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Wprowadzenie

Wiele współczesnych technologii opiera się na randomizacji. W informatyce losowość pojawia
się na każdym kroku i często nie zdajemy sprawy jak bardzo jesteśmy od niej uzależnieni. Pro-
gramiści korzystają z niej na co dzień, często zupełnie nieświadomie, na przykład używając
bibliotecznych implementacji algorytmu quicksort lub tablic haszujących. Randomizacja jest
niezbędnym elementem w wielu innych specjalistycznych dziedzinach. Przykładowo w finansach
ważną rolę odgrywają metody Monte Carlo polegające na wielokrotnej symulacji rozwoju ryn-
ku. Metody optymalizacji oparte o metaheurystyki lub algorytmy ewolucyjne nie miałyby bez
losowości racji bytu.

W podanych powyżej przykładach drobne wady generatora liczb pseudolosowych (GLP), na
których oparte są wspomniane metody, mogą obniżyć efektywność działania lub dokładność wy-
ników, ale nie rujnują algorytmów całkowicie. Są jednak dziedziny, w których jakość generatora
ma zasadnicze znaczenie. Dobrym przykładem jest kryptografia. Zauważalne odstępstwa od lo-
sowości mogą istotnie zwiększyć szanse złamania protokołu kryptograficznego, odkrycia klucza
prywatnego, itp. Wynika stąd potrzeba zidentyfikowania tych GLP, na których można polegać.

Początki analizy generatorów sięgają lat pięćdziesiątych. Już wtedy John von Neumann za-
uważył, że trudniej jest testować ciągi pseudolosowych liczb niż je produkować. Od tego czasu
badacze nieustannie udoskonalają narzędzia służące testowaniu GLP. To zagadnienie poruszał
już Donald Knuth w swoim dziele Sztuka programowania. Zaproponował on kilka testów sta-
tystycznych traktujących liczby otrzymane z GLP jak zmienne losowe. Przy założeniu ich jed-
nostajności i niezależności, pewne funkcje tych zmiennych powinny mieć znane rozkłady, co
sprawdzamy np. testem chi-kwadrat. To podejście było następnie dalej rozwijane – znane paczki
testów opracowali George Marsaglia (w 1995), Pierre L’Ecuyer i Richard Simard (w 2007), a
obecnie ważną rolę odgrywa zestaw rozwijany przez amerykańską agencję National Institute of
Standards and Technology.

W niniejszej pracy przedstawiamy nowe metody testowania GLP: test arcusa sinusa i test ite-
rowanego logarytmu. Wymagają one traktowania wyjścia generatora jako strumienia binarnych
danych. Rozstrzygnięcie czy dany GLP jest wystarczająco solidny sprowadza się do odpowiedzi
na pytanie czy sekwencja otrzymana z GLP jest nieodróżnialna od ciągu prawdziwie losowe-
go. Interpretując wygenerowane bity jako +1 oraz -1, możemy łatwo zobaczyć, że wyjście GLP
odpowiada realizacji błądzenia przypadkowego. Ten proces stochastyczny jest dobrze zbadany i
opisany w literaturze, stąd znamy wiele jego własności. Testowanie GLP polega na sprawdzeniu
czy jego wyjście również je posiada.

Opracowana metoda silnie polega na teoretycznych własnościach błądzenia przypadkowego,
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dlatego w części 1 przedstawiamy niezbędne matematyczne podstawy. Przypominamy definicję
błądzenia losowego oraz przytaczamy dwa kluczowe twierdzenia. Pierwsze z nich, prawo iterowa-
nego logarytmu, oszacowuje wielkość odchyleń od zera jakich należy spodziewać się obserwując
proces błądzenia. Drugie, prawo arcusa sinusa, mówi, że jest bardziej prawdopodobne, iż błą-
dzenie przypadkowe zdecydowaną większość czasu spędzi nad osią OX, niż że rozkład czasu
spędzony po obu stronach osi będzie w miarę równy.

Część 2 poświęcona jest przybliżeniu obiektu naszego zainteresowania. Precyzujemy pojęcie
generatora liczb pseudolosowych. Przedstawiamy kilka rodzajów GLP, np. generatory wykorzy-
stujące kongruencje liniowe. GLP zwracają nam pseudolosowe liczby, a do testów arcusa sinusa
i iterowanego logarytmu potrzebujemy pseudolosowych sekwencji bitów. Dlatego odnotowujemy
kilka uwag dotyczących interpretowania wyjścia generatora jako ciągu zerojedynkowego. Następ-
nie przywołujemy kilka popularnych metod testowania GLP.

W części 3 opisujemy dokładniej jak wykorzystać przytoczone własności błądzenia przypad-
kowego do testowania GLP. Autorzy [10] zauważyli użyteczność prawa iterowanego logarytmu
do testowania generatorów. W niniejszej pracy proponujemy podobną metodę, opartą o prawo
arcusa sinusa. Z grubsza rzecz biorąc, postępujemy tak jak w statystyce matematycznej, choć
obserwacje są dość nietypowe, bo są nimi długie ciągi zerojedynkowe. Wykorzystujemy GLP, by
otrzymać m sekwencji bitów. Każdą z nich interpretujemy jako realizację błądzenia przypad-
kowego i na jej podstawie obliczamy pewną wartość, którą będziemy nazywać charakterystyką
ciągu. W ten sposób dostajemy empiryczny rozkład tej charakterystyki. Natomiast dzięki twier-
dzeniom z części 1 znamy jej rozkład teoretyczny. Wykonując test χ2 sprawdzamy zgodność tych
rozkładów. Alternatywnie możemy skorzystać ze znanych funkcji odległości miar (rozkład praw-
dopodobieństwa nie jest niczym innym jak miarą zdefiniowaną na prostej rzeczywistej). Jeśli
wartość statystyki testowej lub odległość miary teoretycznej i empirycznej jest duża, to możemy
powiedzieć, że GLP niezbyt dobrze imituje losowość, w przeciwnym razie nie ma podstaw by go
zdyskredytować.

Metoda opisana w części 3 została zaprogramowana w języku Julia. W części 4 przedsta-
wiamy tę implementację. Omawiamy różne praktyczne aspekty, które wpłynęły na architekturę
programu. Prezentujemy jak użyć wykonanego narzędzia do przetestowania własnych GLP. Na-
stępnie przedstawiamy wyniki testowania kilku stosowanych generatorów. Sprawdzamy jakość
funkcji rand z języka C, w kilku popularnych środowiskach. Inne przetestowane generatory
to RANDU, Minstd, CMRG oraz Mersenne Twister. Warto zwrócić uwagę również na ostatni
przykład, wprawdzie nieco sztuczny, jednak obrazujący zaletę testów arcusa sinusa i iterowanego
logarytmu w stosunku do podejścia stosowanego przykładowo przez NIST Test Suite.



CZĘŚĆ I

Błądzenie przypadkowe

Jak napisaliśmy we wprowadzeniu, własności błądzenia przypadkowego (inaczej: losowego) będą
kluczowe dla testowania GLP. Zebrane w tej części wiadomości opracowane są na podstawie [2].
Większość oznaczeń jest również wzorowane na tej książce.

Wyjście generowane przez GLP zawsze można traktować jako ciąg zerojedynkowy. Dlatego
ważnym pojęciem będzie dla nas ciąg niezależnych prób Bernoulliego (inaczej: proces Bernoul-
liego) (Bi)i∈N. Dla ustalonego p ∈ [0, 1] oznaczamy w ten sposób ciąg niezależnych zmiennych
losowych o jednakowym rozkładzie, taki że

P(B1 = 1) = p = 1− P(B1 = 0).

Możemy postrzegać i-ty bit wygenerowany przez GLP jako wynik i-tej próby Bernoulliego.
Dobry generator powinien z takim samym prawdopodobieństwem losować 0 oraz 1, dlatego
ograniczymy się do przypadku p = 1

2 .
Często będzie nam wygodniej posługiwać się ciągiem prób (Xi)i∈N, który przyjmuje wartości

-1 zamiast 0, czyli
Xi

D= 2Bi − 1.

Ponadto oznaczmy

Sn =
n∑
i=1

Xi.

Tak zdefiniowany proces (Si)i∈N jest nazywany błądzeniem przypadkowym. Ciąg ten w każdym
kolejnym kroku zmienia swoją wartość o 1 lub -1. Czasem wygodnie jest go postrzegać jako wynik
następującej gry. Dwóch graczy rzuca idealną monetą. Jeśli wypada orzeł, to pierwszy gracz
otrzymuję złotówkę od drugiego, w przeciwnym przypadku pierwszy płaci złotówkę drugiemu.
Proces S przedstawia zysk ustalonego gracza.

Sporo miejsca w rachunku prawdopodobieństwa poświęcono badaniu własności błądzenia
przypadkowego, z których dwie omawiamy poniżej. Ideą testów, które przedstawiamy w części 3
jest sprawdzanie czy wyjście GLP zachowuje się tak jak to wynika z praw rachunku prawdopo-
dobieństwa.
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Rysunek 1.1: Przykładowe trajektorie procesu S.

1.1 Prawo iterowanego logarytmu

Jest jasne, że |Sn| ¬ n. Można się jednak domyślać, choćby na podstawie Rysunku 1.1, że duże
wartości |Sn| są jednak bardzo mało prawdopodobne i w praktyce z dużym prawdopodobień-
stwem wartości Sn znajdą się w znacznie węższym przedziale niż [−n, n]. Słabe i mocne prawo
wielkich liczb (SPWL i MPWL) mówią nam, że

Sn
n

P→ 0, a nawet
Sn
n

p.n.→ 0.

Jest więc jasne, że odchylenia procesu S od zera rosną znacznie wolniej niż liniowo. Z drugiej
strony centralne twierdzenie graniczne (CTG) mówi nam, że Sn√

n

D→ N (0, 1) co jest w pewnym

sensie oszacowaniem fluktuacji Sn od dołu – będą one wychodzić poza przedział [−
√
n,
√
n],

mamy bowiem

Fakt 1.1. Błądzenie przypadkowe Sn z prawdopodobieństwem 1 spełnia

lim sup
n→∞

Sn√
n

=∞.

Dowód. Z prawa 0-1 Kołmogorowa wynika, że dla dowolnego ciągu zmiennych losowych (Xi)

i.i.d., zdarzenia typu
{

lim sup
n→∞

Xn > M

}
mają prawdopodobieństwo równe 0 lub 1 (patrz [4],
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§7.2, zadanie 1). Weźmy dowolnie duże M . Mamy

P
(

lim sup
n→∞

Sn√
n
> M

)
= P

 ∞⋂
n=1

⋃
k­n

{
Sk√
k
> M

}
= lim

n→∞
P

⋃
k­n

{
Sk√
k
> M

}
­ lim

n→∞
P
(
Sn√
n
> M

)
= 1− Φ(M) > 0.

Czyli P
(

lim sup
n→∞

Sn√
n
> M

)
= 1, co wobec dowolności M oznacza, że

P
(

lim sup
n→∞

Sn√
n

=∞
)

= 1.

Okazuje się, że fluktuacje S można oszacować precyzyjniej, mówi o tym

Twierdzenie 1.2 (Prawo iterowanego logarytmu). Błądzenie przypadkowe Sn z prawdopo-
dobieństwem 1 spełnia

lim sup
n→∞

Sn√
2n log log n

= 1.

Dowód można znaleźć w [2], rozdział VIII, §5. Oczywiście ze względu na symetrię mamy analo-
giczne własności do Faktu 1.1 i Twierdzenia 1.2 dla lim inf.

Jak widać n było zbyt dużym dzielnikiem, a
√
n zbyt małym – odchylenia Sn od zera rosną

proporcjonalnie do
√
n log logn. Można zatem powiedzieć, że prawo iterowanego logarytmu (PIL)

„działa pomiędzy” prawem wielkich liczb i centralnym twierdzeniem granicznym. Te trzy twier-
dzenia dają nam własności błądzenia przypadkowego, które zebrano w Tabeli 1.1.

Przyjrzyjmy się Rysunkowi 1.2. Widać, że funkcja
√

2n log log n z grubsza odpowiada fluk-
tuacjom procesu Sn. Można jednak zauważyć, że kilka trajektorii po około miliardzie kroków
ciągle nie mieści się w przedziale [−

√
2n log log n,

√
2n log log n]. Prawo iterowanego logarytmu

mówimy nam, że dla odpowiednio dużych n trajektorie nie będą wykraczać poza ten zakres z
prawdopodobieństwem 1. Wniosek jaki możemy wyciągnąć z tego obrazka jest taki, że mowa tu
o naprawdę olbrzymich wartościach n.

Choć nie będzie przydatna w dalszej części pracy, jeszcze jedna ciekawa własność narzuca się
by o niej wspomnieć. Niech Sliln = Sn√

2n log logn . Z PIL wynika, że wielkość Sliln nie zbiega punkto-
wo do żadnej stałej. Zachodzi natomiast zbieżność do 0 według prawdopodobieństwa. Ustalmy
więc dowolnie małe ε > 0 i zastanówmy się jak często Sliln opuści epsilonowy pasek wokół zera.
Możemy przyjąć p < 1 dowolnie bliskie jedności, a mimo to dla prawie wszystkich n możemy
powiedzieć, że z prawdopodobieństwem p wielkość Sliln nie wyjdzie poza przedział (−ε, ε). Tym-
czasem PIL równocześnie mówi nam, że ten epsilonowy pasek opuścimy nieskończenie wiele razy.
Ta niesamowita, pozorna sprzeczność pokazuje jak bardzo nasza intuicja zawodzi, gdy myślimy
o zjawiskach zachodzących w nieskończoności.
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Tabela 1.1: Wnioski dotyczące błądzenia przypadkowego wynikające ze znanych twierdzeń.
Zbieżność

według
prawdop.

Zbieżność
prawie na

pewno

Wartość limes superior
prawie na pewno

Wartość limes inferior
prawie na pewno

PWL Sn
n

P−→ 0 Sn
n

p.n.−→ 0 lim sup
n→∞

Sn
n = 0 lim inf

n→∞
Sn
n = 0

PIL Sn√
2n log logn

P−→ 0 Sn√
2n log logn

p.n.9 0 lim sup
n→∞

Sn√
2n log logn = 1 lim inf

n→∞
Sn√

2n log logn = −1

CTG ∀x Sn√
n

P9 x ∀x Sn√
n

p.n.9 x lim sup
n→∞

Sn√
n

=∞ lim inf
n→∞

Sn√
n

= −∞

-1e+05

-5e+04

0e+00

5e+04
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Rysunek 1.2: Ilustracja prawa iterowanego logarytmu. Przedstawia ona 500 trajektorii błądzenia
losowego, długości 230. Im ciemniejszy jest obszar wykresu, tym większe jest w nim zagęszczenie
trajektorii. Niebieska krzywa to wykresy funkcji

√
x oraz−

√
x, zaś czerwona funkcji

√
2x log log x

oraz −
√

2x log log x.

1.2 Prawo arcusa sinusa

Kolejna własność błądzenia przypadkowego, którą postaramy się wykorzystać do testowania
GLP jest znana jako prawo arcusa sinusa. Odpowiada ono na pytanie przez jaką frakcję czasu
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ustalony gracz będzie na prowadzeniu. Spodziewalibyśmy się, że w przypadku bardzo długiej
gry, obaj gracze będą na prowadzeniu przez mniej więcej tyle samo czasu. Jednak pokażemy, że
również w tym przypadku nasza intuicja płata nam figla.

Powiemy, że bilans gry w k-tym kroku (k ­ 1) był dodatni, jeżeli Sk > 0 lub Sk−1 > 0.
Pomijamy tu remisy przyjmując, że w przypadku wystąpienia równej liczby reszek i orłów prze-
wagę ma ten, kto miał ją w poprzedniej chwili. Geometrycznie oznacza to, że odcinek wykresu
błądzenia losowego przebiegający pomiędzy odciętymi k−1 oraz k, musi znajdować się nad osią
x-ów.

Wprowadźmy następujące oznaczenia:

• Un – zdarzenie, że w n-tym kroku nastąpił powrót do zera,

• Fn – zdarzenie, ze w n-tym kroku nastąpił pierwszy powrót do zera,

• un = P(Un), fn = P(Fn).

• pk,n – prawdopodobieństwo, że przez k spośród pierwszych n kroków gry, bilans był do-
datni.

Łatwo zauważyć, że powrót do zera może nastąpić tylko w parzystym kroku, zatem

∀n ∈ N u2n−1 = f2n−1 = 0,

∀k, n ∈ N p2k−1,2n = 0,

Ponadto przyjmujemy, że p0,0 = u0 = 1. Zachodzi również

Lemat 1.3. Dla każdego n ∈ N spełnione są poniższe tożsamości:

u2n =

(
2n
n

)
2−2n (1.1)

u2n =
n∑
r=1

f2ru2n−2r (1.2)

f2n =
1

2n
u2n−2 (1.3)

f2n = u2n−2 − u2n (1.4)

Dowód. Wzór (1.1) wynika stąd, że wszystkich dróg długości 2n jest 22n, a drogi wracające na
końcu do zera odpowiadają ustawieniu n orłów i n reszek na 2n miejscach – co robimy na

(2n
n

)
sposobów.

Tożsamość (1.2) wynika wprost ze wzoru na prawdopodobieństwo całkowite:

u2n = P(U2n) =
n∑
r=1

P(U2n|F2r)P(F2r) =
n∑
r=1

P(U2n−2r)P(F2r) =
n∑
r=1

u2n−2rf2r

Dla dowodu (1.3) wprowadźmy dodatkowe oznaczenia:

• Nn(a, b) – liczba ścieżek od stanu a do stanu b w n krokach,
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• N 6=0n (a, b) – jak Nn(a, b), ale ścieżki nie mogą dotykać 0 (za wyjątkiem co najwyżej końców),

• N=0n (a, b) – jak Nn(a, b), ale ścieżki muszą dotknąć lub przeciąć 0.

Łatwo zauważyć, że Nn(a, b) =
( n
(n+b−a)/2

)
oraz Nn(a, b) = N 6=0n (a, b)+N=0n (a, b). Wartość f2n to

oczywiście stosunek N 6=02n (0, 0) do liczby wszystkich ścieżek od stanu 0 do stanu 0 w 2n krokach.
Dlatego liczymy

N 6=02n (0, 0) = N 6=02n−1(1, 0) +N 6=02n−1(−1, 0) = 2N 6=02n−1(1, 0) = 2N 6=02n−2(1, 1)

Patrząc na Rysunek 1.3 łatwo zauważyć, że N=02n−2(1, 1) = N2n−2(−1, 1), jest to szczególny
przypadek tzw. zasady odbicia. Zatem

-2

-1

0

1

2

2 4 6 8
Krok

S
ta

n

Rysunek 1.3: Ilustracja faktu N=0n (1, 1) = Nn(−1, 1). Łatwo zobaczyć jednoznaczną odpowied-
niość między oboma rodzajami ścieżek. Aż do momentu pierwszego powrotu do zera ścieżka
jednego rodzaju jest odbiciem symetrycznym względem osi odciętych ścieżki drugiego rodzaju,
zaś dalej ścieżki się pokrywają.

N 6=02n−2(1, 1) = N2n−2(1, 1)−N=02n−2(1, 1) = N2n−2(1, 1)−N2n−2(−1, 1)

=

(
2n− 2
n− 1

)
−
(

2n− 2
n

)
=

(
2n− 2
n− 1

)
− n− 1

n

(
2n− 2
n− 1

)

=
1
n

(
2n− 2
n− 1

)
=

22n−2

n
u2n−2

Ostatecznie

f2n =
N 6=02n (0, 0)

22n
=

2N 6=02n−2(1, 1)
22n

=
22n−1
n u2n−2

22n
=
u2n−2

2n
Formuła (1.4) to prosta konsekwencja (1.1) i (1.3), bo

u2n−2 − u2n = u2n−2 −
(

2n
n

)
2−2n = u2n−2 −

(
2n− 2
n− 1

)
(2n− 1)2n

4n2
2−(2n−2) =

= u2n−2

(
1− (2n− 1)

2n

)
=

1
2n
u2n−2 = f2n.
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Tożsamości z Lematu 1.3 intensywnie wykorzystujemy w dowodzie następującego, kluczowe-
go faktu.

Twierdzenie 1.4. Dla wszystkich k, n ∈ N

p2k,2n = u2ku2n−2k =

(
2k
k

)(
2n− 2k
n− k

)
2−2n (1.5)

Dowód. Niech q2n oznacza prawdopodobieństwo, że w pierwszych 2n krokach gry ani razu nie
doszło do remisu. Wzór (1.4) daje nam

q2n = 1− f2 − f4 − · · · − f2n = 1− (1− u2)− (u2 − u4)− · · · − (u2n−2 − u2n) = u2n.

Udowodnimy teraz indukcyjnie, że
p0,2n = u2n. (1.6)

Łatwo sprawdzić, że p0,2 = 1
2 = u2. Załóżmy, że p0,2ñ = u2ñ dla ñ < n. Zauważmy, że aby spędzić

całą grę na minusie, musieliśmy w pierwszym kroku pójść w dół, co dzieje się z prawdopodobień-
stwem 1

2 . Dalej musiała zajść jedna z dwóch możliwości. Z prawdopodobieństwem q2n mogliśmy
ani razu nie wrócić do zera. Mogło się też zdarzyć, że dla pewnego r wróciliśmy do zera po raz
pierwszy w kroku 2r (z prawdopodobieństwem f2r), ale resztę czasu mimo tego spędziliśmy „pod
kreską” (z prawdopodobieństwem p0,2n−2r). Te rozważania, założenie indukcyjne oraz wzór (1.2)
dają

p0,2n =
1
2

(
q2n +

n∑
r=1

f2rp0,2n−2r

)
=

1
2

(
u2n +

n∑
r=1

f2ru2n−2r

)

=
1
2

(u2n + u2n) = u2n,

co chcieliśmy pokazać.
Teraz uogólniamy ten wynik postępując również indukcyjnie. Twierdzenie 1.4 jest w oczy-

wisty sposób prawdziwe dla n = 0. Załóżmy teraz, że dla wszystkich ñ < n zachodzi ∀0 ¬ k ¬
ñ p2k,2ñ = u2ku2ñ−2k i pokażemy, że ∀0 ¬ k ¬ n p2k,2n = u2ku2n−2k. Wiemy już, że teza jest
prawdziwa dla k = 0 oraz k = n, gdyż

p2n,2n = p0,2n = u2n = u2nu0.

Dlatego weźmy dowolne k, takie że 0 < k < n. Aby zaszło rozważane zdarzenie, błądzenie musi
przechodzić przez 0. Załóżmy, że pierwszy raz dzieje się to w pewnym punkcie 2r. Jeżeli w pierw-
szym kroku poszliśmy w górę (co dzieje się z prawdopodobieństwem 1

2), to po powrocie musimy
spędzić „nad kreską” jeszcze 2k − 2r kroków, a szanse tego zdarzenia wynoszą p2k−2r,2n−2r. W
przeciwnym razie po powrocie ciągle musimy być na plusie przez 2k kroków, co zdarzy się z
prawdopodobieństwem p2k,2n−2r. Stąd

p2k,2n =
1
2

(
k∑
r=1

f2rp2k−2r,2n−2r +
n−k∑
r=1

f2rp2k,2n−2r

)
= (F)
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Z założenia indukcyjnego

p2k−2r,2n−2r = u2k−2ru2n−2r−(2k−2r) = u2k−2ru2n−2k

oraz
p2k,2n−2r = u2ku2n−2r−2k,

zatem

(F) =
1
2

(
k∑
r=1

f2ru2k−2ru2n−2k +
n−k∑
r=1

f2ru2ku2n−2r−2k

)

=
1
2

(
u2n−2k

k∑
r=1

f2ru2k−2r + u2k

n−k∑
r=1

f2ru2n−2r−2k

)

=
1
2

(u2n−2ku2k + u2ku2n−2k) = u2ku2n−2k,

co było do okazania. Korzystając z (1.1) otrzymujemy tezę.

Dzięki Twierdzeniu 1.4 możemy obliczać dokładne prawdopodobieństwa frakcji przewagi.
Na Rysunku 1.4 przedstawiony jest ich rozkład dla n = 20. Widać wyraźnie, że równomierny
podział czasu na przewagę jednego i drugiego gracza jest najmniej prawdopodobny. Najbardziej
prawdopodobna jest dominacja jednego z graczy przez większość czasu. Przykładowo prawdo-
podobieństwo, że po 100 rzutach

• jeden z graczy wygrywa przez 90-100% czasu, wynosi 44%.

• jeden z graczy ani razu nie wyjdzie na prowadzenie, wynosi 16%.

• ustalony gracz będzie prowadził przez 40-60% czasu, wynosi 14%.

Wzór (1.5) jest dokładny, ale często nieporęczny. Spróbujmy znaleźć rozsądne przybliżenie.
Zakładając k →∞, n− k →∞ i korzystając ze wzoru Stirlinga (n! ≈

√
2πn

(
n
e

)n), dostajemy

(
2k
k

)
=

(2k)!
k!k!

≈

√
4πk

(
2k
e

)2k
2πk

(
k
e

)2k =
22k√
πk
,

i podobnie (
2n− 2k
n− k

)
≈ 22n−2k√

π(n− k)
.

Podstawiając to do wzoru (1.5) otrzymujemy

p2k,2n ≈
1

π
√
k(n− k)

(1.7)

Odpowiemy teraz na następujące pytanie: jaka jest szansa, że w bardzo długiej grze
byliśmy na prowadzeniu przez co najwyżej frakcję x czasu? (0 < x < 1)
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Rysunek 1.4: Rozkład czasu prowadzenia ustalonego gracza przy 40 rzutach monetą.

Niech P2n(x) oznacza szukane prawdopodobieństwo przy 2n rzutach monetą. Załóżmy na
początek, że x > 12 . Wtedy

P2n(x) =
∑

k: k
n
<x

p2k,2n =
∑

k: k
n
¬ 12

p2k,2n

︸ ︷︷ ︸
(♠)

+
∑

k: 12<
k
n
<x

p2k,2n

︸ ︷︷ ︸
(♣)

Pamiętając o symetryczności rozkładu można zauważyć, że (♠) −→ 1
2 (można to też uzasadnić

inaczej – jeden z graczy musi być na prowadzeniu przez co najwyżej połowę czasu). Przy n→∞
i 12 <

k
n < x < 1 zachodzi również k −→ ∞ oraz n − k −→ ∞. Dlatego drugą sumę możemy

estymować korzystając z (1.7) oraz definicji całki Riemanna

(♣) ≈
∑

k: 12<
k
n
<x

1
π
√
k(n− k)

=
∑

k: 12<
k
n
<x

1
πn

1√
k
n(1− k

n)

−−−→
n→∞

1
π

∫ x

1/2

dt√
t(1− t)

=
2
π

arcsin(
√
x)− 1

2
,

czyli

P2n(x) −−−→
n→∞

2
π

arcsin(
√
x).

W celu znalezienia P2n(x) dla 0 < x < 1
2 skorzystamy ze znanych własności funkcji cyklome-
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trycznych: arcsinx+ arccosx = π
2 oraz arccosx = arcsin(

√
1− x2).

P2n(x) = 1− P2n(1− x) −−−→
n→∞

1− 2
π

arcsin(
√

1− x) = 1− 2
π

arccos(
√
x)

= 1− 2
π

(
π

2
− arcsin(

√
x)
)

=
2
π

arcsin(
√
x).

W ten sposób udowodniliśmy

Twierdzenie 1.5 (Prawo arcusa sinusa). Prawdopodobieństwo, że w n krokach frakcja czasu
x (0 ¬ x ¬ 1), w której ustalony gracz ma przewagę (stan błądzenia przypadkowego jest dodatni),
dąży przy n −→∞ do

1
π

∫ x

0

dt√
t(1− t)

=
2
π

arcsin(
√
x)

Innymi słowy w bardzo długiej grze frakcja czasu x spędzona “na plusie” ma rozkład arcusa
sinusa. Oto jego podstawowe własności:

• gęstość: f(t) = 1
π
√
t(1−t)

, • dystrybuanta: F (t) = 2
π arcsin(

√
t),

• wartość oczekiwana: 12 , • wariancja: 18 .
Wykres gęstości i dystrybuanty przedstawia Rysunek 1.5. Funkcja gęstości w kształcie litery

U pokazuje, że nierówny podział czasu przewagi jest zdecydowanie bardziej prawdopodobny niż
względnie równomierny.

1
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Gęstość

0.00

0.25

0.50

0.75
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0.00 0.25 0.50 0.75 1.00

Dystrybuanta

Rysunek 1.5: Rozkład arcusa sinusa.

Ludzka intuicja silnie podpowiada, że w grze z symetryczną monetą, każdy z graczy powinien
być na plusie przez około połowę czasu. Wydaje się to logiczne – wiadomo, że liczba powrotów
błądzenia przypadkowego do zera jest nieskończona w nieskończenie długiej grze. Zatem obaj
gracze mają mniej więcej tyle samo fal kiedy są na plusie. Ponadto, jak wynikałoby z MPWL,
średnia długość dodatniej fali powinna być dla obu graczy zbliżona. Co z kolei prowadzi do wnio-
sku, że obaj powinni być na prowadzeniu przez podobną frakcję czasu. Gdzie tkwi błąd w tym
rozumowaniu? Otóż nie możemy tu zastosować MPWL. Dotyczy ono zmiennych o skończonej
wartości oczekiwanej. Tymczasem oczekiwany czas powrotu do zera w błądzeniu przypadkowym
okazuje się być nieskończony, co kompletnie zmyla nasze intuicje.



CZĘŚĆ II

Generatory liczb pseudolosowych

Każdy intuicyjnie rozumie czym jest generator liczb pseudolosowych. Jednak dla pełności ma-
tematycznego opisu zaczniemy od przedstawienia jego ścisłej definicji. Przedstawiona tu teoria
opiera się na książce [1]. Na jej podstawie opisujemy również kilka rodzajów generatorów liczb
pseudolosowych. Sposób otrzymania z GLP ciągu bitów o dobrych własnościach również wy-
maga pewnego komentarza, o czym piszemy dalej. Na końcu tej części krótko omówimy znane
metody testowania generatorów liczb pseudolosowych.

2.1 Definicja GLP

Istnieją metody otrzymania liczb „prawdziwie losowych”. Najprostszym sposobem jest wielo-
krotne rzucenie kostką do gry lub monetą i stablicowanie otrzymanych wyników. Lepszym sposo-
bem jest obserwowanie cząsteczek emitowanych przez próbkę radioaktywnego pierwiastka – uwa-
ża się, że rozkład radioaktywny jest dobrze modelowany przez proces Poissona. Kolejnym pomy-
słem jest wykorzystanie szumu atmosferycznego, z tej metody korzysta strona www.random.org,
którą wykorzystamy w testach GLP. Źródła takiej losowości są jednak zazwyczaj zbyt wolne,
trudno dostępne lub mają pewne inherentne wady (moneta może być niesymetryczna, detektor
cząstek nie rejestruje zgłoszeń o zbyt krótkim odstępie, itp.). Wynika stąd potrzeba utworze-
nia deterministycznych algorytmów które imitowałyby losowość. Takie algorytmy nazywamy
generatorami liczb pseudolosowych. Aby były praktyczne, muszą być szybkie i obliczalne na
zwykłych komputerach. Liczby przez nie generowane jedynie „udają” losowe, dlatego nazywamy
je pseudolosowymi.

Definicja 2.1. Generator liczb pseudolosowych jest to piątka1 〈E, V, s0, f, g〉, gdzie E jest skoń-
czoną przestrzenią stanów, V jest zbiorem wartości zwracanych przez generator, s0 jest to tzw.
ziarno, czyli początkowy stan w ciągu stanów (si)∞i=0, funkcja f : E → E opisuje przejścia mię-
dzy kolejnymi stanami: sn = f(sn−1), zaś g : E → V , odwzorowuje stan generatora w wartość
przez niego zwracaną.

1Jest to nieco inna definicja niż w [1], dostosowana do naszych potrzeb. W książce Asmussena przyjmuje się
V = [0, 1], zaś zamiast s0 w definicji znajduje się µ – rozkład prawdopodobieństwa początkowego stanu.

17



18 Część 2. Generatory liczb pseudolosowych

Najczęściej przyjmuje się V = (0, 1) lub V = M̄ dla pewnego M (dla n ∈ N symbol n̄ oznacza
zbiór {0, 1, . . . , n− 1}). U nas będzie zachodzić właśnie ta druga możliwość.

Zauważmy, że każdy GLP prędzej lub później „zapętla się”, tzn. musi istnieć takie d, że dla
pewnego l zachodzi sl+d = sl (wynika to ze skończoności przestrzeni stanów). Minimalne d o
tej własności nazywane jest okresem generatora. Dobre generatory powinny mieć jak najdłuższe
okresy, optymalnie równe |E|.

Poniżej przedstawiamy popularne rodzaje GLP.

LCG

Generatory LCG (od ang. linear congruential generator) zmieniają swój stan zgodnie z reku-
rencją

sn = (asn−1 + c) mod M. (2.1)

Generator tej klasy jest określony przez moduł M , mnożnik a oraz przyrost c, co oznaczamy
LCG(M,a, c). Zauważmy, że LCG(M,a, c) spełnia definicję GLP z E = M̄ , V = M̄ , f(x) =
(ax+ c) mod M oraz g(x) = x.

Dobranie wartości M,a, c o dobrych własnościach przysparza sporych problemów. Jak się
jednak okazuje, istnieje kryterium ułatwiające zapewnienie generatorowi długiego okresu.

Twierdzenie 2.1. Przy poniższych warunkach LCG(M,a, c) ma okres równy M :

• c oraz M są względnie pierwsze,

• jeśli p jest liczbą pierwszą i p|M , to p|(a− 1),

• jeśli 4|M , to 4|(a− 1).

Powyższe twierdzenie pochodzi z pracy [3].
Zauważmy jednak, że znalezienie LCG o pełnym okresie nie gwarantuje, że generator będzie

dobrej jakości. Łatwo zauważyć następujący

Fakt 2.2. Niech M = 2k. Wówczas d najmniej istotnych bitów LCG(M,a, c) ma okres równy
co najwyżej 2d.

W tym przypadku nie ma więc mowy o niezależności liczb generowanych przez LCG. Niektó-
re pakiety korzystające z LCG częściowo obchodzą ten problem zwracając tylko najbardziej
znaczące bity wygenerowanych liczb.

MCG

MCG (od ang. multiplicative congruential generator) znany jest też jako GLP Lehmera lub GLP
Parka-Millera. Jest to szczególny przypadek LCG, w którym c = 0, czyli kolejne stany opisuje
rekurencja

sn = asn−1 mod M. (2.2)

MCG o parametrach M oraz a oznaczamy MCG(M,a). Aby MCG(M,a) mogło mieć dobre
własności, M powinno być liczbą pierwszą lub jej potęgą, a powinno być generatorem grupy
Z∗M , a ziarno s0 powinno być względnie pierwsze z M .
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GLCG

Wyżej opisane GLP dzielą pewną wadę – mają stosunkowo krótkie okresy. W przypadku gdy
potrzebujemy dłuższych okresów przydatne mogą być uogólnione LCG (od ang. generalized
linear congruential generator). Postępują one zgodnie z rekurencją

xn = (a1xn−1 + a2xn−2 + . . .+ akxn−k) mod M. (2.3)

GLCG zmieniający stany w ten sposób oznaczamyGLCG(M, (ai)ki=1). Jest to ciągle GLP w myśl
definicji 2.1, gdzie E = M̄k, sn = 〈xn, xn−1, . . . xn−k+1〉, g(sn) = xn. Dobry dobór parametrów
może dać okres równy Mk − 1.

Generatory mieszane

Dobrym pomysłem na ulepszenie GLP jest połączenie kilku generatorów w jeden. Załóżmy, że
mamy dane k GLP 〈Ej , Vj , sj,0, fj , gj〉, 1 ¬ j ¬ k, gdzie j-ty generator zmienia stan według
zależności

sj,n = fj(sj,n−1).

Możemy teraz zdefiniować mieszany generator w taki sposób, aby ciąg jego stanów spełniał

sn = 〈s1,n, s2,n, . . . sk,n〉

Niech ponadto dj oznacza okres j-tego „składowego” generatora. Jak pokazał L’Ecuyer ([7],
Lemma 2) mieszany generator ma okres d = NWW (d1, d2, . . . , dk).

Szczególnym przypadkiem generatorów mieszanych są CMCG (od ang. combined multipli-
cative congruential generator). Składa się on k generatorów MCG(Mj , aj), gdzie Mj są liczbami
pierwszymi, czyli funkcją przejścia jest

sj,n = ajsj,n−1 mod Mj .

Wyjście generatora mieszanego otrzymujemy ze wzoru

g(sn) =

 k∑
j=1

(−1)j−1sj,n

 mod M1 − 1

Ponadto jeśli liczby Mj−1
2 są względnie pierwsze, to CMCG ma optymalny okres wynoszący

1
2k (M1 − 1) · . . . · (Mk − 1).

LFSR

LFSR (od ang. Linear feedback shift register) to, z grubsza rzecz ujmując, generator produkujący
liczby pseudolosowe na podstawie obwodu bramek logicznych. Stanem takiego generatora jest
sekwencja bitów, które przekazywane są na wejście wybranych bramek. Wyjścia tych bramek
stanowią wejście innych bramek, te z kolei przekazują swoje wyjścia kolejnym bramkom, itd.
Wyjścia ustalonych bramek mogą zmieniać stan generatora lub być zwracane jako rezultat pracy
generatora.
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Mersenne Twister

Mersenne Twister (MT19937) został zaproponowany przez Matsumoto i Nashimurę w [9]. Nie
jest to wprawdzie klasa generatorów, ale przykład konkretnego GLP, jednak ze względu na jego
ogromną popularność warto go opisać. Jest on standardowym generatorem w wielu narzędziach
programistycznych, między innymi w R, Python, MATLAB, Julia. Został dołączony również do
standardowej biblioteki C++11.

Do opisu generatora wykorzystamy notację, w której zapis d[i..j] oznacza bity o indeksach od
i do j w liczbie d, symbol ⊕ to operacja XOR na kolejnych bitach, symbol & to operacja AND
na kolejnych bitach, zaś symbole � oraz � to operacja bitowego przesunięcia odpowiednio w
lewo i w prawo.

Stan generatora opisany jest przez 624 32-bitowe liczby

xk, xk+1, . . . xk+623.

Kolejne stany otrzymujemy ze wzoru

xk+624 =

{
x397+k ⊕ (0, xk[0], xk+1[1..30]) jeśli xk+1[31] = 0

x397+k ⊕ (0, xk[0], xk+1[1..30])⊕ a jeśli xk+1[31] = 1,

gdzie a = (9908B0D)16. Przy k-tym wywołaniu MT19937 zwraca jako wyjście wartość t(x623+k),
przy czym

t(x) = y3 ⊕ (y3 � 18),

gdzie

y3 = y2 ⊕ ((y2 � 15) & (EFC60000)16)

y2 = y1 ⊕ ((y1 � 7) & (9D2C5680)16)

y1 = x⊕ (x� 11)

Generator uzyskany w ten sposób ma okres równy 219937 − 1, co wyjaśnia jego skrótową
nazwę.

2.2 Generowanie sekwencji bitów

Komputery operują tylko i wyłącznie na ciągach bitów, dlatego wyjście każdego programu, w
szczególności GLP, może być traktowane jako ciąg zerojedynkowy. My potrzebujemy jednak
ciągów specyficznych: każdy bit musi być generowany niezależnie i z jednakowym prawdopodo-
bieństwem przyjmować wartości zero i jeden. Dlatego dla wygody języka wprowadźmy poniższy
termin.

Definicja 2.2. Idealnym ciągiem losowych bitów nazywamy proces Bernoulliego z prawdopo-
dobieństwem sukcesu p = 1

2
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Algorytm 2.1 Generowanie sekwencji bitów przy użyciu GLP.
1: procedura GenerujCiągBitów(glp)
2: s← ε . ε to słowo puste
3: dopóki s nie jest wystarczająco długi wykonuj
4: a← następna liczba z glp
5: b← binarny zapis a na dlog2Me bitach
6: s← s� b . � to operator konkatenacji
7: zwróć s.

Poniżej opisujemy jak zmienić generator liczb pseudolosowych w „generator pseudolosowych
ciągów zerojedynkowych”.

Mamy dany GLP generujący liczby całkowite ze zbioru M̄ = {0, 1, . . . ,M − 1}. Kolejne wy-
wołania powinny dawać niezależne wyniki. Aby wykorzystać GLP do wygenerowania idealnego
ciągu losowych bitów możemy użyć Algorytmu 2.1. Jeśli M jest potęgą dwójki, to zadziała on
dobrze, mamy bowiem

Lemat 2.3. NiechM = 2k. Jeżeli GLP w każdym kroku generuje liczby niezależnie i jednostajnie
w zbiorze M̄ , to Algorytm 2.1 generuje idealny ciąg losowych bitów.

Dowód. W przypadku M = 2k mamy wzajemnie jednoznaczną odpowiedniość pomiędzy zbiorem
M̄ oraz układami k bitów. Oznacza to, że w jednym kroku otrzymujemy z GLP każdy możli-
wy układ k bitów z jednakowym prawdopodobieństwem 1

2k . Łatwo zauważyć, że wtedy każdy
generowany bit ma równe szanse bycia jedynką i zerem, oraz jest niezależny od pozostałych.

Jednak jeśli M nie jest potęgą dwójki, to procedura nie działa – przykładowo dla M = 5 w
każdym kroku doklejamy jedną z sekwencji {000, 001, 010, 011, 100}. Wówczas w wygenerowanym
ciągu spotkanie jedynki jest mniej prawdopodobne niż zera – jedynki stanowią tylko około 13
wszystkich wygenerowanych bitów. Ponadto nie ma niezależności – wystąpienie jedynki na bicie
o indeksie podzielnym przez 3 oznacza, że kolejne dwa bity będą zerami.

Jak widać, gdy M nie jest postaci 2k nie możemy w wyjściowym ciągu tak po prostu umie-
ścić binarnego zapisu wygenerowanej liczby, gdyż na najbardziej znaczących bitach zera mogą
znacząco przeważać. Prostym obejściem tego problemu jest ograniczenie się do mniej znaczących
bitów generowanych liczb. Wprawdzie one również nie mają idealnego rozkładu, co można łatwo
zauważyć licząc prawdopodobieństwo wystąpienia jedynki na najmniej znaczącym bicie, jednak
odstępstwa są stosunkowo niewielkie.

Inne podejście przedstawia Algorytm 2.2. Jego dodatkową zaletą jest możliwość modyfikacji,
tak by działał dla GLP zwracających liczby z odcinka (0, 1).
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Algorytm 2.2 Generowanie sekwencji bitów przy użyciu GLP.
1: procedura GenerujCiągBitów(glp, d)
2: s← ε
3: dopóki s nie jest wystarczająco długi wykonuj
4: a← następna liczba z glp
5: b← d pierwszych bitów rozwinięcia dwójkowego a

M
6: s← s� b
7: zwróć s.

2.3 Popularne metody testowania GLP

Poniżej przedstawiamy kilka wybranych metod testowania GLP. Lista z pewnością jest daleka
od kompletności, zwłaszcza, że zagadnienie testowania GLP cieszy się dużą popularnością.

Do testów używany jest ciąg liczb wygenerowanych przez GLP. Poniżej zazwyczaj będzie
nam wygodnie przyjmować, że jest to ciąg liczb

U1, U2, U3, . . .

pretendujący do miana ciągu niezależnie i równomiernie rozłożonego na odcinku (0, 1).

Zgodność z rozkładem jednostajnym

Pierwszym nasuwającym się sposobem sprawdzenia jakości liczb generowanych przez GLP jest
zastosowanie znanego aparatu statystycznego. Możemy użyć testów zgodności z rozkładem jed-
nostajnym, np. testu Kołmogorowa-Smirnowa. Niech n będzie długością ciągu (Ui). Dys-
trybuanta empiryczna jest zdefiniowana jako

Fn(t) =
1
n

n∑
i=1

1(Ui < t).

Niech
Dn = sup

0¬t¬1
|Fn(t)− F (t)|.

Zauważmy, że obliczenie Dn nie stanowi problemu, gdyż Fn jest funkcją schodkową zmieniającą
wartość w punktach U1, U2, . . .. Twierdzenie Kołmogorowa mówi, że

√
nDn

D−→ K, gdzie K jest
zmienną losową o rozkładzie Kołmogorowa. Korzystając z tablic lub pakietów statystycznych
możemy znaleźć p-wartość tego testu.

Można też użyć testu χ2 Pearsona. Polega on na podzieleniu odcinka na r części. Niech
Ei będzie oczekiwaną liczbą zmiennych Ui, których wartość wpada to i-tego odcinka, zaś Oi
obserwowaną liczbą.

Wówczas statystyka

T =
r∑
i=1

(Oi − Ei)2

Ei
(2.4)
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dąży do rozkładu χ2 z (r − 1) stopniami swobody, oznaczanego χ2(r − 1). Tak jak w przypad-
ku testu Kołmogorowa-Smirnowa możemy poznać p-wartość testu korzystając z odpowiednich
narzędzi.

Wiele testów zgodności opracowano dla rozkładu normalnego, do najbardziej znanych należą
test Shapiro-Wilka, test Jarque-Bera, test Andersona-Darlinga. Aby móc z nich skorzy-
stać, wystarczy zmapować ciąg (Ui) na ciąg (Ni) zmiennych losowych o rozkładzie normalnym,
np. przy użyciu transformacji Boxa-Mullera.

Powyższe testy sprawdzają jedynie zgodność z rozkładem jednostajnym. Do sprawdzenia
niezależności teoretycznie można ponownie wykorzystać test χ2. Dla ustalonego t dzielimy ciąg
(Ui) na bloki

(U1, . . . , Ut), (Ut+1, . . . , U2t), . . . (2.5)

Otrzymujemy w ten sposób obserwacje, które powinny być jednostajnie rozłożone w hiperko-
stce (0, 1)t. Możemy ją podzielić na mniejsze kostki i skorzystać ze statystyki (2.4), aby stwierdzić
czy wpada do nich odpowiednio wiele obserwacji. W praktyce jednak, oczekiwana liczba obser-
wacji w pojedynczej kostce spada do zera tak szybko, że T nie jest dobrze przybliżane przez
rozkład χ2.

Zgodność z twierdzeniami rachunku prawdopodobieństwa

Wiele faktów w rachunku prawdopodobieństwa opiera się na ciągach niezależnych zmiennych
losowych o jednakowym rozkładzie. Dzięki temu na podstawie ciągu (Ui) jesteśmy w stanie
otrzymać kolejne zmienne losowe, których teoretyczne rozkłady są znane. W [6] zaproponowa-
nych jest kilka praw, które można wykorzystać w ten sposób. Oto niektóre z nich:

• Test odstępów. Dla ustalonego przedziału (α, β) mierzymy czasy oczekiwania na kolejne
Ui wpadające do tego przedziału. Otrzymane wartości powinny mieć rozkład geometryczny,
co sprawdzamy testem χ2.

• Test permutacyjny. Podzielmy ciąg (Ui) na bloki jak w (2.5), przy niezbyt dużym t. W
każdym bloku zachodzi jedno z t! możliwych uporządkowań. Rozkład na uporządkowaniach
powinien być jednostajny, co ponownie weryfikujemy testem χ2.

• Test kolizji. Stanowi rozwiązanie, gdy mamy n obserwacji wpadających do m „pudełek”,
przy czym n < m. Jak powiedzieliśmy wcześniej, w takiej sytuacji nie możemy zastosować
testu χ2. Jednak da się wyliczyć teoretyczne prawdopodobieństwo otrzymania k kolizji
(kolizją jest trafienie obserwacji do pudełka, w którym jest już inna obserwacja). Jeśli
zaobserwowana liczba kolizji nie mieści się w pewnych ramach, to możemy stwierdzić, że
ciąg nie jest losowy.

Metody opisane tutaj mają pewną zaletę w stosunku do przedstawionych wcześniej testów zgod-
ności (Ui) z rozkładem jednostajnym – niejawnie testują również niezależność.
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Zestawy testów

Rozwinięciem podejścia z poprzedniego paragrafu jest tworzenie paczek testowych. Zawierają one
kilkanaście lub więcej testów opartych o fakty rachunku prawdopodobieństwa, które powinien
spełniać idealny ciąg losowych bitów. Znane przykłady to:

• Diehard tests. Zestaw opracowany przez George’a Marsaglia w 1995 r. Obecnie uważany
już za przestarzały.

• TestU01. Następca zestawu Diehard, który opracowali Pierre L’Ecuyer oraz Richard Si-
mard w 2007 r.

• NIST Test Suite. Zestaw opracowany przez organizację National Institute of Standards
and Technology i ciągle rozwijany.

Powiemy więcej o tym ostatnim zestawie. Zawiera on kilkanaście testów rozstrzygających
losowość ciągów zerojedynkowych. Hipotezą zerową jest stwierdzenie, że testowana sekwencja
jest realizacją idealnego ciągu losowych bitów. Testy badają m.in.: stosunek liczby jedynek do
długości ciągu, liczbę jednocyfrowych podciągów, długość najdłuższego podciągu zawierającego
same jedynki.

Jakość GLP oceniana jest w systematyczny sposób. Dla każdego testu w NIST Test Suite
postępujemy następująco. Generujemy m sekwencji bitów. Po kolei dla każdej z nich przepro-
wadzamy wybrany test na ustalonym poziomie istotności α = 0.01. Test zwraca nam p-wartość,
i jeżeli p > α, to uznajemy, że dany ciąg bitów jest losowy. Przyjmuje się, że GLP zaliczył
wykonywany test jeżeli około 97% lub więcej sekwencji zostało uznanych za losowe (oczywiście
nie można wymagać, żeby wszystkie ciągi zostały uznane za losowe, bo nawet spośród idealnych
ciągów losowych bitów około α z nich zostanie odrzucona).

Takie podejście wydaje się rozsądne, ma jednak zasadniczą wadę. Wyobraźmy sobie, że mamy
znakomity GLP g1. Na jego podstawie tworzymy nowy GLP g2 w taki sposób, że co setny ciąg
bitów otrzymanych z g2 , a w pozostałych przypadkach g2 deleguje wygenerowanie ciągu do g1.
NIST Test Suite prawdopodobnie uznałby generator g2 za dobry. Metoda opisana w części 3 ma
potencjał do wykrywania tego rodzaju nieprawidłowości.

Test spektralny

Testowi spektralnemu Donald Knuth poświęcił kilkanaście stron w swoim dziele [6], czego nie
sposób tutaj streścić. Idea polega na spostrzeżeniu, że punkty w t-wymiarowej przestrzeni, utwo-
rzone z kolejnych wyrazów ciągu (Ui) wygenerowanego przez LCG, leżą na stosunkowo niewielkiej
liczbie (t− 1)-wymiarowych hiperpłaszczyzn. Zagłębiając się w ten temat można dojść do dość
skomplikowanej metody testowania LCG. Jednak w niektórych przypadkach widać gołym okiem,
że generator jest zły. Takim przykładem jest niechlubny RANDU (jest to MCG(231, 216+3)). Na
Rysunku 2.1 przedstawiono punkty w przestrzeni otrzymane z tego generatora. Widać wyraźnie,
że układają się one na 15 płaszczyznach.
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Rysunek 2.1: Ilustracja rozmieszczenia w przestrzeni punktów generowanych przez RANDU.
Każdy punkt został utworzony z trzech kolejnych liczb otrzymanych z generatora i przeskalowa-
nych na odcinek (0, 1)

Złożoność Kołmogorowa

Zacznijmy od przykładu. Rozważmy ciągi binarne długości 32
01010101010101010101010101010101

oraz
00110111001101001101101000110110.

Choć wylosowanie obydwu z nich jest równie prawdopodobne, ten drugi uznajemy za bardziej
„losowy”. Dzieje się tak dlatego, że pierwszy ciąg można jednoznacznie opisać w znacznie mniej-
szej liczbie znaków:

16×01,
zaś najkrótszym opisem drugiego ciągu jest prawdopodobnie przepisanie go całego.

Tego typu intuicje próbujemy wyjaśniać za pomocą, tzw. złożoności Kołmogorowa. Służy ona
do mierzenia stopnia skomplikowania ciągów znaków. Ustalmy dowolny język programowania L.
Złożonością Kołmogorowa łańcucha znaków s jest długość najkrótszego programu P w języku
L, takiego że P wypisuje s.

Rzadko kiedy jesteśmy w stanie znaleźć dokładną wartość złożoności łańcucha s. Dlatego
może się wydawać, że powyższe podejście jest czysto teoretyczne. Okazuje się jednak, że można
złożoność s oszacować. Niech P będzie programem implementującym ustalony algorytm kompre-
sji, a P̃ odpowiadającym mu programem dekompresji. Ponadto niech s̃ będzie skompresowanym
łańcuchem s. Wówczas złożoność łańcucha s jest oszacowana z góry przez sumę długości P̃
oraz s̃. Odrzucamy hipotezę o losowości s, gdy otrzymana wartość jest znacznie mniejsza od
długości s.
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Zagadnienie ruiny gracza

Bardzo interesująca metoda testowania GLP została przedstawiona w pracy [5]. Rozważane jest
błądzenie po grupie Zn. Autorzy badają czas dojścia do stanu 0, co odpowiada zbiciu majątku
wysokości n lub bankructwu gracza ze znanego zagadnienia. W pracy opisane są trzy warianty
zastosowanej metody, tutaj przedstawiamy podstawową z nich.

Ustalmy p ∈ (0, 1). Ciąg (Ui) otrzymany z generatora wykorzystywany jest do poruszania
się po grupie Zn. Jeśli w kroku i-tym byliśmy w stanie s, to przechodzimy do stanu s + 1, gdy
Ui+1 < p, a do s − 1 w przeciwnym przypadku. Dla każdego x ∈ Zn, x 6= 0 niech Tx oznacza
czas dojścia do 0 ze stanu x. N -krotnie z punktu x rozpoczynamy błądzenie po grupie. W ten
sposób otrzymujemy N replikacji zmiennej Tx. Oznaczmy ich średnią przez T x. Niech µ oraz σ2

oznaczają wartość oczekiwaną oraz wariancję Tx, gdy prawdopodobieństwa przejść do stanów
s+1 oraz s−1 wynoszą odpowiednio p oraz 1−p. Wartości µ i σ2 można wyznaczyć teoretycznie.
Niech

Zx =
T x − µ
σ
√
N

.

Przy założeniu hipotezy, o niezależności i rozkładzie jednostajnym zmiennych (Ui), statystyka
Zx ma w przybliżeniu rozkład normalny N (0, 1). W związku z tym przy dużych wartościach
|Zx| należy stwierdzić, że generator nie przeszedł testu w punkcie x.

Błądzenie przypadkowe

Testom opartym na własnościach błądzenia przypadkowego poświęcone są kolejne dwie części
pracy.



CZĘŚĆ III

Metoda testowania oparta na błądzeniu
przypadkowym

W części 1 przedstawiliśmy teorię przydatną do testowania GLP. W tej części pokazujemy jak
zastosować ją w praktyce. Opisujemy w jaki sposób sprawdzać czy wygenerowane ciągi odpo-
wiadają prawdziwie losowym realizacjom błądzenia przypadkowego. Przedstawiona tu metoda
wykorzystująca prawo iterowanego logarytmu pochodzi z pracy [10]. Dodatkowo proponujemy
podobną metodę opartą o prawo arcusa sinusa. W wykonywanych obliczeniach często polegamy
na aproksymacjach, dlatego w ostatnim paragrafie tej części analizujemy wielkość popełnianego
błędu.

3.1 Opis metody

Ogólna idea testów, które omawiamy w tej części pracy, nie jest skomplikowana. Metoda polega
na obliczeniu pewnych charakterystyk ciągów wygenerowanych przez GLP i porównaniu ich
empirycznych rozkładów z rozkładami, które są znane dla idealnego ciągu losowych bitów.

Przykładowo, w części poświęconej prawu arcusa sinusa uzasadniliśmy, że bardziej prawdo-
podobna jest długa przewaga liczby jedynek nad liczbą zer niż równomierny rozkład prowadze-
nia. Jeśli generator sztucznie wyrównuje częstość zer i jedynek, to zauważymy odstępstwa od
tej reguły. Zgodność z prawem arucsa sinusa sprawdzają testy oparte o zdefiniowaną poniżej
charakterystykę Sasinn .

Podobnie ktoś mógłby pomyśleć, że czymś pozytywnym byłyby niewielkie różnice między
liczbą jedynek i zer w ciągu bitów otrzymanym z GLP. Moglibyśmy zdecydować się na jakąś
„rozsądną” stałą, powiedzmy 100, i uznać, że generator jest dobry jeśli różnica liczby zer i
jedynek w ciągu nie przekroczy 100. Wszak duże różnice mogłyby sugerować, że mamy różne
prawdopodobieństwa wystąpienia zer i jedynek. Jednak prawo iterowanego logarytmu pokazuje,
że to rozumowanie jest błędne. Należy spodziewać się fluktuacji i odstępstw od zera, a ich brak
oznacza, że GLP nie generuje idealnego ciągu losowych bitów. Tę obserwację wykorzystują testy
oparte o charakterystykę Sliln .

27
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3.1.1 Test arcusa sinusa

Niech
Dk = 1 (Sk > 0 ∨ Sk−1 > 0) , k = 1, 2, . . . , n. (3.1)

Zmienna Dk przyjmuje wartość 1, gdy w k-tym kroku błądzenia przypadkowego zachodzi prze-
waga liczby jedynek nad zerami (traktując remisy tak jak w paragrafie 1.2), zaś 0 w przeciwnym
przypadku. Zdefiniujmy charakterystykę Sasinn wzorem

Sasinn =
1
n

n∑
k=1

Dk. (3.2)

Zatem Sasinn jest to frakcja czasu podczas której jedynki dominowały nad zerami. Wiemy z
paragrafu 1.2, że

P
(
Sasinn =

k

n

)
= pk,n,

zaś korzystając z prawa arcusa sinusa

P
(
Sasinn ∈ (a, b)

)
≈
∫ b

a

dt√
t(1− t)

=
2
π

arcsin(
√
b)− 2

π
arcsin(

√
a).

(3.3)

W celu przetestowania GLP generujemy przy jego użyciu m ciągów zerojedynkowych długo-
ści n. Otrzymujemy w ten sposób m realizacji zmiennej Sasinn , j-tą replikację oznaczamy Sasinn,j .
Ustalamy partycję prostej rzeczywistej i dla każdego odcinka w tej partycji zliczamy ile realizacji
Sasinn do niego wpadło.

W testach opartych o wielkość Sasinn korzystamy z (s + 2)-elementowej partycji postaci
Pasins = {P asin0 , P asin1 , . . . , P asins+1 }, gdzie

P asin0 =
(
−∞,− 1

2s

)
,

P asini =
[

2i− 3
2s

,
2i− 1

2s

)
, 1 ¬ i ¬ s,

P asins+1 =
[
1− 1

2s
,∞
)
.

Możemy teraz zdefiniować dwie miary określone na partycji Pasins . Pierwsza z nich, µasinn ,
reprezentuje teoretyczny rozkład rozważanej charakterystyki:

µasinn

(
P asini

)
= P

(
Sasinn ∈ P asini

)
, 0 ¬ i ¬ s+ 1. (3.4)

Powyższą wartość możemy wyliczyć ze wzoru (3.3).
Druga miara, νasinn , reprezentuje rozkład empiryczny, wyznaczony w testach. Określamy

νasinn

(
P asini

)
=
|{j : Sasinn,j ∈ P asini , 1 ¬ j ¬ m}|

m
, 0 ¬ i ¬ s+ 1. (3.5)
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Jeżeli testowany GLP jest dobry, to obie miary powinny być „mniej więcej takie same”. Ści-
ślej, odległość między otrzymanymi miarami powinna być mała. Korzystamy ze znanych funkcji
odległości total variation distance oraz separation distance. Są one zdefiniowane następująco dla
dowolnych miar µ oraz ν:

dtv(µ, ν) = sup
A⊆R
|µ(A)− ν(A)|, (3.6)

dsep(µ, ν) = sup
A⊆R

(
1− µ(A)

ν(A)

)
(3.7)

Ponieważ nie jesteśmy w stanie wyznaczyć supremum na całej prostej, skorzystamy z nieco
uproszczonych definicji. Dla partycji P prostej rzeczywistej, definiujemy:

dtvP (µ, ν) =
1
2

∑
A∈P
|µ(A)− ν(A)| =

∑
A∈P,

µ(A)>ν(A)

(
µ(A)− ν(A)

)
(3.8)

dsepP (µ, ν) = max
A∈P

(
1− µ(A)

ν(A)

)
(3.9)

Inne podejście polega na testowaniu hipotezy o zgodności rozkładów. Korzystając z ter-
minologii statystycznej wielkości Sasinn,j będziemy nazywać obserwacjami. Hipotezą zerową jest
stwierdzenie, że obserwacje mają rozkład µasinn , czyli de facto, że GLP generuje idealny ciąg
losowych bitów. Niech Oi oznacza liczbę obserwacji wpadających do przedziału P asini , tzn.

Oi = |{j : Sliln,j ∈ P asini , 1 ¬ j ¬ m}|, 0 ¬ i ¬ s+ 1, (3.10)

oraz Ei oznacza oczekiwaną liczbę obserwacji wpadających do tego przedziału, czyli

Ei = m · P
(
Sasinn ∈ P asini

)
, 0 ¬ i ¬ s+ 1. (3.11)

Wartość Ei obliczamy ze wzoru (3.3). Przy hipotezie zerowej statystyka

T =
s+1∑
i=0

(Oi − Ei)2

Ei
(3.12)

ma w przybliżeniu rozkład χ2(s+ 1). Duże wartości tej statystyki są dowodem wadliwości GLP.

3.1.2 Test iterowanego logarytmu

Przyjrzyjmy się teraz metodzie zastosowanej w [10]. Jest ona podobna do metody opisanej w
poprzednim paragrafie. Liczymy jedynie inną charakterystykę ciągów i dostosowujemy partycję
prostej. Przypomnijmy oznaczenie

Sliln =
Sn√

2n log logn
. (3.13)
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Można łatwo znaleźć teoretyczny rozkład tej charakterystyki (tzn. rozkład dla idealnego ciągu
losowych bitów). Istotnie, korzystając z centralnego twierdzenia granicznego dostajemy

P
(
Sliln ∈ (a, b)

)
= P

(
Sn√
n
∈
(
a
√

2 log log n, b
√

2 log log n
))

≈ Φ(b
√

2 log log n)− Φ(a
√

2 log log n)
(3.14)

Jako, że Sliln przyjmuje swoje wartości w szerszym przedziale niż Sasinn , dlatego korzystamy z
innej partycji prostej, mianowicie P lils = {P lil0 , P lil1 , . . . , P lils+1}, gdzie

P lil0 = (−∞,−1),

P lili =
[
−1 +

2(i− 1)
s

,−1 +
2i
s

)
, 1 ¬ i ¬ s,

P lils+1 = [1,∞).

Teoretyczny i empiryczny rozkład określamy w tym przypadku następująco:

µliln

(
P lili

)
= P

(
Sliln ∈ P lili

)
, 0 ¬ i ¬ s+ 1, (3.15)

νliln

(
P lili

)
=
|{j : Sliln,j ∈ P lili , 1 ¬ j ¬ m}|

m
, 0 ¬ i ¬ s+ 1, (3.16)

przy czym wartość (3.15) znamy dzięki (3.14), zaś Sliln,j oznacza oczywiście replikacje Sliln , obli-
czone dla kolejnych ciągów.

3.2 Analiza błędu

Omawiając test arcusa sinusa oraz test iterowanego logarytmu dokonywaliśmy w obliczeniach
pewnych przybliżeń. Wystarcza to do przekazania idei opisanych metod testowania, jednak dla
porządku należy dowieść, że wprowadzona niedokładność nie ma istotnego znaczenia. W [10]
uzasadniono, że dla n ­ 26 błąd przybliżenia w (3.14) jest pomijalny. Tutaj oszacujemy błąd
popełniany w (3.3).

W przypadku testu arcusa sinusa korzystaliśmy z aproksymacji dwukrotnie: najpierw przybli-
żając p2k,2n używając wzoru Stirlinga, a później przybliżając sumę całką. Dla analizy pierwszego
z tych przybliżeń przyda nam się następujący fakt, pochodzący z [8].

Lemat 3.1. Dla każdej liczby naturalnej n istnieje liczba θn, 0 < θn ¬ 1, taka że

n! =
√

2πn
(
n

e

)n
exp

{
θn

12n

}
.

Uzupełniając obliczenia, które wykonaliśmy, aby otrzymać (1.7) o czynnik exp
{
θn
12n

}
otrzy-

mujemy

p2k,2n =
1

π
√
k(n− k)

exp
{
θ2k − 4θk

24k
+
θ2(n−k) − 4θn−k

24(n− k)

}
(3.17)
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Oznaczmy

dk,n =
1

π
√
k(n− k)

Naszym celem jest pokazanie, że |p2k,2n − dk,n| jest małe. Z (3.17) dostajemy

p2k,2n
dk,n

¬ exp
{

1
24k

+
1

24(n− k)

}
= exp

{
n

24k(n− k)

}
oraz

p2k,2n
dk,n

­ exp
{ −4

24k
+

−4
24(n− k)

}
= exp

{
− n

6k(n− k)

}
.

Korzystając z powyższych i z nierówności ex − 1 ¬ 2x (dla x > 0 i dostatecznie małych) oraz
1− e−x ¬ x uzyskujemy

p2k,2n − dk,n ¬ dk,n
(

exp
{

n

24k(n− k)

}
− 1

)
¬ dk,n

n

12k(n− k)

oraz

dk,n − p2k,2n ¬ dk,n
(

1− exp
{
− n

6k(n− k)

})
¬ dk,n

n

6k(n− k)

co razem daje

|p2k,2n − dk,n| ¬ dk,n
n

6k(n− k)
=

n

6π (k(n− k))
3
2

.

Ustalmy δ > 0 i założymy dodatkowo, że δ ¬ k
n ¬ 1 − δ. Funkcja k 7→ (k(n− k))3/2 przyjmuje

minimalną wartość na brzegu przedziału, w którym się ją rozpatruje, dlatego

|p2k,2n − dk,n| ¬
n

6π (δn(n− δn))
3
2

=
1

6πn2 (δ(1− δ))
3
2

.

Wielkość błędu aproksymacji w (3.3) oszacujemy w dwóch etapach. Na początek weźmy takie
liczby a, b, że δ ¬ a < b ¬ 1− δ. Wtedy∣∣∣∣∣∣∣

∑
a¬ k
n
¬b

p2k,2n −
∑

a¬ k
n
¬b

dk,n

∣∣∣∣∣∣∣ ¬
∑

a¬ k
n
¬b

|p2k,2n − dk,n| ¬
∑

a¬ k
n
¬b

1

6πn2 (δ(1− δ))
3
2

=
dbn− ane

6πn2 (δ(1− δ))
3
2

¬ b− a
3πn (δ(1− δ))

3
2

¬ 1

3πn (δ(1− δ))
3
2

= (�)

Drugim źródłem niedokładności jest zastąpienie sumy przez całkę. Rozpatrzmy dowolną funkcję
f , różniczkowalną w przedziale (a, b). Podzielmy (a, b) na odcinki długości 1n i niech xk będzie
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dowolnym punktem w odcinku zawierającym k
n , aMk imk odpowiednio maksymalną i minimalną

wartością funkcji na tym odcinku. Korzystając z twierdzenia Lagrange’a dostajemy∣∣∣∣∣∣∣
∫ b

a
f(x)dx−

∑
a¬ k
n
¬b

1
n
f(xk)

∣∣∣∣∣∣∣ ¬
∑

a¬ k
n
¬b

1
n

(Mi −mi) =
∑

a¬ k
n
¬b

1
n2
|f ′(ξi)|

¬
∑

a¬ k
n
¬b

1
n2

sup
a¬x¬b

|f ′(x)| = dbn− ane
n2

sup
a¬x¬b

|f ′(x)|

¬ 2(b− a)
n

sup
a¬x¬b

|f ′(x)|.

(3.18)

W szczególności dla

f(x) =
1

π
√
x(1− x)

mamy

f ′(x) =
2x− 1

2π(x(1− x))
3
2

,

1
n
f

(
k

n

)
=

1

nπ
√

k
n(1− k

n)
=

1
π
√
k(n− k)

= dk,n

a stąd w interesującym nas przedziale∣∣∣∣∣∣∣
∫ b

a
f(x)dx−

∑
a¬ k
n
¬b

dk,n

∣∣∣∣∣∣∣ ¬
2
n

sup
δ<x<1−δ

|f ′(x)| = 1− 2δ

πn(δ(1− δ))
3
2

= (F)

W testach wykorzystamy partycję prostej Pasin40 , dlatego u nas δ = 1
80 > 0.01. Będzie ponadto

n ­ 226. Zatem

(�) ¬ 107.72
n

¬ 1.6 · 10−6

(F) ¬ 316.69
n

¬ 4.7 · 10−6

Ostatecznie∣∣∣∣∣∣∣
∫ b

a
f(x)dx−

∑
a¬ k
n
¬b

p2k,2n

∣∣∣∣∣∣∣ ¬
∣∣∣∣∣∣∣
∫ b

a
f(x)dx−

∑
a¬ k
n
¬b

dk,n

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
∑

a¬ k
n
¬b

dk,n −
∑

a¬ k
n
¬b

p2k,2n

∣∣∣∣∣∣∣
= (�) + (F) ¬ 6.3 · 10−6

co uzasadnia wzór (3.3) w przypadku δ ¬ a < b ¬ 1− δ.
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Musimy jeszcze zbadać niedokładność „na brzegu”. Mamy∣∣∣∣∣∣∣
∫ δ

0
f(x)dx−

∑
0¬ k
n
<δ

p2k,2n

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫ 1
2

0
f(x)dx−

∫ 1
2

δ
f(x)dx−

∑
0¬ k
n
¬ 12

p2k,2n +
∑

δ¬ k
n
¬ 12

p2k,2n

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1
2
−
∫ 1
2

δ
f(x)dx− 1

2
+

∑
δ¬ k
n
¬ 12

p2k,2n

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫ 1
2

δ
f(x)dx−

∑
δ¬ k
n
¬ 12

p2k,2n

∣∣∣∣∣∣∣ ¬ 6.3 · 10−6,

gdzie ostatnie przejście wynika z wcześniej przeprowadzonych rachunków. Powyższa analiza po-
kazuje, że błąd przybliżenia jest pomijalny.
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CZĘŚĆ IV

Testy

Przebrnąwszy przez długie teorie i rozważania, przechodzimy do najciekawszej części pracy, czyli
do implementacji opisanej metody testowania i sprawdzenia jej na powszechnie wykorzystywa-
nych generatorach.

4.1 Implementacja

Testy oparte o prawa arcusa sinusa i iterowanego logarytmu przedstawione w części 3 zaimple-
mentowałem w języku Julia. Napisany program stanowi równie ważną część tej pracy.

Julia jest to nowoczesny (prace nad nim rozpoczęto w roku 2009) i szybki język programo-
wania przeznaczony do obliczeń naukowych. Jest to więc narzędzie bardzo dobrze nadające się
do naszych eksperymentów.

Powstały skrypt można wykorzystać do przetestowania dowolnego generatora. Trzeba zadbać
jedynie o to, aby wyjście z GLP było przekazywane do programu testującego w odpowiednim for-
macie. Poniżej opisujemy dokładniej jak to zrobić. Jednak najpierw omówmy kilka prozaicznych
kwestii, które wpłynęły na końcową architekturę programu.

4.1.1 Uwagi praktyczne

Najwygodniejszym sposobem testowania GLP byłoby prawdopodobnie podzielenia zadania na
dwa etapy. W pierwszej kolejności użylibyśmy GLP do wygenerowania m sekwencji bitów dłu-
gości n, które zapisalibyśmy do pliku. Następnie program testujący wczytałby ten plik i wyliczył
odpowiednie statystki, rozstrzygnął czy dane są losowe, itd. Niestety nie da się zaprojektować
systemu w taki sposób, aby opisany tryb pracy był możliwy.

Powodem jest olbrzymia ilość używanych danych. W celu przetestowania większości GLP
wykorzystujemy je do wygenerowania m = 10000 ciągów bitów długości n = 234. Rodzi to nie-
bagatelne problemy implementacyjne. Pojedynczy ciąg ma rozmiar 2GB, więc w pamięci prze-
ciętnego komputera nie zmieści się ich nawet kilka. Wymusza to przetwarzanie ciągów jednego
po drugim – po obliczeniu statystyk dla jednego ciągu należy natychmiast zwolnić pamięć dla
kolejnego. Większym problemem jest jednak fakt, że dane zajmują łącznie 20TB, więc zapisanie

35
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ich do pliku jest możliwe na mało której maszynie – co uzasadnia dlaczego pomysł przedstawiony
w poprzednim akapicie jest niewykonalny.

Jedyną możliwością jest postępowanie w taki sposób, by GLP i skrypt funkcjonowały naprze-
miennie. GLP generuje sekwencję bitów, program testujący ją analizuje, po czym pamięć zostaje
zwolniona i możemy powtórzyć procedurę. Na szczęście istnieje prosty środek pozwalający zor-
ganizować obliczenia w ten sposób. Mowa tu o uniksowym mechanizmie potoku. Wystarczy
wyniki z GLP przekazywać na standardowe wyjście, które będzie połączone ze standardowym
wejściem programu testującego. System operacyjny sam zadba o to, żeby oba procesy działały
na zmianę.

Kolejną istotną kwestią jest tryb zapisu danych do strumienia wejścia-wyjścia. Zwróćmy
uwagę, że gdybyśmy przekazywali dane w trybie tekstowym, to przekazywany łańcuch znaków
zajmowałby 8 razy więcej miejsca niż jest to potrzebne – każdy bit byłby reprezentowany jako
jednobajtowy znak ’0’ lub ’1’. Byłoby to fatalne podejście, gdyż, po pierwsze, prawdopodobnie
nie starczyłoby pamięci do zapisania całego ciągu. Po drugie, nawet gdyby pamięci było wystar-
czająco, to zapisywanie i wczytywanie tych danych do i ze strumienia kilkukrotnie wydłużyłoby
(i tak bardzo długi) czas pracy programu. Dlatego dane przekazujemy w trybie binarnym.

Ostatnią rzeczą, na którą warto zwrócić uwagę, jest opłacalność oddzielenia obliczania cha-
rakterystyk ciągów (Sasinn lub Sliln ) od ich porównywania z teoretycznym rozkładem. Lepiej jest
zapisywać wartości charakterystyk do pliku, a następnie oddzielnym skryptem badać zgodność
z oczekiwanym rozkładem. Dzięki takiemu podejściu można uruchomić instancje generatora na
wielu maszynach (zadbawszy o to by korzystały one z innych ziaren). Po zakończeniu obliczeń
łatwo jest scalić wyniki i wyznaczyć sumaryczne statystyki.

4.1.2 Użycie programu

Uruchomienie. Załóżmy, że dysponujemy programem gen.bin generującym sekwencje pseu-
dolosowych bitów. Powiedzmy, że przyjmuje on z linii poleceń dwa argumenty oznaczające liczbę
i logarytm długości generowanych ciągów. Opiszemy jak przetestować ten generator.

Z perspektywy użytkownika najważniejsze jest, że punkt startowy programu testującego
jest w pliku Tester.jl. Program wczytuje ze standardowego wejścia strumień bitów. Do pliku
podanego w linii poleceń zapisuje wyniki swoich obliczeń, tj. wartości Sasinn lub Sliln . Po zakoń-
czeniu działania używamy skryptu ResultReader.jl do wyznaczenia rozkładów empirycznych
ze wzorów (3.5) i (3.16). Skrypt następnie wyliczy odległości dtv i dsep oraz p-wartości testu
zgodności χ2.

Skrypt Tester.jl przyjmuje z linii poleceń następujące argumenty:

• testType – słowo asin lub lil oznaczające którą z charakterystyk Sasinn i Sliln obliczamy,

• nrOfCheckPoints – Dla ciągów długości n do pliku wynikowego zapisujemy nie tylko S•n,
ale również S•n/2, S

•
n/4, itd. nrOfCheckPoints to liczba tych wartości.

• pathToFile – nazwa pliku do którego zapisujemy wyniki.

Podobne argumenty ma skrypt ResultReader.jl:
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• testType – słowo asin lub lil mówiące, z którą teoretyczną miarą należy porównywać
wyniki,

• logLength – liczba naturalna oznaczająca logarytm długości ciągów wykorzystanych do
otrzymania podanych wyników,

• pathToFile – nazwa pliku z którego odczytujemy wyniki.

Wróćmy do generatora gen.bin. Możemy go przetestować wywołując z konsoli przykładowo
$ ./gen.bin 1000 25 | julia Main.jl asin 5 wyniki.csv

W ten sposób testujemy generator gen.bin na podstawie 1000 ciągów zawierających 225 bitów
przy użyciu charakterystyki Sasinn . Wyniki znajdą się w pliku wyniki.csv. Po zakończeniu ob-
liczeń możemy je zinterpretować poleceniem
$ julia ResultReader.jl asin 25 wyniki.csv

Podobnie można przetestować dowolny inny generator, pamiętając, że jego wyjście musi być
zapisane zgodnie z formatem opisanym poniżej.

Testowanie własnych GLP. Z punktu widzenia osoby, która chce wykorzystać program do
sprawdzenia swojego GLP ważne jest co dokładnie ma się znaleźć w strumieniu wejściowym
programu testującego. Format jest prosty:

• Pierwsze 8 bajtów strumienia zawiera 64-bitową wartość typu integer oznaczającą liczbę
ciągów bitów.

• Kolejne 8 bajtów zawiera 64-bitową wartość typu integer oznaczającą długość pojedyn-
czego ciągu.

• Dalej następuje m ·n bitów danych, przy czym każde kolejne n bitów traktowane jest jako
jeden ciąg używany w testach.

Uwaga. Nie ma żadnych „specjalnych” bitów oznaczających przerwy między ciągami, ani nicze-
go podobnego. Po wczytaniu n bitów jednego ciągu, kolejny bit jest uważany za pierwszy bit
następnego ciągu.

4.2 Wyniki

Przyjrzyjmy się wynikom testowania kilku znanych GLP. Każdy z nich testowany był przy użyciu
m = 10000 ciągów. Długością używanej sekwencji było w większości przypadków n = 234.

Wartości Sasin• lub Slil• obliczone zostały nie tylko dla całych ciągów, ale także dla podciągów
długości n/2, n/4, itd. Pozwala to obserwować zgodność z pożądaną miarą na różnych etapach.
Do badania zgodności użyto partycji P lil40 dla testów korzystających z charakterystyki Sliln i
partycji Pasin40 dla testów korzystających z charakterystyki Sasinn .

Do testów wykorzystano własne implementacje rozpatrywanych GLP (za wyjątkiem MT19937).
Program wywołujący GLP korzystał losowych ziaren pobranych ze strony www.random.org.
Przed wygenerowaniem każdej kolejnej sekwencji bitów ustawiano nowe ziarno generatora.

Podkreślmy, że otrzymanie poniższych wyników nie było błahostką. Przetestowanie jednego
GLP na 10 komputerach w pracowni Instytutu Informatyki zajmowało około półtorej doby.
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4.2.1 RANDU

Na rozgrzewkę rozpoczynamy od generatora, który od dawna nie jest w użyciu. RANDU powstał
na początku lat 60. Wspominaliśmy już o nim w paragrafie 2.3, dając go jako przykład generatora
fatalnie oblewającego test spektralny.

RANDU jest to po prostu MCG(231, 65539). Wybór liczby 65539 wydawał się dobry, gdyż
65539 = 216 + 3, co umożliwiało szybkie, sprzętowe wykonanie mnożenia.

Rezultaty testowania RANDU przedstawione są w Tabelach 4.1 i 4.2. Pierwszy wiersz w
tabelach oznacza długości podciągów. Dla podciągu długości nk została obliczona teoretyczna
miara µnk według wzoru (3.4) lub (3.15) oraz empiryczna miara νk według wzoru (3.5) lub (3.16).
Każda kolumna zawiera wartości dtv(µnk , νnk), d

sep(µnk , νnk), d
sep(νnk , µnk) oraz p-wartość sta-

tystyki (3.12). Dla wszystkich GLP tabele z wynikami sporządzono w analogiczny
sposób.

Tabela 4.1: Wyniki testu arcusa sinusa dla generatora RANDU.
n 221 222 223 224 225 226

tv 0.4604 0.4616 0.4637 0.4670 0.4695 0.4697
sep1 0.6017 0.6646 0.6229 0.6138 0.5934 0.6453
sep2 0.8659 0.8662 0.8667 0.8675 0.8681 0.8682
p-val 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Tabela 4.2: Wyniki testu iterowanego logarytmu dla generatora RANDU.
n 221 222 223 224 225 226

tv 0.4955 0.496 0.4965 0.4969 0.4973 0.4977
sep1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
sep2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
p-val 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Jak widać nie trzeba bardzo długich ciągów, aby przekonać się, że wyjścia RANDU nie można
uznać za losowe. Nie bez przyczyny został on szybko wyparty przez lepsze generatory.

4.2.2 Biblioteczny rand w Microsoft Visual C++

Funkcja rand w Microsoft Visual C++ opiera się o LCG(232, 214013, 2531011). Od zwykłego
LCG różni się jednak tym, że zwracane są jedynie bity na pozycjach 30..16.

Jest to jeden z generatorów testowanych w [10]. Podobnie jak autorzy tej pracy odrzucamy
najmniej istotne 7 bitów liczb zwracanych przez funkcję rand (czyli używamy tylko bitów 30..23
liczby otrzymanej z LCG). Wyniki testów zestawiono w Tabelach 4.3 i 4.4.

Pamiętajmy, że okresem tego LCG jest 231, a z jednego wywołania otrzymujemy 8 = 23 bitów.
Oznacza to, że aby dostać ciąg bitów długości 234 przechodzimy przez pełen cykl generatora.
Musieliśmy więc każdy układ 8 bitów wygenerować tyle samo razy, skąd wniosek, że po 234

krokach błądzenie losowe zawsze wracało do zera. Widać to wyraźnie w wynikach testowania
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Tabela 4.3: Wyniki testu arcusa sinusa dla generatora w Visual C++.
n 226 227 228 229 230 231 232 233 234

tv 0.0289 0.0387 0.0615 0.0768 0.0848 0.0928 0.0965 0.1870 0.2093
sep1 0.2030 0.1548 0.1952 0.2605 0.3664 0.4210 0.5528 0.6533 0.8163
sep2 0.1780 0.2260 0.2524 0.2364 0.2841 0.3160 0.4336 0.6112 0.4328
p-val 0.0128 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Tabela 4.4: Wyniki testu iterowanego logarytmu dla generatora w Visual C++.
n 226 227 228 229 230 231 232 233 234

tv 0.0350 0.0512 0.0938 0.1234 0.1672 0.2423 0.3100 0.4991 0.9500
sep1 0.2831 0.7419 0.9731 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
sep2 0.2670 0.1416 0.2635 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
p-val 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

charakterystyką Sliln . Dla n = 234 wszystkie obserwacje wpadają do przedziału [0, 0.05). Jego
teoretyczna miara wynosi ∼ 0.05, a stąd dtv(µliln , ν

lil
n ) ≈ 0.95.

Ktoś złośliwy mógłby powiedzieć, że w bardzo złożony sposób udowodniliśmy oczywisty fakt,
że generatory o krótkich okresach nie nadają się do generowania dużych ilości liczb pseudoloso-
wych. Zauważmy jednak, że analizowany generator ma problemy już przy n = 226, a do wyge-
nerowania błądzenia tej długości potrzeba tylko 223/231 = 1/28 ≈ 0.4% całego okresu. Trudno
jest więc ocenić ten generator dobrze, nawet w kategorii generatorów o krótkich okresach.

Co zaskakujące, NIST Test Suite uznaje ten generator za poprawny, jak zauważyli
autorzy [10].

4.2.3 Biblioteczny rand w Borland C/C++

Funkcja rand w środowisku Borland jest implementacją LCG(232, 22695477, 1), która, podobnie
jak rand w Visual C++, zwraca jedynie bity 30..16.

Postępując tak jak w poprzednim przykładzie bierzemy do testów tylko 8 najistotniejszych
bitów zwróconej liczby.

Tabela 4.5: Wyniki testu arcusa sinusa dla generatora w Borland C/C++.
n 226 227 228 229 230 231 232 233 234

tv 0.0384 0.0502 0.0697 0.0861 0.1394 0.1562 0.1231 0.1466 0.2148
sep1 0.1293 0.1840 0.2513 0.3733 0.5485 0.5149 0.5696 0.6873 0.8219
sep2 0.2024 0.2120 0.2096 0.3137 0.3702 0.3730 0.3799 0.5167 0.4009
p-val 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Wyniki przedstawione są w Tabelach 4.5 i 4.6. Są one bardzo podobne do wyników generatora
z Visual C++ i tyczą się ich te same uwagi.
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Tabela 4.6: Wyniki testu iterowanego logarytmu dla generatora w Borland C/C++.
n 226 227 228 229 230 231 232 233 234

tv 0.0684 0.1002 0.1395 0.1940 0.3187 0.4136 0.4685 0.5911 0.9500
sep1 0.6752 0.7357 0.9193 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
sep2 0.1610 0.2565 0.2978 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
p-val 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4.2.4 Biblioteczny rand w BSD libc

Funkcja rand z biblioteki systemu BSD używała kiedyś implementacji LCG(231, 1103515245, 12345)
i w przeciwieństwie do dwóch poprzednich generatorów zwraca wszystkie bity generowanych liczb
– i do tego testu użyliśmy ich wszystkich. Tabele 4.7 i 4.8 obrazują dlaczego generator zmieniono.

Tabela 4.7: Wyniki testu arcusa sinusa dla starego generatora z BSD libc.
n 221 222 223 224 225 226

tv 0.0883 0.0980 0.0862 0.0951 0.0936 0.1081
sep1 0.3402 0.3979 0.4111 0.4980 0.4346 0.4751
sep2 0.3634 0.4198 0.3053 0.2805 0.3424 0.4070
p-val 0.1829 0.0326 0.1874 0.1767 0.1181 0.0051

Tabela 4.8: Wyniki testu iterowanego logarytmu dla starego generatora z BSD libc.
n 221 222 223 224 225 226

tv 0.1956 0.2191 0.2472 0.2539 0.2464 0.2707
sep1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
sep2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
p-val 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Wystarczają stosunkowo krótkie ciągi, by zobaczyć, że wyjście funkcji rand z BSD nie jest
losowe. Przyczyną tak złych wyników jest fakt, że to LCG wykonuje obliczenia modulo 231.
Fakt 2.2 mówi, że w takiej sytuacji okres d najmniej znaczących bitów wynosi 2d. W efekcie
liczba zer i jedynek jest zbyt wyrównana co łatwo wyłapują testy oparte o własności błądze-
nia przypadkowego. Trzeba jednak przyznać, że charakterystyka Sliln pokazuje to zdecydowanie
wyraźniej.

4.2.5 Biblioteczny rand w GLIBC

Funkcja rand z GNU C Library korzysta z bardziej skomplikowanego generatora od testowanych
do tej pory. Jego stan opisany jest przez 34 liczby xi, xi+1, . . . , xi+33. Generator inicjowany jest
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ziarnem s, 0 ¬ s ¬ 231, zaś początkowym stanem jest

x0 = s

xi = 16807xi−1 mod (231 − 1), gdy 0 < i < 31

xi = x31−i, gdy i ∈ {31, 32, 33}.

Kolejne wartości xi wyznaczane są ze wzoru

xi = (xi−3 + xi−31) mod 232.

Przy k-tym wywołaniu generator zwraca xk+343 � 1.

Tabela 4.9: Wyniki testu arcusa sinusa dla standardowego generatora w GCC.
n 226 227 228 229 230 231 232 233 234

tv 0.0287 0.0217 0.0264 0.0228 0.0202 0.0289 0.0237 0.0254 0.0230
sep1 0.1157 0.1249 0.1629 0.1186 0.1661 0.1717 0.1306 0.1316 0.1405
sep2 0.1754 0.1909 0.1436 0.1869 0.1110 0.1344 0.1786 0.1262 0.1879
p-val 0.0649 0.5511 0.2565 0.4887 0.7967 0.1115 0.5880 0.2599 0.3930

Tabela 4.10: Wyniki testu iterowanego logarytmu dla standardowego generatora w GCC.
n 226 227 228 229 230 231 232 233 234

tv 0.0185 0.0243 0.0242 0.0244 0.0210 0.0220 0.0330 0.0237 0.0221
sep1 0.2593 0.1640 0.1844 0.2573 0.2010 0.1853 0.2882 0.4129 0.2563
sep2 0.0807 0.2133 0.2299 0.2060 0.1839 0.2361 0.3456 0.2078 0.1405
p-val 0.9627 0.4878 0.5225 0.3022 0.6978 0.5382 0.0009 0.4903 0.7901

Do testów brane były wszystkie 31 bitów zwracanych przez GLP. Na podstawie wyników
zebranych w Tabelach 4.9 i 4.10 można stwierdzić, że test arcusa sinusa nie daje podstaw do
odrzucania hipotezy o losowości sekwencji generowanych przez analizowany GLP. W przypadku
testu iterowanego logarytmu, rezultaty dla n = 234 i n = 233 również sugerowałyby, że GLP
jest dobry. Jednakże dla n = 232 obserwujemy coś dziwnego, mamy bardzo niską p-wartość
wynoszącą około 1/1000. Może to być kwestia przypadku – z prawdopodobieństwem 1/1000
zdarzyłoby się to nawet generatorowi liczb prawdziwie losowych. Popatrzmy jednak na p-wartości
dla dziesięciu 1000-elementowych podzbiorów danych. Wynoszą one: 0.9313, 0.0949, 0.8859,
0.1739, 0.3675, 0.0334, 0.0321, 0.1824, 0.0017, 0.6205. Zauważmy, że aż 4 p-wartości są mniejsze
niż 0.1. W przypadku ciągów prawdziwie losowych zdarzenie, że 4 lub więcej otrzymanych p-
wartości znajdzie się w tym przedziale wynosi

1−
3∑
i=0

(
10
i

)(
1
10

)i (
1− 1

10

)10−i
≈ 0.0016

To przemawia za tym, by generator z GLIBC również uznać za podejrzany. Jednak mimo tego
jest to wyraźnie najlepsza implementacja funkcji rand.
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4.2.6 Minstd

Minstd (skrót od ang. minimal standard generator) jest to MCG z parametrami zasugerowanymi
przez Parka i Millera. Ich celem było zaprojektowanie prostego generatora, który wprawdzie
nie byłby doskonały, ale za to szybki, prosty w implementacji i nadający się do większości
niespecjalistycznych zastosowań. W efekcie zaproponowali MCG(231−1, 16807). Do generowania
ciągów zerojedynkowych użyto ośmiu najbardziej znaczących bitów zwracanych przez GLP.
Rezultaty testów pokazują Tabele 4.11 i 4.12.

Tabela 4.11: Wyniki testu arcusa sinusa dla generatora Minstd z mnożnikiem 16807.
n 226 227 228 229 230 231 232 233 234

tv 0.0321 0.0321 0.0402 0.0725 0.0917 0.1116 0.1648 0.2003 0.2109
sep1 0.1172 0.1686 0.1407 0.2985 0.2880 0.6670 0.5203 0.7345 0.8486
sep2 0.1302 0.1490 0.2420 0.3986 0.4051 0.3735 0.3822 0.5352 0.3894
p-val 0.0360 0.0203 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Tabela 4.12: Wyniki testu iterowanego logarytmu dla generatora Minstd z mnożnikiem 16807.
n 226 227 228 229 230 231 232 233 234

tv 0.0370 0.0622 0.0823 0.1120 0.1877 0.2002 0.3538 0.3194 0.9500
sep1 0.5035 0.5465 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
sep2 0.1444 0.2366 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
p-val 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Kilka lat później później Park i Miller zasugerowali, że lepiej używać mnożnika 48271. Czy
zmiana mnożnika poprawiła wyniki testów widać w Tabelach 4.13 i 4.14.

Tabela 4.13: Wyniki testu arcusa sinusa dla generatora Minstd z mnożnikiem 48271.
n 226 227 228 229 230 231 232 233 234

tv 0.0318 0.0430 0.0477 0.0982 0.1303 0.0918 0.0848 0.1131 0.2089
sep1 0.1607 0.1467 0.1901 0.3803 0.4280 0.3845 0.4583 0.3975 0.8079
sep2 0.1828 0.1719 0.2120 0.2548 0.3449 0.3179 0.3192 0.3186 0.4579
p-val 0.0115 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Tabela 4.14: Wyniki testu iterowanego logarytmu dla generatora Minstd z mnożnikiem 48271.
n 226 227 228 229 230 231 232 233 234

tv 0.0372 0.0563 0.0590 0.2573 0.2879 0.3408 0.3167 0.3434 0.9500
sep1 0.3298 0.4839 0.9328 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
sep2 0.3843 0.1850 0.2207 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
p-val 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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W przypadku test arcusa sinusa odległość total variation poprawiła się po zmianie mnożnika.
Jednak w teście iterowanego logarytmu wyszło dokładnie odwrotnie, trudno jest więc powiedzieć
czy zmiana mnożnika wniosła istotną poprawę. W każdym razie test χ2 w obu przypadkach
pokazuje, że Minstd to nie jest dobry generator.

Mimo swoich niedoskonałości Minstd wszedł w zakres biblioteki standardowej C++11. Im-
plementacjami są klasy std::minstd rand0 (z mnożnikiem 16807) oraz std::minstd rand (z
mnożnikiem 48271).

4.2.7 CMRG

CMRG (od ang. combined multiple recursive generator) jest jednym z generatorów mieszanych,
omawianych w paragrafie 2.1. Zwraca on liczby Zn wyznaczone według wzoru

Zn = Xn − Yn mod 231 − 1

Xn = 63308Xn−2 − 183326Xn−3 mod 231 − 1

Yn = 86098Yn−1 − 539608Yn−3 mod 231 − 2000169

(4.1)

Do testów braliśmy bity 15..8 zmiennej Zn. Tabele 4.15 i 4.16 przedstawiają ich wyniki.

Tabela 4.15: Wyniki testu arcusa sinusa dla generatora CMRG.
n 226 227 228 229 230 231 232 233 234

tv 0.0191 0.0234 0.0235 0.0239 0.0232 0.0228 0.0218 0.0268 0.0272
sep1 0.1135 0.2090 0.1187 0.1450 0.1607 0.1191 0.1232 0.1592 0.2084
sep2 0.1402 0.0900 0.1084 0.1477 0.1934 0.1666 0.0931 0.1353 0.1158
p-val 0.9752 0.4101 0.8062 0.7402 0.4043 0.6841 0.9821 0.2394 0.1343

Tabela 4.16: Wyniki testu iterowanego logarytmu dla CMRG.
n 226 227 228 229 230 231 232 233 234

tv 0.0218 0.0241 0.0272 0.0203 0.0231 0.0251 0.0330 0.0233 0.0234
sep1 0.2336 0.3273 0.1803 0.2551 0.3085 0.1690 0.3146 0.3310 0.2829
sep2 0.3450 0.2105 0.1234 0.1032 0.1901 0.1658 0.2302 0.2486 0.1761
p-val 0.6046 0.2689 0.2030 0.8653 0.4581 0.3966 0.0128 0.4106 0.6803

Na pierwszy rzut oka widać, że mamy tu do czynienia z generatorem o dłuższym okresie.
Wyniki nie dają żadnych podstaw do odrzucenia hipotezy o losowości ciągów bitów. Trzeba
tu jednak odnotować, że w [5] przedstawiono silne dowody, że wyjście tego generatora nie jest
dobre.

4.2.8 Mersenne Twister

Generator Mersenne Twister został przetestowany przy użyciu implementacji dostępnej w ję-
zyku C++11. Wykorzystana została wersja 64-bitowa (czyli klasa std::mt19937 64). Jest ona
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nieznaczną modyfikacją 32-bitowej wersji opisanej w paragrafie 2.1, dostosowaną do maszyn
operujących na 8-bajtowych słowach. Do testów użyto wszystkie 64-bity zwracana przy jedno-
krotnym wywołaniu generatora.

Tabela 4.17: Wyniki testu arcusa sinusa dla generatora MT19967-64.
n 226 227 228 229 230 231 232 233 234

tv 0.0271 0.0245 0.0226 0.0281 0.0276 0.0228 0.0271 0.0230 0.0255
sep1 0.1421 0.1606 0.1167 0.1824 0.1938 0.1571 0.1760 0.1397 0.1573
sep2 0.1133 0.1195 0.1056 0.1399 0.1256 0.1287 0.1391 0.0994 0.1444
p-val 0.2755 0.6823 0.8804 0.0801 0.1267 0.7343 0.1094 0.7596 0.2029

Tabela 4.18: Wyniki testu iterowanego logarytmu dla generatora MT19967-64.
n 226 227 228 229 230 231 232 233 234

tv 0.0254 0.0264 0.0238 0.0234 0.0266 0.0265 0.0290 0.0299 0.0215
sep1 0.1853 0.2147 0.1689 0.3093 0.1887 0.2015 0.2877 0.2318 0.1953
sep2 0.2841 0.1696 0.1917 0.1282 0.2017 0.2492 0.1842 0.1541 0.1716
p-val 0.2483 0.3690 0.5965 0.5066 0.2196 0.1495 0.0499 0.0189 0.8170

Wyniki zgromadzone w Tabelach 4.17 i 4.18 pokazują, że nie bez powodu Mersenne Twi-
ster jest najpopularniejszym generatorem. Wyniki nie dają powodów do podejrzeń, że wyjście
generatora nie jest losowe.

4.2.9 Hipotetyczny, wadliwy generator

Przedstawiając NIST Test Suite w paragrafie 2.3 wspomnieliśmy o pewnej jego wadzie, tkwiącej
nieodłącznie w zastosowanym podejściu. Ten zestaw testowy skupia się jedynie na jakości po-
szczególnych sekwencji bitów otrzymanych z GLP, nie ocenia natomiast jakości zbioru wszystkich
ciągów „jako całości”. Moglibyśmy mieć do czynienia z generatorem, który zazwyczaj generu-
je sekwencje doskonale imitujące idealny ciąg losowych bitów, ale z jakiegoś powodu, np. dla
niektórych wartości ziaren, produkuje wyjście ewidentnie nielosowe. Ten wadliwy ciąg zapew-
ne został by rozpoznany przez NIST Test Suite jako nielosowy, jednak nie przeważyłoby to do
uznania całego generatora za zły.

Żeby sprawdzić jak z taką sytuacją mogą radzić sobie testy iterowanego logarytmu i arcusa
sinusa, przyjrzyjmy się następującemu eksperymentowi. Wykorzystamy generator, który

• dla co setnego ziarna będzie produkował ciąg opisany wyrażeniem regularnym 10(0110)∗01,

• w pozostałych przypadkach zwraca wyjście generatora MT19997-64.

Rezultaty zebrane są w Tabelach 4.19 i 4.20.
Od razu widać, że test arcusa sinusa jednoznacznie nakazuje odrzucić hipotezę o losowości

bitów generowanych przez GLP.
Dlaczego w tym wypadku test iterowanego logarytmu się nie sprawdził? Błądzenie (zdecy-

dowanie nieprzypadkowe) opisane wyrażeniem 10(0110)∗01 oscyluje wokół osi OX jak sinusoida.
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Tabela 4.19: Wyniki testu arcusa sinusa dla opisanego generatora.
n 220 221 222 223 224 225 226 227 228

tv 0.0326 0.0241 0.0281 0.0285 0.0298 0.0339 0.0298 0.0285 0.0276
sep1 0.1466 0.1754 0.1529 0.1124 0.1249 0.1752 0.1594 0.1666 0.1257
sep2 0.3255 0.334 0.345 0.4212 0.3608 0.3582 0.3556 0.3925 0.3901
p-val 0.0000 0.0031 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Tabela 4.20: Wyniki testu iterowanego logarytmu dla opisanego generatora.
n 220 221 222 223 224 225 226 227 228

tv 0.0239 0.0303 0.0255 0.0269 0.0241 0.0280 0.0248 0.0294 0.0229
sep1 0.1929 0.2834 0.1541 0.2018 0.2327 0.1586 0.1631 0.2654 0.1689
sep2 0.1625 0.1517 0.1663 0.1469 0.1381 0.1648 0.2106 0.1667 0.1815
p-val 0.4073 0.0199 0.2584 0.1250 0.5742 0.1250 0.2703 0.0436 0.5789

Oznacza to, że frakcja czasu przewagi liczby jedynek nad liczbą zer jest równa dokładnie 12 .
Dzięki temu wartość charakterystyki Sasinn wpada do najmniej prawdopodobnego przedziału w
partycji Pasin w prawie 0.01m przypadkach częściej niż dla dobrego generatora. Wystarcza to by
wartość statystyki (3.12) bardzo urosła. Tymczasem charakterystyka Sliln przyjmuje dla ciągu
10(0110)∗01 wartość zero, a tym samym wpada do najbardziej prawdopodobnego przedziału.
Dlatego testowi χ2 trudniej jest to wykryć.

Gdybyśmy jednak w powyższym eksperymencie wykorzystali m = 100000 ciągów, to również
test iterowanego logarytmu zauważyłby zbyt duże odstępstwo. Wypływa stąd wniosek, że w celu
wykrywania tego rodzaju wad generatorów lepiej postawić na liczbę ciągów, a nie na ich długość.
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4.3 Podsumowanie

Przedstawiliśmy stosunkowo nowatorską metodę testowania GLP. Od standardowych metod
różni się tym, że wyjście GLP traktuje jak ciąg bitów, a nie jako ciąg liczb. Daje to szerokie pole
do wymyślania testów opartych o błądzenie przypadkowe.

Wyniki z poprzedniego paragrafu pokazują, że testy arcusa sinusa oraz iterowanego loga-
rytmu dobrze wykrywają regularności w generatorach opartych na kongruencjach liniowych. Są
jednak generatory, o których wiemy, że są wadliwe, a zaproponowana metoda tego nie wyłapuje,
przykładem jest CMRG. Przedstawione testy, tak jak wszystkie inne testy statystyczne, biorą
pod lupę tylko pewien aspekt analizowanego zagadnienia. Znalezienie odchyleń w tym aspekcie
jest oczywiście dowodem wadliwości całego generatora, jednak pomyślny wynik testu mówi tak
naprawdę tylko tyle, że „pod rozpatrywanym względem nie dopatrzono się nieprawidłowości”.

Przedstawioną metodę trudno byłoby uznać za przełomową – z pewnością nie jest ona uni-
wersalna, gdyż, jak zauważyliśmy powyżej, nie wykryjemy nią wszystkich możliwych usterek
generatorów. Zdaje się jednak, że testy oparte o własności błądzenia przypadkowego byłyby do-
brym uzupełnieniem standardowych pakietów testowych takich jak np. NIST Test Suite, zwłasz-
cza, że mają potencjał do wyłapywania problemów nieco innej natury, tak jak to wyjaśniliśmy
w paragrafie 4.2.9.

Z pewnością można wymyślić więcej testów działających na podobnej zasadzie jak test arcusa
sinusa czy test iterowanego logarytmu. Warto pracować nad nowymi testami wyłapującymi
międzybitowe zależności, które są niezauważane przez dotychczasowe metody. Przysłużyłoby się
to utworzeniu szczelniejszej paczki testów. Jest to ciekawe zagadnienie, nad którym z pewnością
opłaca się prowadzić dalsze badania.
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