis-

crete time Markov chain X with state space E = {0, . . . , k}n, which evolves in

the following way: it stays with probability 1/2 or (with probability 1/2) for

one coordinate chosen uniformly, it changes uniformly its value to any other dif-

ferent value. In terms of the transition probabilities, for e = (e(1), . . . , e(n)) ∈

E, e(i) ∈ {0, . . . , k}, we set

(3.4)

P(e, e′) =



1
2 if e = e′

1
2nk if for some i e(i) 6= e′(i) and e(j) = e′(j), j 6= i

0 otherwise

Since P is symmetric, the corresponding stationary distribution is uniform,

i.e.,

π(e) =
1

(k + 1)n
, e ∈ E.

The motivation for this example comes from DNA sequence alignment. Given n

sequences of length k + 1 the task is to find points of references in each one such

that, starting reading sequence i from it’s reference point r(i) we have the biggest

agreement in all sequences. Since the state space is huge (of size (k + 1)n), often

Monte Carlo methods are used. One constructs a chain such that its stationary

distribution assigns higher mass to states with high agreements. The chain given in

(3.4) is a simplified version of such a chain.

The chain X can be seen as an extension of the standard lazy random walk

on the unit cube (obtained for k = 1). Using the coordinate-wise ordering � on

E, it turns out that X (which is reversible) is Möbius monotone. For this ordering,

the state e1 = (0, . . . , 0) is the minimal state and eM = (k, . . . , k) is the maximal

state (with M = (k + 1)n), where we use an enumeration of E consistent with �.

Applying Theorem 2.1 we obtain.
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THEOREM 3.2. Consider the chain X described above, on state space E =

{0, . . . , k}n, with transition probabilities given in (3.4). Assume that X starts at

e1. Then, there exists sharp SSD chain X∗ on the state space E∗ = E, with the

state eM being the absorbing one, starting with probability 1 at e1, and having

transition probabilities, for all A ⊆ {1, . . . , n}, j /∈ A

P∗(e
(k)
A , e

(k)
A∪{j}) =

(k + 1)

2nk
,

P∗(e
(k)
A , e

(k)
A ) =

n(k − 1) + |A|(k + 1)

2nk
,

where e
(k)
A = (e(1), . . . , e(n)) with e(i) = k if i ∈ A and e(i) = 0 if i /∈ A, and

all other transitions have probability 0.

Note that SSD chain X∗ jumps, with probability 1, only to greater or equal

states in the ordering �, thus its eigenvalues are the entries on the diagonal of the

matrix P∗ written using an enumeration of the states consistent with this ordering.

The states which can be traversed by X∗ are of the form e
(k)
A , which means that X∗

can be identified with a random walk on the unit cube {0, k}n. Again, by Remark

2.1, the eigenvalues of P are the same as diagonal entries of P∗, i.e.,

n(k − 1) + i(k + 1)

2nk
, i = 0, 1, . . . , n.

Similarly as in the Ising model example, we can consider the time to absorption

of one dimensional projection Z∗t := S(X∗t ), where S(e) =
∑n

i=1 111{e(i) = k}.

If Z∗0 = 0, then the time to absorption T ∗ of Z∗t is the same as for X∗t , and is

distributed as the sum of independent variables
∑n−1

i=0 Yi, where Yi has geometric

distribution with the success parameter pi = (n−i)(k+1)
2nk . For the expected absorp-

tion time we have

ET ∗ =
n−1∑
i=0

1

pi
=

n−1∑
i=0

1

n− i
2nk

k + 1
=

2nk

k + 1

n∑
i=1

1

i
¬ 2k

k + 1
(n+ 1) log n

For the variance of T ∗ we have

V arT ∗ =
n−1∑
i=0

1− pi
p2i

=
2nk

(k + 1)2

n−1∑
i=0

nk − n+ ki+ i

(n− i)2
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=
2nk

(k + 1)2

[
nk

n−1∑
i=0

1

(n− i)2
+ k

n−1∑
i=0

i

(n− i)2
−

n∑
i=1

1

i

]
(∗)
¬
(

2nk

k + 1

)2 π2

6
,

where in (∗) we used the following ineqalities

n−1∑
i=0

1

(n− i)2
¬ π2

6
,

n−1∑
i=0

i

(n− i)2
¬ nπ

2

6
.

By Remark 2.2 and from Chebyshev’s inequality, we have that afterm = 2k
k+1(n+

1) log n+ c 2k
k+1

π√
6
n, c ­ 0 steps we have

s(νPm, π) = P (T > m) ¬ P (T −ET ¬ c
√
V ar) ¬ P (|T −ET | ¬ c

√
V ar) ¬ 1

c2
.

3.3. Ising model on a circle. Let G = (V,E) be a finite graph. Elements of

state space E = {−1, 1}V are called configurations, and for e ∈ E the value e(v)

is called the spin at vertex v. For a given configuration e its energy is defined as

H(e) = −
∑

{x,y}∈E
e(x) · e(y),

where the sum is over all edges of the graph. For β ­ 0, the Ising model on the

graph G with parameter β is the probability measure on E given by

(3.5) π(e) =
e−βH(e)

Zβ
,

whereZβ =
∑

e∈E e
−βH(e) is a normalizing constant. The parameter β has a phys-

ical interpretation as the inverse of the temperature of the configuration. Note, that

for β = 0 (equivalent to infinite temperature), every spin configuration is equally

likely, i.e., it is the same as setting spin at each vertex to -1 or +1 with probability

1/2 independently. In general, β represents the influence of energyH on π.

This model has focused a lot of attention in the context of speed of conver-

gence to equilibrium of particle systems. Propp and Wilson [22] introduced Cou-

pling From The Past algorithm and used it to show how to draw exact sample

from (3.5) in the case of square lattice. Recently Ding and Peres [10] showed that
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for Ising models on each graph it takes at least (1/4 + o(1))n log n steps for the

Glauber dynamics to mix, where n is the corresponding number of vertices. In

Ding and Peres [11] a simple proof for the bound n log n/2 was presented.

We shall consider the Ising model on a circle. We will present the dual chain

for a case of 2 and 3 vertices and a conjecture on a general number of vertices. We

set V = {0, . . . , N − 1} and E = {(i, (i+ 1) mod N) : i = 0, . . . , N − 1}. The

stationary distribution (3.5) in this case can be rewritten as π(e) = 1
Zβ
exp

(
β
∑N−1

i=0 e(i)e(i+ 1)
)
,

where we always mean vertex number modulo N . The following is a classical

Gibbs sampler for this model, a Markov chain with stationary distribution (3.5):

• Given a configuration e at step n, i.e., Xn = e, choose a vertex v ∈ V with

probability 1/N .

• Take Un+1, a random variable with the uniform distribution U(0, 1), inde-

pendent of Ui, i ¬ n. Update the spin at vertex v in the following way

Xn+1(i) =


+1 if Un+1 <

e2β(k+(v,e)−k−(v,e))

e2β(k+(v,e)−k−(v,e)) + 1
,

−1 otherwise,

where k+(v, e) is the number of neighbours of vertex v, in configuration e, with

spin values +1, and k−(v, e) is the number of neighbours of vertex v, in configura-

tion e, with spin values -1.

The chain X constructed in this way is reversible. Moreover, X can be viewed as a

random walk on N−dimensional cube, where the probability of changing coordi-

nate (corresponding to some vertex v) depends on the values of the neighbouring

(w.r.t. underlying graph G) coordinates.

It turns out that if we consider the coordinate-wise ordering, i.e., e � e′ if

e(v) ¬ e′(v) for every vertex v ∈ V . Let M := 2|V | = 2N . Denote by e1 the state

with all spins equal to −1 (minimal state), and by eM the state with all spins

equal to +1 (maximal state). We identify E = {−1, 1}V with the enumerated set

{e1, . . . , eM}, where the enumeration is consistent with�. For specific casesN =
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2 andN = 3 we can directly calculate the dual chain in matrix form from equation

(2.1) with link given in Theorem 2.1, namely

P∗ = ΛPΛ−1.

If the resulting P∗ is not a stochastic matrix, then it means that X is not ↓-Möbius

monotone (which will not be the case).

3.3.1. 2 vertices case. Let us order the states in the following way: e1 = (−1,−1),

e2 = (+1,−1), e3 = (−1,+1), e4 = (+1,+1). Using this enumeration matrices

P and C are as follows:

P =



1
e−2β+1

1
2

e−2β

e−2β+1
1
2

e−2β

e−2β+1
0

1
2

1
e−2β+1

1
e2β+1

0 1
2

e2β

e2β+1

1
2

1
e−2β+1

0 1
e2β+1

1
2

e2β

e2β+1

0 1
2

1
e2β+1

1
2

1
e2β+1

e2β

e2β+1


,C =


1 1 1 1

0 1 0 1

0 0 1 1

0 0 0 1

 .

From Theorem 2.1 we obtain the following dual chain:

P∗ =



0 1
2

1
2 0

0 1
2

1
2
e2β−1
e2β+1

1
e2β+1

0 1
2
e2β−1
e2β+1

1
2

1
e2β+1

0 0 0 1


The chain started at (−1,−1) goes with equal probability in first step to (+1,−1)

or (−1,+1). Then it either is absorbed in next step with probability 1
e2β+1

or not,

with remnant probability 1
2 + 1

2
e2β−1
e2β+1

= e2β

e2β+1
. Time to absorption in this case

is of the following form: T ∗ = X0 + X1, X0 ∼ Geo(1) (i.e., X0 ≡ 1), X1 ∼

Geo
(

1
e2β+1

)
, i.e.,

P (T ∗ = k) =

(
e2β

e2β + 1

)k−2(
1

e2β + 1

)
, k = 2, 3, . . .
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In particular, ET ∗ = 2 + e2β and after k = 1 + 1
2β−ln(2β+1) ln(ε) steps we have

s(δe1P
k, π) = P (T ∗ > k) = ε.

We can depict the chain and its dual on a graph:

++

+−

−−

−+

1
2

e−2β

e−2β+1

1
2

1
e−2β+1

1
2

e−2β

e−2β+1

1
2

1
e−2β+1

1
2

e2β

e2β+1

1
2

1
e2β+1

1
2

e2β

e2β+1

1
2

1
e2β+1

1
e−2β+1

1
e2β+1

1
e2β+1

e2β

e2β+1

++

+−

−−

−+

1
2

1
2

1
e2β+1

1
e2β+1

1
2
e2β−1
e2β+1

1
2

1
2

1

1
e−2β+1

original chain P dual chain P∗

3.3.2. 3 vertices case. Consider a simple case of 3 vertices all being each

other’s neighbour, say labeled v1, v2, v3. Let us enumerate the states in the fol-

lowing way: e1 = (−1,−1,−1), e2 = (+1,−1,−1), e3 = (−1,+1,−1), e4 =

(−1,−1,+1), e5 = (+1,+1,−1), e6 = (+1,−1,+1), e7 = (−1,+1,+1), e8 =

(+1,+1,+1). To shorten notation, denote: p = e4β

1+e4β
and q = e−4β

1+e−4β . The tran-
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sition matrix is following:

P =



1− q 1
3q

1
3q

1
3q 0 0 0 0

1
3 −

1
3q

1
3 + 1

3q 0 0 1
6

1
6 0 0

1
3 −

1
3q 0 1

3 + 1
3q 0 1

6 0 1
6 0

1
3 −

1
3q 0 0 1

3 + 1
3q 0 1

6
1
6 0

0 1
6

1
6 0 2

3 −
1
3p 0 0 1

3p

0 1
6 0 1

6 0 2
3 −

1
3p 0 1

3p

0 0 1
6

1
6 0 0 2

3 −
1
3p

1
3p

0 0 0 0 1
3 −

1
3p

1
3 −

1
3p

1
3 −

1
3p p


The stationary distribution in this case is following:

π((−1,−1,−1)) = π((+1,+1,+1)) = 1
Z

π(e) = e−4β

Z for e /∈ {(−1,−1,−1), (+1,+1,+1)},

where Z is a normalizing constant equal to 2 + 6e−4β . In this case, function H is

as follows:

H((+1,−1,−1)) = H((−1,+1,−1)) = H((−1,−1,+1)) = 1+e−4β

2(1+3e−4β)

H((+1,+1,−1)) = H((+1,−1,+1)) = H((−1,+1,+1)) = 1
2

H((−1,−1,−1)) = 1
2(1+3e−4β)

, H((+1,+1,+1)) = 1

We obtain the following dual chain:

P∗ =



0 1
3

1
3

1
3 0 0 0 0

0 1
3

1
6
1−e−4β

1+e−4β
1
6
1−e−4β

1+e−4β
1
6
1+3e−4β

1+e−4β
1
6
1+3e−4β

1+e−4β 0 0

0 1
6
1−e−4β

1+e−4β
1
3

1
6
1−e−4β

1+e−4β
1
6
1+3e−4β

1+e−4β 0 1
6
1+3e−4β

1+e−4β 0

0 1
6
1−e−4β

1+e−4β
1
6
1−e−4β

1+e−4β
1
3 0 1

6
1+3e−4β

1+e−4β
1
6
1+3e−4β

1+e−4β 0

0 0 0 0 2
3

1
6
1−e−4β

1+e−4β
1
6
1−e−4β

1+e−4β
2

3(1+e4β)

0 0 0 0 1
6
1−e−4β

1+e−4β
2
3

1
6
1−e−4β

1+e−4β
2

3(1+e4β)

0 0 0 0 1
6
1−e−4β

1+e−4β
1
6
1−e−4β

1+e−4β
2
3

2
3(1+e4β)

0 0 0 0 0 0 0 1


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Note that, when the chain is on level 1, i.e. in states (+1,−1,−1), (−1,+1,−1) or

(−1,−1,+1) then it either gets to some state on level 2 with probability 2
6
1+3e−4β

1+e−4β

or stays somewhere on level 1 with remnant probability. Similarly, when dual is on

level 2 it can get to absorbing state (+1,+1,+1) wit probability 2
3(1+e4β)

or stays

at the level with remnant probability. Thus, time to absorption is of form:

T ∗ = X0 +X1 +X2, where

X0 ∼ Geo(1), X1 ∼ Geo
(

1 + 3e−4β

3(1 + e−4β)

)
, X2 ∼ Geo

(
2

3(1 + e4β)

)
.

The dual for this case can be depicted as follows:

+ + +

+ - ++ + - - + +

- + -+ - - - - +

- - -

1
3

1
3

1
3

a

a a

a

a a

b
b

b

b

b
b

c
c

c

1

where a = 1
6(1− e−4β)/(1 + e−4β), b = 1

6(1 + 3e−4β)/(1 + e−4β) and c = 2/(3 +

3e4β). Self-loops (strictly positive at each vertex except (-1,-1,-1)) are not depicted.



18 P. Lorek and R. Szekl i

3.3.3. GeneralN vertices case. Here we will present conjecture for case of any

number of vertices N . First, we conjecture that the chain for this Ising model is

always ↓-Möbius monotone for arbitrary graph G with respect to coordinate-wise

ordering. Second, for G being a circle (what is under consideration throughout a

section), the structure of a dual is “nice” in a sense we are about to describe. The

details for this case will appear in a subsequent paper.

Recall, we considerG = (V,E), where V = {0, . . . , N − 1} andE = {(i, (i+

1) mod N) : i = 0, . . . , N − 1}. We identify a vertex v with a number v and keep

general-graph notation. For example (v, w) ∈ E actually means, that w = v ± 1.

For notational convenience, let ev↔w denotes a configuration e with swapped spins

at v andw. Recall also, that within coordinate-wise ordering, the state with all spins

equal to -1 (denoted by e1) is a minimal state, and state with all spins equal to +1

(denoted by eM , where M = 2N ) is a maximal state.

CONJECTURE 1. Consider the Gibbs sampler X for the Ising model on ar-

bitrary graph G = (V,E). Assume that X starts with the configuration e1. Then,

there exists sharp SSD chain X∗ = (X∗n)n­0 on the state space E∗ = E, with the

state eM being the absorbing one, starting with probability 1 at e1, and having

transition probabilities for e, e′ ∈ {e1, . . . , eM}

(3.6)

P∗(e, e′) =

0 if e � e′

1
N S(e) if e = e′

H(e′)
H(e)

1
N

(
1− e2β(k+(v,e)−k−(v,e))

e2β(k+(v,e)−k−(v,e))+1

)
if e′ = e + sv, e(v) = −1

H(ev↔w)
H(e)

1
N

(
e2β(k+(v,e)−k−(v,e)+2)

e2β(k+(v,e)−k−(v,e)+2)+1
− e2β(k+(v,e)−k−(v,e))

e2β(k+(v,e)−k−(v,e))+1

)
if e′ = ev↔w, (v, w) ∈ E

e(v) = −1, ·e(w) = −1
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where sv = (0, . . . , 0, 2, 0, . . . , 0) (2 on the coordinate corresponding to vertex v),

S(e) =
∑

v∈V 111{e(v) = 1} (called a level ), and H(e) =
∑

e′�e π(e).

The conjectured dual chain, being at some state e1 (thus on level S(e1))

• can stay at the same state

• cannot go to any state with lower level

• can go to higher levels only to states of form e + sj (i.e., only one lever

higher, to a comparable state)

• can move “across” the level only by swapping spins at some vertices v and

w which are neigbours, i.e. (v, w) ∈ E

The special cases N = 2 and N = 3 were particularly “nice”. For N = 2 the tran-

sitions from e to e′ = ev↔w are all zero. For N = 3 the transitions to another state

on the same level or to higher level, do not depend on particular state, but only on

the current level. This is mainly due to fact that “neigbours of v” actually means

“all other vertices of v”. That is implied, that time to absorption in these case was

distributed as sum of geometric random variables. For N ­ 4, the probabilities

depend on a particular state. However, the dual has a nice block-matrix form

P∗ =



P∗0,0 P∗0,1 0 . . . 0
0 P∗1,1 P∗1,2 0 . . . 0

0
. . . 0 . . . 0

0 . . . P∗i,i P∗i,i+1 0 . . . 0

0
. . . 0 . . . 0

0 . . . P∗N−1,N−1 P∗N−1,N
0 . . . 0 1


,

where P∗(i, i) is a square matrix corresponding to all states with level i of size(
N
i

)
×
(
N
i

)
, and P∗(i, i+ 1) is a matrix of size

(
N
i

)
×
(
N
i+1

)
, i = 0, . . . , N − 1.

REMARK 3.1. The time to absorption for such block-matrices can be further

studied again via some dualities. Roughly speaking, for given absorbing chain P∗

there is a method for finding another “dual” absorbing chain P̂ which has the

same time to absorption. The method is due to Fill and Lyzinski [14].
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3.4. Further examples and developements.

3.4.1. Simple symmetric random walk on a circle. Let Zd be the set of integers

modulo d, regarded as d labelled 1, 2, . . . , d points arranged anti-clockwise around

a circle with 1 at the bottom, say. Suppose we start at 1, that is ν = δ1 and with

probability 1/3 random walk X moves one step in either direction along the circle

or remains. The stationary distribution for this Markov chain is the uniform dis-

tribution πu on E = Zd. Diaconis and Fill [5] showed for d = 2a, a SST T , such

that

dTV (νPn, πu) ¬ P (T > n) ¬ 3

16
d2/n,

and pointed out some extensions of this model. The point of this example was

that a SST was found by identifying sets of states increasing in size and times at

which the process is uniform on each set. This transformed the original problem

of studying convergence to stationarity into a different problem of analysing first

passage times. It might be interesting to know that there is an alternative way of

finding a SSD chain for this walk using Möbius monotonicity. It is possible if we

order linearly the state space by a zig-zag ordering on the circle. For example, for

d = 23, the ordering is 1 < 2 < 8 < 3 < 7 < 4 < 6 < 5, with 5 being the maximal

state, or, for d = 24, the ordering is 1 < 2 < 16 < 3 < 15 < 4 < 14 < 5 < 13 <

6 < 12 < 7 < 11 < 8 < 10 < 9, with 9 being the maximal state. It turns out that

with this ordering X is Möbius monotone. The corresponding dual is a Markov

chain with 1 step transitions only on one side of the circle, that is for example

in the case d = 16 moving as birth- death chain on 1, 16, 15, 14, 13, 12, 11, 10, 9,

with the maximal state 9 being the absorbing state. That means that the original

problem of studying convergence to stationarity for a symmetric random walk on a

circle can be transformed into a different problem of analysing passage time for a

birth and death process on linearly ordered segment from the minimal to maximal

state, which is more standard one. Möbius monotonicity here is a delicate property,
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because changing the probability of remaining in a state from 1/3 to a smaller value

destroys this monotonicity, however changing the probability to remain from 1/3

to a bigger value does not influence the property of Möbius monotonicity. Also

making the walk not symmetric destroys this kind of monotonicity.

4. PROOFS

4.1. Proof of Theorem 3.1. We start with a detailed expression for the transi-

tion probabilities of X

P((x, y), (x′, y′)) =



λ1 if x′ = x+ 1 ¬ N, y′ = y

λ2 if x′ = x, y′ = y + 1 ¬ N

µ1 if x′ = x− 1 ­ 0, y′ = y

µ2 if y′ = y − 1 ­ 0, x′ = x

1− (λ1 + λ2 + µ1 + µ2) if x′ = x > 0, y′ = y > 0

1− (λ1 + λ2 + µ1) if x′ = x > 0, y′ = y = 0

1− (λ1 + λ2 + µ2) if x′ = x = 0, y′ = y > 0

1− (µ1 + µ2) if x′ = x = y = y′ = N

1− (µ1 + µ2 + λ1) if x′ = x > 0, y′ = y = N

1− (µ1 + µ2 + λ2) if x′ = x = N, y′ = y > 0

1− (λ1 + λ2) if x′ = x = y = y′ = 0

1− (λ1 + µ2) if x′ = x = N, y = y′ = 0

1− (λ2 + µ1) if x′ = x = 0, y = y′ = N

In a standard way we can check that X is reversible and the stationary distribution

is given by

π((x, y)) = C−1ρx1ρ
y
2
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where C is the normalizing constant, and ρi = λi/µi, i = 1, 2. For the coordinate-

wise ordering

(x, y) � (x′, y′) ⇐⇒ x ¬ x′ and y ¬ y′,

with the minimal state e1 = (0, 0), and the maximal state eM = (N,N), (M =

(N + 1)2) directly from Proposition 5 in [23], we find the corresponding Möbius

function:

µ((x, y), (x′, y′)) =



1 if x′ = x, y′ = y

−1 if x′ = x+ 1, y′ = y

−1 if x′ = x, y′ = y + 1

1 if x′ = x+ 1, y′ = y + 1

0 otherwise

For

H(x, y) = C−1
∑
x′¬x

ρx
′

1

∑
y′¬y

ρy
′

2 = C−1(1− ρ1)−1(1− ρ2)−1
(
1− ρx+1

1

)
(1− ρy+1

2 ),

we shall compute

(4.1)

P∗((x, y), (x2, y2)) =
H(x2, y2)

H(x, y)

∑
(x′,y′)�(x2,y2)

µ((x2, y2), (x
′, y′))

←−
P((x′, y′), {(x, y)}↓).

Set

S :=
∑

(x′,y′)�(x2,y2)
µ((x2, y2), (x

′, y′))
←−
P((x′, y′), {(x, y)}↓).

Note that in order to prove that
←−
X is ↓-Möbius monotone it is enough to show that

S ­ 0. Since X is reversible, we take P instead of
←−
P in the above formula. We

shall consider all possible transitions, case by case.

• (inside lattice, up x direction)

x2 = x+ 1, y2 = y
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S =
∑

(x′,y′)�(x+1,y)

µ((x+ 1, y), (x′, y′))P((x′, y′), {(x, y)}↓)

where µ will be non-zero only in the following cases

µ((x+ 1, y), (x+ 1, y)) = 1, µ((x+ 1, y), (x+ 1, y + 1)) = −1,

µ((x+ 1, y), (x+ 2, y)) = −1, µ((x+ 1, y), (x+ 2, y + 1)) = 1.

Combining these cases with the values of P((x′, y′), {(x, y)}↓) we get

S = µ((x+ 1, y), (x+ 1, y))P((x+ 1, y), {(x, y)}↓)− 1 · 0− 1 · 0 + 1 · 0 = µ1,

• (inside lattice, up y direction)

x2 = x, y2 = y + 1

in a similar way as ubove, we get

S = µ((x, y + 1), (x, y + 1))P((x, y + 1), {(x, y)}↓)− 1 · 0− 1 · 0 + 1 · 0 = µ2,

• (inside lattice, down x direction)

x2 = x− 1 ­ 0, y2 = y

using the formula for S we have

S = µ((x− 1, y), (x− 1, y))P((x− 1, y), {(x, y)}↓)

+ µ((x− 1, y), (x, y))P((x, y), {(x, y)}↓)

+ µ((x− 1, y), (x− 1, y + 1))P((x− 1, y + 1), {(x, y)}↓)

+ µ((x− 1, y), (x, y + 1))P((x, y + 1), {(x, y)}↓)

= 1 · (1− λ2)− 1 · (1− λ2 − λ1)− 1 · µ2 + 1 · µ2 = λ1,
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• (inside lattice, down y direction)

x2 = x, y2 = y − 1 ­ 0

S = µ((x, y − 1), (x, y − 1))P((x, y − 1), {(x, y)}↓)

+ µ((x, y − 1), (x, y))P((x, y), {(x, y)}↓)

+ µ((x, y − 1), (x+ 1, y − 1))P((x+ 1, y − 1), {(x, y)}↓)

+ µ((x, y − 1), (x+ 1, y))P((x+ 1, y), {(x, y)}↓)

= 1 · (1− λ1)− 1 · (1− λ2 − λ1)− 1 · µ1 + 1 · µ1 = λ2,

• (inside lattice, down on both axes)

x2 = x− 1 ­ 0, y2 = y − 1 ­ 0

S = µ((x− 1, y − 1), (x− 1, y − 1))P((x− 1, y − 1), {(x, y)}↓)

+ µ((x− 1, y − 1), (x− 1, y))P((x− 1, y), {(x, y)}↓)

+ µ((x− 1, y − 1), (x, y − 1))P((x, y − 1), {(x, y)}↓)

+ µ((x− 1, y − 1), (x, y))P((x, y), {(x, y)}↓)

= 1 · 1− 1 · (1− λ2)− (1− λ1) + 1− (λ1 + λ2) = 0.

In a similar way it is possible to check that inside the lattice the only one remaining

movement with positive probability is the feedback movement

• (feedback inside lattice) x2 = x > 0, y2 = y > 0

P∗((x, y), (x, y)) = 1− λ1 − λ2 − µ1 − µ2 = P((x, y), (x, y)),

• (upper border, up x direction)

x2 = x+ 1 ¬ N, y2 = y = N

S = µ((x+ 1, N), (x+ 1, N))P((x+ 1, N), {(x,N)}↓) = µ1,
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• (upper border, down y direction)

x2 = x < N, y = N, y2 = N − 1

S = µ((x,N − 1), (x,N − 1))P((x,N − 1), {(x,N)}↓)

+ µ((x,N − 1), (x,N))P((x, y), {(x,N)}↓)

+ µ((x,N − 1), (x+ 1, N − 1))P((x+ 1, N − 1), {(x,N)}↓)

+ µ((x,N − 1), (x+ 1, N))P((x+ 1, N), {(x,N)}↓)

= 1 · (1− λ1)− 1 · (1− λ1)− 1 · µ1 + 1 · µ1 = 0,

• (upper-right corner, down y direction)

x2 = x = N, y = N, y2 = N − 1

S = µ((N,N − 1), (N,N − 1))P((N,N − 1), {(N,N)}↓)

+ µ((N,N − 1), (N,N))P((N,N), {(N,N)}↓) = 1− 1 = 0

• (upper border, down x direction)

N − 1 > x2 = x− 1 ­ 0, y2 = y = N

S = µ((x− 1, N), (x− 1, N))P((x− 1, N), {(x,N)}↓)

+ µ((x− 1, N), (x,N))P((x,N), {(x,N)}↓) = 1 · 1− 1 · (1− λ1) = λ1,

• (lower border, up x direction)

N − 1 > x2 = x+ 1 ¬ N, y2 = y = 0

S = µ((x+ 1, 0), (x+ 1, 0)P((x+ 1, 0), {(x, 0)}↓) = µ1,

• (lower border, down x direction)

x2 = x− 1 ­ 0, y2 = y = 0
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S = µ((x− 1, 0), (x− 1, 0))P((x− 1, 0), {(x, 0)}↓)

+ µ((x− 1, 0), (x, 0))P((x, 0), {(x, 0)}↓)

+ µ((x− 1, 0), (x− 1, 1))P((x− 1, 1), {(x, 0)}↓)

+ µ((x− 1, 0), (x, 1))P((x, 1), {(x, 0)}↓)

= 1 · (1− λ2)− 1 · (1− λ1 − λ2)− 1 · µ2 + µ2 = λ1,

• (lower border, up y direction)

x2 = x ­ 0, y2 = 1, y = 0

S = µ((x, 1), (x, 1))P((x, 1), {(x, 0)}↓) = µ2.

In a similar way we get

• (right border, up y direction)

x2 = x = N, y2 = y + 1 ¬ N , S = µ2,

• (right border, down y direction)

x2 = x = N,N − 1 > y2 = y − 1 ­ 0, S = λ2,

• (right border, down x direction)

x2 = N − 1, x = N, y2 = y, S = 0,

• (left border, up y direction)

x2 = x = 0, y2 = y + 1 ¬ N , S = µ2,

• (left border, up x direction)

x = 0, x2 = 1, y2 = y, S = µ1,

• (left border, down y direction)

x2 = x = 0, N − 1 > y2 = y − 1 ­ 0, S = λ2,

• (absorbing state)

x2 = x = N, y2 = y = N , S = 1.
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• (feedback movements)

for all (x, y) ∈ {0, . . . , N − 1}2, S = 1− (λ1 + λ2 + µ1 + µ2),

for x = N , and y ∈ {0, . . . , N − 1}, S = 1− (λ2 + µ2),

for y = N , and x ∈ {0, . . . , N − 1}, S = 1− (λ1 + µ1).

Now using (4.1), and using values of H(x, y) we obtain P∗ given in (3.3).

4.2. Proof of Theorem 3.2. Consider the coordinate-wise ordering

e = (e(1), . . . , e(n)) � (e′(1), . . . , e′(n)) = e′ iff e(i) ¬ e′(i), i = 1, . . . , n.

Again, for this ordering with minimal element e1 = (0, . . . , 0) and maximal

element eM = (k, . . . , k) (with M = (k + 1)n) , directly from Proposition 5 in

Rota [23], we find the corresponding Möbius function

µ((e(1), . . . , e(n)), (e(1) + d1, . . . , e(n) + dn)) =


(−1)

n∑
i=1

di
di ∈ {0, 1}, e(i) + di ¬ k,

i = 1, . . . , n

0 otherwise.

For H(e) =
∑

e′�e π(e′) = |{e′ : e′ ¬ e}| · 1/(k + 1)n, we shall compute di-

rectly transitions of the dual chain (2.2) from Theorem 2.1. Note, that in order to

prove that
←−
X is ↓-Möbius monotone, it is enough to show that all summands in

(2.2) are non-negative. We take P instead of
←−
P since this chain is reversible.

For convenience, we shall consider states of the following form

e
(k)
A = (e

(k)
A (1), . . . , e

(k)
A (n)), A ⊆ {1, . . . , n},

with e
(k)
A (i) = k if i ∈ A and 0 otherwise. Note, that there are (k + 1)|A| states

smaller or equal (w.r.t. �) to e
(k)
A , and we have

(4.2)
H(e

(k)
A∪{j})

H(e
(k)
A )

=
(k + 1)|A∪{j}|

(k + 1)|A|
= k + 1 for j /∈ A.
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Let us calculate transitions of the dual chain from state e
(k)
A . We shall use si =

(0, . . . , 0, 1, 0, . . . , 0) with 1 at position i. For the probability of staying at this

state we get

P∗(e
(k)
A , e

(k)
A ) = 1 ·

∑
e�e(k)A

µ(e
(k)
A , e)P(e, {e(k)A }

↓)

= µ(e
(k)
A , e

(k)
A )P(e

(k)
A , {e(k)A }

↓) +
∑
i∈Ac

µ(e
(k)
A , e

(k)
A + si)P(e

(k)
A + si, {e(k)A }

↓)

= 1 ·

(
1

2
+
∑
i∈A

k · 1

2nk

)
−

∑
i∈Ac

1

2nk
=

1

2
+
k|A|
2nk

− n− |A|
2nk

=
n(k − 1) + |A|(k + 1)

2nk
,

since P(e
(k)
A + si, {e(k)A }↓) = P(e

(k)
A + si, e

(k)
A ).

Now, for the probability of transition from e
(k)
A to e

(k)
A∪{j}, j /∈ A we obtain

P∗(e
(k)
A , e

(k)
A∪{j}) =

H(e
(k)
A∪{j})

H(e
(k)
A )

∑
e�e(k)

A∪{j}

µ(e
(k)
A∪{j}, e)P(e, {e(k)A }

↓).

The only state e for which P(e, {e(k)A }↓) > 0 is e = e
(k)
A∪{j}, thus (using (4.2)) we

have

P∗(e
(k)
A , e

(k)
A∪{j}) = (k + 1)µ(e

(k)
A∪{j}, e

(k)
A∪{j})P(e

(k)
A∪{j}, {e

(k)
A }

↓) =
k + 1

2nk
.

This completes our argument since all other transitions have probability 0, which

is clear from the following summation

P∗(e
(k)
A , e

(k)
A ) +

∑
j∈Ac

P∗(e
(k)
A , e

(k)
A∪{j}) =

n(k − 1) + |A|(k + 1)

2nk
+ (n− |A|) · k + 1

2nk

=
n(k − 1) + n(k + 1) + |A|(k + 1)− |A|(k + 1)

2nk
= 1.

Note that the dual chain starts at the minimal state which is also of the form e
(k)
A ,

namely with A = ∅.
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1028, (2011)

[11] Ding, J. and Peres, Y. Mixing time for the Ising model: A uniform lower

bound for all graphs. arXiv:0909.5162v2 [math.PR] (2013)

[12] Fill, J. A. The passage time distribution for a birth-and-death chain:Strong

stationary duality gives a first stochastic proof. Journal of Theoretical Prob-

ability 22, 543-557, (2009a)

[13] Fill, J. A. On hitting times and fastest strong stationary times for skip-free

and more general chains. Journal of Theoretical Probability 22(3), 587-600,

(2009)

[14] Fill, J. and Lyzinski, V. Hitting times and interlacing eigenvalues: a stochastic

approach using intertwinings Journal of Theoretical Probability 27(3), 954–

981, (2014)

[15] Hayes, T. P. and Sinclair, A. A general bound for mixing of single-site dy-

namics on graphs. The Annals of Applied Probability 17(3), 931–952, (2007)

[16] Huillet, T. and Martinez, S. On Möbius Duality and Coarse-Graining. Jour-
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