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Abstract. We construct strong stationary dual chains for non-
symmetric random walks on square lattice, for random walks on hyper-
cube and for some Ising models on the circle. The strong stationary dual
chains are all sharp and have the same state space as original chains. We use
Mobius monotonicity of these chains with respect to some natural orderings
of the corresponding state spaces. This method provides an alternative way
to study mixing times for studied models.
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1. INTRODUCTION

Consider an ergodic Markov chain X = (X,,),,>0 on a discrete (finite or count-
able) state space [E with transition matrix P and initial distribution v. One way of
studying the speed of convergence of X to its stationary distribution 7 is to find

(and bound its tail) so-called Strong Stationary Time (SST), i.e. such a stopping

* Work of both authors supported by NCN Research Grant DEC-2011/01/B/ST1/01305
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time 7' (1" implicitly depends on v) that it is independent from X7, and X7 has dis-
tribution 7. SST’s were introduced by Aldous and Diaconis [2, 3], who also gave
examples of SST and their applications. Many examples can also be found in Dia-
conis [4]. First examples of SST’s were created by ad hoc methods. A general ap-
proach was invented by Diaconis and Fill [5] who introduced dual processes. They
showed that for X there always exists so-called Strong Stationary Dual (SSD) ab-
sorbing chain X*, such that its time to absorption 7™ is equal, in distribution, to a
SST T for X. Their proof is an existence type argument which does not show how
to construct a dual chain in general. They showed one tractable case [5, Theorem
4.6], where the state space is linearly ordered. Under the condition of stochastic
monotonicity (related to the linear order) of the corresponding time-reversed chain
(and some assumptions on the initial distribution) they gave a recipe of how to
construct a dual chain on the same state space. A special, and important, case is a
stochastically monotone birth-and-death chain for which the dual chain is an ab-
sorbing birth-and-death chain.

Strong stationary dual chains have a variety of applications. Diaconis and Fill
[6] gave an extension of this theory to countable state spaces. Fill [12] gave a
stochastic proof of a well-known theorem (usually attributed to Keilson), which
states that the first passage time from O to M of a stochastically monotone birth-
and-death process on {0,..., M} is equal, in distribution, to a sum of geometric
random variables related to the spectral values of X. Similar results for continuous
time birth-and-death processes were obtained by Diaconis and Miclo [7]. Diaco-
nis and Saloff-Coste [8] studied cut-off phenomena for birth-and-death chains by
using SSD theory. Different dualities in Markov chains are utilized in a variety of
contexts, see, e.g., Huillet and Martinez [16].

All the mentioned examples above (although very interesting) somehow rely

on Theorem 4.6 of [5] which involves linearly ordered states space. That is why
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most of the known examples are related to birth-and-death chains. The main under-
lying assumption is (classical) stochastic monotonicity of the time-reversed chain.
Although this monotonicity is defined also for partially ordered state spaces, it is
not sufficient for an analogous construction of a SSD chain as in Diaconis and Fill
[5]. Lorek and Szekli [20] gave a recipe of how to construct dual chains on par-
tially ordered state spaces with a special feature that the duals have the same state
space as original chains. The assumption of the classical stochastic monotonicity
was replaced by the assumption of Mobius monotonicity. This extension (to par-
tially ordered state spaces) opens a new way of finding SSD chains defined for
not linearly ordered state spaces. The purpose of this paper is to get a new SSD
insight to some classical examples of finite state Markov chains. In section 2 we
recall needed definitions and facts about Mobius monotone chains. In section 3 we
present strong stationary duals for non-symmetric random walk on a square lattice,
for a random walk on the hypercube, and some Ising models on the circle. For the
latter one we give duals for specific cases, and conjecture the general case.

In section 4 we give proofs of the main results. We believe that the presented
method should be applicable for many other examples and can be used to find
bounds on the speed of convergence to stationarity, and to study cut-off phenom-

€na.

2. MOBIUS MONOTONICITY AND DUALITY

In this section we recall needed results on SSD and Modbius monotone chains.
For a more complete material on duality see Diaconis and Fill [5], and for results

on Mo&bius monotone chains, see Lorek and Szekli [20].

2.1. Strong Stationary Duality. For an ergodic Markov chain X = (X,,)5,>0
with the transition matrix P and initial distribution v, we are interested in bounding

a distance between vP* (a distribution of a chain at step k) and its stationary
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distribution 7. Often used distance is the total variation distance dry (vP*, ) =
max ocg |[VP*(A) — w(A)|. Another useful distance is the separation distance s
defined as follows: s(vP¥, 1) = maxecg (1 — vP¥(e)/n(e)). For random times T
which are SST, Aldous and Diaconis [3] show that drv (vPF, 1) < s(vP*, 1) <
P(T > n).

Let X* be a Markov chain with transition matrix P*, initial distribution v*
and a state space E*, with an absorbing state e’. Let A = A(e*,e),e* €¢ E*,e € E
be a stochastic kernel (called a link), such that A(e}, ) = 7, fore} € E*. X*isa

Strong Stationary Dual (SSD) chain for X if
(2.1) v=v*A and AP =PA.

Diaconis and Fill [5] proved that the absorption time 7™ of X* is a SST for X.
Thus, the problem of finding SST for X translates into the problem of studying the

absorption time of X*.

DEFINITION 2.1. Strong Stationary Dual chain X* is called sharp if s(vP™, 1) =
P(T* > n).

REMARK 2.1. The relation (2.1) implies that for finite E and E*, P and P*

have the same set of eigenvalues.

It turns out, that in some examples we can easily identify the eigenvalues of
P*, and thus, by the above remark, we will also obtain the eigenvalues of P which

are usually not easy to obtain directly.

2.2. Duality for Mobius monotone chains. In this section we recall how to
construct a SSD chain for finite partially ordered state spaces. We shall consider
a finite state space E = {ey,..., ey} with a partial ordering <. From the very
beginning we shall choose an enumeration of E such that e; < e; implies 7 < j

(which is always possible). We call such an enumeration consistent with <. With
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this enumeration the partial ordering can by represented by an upper-triangular,
0-1 valued matrix C. The inversion C~! represents (in the incidence algebra) the
so called Mobius function, usually denoted by p, see Rota [23]. The Mobius func-

tion allows for the following calculus: it is possible to recover f from the relation
F(e) = ore, f(e), namely f(e;) = >" . . ule; e)F(e).

DEFINITION 2.2. Let P be a transition matrix with enumaration of states
consistent with C. We say that P (or alternatively, X) is !-Mobius monotone (
T-Mobius monotone) if C™'PC > 0 ( (CT)~'PC” > 0) (each entry is nonnega-
tive).

We say that f : E — R is |-Mobius monotone (T-Mébius monotone) if f(C7) =1 >

0 (fFC~! > 0). In terms of the transition probabilities, we have

|-M&bius monotonicity:  V(e;, e; € E) Y eiere, 1(eise) P(e, {e;}') >0,

-M&bius monotonicity:  V(e;,e; € E) Ze:e<ej P(e,{e;}1)u(e, e;) >0,
where {e;}! = {e:e < e;},{e;}! ={e:e=e;},andP(e,A) =), P(e,€).

We recall the SSD result of Lorek and Szekli [20] (3_( denotes the time-reversed

process).

THEOREM 2.1 (Lorek and Szekli [20]). Let X be an ergodic Markov chain
on a finite state space E = {ey,..., ey}, which is partially ordered with <, and
has a unique maximal state e,;. For the stationary distribution 7 and an initial

distribution v we assume that

() g(e) = ;23 is |-Mobius monotone,
.. H . .
(i) X is !-Mobius monotone.
Then there exists a Strong Stationary Dual chain X* on E* = E with link being

a truncated stationary distribution A(e;,e;) = I(e; < e;) 17;((2))’ where H (e;) =
J

Yoo <e, 7(e). The initial distribution and transitions of X* are given, respectively,
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by
vi(e;)) = H(e) .g_u(eiae)g(e)v
2.2) P*(e; ej) = ZEZ)) g .M(ej,e)i—’(e,{ez-}l)-

REMARK 2.2. Following Remark 2.39 of Diaconis and Fill [5] and the termi-
nology used there, the Strong Stationary Dual X* in Theorem 2.1 is sharp, and the
corresponding strong stationary time is the time to stationarity, i.e., s(vP", 1) =

P(T > n). The reason for this is that A(e*,eys) = 0 for all, e* # ej; € E*.

REMARK 2.3. Theorem 2.1 is stated for }-Mabius monotonicity, but it can be
similarly stated for T-Mobius monotonicity (see Corollary 3.1 in [20]). The other
formulation is potentially useful, because a chain can be, e.g., *-Mdbius monotone

but not T-Mobius monotone.

REMARK 2.4. The assumption on the initial distribution is not very restrictive,
for example if e; is a unique minimal state and v = Je, (+), then the assumption is
fulfilled, and also v* = Je, (+). For simplicity of presentation, in all subsequent
examples the initial distribution will be the single atom at the minimal element

(this assumption may be relaxed).

In order to find and use the above constructed SSD chains one has to find an
approperiate ordering (w.r.t which the chain is M6bius monotone). It is worth men-
tioning, that for linearly ordered state space '-Mobius monotonicity is equivalent
to the usual stochastic monotonicity, in general partially ordered spaces this is not
the case. It turns out that for partially ordered spaces some natural orderings work.
A non-symmetric random walk on the unit cube is an example presented in [20].

In the next section we shall give new examples.
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3. MOBIUS MONOTONE MARKOV CHAINS: EXAMPLES

3.1. Random walk on weighted directed graph. Consider a random walk on
a directed weighted graph G = (V, E) with vertices V = {v;, v2,...,v,}, edges
E = {(i,j) : edge from v; to v;} and with a weighting function w : E — [0, 00).
Denote by w; ; the nonnegative weight of the directed edge from node v; to v;. If
there is no edge between these nodes, i.e., (4, j) ¢ £, then w; ; = 0. We allow w; ;
be nonzero.

Let N (i) = {j : (i,j) € E} be a set of neighbours of node v;. Random walk
may be viewed as a process of sequential vertex visiting. We assume that weights
are normalized, i.e., for all i € {1,...,n} we have w;; + Zre/\/(i) w;, = 1. The

probability of a single step from node i to j is then given by P(i,j) = w; ;.

In this section we consider the following example: Let V' = {0,1,..., N }2
with edges
(3.1 (z1,91), (v2,2)) € B <= [v1 — 22| + |1 — 12| = 1
for x1,x2,y1,y2 € {0, ..., N}. Thus, for each node there are at most four edges in

four directions: up, down, left, right plus a possible self-loop. The weighting func-
tion depends only on the direction in the following way: for ((x1,y1), (x2,y2)) €
F and nonnegative parameters A1, Ao, f41, o such that Ay + Ao + g + po < 1
3.2)

>\1 lf $22x1+17y2:y17
a if @y =21 —1,y2 =y,
W((z1,1),(z2,92)) = A2 if xo=2x1,y2 =y +1,
2 if wo=mx,2 =111,
1- > W((@1,y1),(,y)) it zo=x1,y2 = y1.
(z,y)EN ((z1,51))
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We associate weights directly with one step probabilities:

P((w1,91), (T2,92)) = W((21 1), (@2,y2))-

Roughly speaking, we consider a random walk on square lattice {0, ..., N}?

, at
each step we can move (if feasible): right with probability A1, left with probability
11, up with probability A2 and down with probability po. With remnant probability
we stay at a given vertex. For convenience, we let p; := A1 /p1, and pa := Ao/ 0.
Denote the transition matrix of a corresponding Markov chain X by P. The chain

—
is time-reversible (i.e. P = P) and has (time-reversibility equations can be easily

checked) the stationary distribution on V'

m((z,y)) = C~'pip}

for (x,y) € V = {0, ..., N}?, where the normalizing constant C' for p; # 1 and
p2 # 1is given by
o 1_piv+1 . 1_p§\7+1

1—pm 1—p2
and C for other cases can be obtained by obvious modifications.

We shall use the coordinate-wise partial ordering (x1,y1) = (22,y2) <
x1 < 22 and y; < y2. Then we have unique minimal element e; = (0, 0) and the
maximal one ey; = (N, N), where M = (N + 1)2. It turns out that X is Mbius
monotone for any set of parameters Ay, 1, A2, g > 0, such that Ay + Ao + pu1 +

w2 < 1, and applying Theorem 2.1 we have:

THEOREM 3.1. Let X be a random walk on directed weighted graph with
G = (V,E), with V = {0,...,N}2, and E given in (3.1), weights given in (3.2)
and with positive parameters A1 # 1, As 7# e, such that Ay + Ao 4+ 1 + o < 1.
Assume, that X starts at e; = (0, 0). Then there exists sharp SSD chain X* which
is an absorbing Markov chain (with ep; = (N, V) being the single absorbing state)

on the state space E* = E = {0, ..., N}, starting at e; = (0, 0), with the follow-
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ing transition probabilities (for z,z’,y,y" € {0,...,N})
3.3)
P*((‘Ta y)? (SC/, yl)) =

1—p{*2 e /
1o fa'=o+1, 9y =y

1-py*? et /
1_p;2;+1'H2 lfy:y‘f'luﬂf:ﬂ?

1—pY .
1—p§31‘k2 fa' =2,y =y—1y#N

I R,
-1

1_()‘1+)‘2+/1L1+M2) if.fC/:m"yI:y’ (.’L',y)E{O,...,N—l}Q

1— (A2 + p2) ife'=2=N,y =y, ye{0,...,N—1}
1— (A4 m) ife! =2,y =y=N,2€{0,...,N—1}
1 ife!=x=y=y=N

Thus, the SSD chain X* is again a chain on E, with feasible moves in the
same directions as X except for movements on the upper borders of this square
lattice. Once the chain hits the border (-, N) (or (IV, -)), then it can only move left
or right (up or down) until it hits the absorbing state (N, V). Note that probability
of changing i-th coordinate, i = 1,2, is independent of the value of (3 — i)-th
coordinate. The chain X*, for a suitable selection of the parameters, can have a
drift towards the absorbing state. Note that the case p; = 1, and/or po = 1 can be
obtained by obvious modifications in computing H (x,y) (see the proof in section
4.1).

One can study the time to absorption 7™ in the following way: it is the time
of hitting a border (-, N) or (N,-) plus the time for the one dimensional birth-
and-death chain with birth probability \; and death probability y; (or A2 and po

respectively) to reach the state IV (worst cases scenarios can be used).



10 P. Lorek and R. Szekli

3.2. Random change of single coordinate on a cube. Let us consider a dis-
crete time Markov chain X with state space E = {0, ..., k}", which evolves in
the following way: it stays with probability 1/2 or (with probability 1/2) for

one coordinate chosen uniformly, it changes uniformly its value to any other dif-

ferent value. In terms of the transition probabilities, for e = (e(1),...,e(n)) €
E, e(i) € {0,...,k}, we set
3.4)
% ife=¢€
P(e,e) = 5 if forsome i e(i) # €/(i) and e(j) = €'(j), j # i

0 otherwise

Since P is symmetric, the corresponding stationary distribution is uniform,
ie.,
1

m(e) = Gy eckE.

The motivation for this example comes from DNA sequence alignment. Given n
sequences of length £ + 1 the task is to find points of references in each one such
that, starting reading sequence i from it’s reference point (i) we have the biggest
agreement in all sequences. Since the state space is huge (of size (k + 1)™), often
Monte Carlo methods are used. One constructs a chain such that its stationary
distribution assigns higher mass to states with high agreements. The chain given in
(3.4) is a simplified version of such a chain.

The chain X can be seen as an extension of the standard lazy random walk
on the unit cube (obtained for £ = 1). Using the coordinate-wise ordering < on
E, it turns out that X (which is reversible) is Mobius monotone. For this ordering,
the state e; = (0, ..., 0) is the minimal state and e); = (k, ..., k) is the maximal
state (with M = (k + 1)™), where we use an enumeration of [E consistent with <.

Applying Theorem 2.1 we obtain.
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THEOREM 3.2. Consider the chain X described above, on state space E =
{0, ..., k}", with transition probabilities given in (3.4). Assume that X starts at
e1. Then, there exists sharp SSD chain X* on the state space E* = [E, with the
state e); being the absorbing one, starting with probability 1 at e;, and having

transition probabilities, forall A C {1,...,n},j ¢ A

er (0 (k) (k+1)
P* (e} ’eAU{j}) onk
n(k—1)+ |A|(k+ 1)

wr (k) (k
P (efél),e;)) = ok ;

where e(:) = (e(1),...,e(n)) withe(i) = kifi € Aande(i) =0ifi ¢ A, and

all other transitions have probability 0.

Note that SSD chain X* jumps, with probability 1, only to greater or equal
states in the ordering =, thus its eigenvalues are the entries on the diagonal of the
matrix P* written using an enumeration of the states consistent with this ordering.
The states which can be traversed by X* are of the form eff), which means that X*
can be identified with a random walk on the unit cube {0, k}". Again, by Remark

2.1, the eigenvalues of P are the same as diagonal entries of P*, i.e.,

n(k—1)+i(k+1)
2nk ’

1=0,1,...,n.

Similarly as in the Ising model example, we can consider the time to absorption
of one dimensional projection Z; := S(X[), where S(e) = > | 1{e(i) = k}.
If Z5 = 0, then the time to absorption 7™ of Z; is the same as for X/, and is
distributed as the sum of independent variables Z Yl, where Y; has geometric
=l 2)755“)

distribution with the success parameter p; . For the expected absorp-

tion time we have

n—1 n—1 n

1 2nk 2nk 1 2k

— = - (n+1)logn
Zzopz %n—zk—i—l k—i—llzzlz +1 )log

For the variance of T we have

=l —p 2nk "“Ink—n4ki+i
VarT* = ) = ,
Fari S (k+1)* .5 (n —1i)?
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2nk ol ol "1 ) ( 2nk )2 2
(k+1)2 i:z‘;(n—z)2 Z.:Zo(n—z)2 Z:z:lz] k+1) 6
where in *) we used the following ineqalities
n—1 1 7T2 n—1 i 7T2
— 5 S — <n—.
L2 S Zm—i? <"
By Remark 2.2 and from Chebyshev’s inequality, we have that after m = kQ—fl (n+

1)logn + c%%n, ¢ > 0 steps we have

1
swP™,m)=P(T>m) < P(I'-ET <cvVar) < P(|IT - ET|<cvVar) < —.

C

3.3. Ising model on a circle. Let G = (V, E) be a finite graph. Elements of
state space E = {—1,1}" are called configurations, and for e € E the value e(v)
is called the spin at vertex v. For a given configuration e its energy is defined as

He) =—- > e(@) e(y),
{zyer
where the sum is over all edges of the graph. For 8 > 0, the Ising model on the
graph GG with parameter /3 is the probability measure on [E given by

(3.5) m(e) = 7

where Zg = ) cE e~BM(e) is a normalizing constant. The parameter /3 has a phys-
ical interpretation as the inverse of the temperature of the configuration. Note, that
for 5 = 0 (equivalent to infinite temperature), every spin configuration is equally
likely, i.e., it is the same as setting spin at each vertex to -1 or +1 with probability
1/2 independently. In general, 3 represents the influence of energy H on 7.

This model has focused a lot of attention in the context of speed of conver-
gence to equilibrium of particle systems. Propp and Wilson [22] introduced Cou-
pling From The Past algorithm and used it to show how to draw exact sample

from (3.5) in the case of square lattice. Recently Ding and Peres [10] showed that
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for Ising models on each graph it takes at least (1/4 + o(1))n logn steps for the
Glauber dynamics to mix, where n is the corresponding number of vertices. In
Ding and Peres [11] a simple proof for the bound n log n/2 was presented.

We shall consider the Ising model on a circle. We will present the dual chain
for a case of 2 and 3 vertices and a conjecture on a general number of vertices. We

setV ={0,...,N—1}and E = {(i,(i+1) mod N):¢=0,...,N —1}.The

stationary distribution (3.5) in this case can be rewritten as 7w(e) = Z exp (5 ZZ —0 e

where we always mean vertex number modulo N. The following is a classical
Gibbs sampler for this model, a Markov chain with stationary distribution (3.5):

« Given a configuration e at step n, i.e., X;, = e, choose a vertex v € V' with
probability 1/N.

« Take U,,41, a random variable with the uniform distribution U (0, 1), inde-
pendent of U;, ¢ < n. Update the spin at vertex v in the following way

e (28U (v.e)—k_(v,€)
+ 1 n+1 <
X (i) = TS 2Bk o) () 4 17

—1 otherwise,

where k. (v, e) is the number of neighbours of vertex v, in configuration e, with
spin values +1, and k_ (v, €) is the number of neighbours of vertex v, in configura-
tion e, with spin values -1.

The chain X constructed in this way is reversible. Moreover, X can be viewed as a
random walk on N —dimensional cube, where the probability of changing coordi-
nate (corresponding to some vertex v) depends on the values of the neighbouring
(w.r.t. underlying graph G) coordinates.

It turns out that if we consider the coordinate-wise ordering, i.e., e < € if
e(v) < € (v) for every vertex v € V. Let M := 2IV| = 2N Denote by e; the state
with all spins equal to —1 (minimal state), and by ej; the state with all spins
equal to +1 (maximal state). We identify E = {—1, l}V with the enumerated set

{e1,..., e}, where the enumeration is consistent with <. For specific cases N =

z—i—l))
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2 and N = 3 we can directly calculate the dual chain in matrix form from equation

(2.1) with link given in Theorem 2.1, namely
P* = APA™".
If the resulting P* is not a stochastic matrix, then it means that X is not ‘-Mobius

monotone (which will not be the case).

3.3.1. 2 vertices case. Letus order the states in the following way: e; = (—1, —1),
ey = (+1,—1), e3 = (—1,+1), s = (+1,+1). Using this enumeration matrices

P and C are as follows:

1 1 e 28 1 e 28 0
e—2641 2e=2841 22841
1111
11 1 1_e¥
2e 2641 €211 2 e2F 11 01 0 1
P = ,C =
11 0 1 1 €28 0011
2e2841 e2b 41 2 e2641
00 01
0 11 11 e2h
2 e2641 2 e26+1 e2B+1

From Theorem 2.1 we obtain the following dual chain:

1 1
0 35 5 0
o 1 1e26-1 1
p* 2 22841 e2641
0 1e26-1 1 1
2e2P4+1 2 e2f+1
0 0 0 1

The chain started at (—1, —1) goes with equal probability in first step to (+1, —1)

or (—1,41). Then it either is absorbed in next step with probability ﬁ or not,

. . 26_ 28 . S
with remnant probability % + %226 +} = 35 - Time to absorption in this case

is of the following form: 7™ = Xy + X3, Xo ~ Geo(1) (i.e., Xo = 1), X1 ~

_1 )
Geo <e2ﬁ+1) ,1.e.,
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In particular, ET* = 2 + %7 and after k = 1 + m In(e) steps we have

5(0e,P*, ) = P(T* > k) = e.

We can depict the chain and its dual on a graph:
25
2P 41 1

D=

1
e2B 41

S
e—2641

original chain P dual chain P*

3.3.2. 3 vertices case. Consider a simple case of 3 vertices all being each
other’s neighbour, say labeled v, v2,v3. Let us enumerate the states in the fol-
lowing way: e; = (—1,—1,—1), ea = (+1,—1,-1), e3 = (—1,+1,—1), e4 =
(=1,-1,+1),e5 = (+1,4+1,-1),e6 = (+1,—1,+1),e7 = (=1, +1,+1),es =

et —4p

1 . —_ ﬁ —
(+1,+1,+1). To shorten notation, denote: p = —~—3 and g = 1_‘;7_4[3.

17 The tran-
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sition matrix is following:

l—q g 1q 1q 0 0 0 0
5730 5+30 0 0 o s 0 0
O T T T S
S I T VAU I R R I S
0 s 5 0 5—3p 0 0 3P
0 L 0 i 0 2-1p o0 3P
0 0 G § 0 0 i-3p 3P
L I B O
The stationary distribution in this case is following:
m((-1,-1,-1)) = =w((+1,+1,41)) =+
w(e) = 2 fored {(—1,—1,-1),(+1,+1,+1)},

where Z is a normalizing constant equal to 2 + 6e~*5. In this case, function H is

as follows:

H((+1,=1,-1)) = H((=1,+1,-1)) = H((=1,=1,+1)) = 35 =5

— — _ 1
1
H((_l? _17 _1)) = mv H((+17 +17 +1)) =1
We obtain the following dual chain:
0 % 3 3 0 0 0 0
1 11—e % 11-e"%  1143e % 1143 %8
0 3 G14c G611e™ 6 1te ™ G ite# U 0
o 1 1—e % 1 11—e”% 114374 0 1143e~4# 0
6 1+e—48 3 6 14+e—48 6 1+e—48 6 1+e—48
o 1 1—e=* 11— 1 0 11+43e % 1143e7%° 0
P* _ 6 14+e—48 6 14+e—48 3 6 14+e—48 6 1+e—48
11— 48 11—e"48 2
0 0 0 0 3 6 1+e—28 6 1+e—48 3(1+e158)
11—e"% 2 11—e"%% 2
0 0 0 0 6 1+e—48 3 6 1+e—48 3(1+¢4P)
11—e"48 11— 48 2 2
00 0 0 6 1+e—48 6 1+e—48 3 3(1+e4P)
0 0 0 0 0 0 0 1
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Note that, when the chain is on level 1, i.e. in states (+1, —1,—1), (=1, +1,—1) or

2 14+3e~48
6 14+e—46

(=1, —1,+1) then it either gets to some state on level 2 with probability
or stays somewhere on level 1 with remnant probability. Similarly, when dual is on

level 2 it can get to absorbing state (41, +1, +1) wit probability 31 2

m or Stays

at the level with remnant probability. Thus, time to absorption is of form:

T =Xo+ X4 + X5, where

1 —4p 2
XO ~ Geo(l)aXl ~ GGO <3_‘_36)> 7X2 ~ G€0 (3(> .

The dual for this case can be depicted as follows:

1

-
wl

wherea = $(1—e %) /(14 e ), b= (1+3e %) /(1+e ) andc = 2/(3+

3e*P). Self-loops (strictly positive at each vertex except (-1,-1,-1)) are not depicted.
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3.3.3. General N vertices case. Here we will present conjecture for case of any
number of vertices V. First, we conjecture that the chain for this Ising model is
always '-M&bius monotone for arbitrary graph G’ with respect to coordinate-wise
ordering. Second, for G being a circle (what is under consideration throughout a
section), the structure of a dual is “nice” in a sense we are about to describe. The
details for this case will appear in a subsequent paper.

Recall, we consider G = (V, E'),where V = {0,...,N —1}and F = {(4, (i +
1) mod N):i=0,..., N — 1}. We identify a vertex v with a number v and keep
general-graph notation. For example (v, w) € E actually means, that w = v £ 1.
For notational convenience, let e,,.,,, denotes a configuration e with swapped spins
at v and w. Recall also, that within coordinate-wise ordering, the state with all spins
equal to -1 (denoted by e;) is a minimal state, and state with all spins equal to +1

(denoted by ej;, where M = 2N is a maximal state.

CONJECTURE 1. Consider the Gibbs sampler X for the Ising model on ar-
bitrary graph G = (V| E). Assume that X starts with the configuration e;. Then,
there exists sharp SSD chain X* = (X}'),>0 on the state space E* = E, with the

state e); being the absorbing one, starting with probability 1 at e;, and having

transition probabilities for e, e’ € {e1,...,ex}
(3.6)
P*(e,e) =
0 if e-¢€
+S(e) if e=¢€
H(e') 1 eQﬂ(kq,(v,e)—k,(u,e)) . /I _
H(e) N (1 T (O O e CX ) if ¢ =e+s,, e(v)=-1
H(ew—»w) 1 e2[1‘(k+(v,e)7k:,(v,e)+2) eZB(kJr(v,e)fk,(v,e))
H(e) N \ 2P0 e F_(we¥2 ] 2Bl —F (00 ]
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where s, = (0,...,0,2,0,...,0) (2 on the coordinate corresponding to vertex v),
S(e) =2 ey He(v) = 1} (called a level), and H(e) = ), 7(e).

The conjectured dual chain, being at some state e; (thus on level S(e;))

« can stay at the same state

« cannot go to any state with lower level

« can go to higher levels only to states of form e + s; (i.e., only one lever
higher, to a comparable state)

« can move “across” the level only by swapping spins at some vertices v and
w which are neigbours, i.e. (v,w) € E
The special cases N = 2 and N = 3 were particularly “nice”. For N = 2 the tran-
sitions from e to €' = e, ., are all zero. For N = 3 the transitions to another state
on the same level or to higher level, do not depend on particular state, but only on
the current level. This is mainly due to fact that “neigbours of v” actually means
“all other vertices of v”. That is implied, that time to absorption in these case was
distributed as sum of geometric random variables. For N > 4, the probabilities

depend on a particular state. However, the dual has a nice block-matrix form
Pio Pg1 O e 0
P;, P;, 0 .. 0

0
0 . 0o ... 0
P=| 0 .. P:, Pi, O 0 ,
0 .
0
0

0 0

P7v71,N71 P*Nfl,N
0 1

where P*(7,7) is a square matrix corresponding to all states with level i of size

(];/) X (]j) and P*(i,7 + 1) is a matrix of size (]2[) X (lfl) 1=0,...,N—1.
REMARK 3.1. The time to absorption for such block-matrices can be further

studied again via some dualities. Roughly speaking, for given absorbing chain P*

there is a method for finding another “dual” absorbing chain P which has the

same time to absorption. The method is due to Fill and Lyzinski [14].
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3.4. Further examples and developements.

3.4.1. Simple symmetric random walk on a circle. Let Z, be the set of integers
modulo d, regarded as d labelled 1,2, . . ., d points arranged anti-clockwise around
a circle with 1 at the bottom, say. Suppose we start at 1, that is » = §; and with
probability 1/3 random walk X moves one step in either direction along the circle
or remains. The stationary distribution for this Markov chain is the uniform dis-
tribution 7, on [E = Z,. Diaconis and Fill [5] showed for d = 2%, a SST T, such

that

dry (vP™, ) < P(T > n) < %dQ/n,

and pointed out some extensions of this model. The point of this example was
that a SST was found by identifying sets of states increasing in size and times at
which the process is uniform on each set. This transformed the original problem
of studying convergence to stationarity into a different problem of analysing first
passage times. It might be interesting to know that there is an alternative way of
finding a SSD chain for this walk using Mobius monotonicity. It is possible if we
order linearly the state space by a zig-zag ordering on the circle. For example, for
d = 23, the orderingis 1 < 2 < 8 < 3 < 7 < 4 < 6 < 5, with 5 being the maximal
state,or,ford:24,theorderingisl <2<16<3<1b<d4<l4<ib<13<
6 <12 <7<11 <8< 10<9, with 9 being the maximal state. It turns out that
with this ordering X is Mobius monotone. The corresponding dual is a Markov
chain with 1 step transitions only on one side of the circle, that is for example
in the case d = 16 moving as birth- death chain on 1, 16, 15,14,13,12,11, 10, 9,
with the maximal state 9 being the absorbing state. That means that the original
problem of studying convergence to stationarity for a symmetric random walk on a
circle can be transformed into a different problem of analysing passage time for a
birth and death process on linearly ordered segment from the minimal to maximal

state, which is more standard one. M6bius monotonicity here is a delicate property,
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because changing the probability of remaining in a state from 1/3 to a smaller value
destroys this monotonicity, however changing the probability to remain from 1/3
to a bigger value does not influence the property of Mdbius monotonicity. Also

making the walk not symmetric destroys this kind of monotonicity.

4. PROOFS

4.1. Proof of Theorem 3.1. We start with a detailed expression for the transi-

tion probabilities of X

A1 ife' =2+1< N,y =y
A2 ife! =2,y =y+1<N
M1 ife'=2-1>20,y =y
12 ify =y—1>0,2" =2

I1—(M+X+u+p) fd'=2>0y=y>0

11—\ + X+ ) ife' =2>0,y =y=0
P((z,y), (z",y)) = ¢ 1=\ + X2+ p2) if e/ =2 =09/ =y>0
1 — (p1 + p2) fa'=r=y=y =N
1 — (p1 + p2 + A1) fa'=2>0,y=y=N
L= (1 + p2 + A2) fa'=2=N,y'=y>0
1— (A +X2) ifa'=x=y=9y'=0
1— (A1 + pe2) ifr'=x=N,y=9y' =0
1— (Ao + 1) ife' =x=0y=y =N

In a standard way we can check that X is reversible and the stationary distribution

is given by

m((z,y)) = C~ ' pip}
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where C'is the normalizing constant, and p; = A\;/p;, @ = 1, 2. For the coordinate-
wise ordering

(z,y) 2 (2',y) <= z<2"andy <y,

with the minimal state e; = (0,0), and the maximal state ey = (N, N), (M =

(N + 1)?) directly from Proposition 5 in [23], we find the corresponding Mébius

function:
.
1 if 2=z, ¢y =y
-1 if 2’=z+1,¢y =y
H((ﬂfay),(fﬂlay/)) = —1 if .’Blzx7 y/:y+1
1 if 2’=z+1,¢y=y+1
0 otherwise
For

H(zy)=C 'Y pf' S pf =C 1 —p1) (1= pa) ™" (1= piH) (1= p4T™h),

'z yY'<y
we shall compute
(4.1)

P (2. ), (02, 30) = L1C2:82)

H(z,y) p((xa,y2), (2, y’))?((xQ v, {(z, y)}l).

(&' y") = (2,y2)
Set
S= Y pllea), @ y)NP Y)Y

(2" )z (w2,y2)
o
Note that in order to prove that X is ‘-Mobius monotone it is enough to show that
—
S > 0. Since X is reversible, we take P instead of P in the above formula. We

shall consider all possible transitions, case by case.

« (inside lattice, up x direction)

ro=x+1, yp=1y9
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S = p((z +1,y), (@, )P, ), {(z,9)})
(a’,y")=(z+1,y)

where 1 will be non-zero only in the following cases
p(x+Ly),(z+1y) =1 p(z+1ly) (z+1Ly+1))=-1,

M(($+ 17y)7 (IL‘+ 27y)) - _17 :U’((x + 17y)7 (m + 27y+ 1)) =1

Combining these cases with the values of P((z/,7/), {(z,y)}") we get
S = ul(+1,9), (2 + L) P + 1), {(@p)}) —1-0—1-04+1-0 = pu,

« (inside lattice, up y direction)
Ty =, y2=y+1

in a similar way as ubove, we get
S = ,u((x,y—i—1),(ac,y—|—1))P((ac,y+1),{(x,y)}l) —1:0-1-0+1-0= pa,

« (inside lattice, down x direction)
rp=x—-120,1p=y

using the formula for .S we have

S = ullz—1y),(@-1,9))P(z - Ly) {(z,9)})
+u((z = 1,y), (z,9)P((z,9), {(z,9)}")
+ul(z—1y),(z - Ly +1)P((z - Ly+1),{(z,9)}})
+u((x = 1,y), (z,y + D)P((z,y + 1), {(z,9)}})

= 1-(1=X)—1-(1=Xa— A1) —1-pa+1-p2=2MA,
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« (inside lattice, down y direction)

To=ax,Yyp=y—120

S = p((z,y—1),(x,y - 1))P((z,y — 1), {(z,9)}})
+ (2, y = 1), (2, 9))P((,9), {(z,9)})
+p((z,y = 1), (@ + 1,y = 1)P((z + 1,y — 1), {(z,9)})
+ (@ y = 1), (@ + 1L,y)P((z + 1,y), {(z,»)})

= 1-(1=X)—=1-(1=Xg= A1) —1-pg +1-p; =Ny,

« (inside lattice, down on both axes)

reo=2—120,92=y—-12>0

S = pllz-1y-1),(z-1,y-1)P((z -1,y —1),{(z,9)}")
+u((z =1,y = 1), (x = Ly)P((z - Ly), {(z,9)})
+p((z =1y = 1), (z,y = D)P((z,y — 1), {(z,y)}})
+u((z =1,y = 1), (2,9)P((z,9), {(z,9)}')

= 1 1-1-(1=X)—(1—=A)+1— (A1 +X)=0.

In a similar way it is possible to check that inside the lattice the only one remaining
movement with positive probability is the feedback movement

« (feedback inside lattice) xo =2 > 0, yo =y > 0
P*((x7y)’ (x7y)) =l-M—A——p2= P((Ivy)’ ($,y)),

« (upper border, up x direction)

rp=2+1< N, ypp=y=N

S = M((ZL‘—I- 17N)a (.7,' + 1,N))P((l‘ + 17N)7 {(:L’,N)}i) = M1,
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« (upper border, down y direction)
z9=2<N,y=N,ya=N—1
S = p((x,N—=1),(z,N=1)P((z, N — 1), {(z, N)}})
+p((z, N = 1), (z, N))P((z,y), {(z, N)}})
+u((z, N =1),(z+1,N =1)P((z +1,N = 1), {(z, N)}})
+ p((x, N = 1), (z+ 1, N))P((x + 1, N), {(x, N)}})
= 1-(1=A)—1-(1=A)—1-p+1-py =0,
« (upper-right corner, down y direction)

ro=x=N,y=N,yo =N —1

S = U((NaN—1)7(N7N_1)>P((N7N_1)7{(N’N)}l)

+M((N7N_ 1)’(NaN))P((N7N)7{(NaN)}l) =1-1=0
« (upper border, down x direction)

N—-1>z9=2—-1201p=y=N

S = M((w - 17N)7 (.%' - 1,N))P((:L‘ - 17N)a {(:EvN)}l)

« (lower border, up x direction)

N—-1>z=2+1<N,y2=y=0
S = p((z+1,0), (z + 1,0)P((z + 1,0), {(z,0)}) = p1,

e (lower border, down x direction)

ro=x—120,y0=9y=0



26 P. Lorek and R. Szekli

S = ul(z—1,0),(z ~1,0))P((z - 1,0), {(z,0)}})
+ p((z = 1,0), (2, 0))P((x,0), {(2,0)}})
+p((z = 1,0), (2 = 1,1))P((z - 1,1), {(z,0)}})
+p((z = 1,0), (2, 1))P((z, 1), {(2,0)}})
= 1-(1=Xg)—1-(1—=A1—Ag) — L1 pig+ iy = Ay,
« (lower border, up y direction)

$2:$>0a3/2:1vy:0

In a similar way we get

« (right border, up y direction)
ro=x=N,yo=y+1<N, S=pus,

« (right border, down y direction)
To=x=N,N—-1>y=9y—120, S= X,

« (right border, down z direction)
ro=N—-1lx=N,ypp=y, S=0,

« (left border, up y direction)
ro=2=0,y2=y+1<N, §=p,

« (left border, up x direction)
x=0,20=1,0=vy, S =1,

« (left border, down y direction)
To=x=0N—-1>y=y—120, S= X,

« (absorbing state)

ro=x=N,yo=y=N, S=1.



Examples of Mobius monotone Markov chains 27

« (feedback movements)
forall (z,y) € {0,..., N —1}2, S=1— (A + Ao+ p1 + p2),
forx = N,andy € {0,...,N — 1}, S=1— (A2 + u2),
fory = N,andz € {0,...,N —1}, S=1— (A + p1).

Now using (4.1), and using values of H (z,y) we obtain P* given in (3.3).

4.2. Proof of Theorem 3.2. Consider the coordinate-wise ordering
e=(e(l),...,e(n)) < (e(1),...,€(n)) =€ iffe(i) < &(i),i=1,...,n.

Again, for this ordering with minimal element e; = (0, ...,0) and maximal
element ey = (k, ..., k) (with M = (k + 1)") , directly from Proposition 5 in

Rota [23], we find the corresponding Mobius function

(—1)i§1di d; € {0, 1}, e(z) +d; <k,
p((e(l),...,e(n)),(e(l)+di,...,e(n)+d,)) = i=1,...,n
0 otherwise.

For H(e) = > . m(e') = |[{e' : & < e} -1/(k+1)", we shall compute di-
rectly transitions of the dual chain (2.2) from Theorem 2.1. Note, that in order to
prove that X is '-Mobius monotone, it is enough to show that all summands in
(2.2) are non-negative. We take P instead of P since this chain is reversible.

For convenience, we shall consider states of the following form
k k k
eV = P),....eYn), Ac{l,...,n},

with e(:) (i) = k if i € A and 0 otherwise. Note, that there are (k + 1)!4! states
(k)

smaller or equal (w.r.t. <) to e, and we have

(k) :
w) H(ey/ i) _ (k4 Al Elfori ¢ A
H(el) (k+ 1)k
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(k)

Let us calculate transitions of the dual chain from state e,”. We shall use s; =
(0,...,0,1,0,...,0) with 1 at position ¢. For the probability of staying at this
state we get

P, ef) =1 3 e, e)Ple,{e}))

e>e£§>

k k k k
— (e, e PEW, {1 + 3 uEel?, e® +5)Pe) + 55, {1
1€AC

Zi_l kIA]  n—[A] _ n(k—1) 4+ |A|(k+1)
ek 20 2k 2nk 2nk ’

+> k-
( €A 2n k

since P(ef4) —i-Sz,{e }i) (eA) "'Szve%))'

(

Now, for the probability of transition from e A) to e

j ¢ A we obtain

AU{j}’
HeW )
k) (k AU} k k
P ey, (AL)J{J}) H(e(:)]) > u(e(A&{j},@P(e, {e'1h).
ere

Au{j}

The only state e for which P (e, {ef)}l) >0ise = e(:&{j}, thus (using (4.2)) we

have

E+1

(k) (k) (k) (k) (k) eFly —
Prey’ exlpy) = (k+ Duleyy ean)Pleayyy lea ) = 5 -
This completes our argument since all other transitions have probability 0, which

is clear from the following summation

n(k—1)+ |A|(k+ 1) B k+1
2nk +(n =14 2nk

Py e))+ 3 P eA)7eE4kL)J{J}) -
JEA®

(k=D a1+ AR+ D) ~ AR +D)
2nk ’

(k)

Note that the dual chain starts at the minimal state which is also of the form e ,”,

namely with A = ().
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