Uniwersytet Wroctawski
Wydzial Matematyki i Informatyki
Instytut Matematyczny

Grzegorz fos

Zastosowanie btadzenia przypadkowego do testowania
generatoréw liczb pseudolosowych

Praca magisterska
napisana pod kierunkiem
dr. Pawta Lorka

Wroctaw, 31 sierpnia 2015

Spis tresci

Whprowadzenie

1 Btladzenie przypadkowe
1.1 Prawo iterowanego logarytmu
1.2 Prawo arcusa sinusa

2 Generatory liczb pseudolosowych
2.1 Definicjia GLP oo
2.2 Generowanie sekwencji bitéwo oL L
2.3 Popularne metody testowania GLP

3 Metoda testowania oparta na btadzeniu przypadkowym
3.1 Opismetody
3.1.1 Test arcusa sinusa
3.1.2 Test iterowanego logarytmu
3.2 Analizabledu

4 Testy
4.1 Implementacja
4.1.1 Uwagi praktyczne
4.1.2 Uzycie programu« oot
4.2 Wyniki.o
421 RANDU
4.2.2 Biblioteczny rand w Microsoft Visual C++
4.2.3 Biblioteczny rand w Borland C/C++
4.2.4 Biblioteczny rand w BSD libc
4.2.5 Biblioteczny rand w GLIBC
426 Minstd.
427 CMRG
4.2.8 Mersenne Twister
4.2.9 Hipotetyczny, wadliwy generator
4.3 Podsumowanie

0¢)

17
17
20
22

27
27
28
29
30

Wprowadzenie

Wiele wspotczesnych technologii opiera sie na randomizacji. W informatyce losowosé¢ pojawia
sie na kazdym kroku i czesto nie zdajemy sprawy jak bardzo jesteSmy od niej uzaleznieni. Pro-
gramisci korzystaja z niej na co dzien, czesto zupelnie niewiadomie, na przykitad uzywajac
bibliotecznych implementacji algorytmu quicksort lub tablic haszujacych. Randomizacja jest
niezbednym elementem w wielu innych specjalistycznych dziedzinach. Przykladowo w finansach
wazng role odgrywaja metody Monte Carlo polegajace na wielokrotnej symulacji rozwoju ryn-
ku. Metody optymalizacji oparte o metaheurystyki lub algorytmy ewolucyjne nie mialyby bez
losowosci racji bytu.

W podanych powyzej przykladach drobne wady generatora liczb pseudolosowych (GLP), na
ktorych oparte sa wspomniane metody, moga obnizy¢ efektywnosé dziatania lub doktadno$é wy-
nikéw, ale nie rujnujg algorytméw catkowicie. Sg jednak dziedziny, w ktorych jako$é generatora
ma zasadnicze znaczenie. Dobrym przykladem jest kryptografia. Zauwazalne odstepstwa od lo-
sowoéci moga istotnie zwiekszy¢ szanse ztamania protokotu kryptograficznego, odkrycia klucza
prywatnego, itp. Wynika stad potrzeba zidentyfikowania tych GLP, na ktérych mozna polegac.

Poczatki analizy generatoréw siegaja lat pieédziesiatych. Juz wtedy John von Neumann za-
uwazyl, ze trudniej jest testowaé ciagi pseudolosowych liczb niz je produkowaé¢. Od tego czasu
badacze nieustannie udoskonalaja narzedzia stuzace testowaniu GLP. To zagadnienie poruszal
juz Donald Knuth w swoim dziele Sztuka programowania. Zaproponowal on kilka testow sta-
tystycznych traktujacych liczby otrzymane z GLP jak zmienne losowe. Przy zalozeniu ich jed-
nostajnosci i niezaleznosci, pewne funkcje tych zmiennych powinny mie¢ znane rozktady, co
sprawdzamy np. testem chi-kwadrat. To podejicie byto nastepnie dalej rozwijane — znane paczki
testow opracowali George Marsaglia (w 1995), Pierre L’Ecuyer i Richard Simard (w 2007), a
obecnie wazna role odgrywa zestaw rozwijany przez amerykanska agencje National Institute of
Standards and Technology.

W niniejszej pracy przedstawiamy nowe metody testowania GLP: test arcusa sinusa i test ite-
rowanego logarytmu. Wymagaja one traktowania wyjscia generatora jako strumienia binarnych
danych. Rozstrzygniecie czy dany GLP jest wystarczajaco solidny sprowadza si¢ do odpowiedzi
na pytanie czy sekwencja otrzymana z GLP jest nieodréznialna od ciagu prawdziwie losowe-
go. Interpretujac wygenerowane bity jako +1 oraz -1, mozemy latwo zobaczy¢, ze wyjscie GLP
odpowiada realizacji btadzenia przypadkowego. Ten proces stochastyczny jest dobrze zbadany i
opisany w literaturze, stad znamy wiele jego wlasnosci. Testowanie GLP polega na sprawdzeniu
czy jego wyjscie réwniez je posiada.

Opracowana metoda silnie polega na teoretycznych wtasnosciach bladzenia przypadkowego,

dlatego w czesci 1 przedstawiamy niezbedne matematyczne podstawy. Przypominamy definicje
btadzenia losowego oraz przytaczamy dwa kluczowe twierdzenia. Pierwsze z nich, prawo iterowa-
nego logarytmu, oszacowuje wielko$é odchylen od zera jakich nalezy spodziewaé sie obserwujac
proces bladzenia. Drugie, prawo arcusa sinusa, mowi, ze jest bardziej prawdopodobne, iz bta-
dzenie przypadkowe zdecydowana wiekszo$¢ czasu spedzi nad osiag OX, niz ze rozklad czasu
spedzony po obu stronach osi bedzie w miare réwny.

Czeéé¢ 2 poswiecona jest przyblizeniu obiektu naszego zainteresowania. Precyzujemy pojecie
generatora liczb pseudolosowych. Przedstawiamy kilka rodzajéw GLP, np. generatory wykorzy-
stujace kongruencje liniowe. GLP zwracajg nam pseudolosowe liczby, a do testéw arcusa sinusa
i iterowanego logarytmu potrzebujemy pseudolosowych sekwencji bitéw. Dlatego odnotowujemy
kilka uwag dotyczacych interpretowania wyjscia generatora jako ciggu zerojedynkowego. Nastep-
nie przywolujemy kilka popularnych metod testowania GLP.

W czesci 3 opisujemy doktadniej jak wykorzystaé przytoczone wlasnoéci btadzenia przypad-
kowego do testowania GLP. Autorzy [10] zauwazyli uzytecznosé prawa iterowanego logarytmu
do testowania generatoréw. W niniejszej pracy proponujemy podobng metode, oparta o prawo
arcusa sinusa. Z grubsza rzecz biorac, postepujemy tak jak w statystyce matematycznej, choé
obserwacje sg dosé¢ nietypowe, bo sg nimi dlugie ciagi zerojedynkowe. Wykorzystujemy GLP, by
otrzymaé¢ m sekwencji bitéw. Kazda z nich interpretujemy jako realizacje bladzenia przypad-
kowego i na jej podstawie obliczamy pewna wartosé¢, ktora bedziemy nazywaé charakterystyka
ciagu. W ten sposob dostajemy empiryczny rozktad tej charakterystyki. Natomiast dzieki twier-
dzeniom z czeéci 1 znamy jej rozklad teoretyczny. Wykonujac test x? sprawdzamy zgodnosé tych
rozktadéw. Alternatywnie mozemy skorzystaé ze znanych funkcji odleglosci miar (rozklad praw-
dopodobienstwa nie jest niczym innym jak miara zdefiniowana na prostej rzeczywistej). Jesli
wartos¢ statystyki testowej lub odleglo$é miary teoretycznej i empirycznej jest duza, to mozemy
powiedzieé, ze GLP niezbyt dobrze imituje losowosé, w przeciwnym razie nie ma podstaw by go
zdyskredytowac.

Metoda opisana w czedci 3 zostala zaprogramowana w jezyku Julia. W czedci 4 przedsta-
wiamy te implementacje. Omawiamy rézne praktyczne aspekty, ktére wplynely na architekture
programu. Prezentujemy jak uzy¢ wykonanego narzedzia do przetestowania wlasnych GLP. Na-
stepnie przedstawiamy wyniki testowania kilku stosowanych generatoréow. Sprawdzamy jakos¢
funkcji rand z jezyka C, w kilku popularnych érodowiskach. Inne przetestowane generatory
to RANDU, Minstd, CMRG oraz Mersenne Twister. Warto zwr6ci¢ uwage réwniez na ostatni
przyktad, wprawdzie nieco sztuczny, jednak obrazujacy zalete testéw arcusa sinusa i iterowanego
logarytmu w stosunku do podejscia stosowanego przyktadowo przez NIST Test Suite.

CZESC |

Btadzenie przypadkowe

Jak napisaliSmy we wprowadzeniu, wlasnosci bladzenia przypadkowego (inaczej: losowego) beda
kluczowe dla testowania GLP. Zebrane w tej cze$ci wiadomosci opracowane sa na podstawie [2].
Wigkszosé oznaczen jest rowniez wzorowane na tej ksiazce.

Wyjécie generowane przez GLP zawsze mozna traktowaé jako ciag zerojedynkowy. Dlatego
waznym pojeciem bedzie dla nas ciag niezaleznych préb Bernoulliego (inaczej: proces Bernoul-
liego) (B;)ien- Dla ustalonego p € [0,1] oznaczamy w ten sposéb ciag niezaleznych zmiennych
losowych o jednakowym rozktadzie, taki ze

Mozemy postrzegaé i-ty bit wygenerowany przez GLP jako wynik i-tej préby Bernoulliego.
Dobry generator powinien z takim samym prawdopodobienstwem losowaé 0 oraz 1, dlatego
ograniczymy sie do przypadku p = %
Czesto bedzie nam wygodniej postugiwaé sie ciagiem prob (X;);en, ktéry przyjmuje wartosci
-1 zamiast 0, czyli
X, 298, - 1.

Ponadto oznaczmy
n
Sn=>_X;.
i=1

Tak zdefiniowany proces (S;);en jest nazywany bladzeniem przypadkowym. Ciagg ten w kazdym
kolejnym kroku zmienia swoja wartosé o 1 lub -1. Czasem wygodnie jest go postrzegac¢ jako wynik
nastepujacej gry. Dwéch graczy rzuca idealng moneta. Jesli wypada orzel, to pierwszy gracz
otrzymuje ztotoéwke od drugiego, w przeciwnym przypadku pierwszy placi zltotowke drugiemu.
Proces S przedstawia zysk ustalonego gracza.

Sporo miejsca w rachunku prawdopodobienstwa poswiecono badaniu wtasnosci bladzenia
przypadkowego, z ktérych dwie omawiamy ponizej. Idea testow, ktore przedstawiamy w czesci 3
jest sprawdzanie czy wyjscie GLP zachowuje sie tak jak to wynika z praw rachunku prawdopo-
dobienstwa.

8 Czes$¢ 1. Bladzenie przypadkowe

Stan

Krok

Rysunek 1.1: Przyktadowe trajektorie procesu S.

1.1 Prawo iterowanego logarytmu

Jest jasne, ze |S,| < n. Mozna si¢ jednak domyslaé, choéby na podstawie Rysunku 1.1, ze duze
wartodci |S,| sa jednak bardzo malo prawdopodobne i w praktyce z duzym prawdopodobieri-
stwem wartosci S,, znajda sie w znacznie wezszym przedziale niz [—n,n]. Stabe i mocne prawo
wielkich liczb (SPWL i MPWL) méwia nam, ze

Sn P
— =0, a nawet —
n n

Sh P

Jest wiec jasne, ze odchylenia procesu S od zera rosng znacznie wolniej niz liniowo. Z drugiej
strony centralne twierdzenie graniczne (CTG) méwi nam, ze %‘-ﬁ Y (0,1) co jest w pewnym
sensie oszacowaniem fluktuacji S,, od dotu — beda one wychodzié¢ poza przedzial [—/n,/n],
mamy bowiem

Fakt 1.1. Blgdzenie przypadkowe S, z prawdopodobieristwem 1 spetnia

: Sn
limsup —= = oo.

n—oo \/ﬁ

Dowdd. Z prawa 0-1 Kolmogorowa wynika, ze dla dowolnego ciagu zmiennych losowych (X;)

i.i.d., zdarzenia typu {lim sup X, > M } maja prawdopodobienstwo réwne 0 lub 1 (patrz [4],

n—oo

1.1. Prawo iterowanego logarytmu 9

§7.2, zadanie 1). Wezmy dowolnie duze M. Mamy

Sn X S
P@gﬁp¢n>M>:P U{v%>m@
k>n

=1-—®(M)>0.

Czyli P (lim sup % > M) =1, co wobec dowolnosci M oznacza, ze

n—oo

S,
]P’(limsupn:oo =1.
n—oo \/ﬁ)

Okazuje sie, ze fluktuacje S mozna oszacowaé precyzyjniej, mowi o tym

Twierdzenie 1.2 (Prawo iterowanego logarytmu). Blgdzenie przypadkowe Sy, z prawdopo-
dobienstwem 1 spelnia

. Sn,
limsup ————==1
n—oo \/2nloglogn
Dowéd mozna znalezé w [2], rozdzial VIII, §5. Oczywiscie ze wzgledu na symetrie mamy analo-
giczne wtasnosci do Faktu 1.1 i Twierdzenia 1.2 dla lim inf.

Jak wida¢ n bylo zbyt duzym dzielnikiem, a y/n zbyt malym — odchylenia S,, od zera rosna
proporcjonalnie do v/nlog log n. Mozna zatem powiedzieé, ze prawo iterowanego logarytmu (PIL)
»,dziala pomiedzy” prawem wielkich liczb i centralnym twierdzeniem granicznym. Te trzy twier-
dzenia dajg nam wlasnoéci btadzenia przypadkowego, ktére zebrano w Tabeli 1.1.

Przyjrzyjmy si¢ Rysunkowi 1.2. Widaé, ze funkcja v/2nloglogn z grubsza odpowiada fluk-
tuacjom procesu S,. Mozna jednak zauwazy¢, ze kilka trajektorii po okoto miliardzie krokdw
ciagle nie miesci sie w przedziale [—+/2nloglogn,/2nloglogn|. Prawo iterowanego logarytmu
mowimy nam, ze dla odpowiednio duzych n trajektorie nie beda wykraczaé¢ poza ten zakres z
prawdopodobienstwem 1. Wniosek jaki mozemy wyciggnaé z tego obrazka jest taki, ze mowa tu
o naprawde olbrzymich wartosciach n.

Cho¢ nie bedzie przydatna w dalszej czesci pracy, jeszcze jedna ciekawa wlasnosé narzuca sie

by o niej wspomnieé. Niech S4! = ﬁ. 7 PIL wynika, ze wielko§é¢ SU nie zbiega punkto-

wo do zadnej statej. Zachodzi natomiast zbieznos¢ do 0 wedtug prawdopodobienstwa. Ustalmy
wiec dowolnie mate £ > 0 i zastanéwmy sie jak czesto S opuéci epsilonowy pasek wokét zera.
Mozemy przyja¢ p < 1 dowolnie bliskie jednosci, a mimo to dla prawie wszystkich n mozemy
powiedzie¢, ze z prawdopodobiefstwem p wielko$é SL nie wyjdzie poza przedzial (—¢,¢). Tym-
czasem PIL réwnoczesnie méwi nam, ze ten epsilonowy pasek opuscimy nieskonczenie wiele razy.
Ta niesamowita, pozorna sprzecznos$¢ pokazuje jak bardzo nasza intuicja zawodzi, gdy my$limy
o zjawiskach zachodzacych w nieskonczonosci.

10

Czes$¢ 1. Bladzenie przypadkowe

Tabela 1.1: Wnioski dotyczace btadzenia przypadkowego wynikajace ze znanych twierdzen.

Zbieznosé Zbieznosé s
. Wartos¢ limes superior | Warto$é limes inferior
wedltug prawie na . .
prawie na pewno prawie na pewno
prawdop. pewno
PWL s Py Sn P limsup 2= =0 liminf Sz = 0
n n n—00 n—oo M
S P S, p-n. li Sy =1 | limi Sn S
n _ Sn imsu iminf =-1
PIL v2nloglogn 0 vV2nloglogn - 0 n_>oop v2nloglogn n—oo V2nloglogn
CTG | vz 522y Vo Su P g lim sup 2 = oo liminf 52 = —oo

1e+05-

5e+04 -

§ 0e+00-

(]

-5e+04 -

-1e+05-

0e+00

3e+08

6e+08 9e+08
Krok

Rysunek 1.2: Ilustracja prawa iterowanego logarytmu. Przedstawia ona 500 trajektorii btadzenia
losowego, dtugoéci 230, Im ciemniejszy jest obszar wykresu, tym wieksze jest w nim zageszczenie
trajektorii. Niebieska krzywa to wykresy funkcji /2 oraz —+/x, za$ czerwona funkcji /2z log log

oraz —+/2x loglog x.

1.2 Prawo arcusa sinusa

Kolejna wlasnoéé bladzenia przypadkowego, ktora postaramy sie wykorzysta¢ do testowania
GLP jest znana jako prawo arcusa sinusa. Odpowiada ono na pytanie przez jaka frakcje czasu

1.2. Prawo arcusa sinusa 11

ustalony gracz bedzie na prowadzeniu. Spodziewalibyémy sie, ze w przypadku bardzo dlugiej
gry, obaj gracze beda na prowadzeniu przez mniej wigcej tyle samo czasu. Jednak pokazemy, ze
réwniez w tym przypadku nasza intuicja plata nam figla.

Powiemy, ze bilans gry w k-tym kroku (k > 1) byl dodatni, jezeli S > 0 lub Sy_; > 0.
Pomijamy tu remisy przyjmujac, ze w przypadku wystapienia réwnej liczby reszek i ortéw prze-
wage ma ten, kto mial ja w poprzedniej chwili. Geometrycznie oznacza to, ze odcinek wykresu
btadzenia losowego przebiegajacy pomiedzy odcietymi k — 1 oraz k, musi znajdowadé sie nad osig
X-OW.

Wprowadzmy nastepujace oznaczenia:

e U, — zdarzenie, ze w n-tym kroku nastapit powrét do zera,
e [, — zdarzenie, ze w n-tym kroku nastapit pierwszy powrét do zera,
up = P(Uy), fn=P(F,).

® Dy, — prawdopodobienstwo, ze przez k sposréd pierwszych n krokéw gry, bilans byl do-
datni.

Latwo zauwazy¢, ze powr6t do zera moze nastapi¢ tylko w parzystym kroku, zatem
VneN uz_1 = fon_1 =0,

Vk,n € N pop_12, =0,
Ponadto przyjmujemy, ze pgo = uo = 1. Zachodzi réwniez

Lemat 1.3. Dla kazdego n € N spelnione sq ponizsze toisamosci:

Usn = (2n> 9=2n (1.1)

n
n
Uo2p = Z f2ru2nf2r (12)
r=1
1
fon = 3, Uon—2 (1.3)
fon = uon—2 — uon (1.4)

Dowéd. Wzér (1.1) wynika stad, ze wszystkich drég dtugoéci 2n jest 22 a drogi wracajace na
koncu do zera odpowiadajg ustawieniu n ortéw i n reszek na 2n miejscach — co robimy na (27?)
Sposobéw.

Tozsamo$¢ (1.2) wynika wprost ze wzoru na prawdopodobienstwo catkowite:

n n

U2n =]P)(U2n) = Z IP)(U27L|F2T)]P)(F2T) = Z P(U2n—2T)P(F2T) = Z U2n—2r for
r=1

r=1 r=1

Dla dowodu (1.3) wprowadzmy dodatkowe oznaczenia:

e N,(a,b) — liczba $ciezek od stanu a do stanu b w n krokach,

12 Czes$¢ 1. Bladzenie przypadkowe

e N7%a,b) —jak Ny(a,b), ale $ciezki nie moga dotykaé 0 (za wyjatkiem co najwyzej koncow),
e N %a,b) — jak N,(a,b), ale éciezki musza dotknaé lub przeciaé 0.
Latwo zauwazy¢, ze Ny (a,b) = ((n—i-b?za)/Q) oraz Ny (a,b) = N7(a,b)+ N;%(a,b). Wartosé¢ fa, to

oczywiscie stosunek N;;O (0,0) do liczby wszystkich $ciezek od stanu 0 do stanu 0 w 2n krokach.
Dlatego liczymy

0 0 0 0 0
N32(0,0) = NZ2 1 (1,0) + NZ2 1 (—1,0) = 2NZ2 1 (1,0) = 2NZ2 ,(1,1)

Patrzac na Rysunek 1.3 latwo zauwazyé, ze N30 5(1,1) = Nz, 2(—1,1), jest to szczegdlny
przypadek tzw. zasady odbicia. Zatem

Krok

Rysunek 1.3: Tlustracja faktu N;°(1,1) = N, (—1,1). Latwo zobaczyé¢ jednoznaczna odpowied-
nio$¢ miedzy oboma rodzajami $ciezek. Az do momentu pierwszego powrotu do zera Sciezka
jednego rodzaju jest odbiciem symetrycznym wzgledem osi odcietych Sciezki drugiego rodzaju,
za$ dalej Sciezki sie pokrywaja.

NZ% ,(1,1) = Nopy_5(1,1) = N32 5(1,1) = Nap_(1,1) — Nap_o(—1,1)
- 2n — 2 2n — 2 B 2n — 2 n—1(2n—2
S \n-—1 n S \n-—1 n n—1

1/(2n—2 92n—2
:ﬁ n—1 - n Y2n-2

Ostatecznie

22n—1

N;fzo(070) _ ZNQ?:LO—2(171) n Un—2 U2pn-2

fon = 92n 922n 22n m
Formuta (1.4) to prosta konsekwencja (1.1) i (1.3), bo

2n\ __ 2n =2\ 2n —1)2n __ /oy, _
U2p—2 — U2p = U2p—2 — 272" = uy,_g — %2 @n-2) —
n n—1 4n

2n —1 1
= U2n—2 (1 - (Qn)) = %U%—Z = f2n-

1.2. Prawo arcusa sinusa 13

O]

Tozsamosci z Lematu 1.3 intensywnie wykorzystujemy w dowodzie nastepujacego, kluczowe-
go faktu.

Twierdzenie 1.4. Dla wszystkich k,n € N

2k\ (2n —2k\ __o,
D2k,2n = U2kU2n—2k = (k:) < 0k >2 (1.5)

Dowdd. Niech g9, oznacza prawdopodobienstwo, ze w pierwszych 2n krokach gry ani razu nie
doszto do remisu. Wzér (1.4) daje nam

gn=1—fo—fas——fon=1—(1—u2) — (ug —ug) — - — (Uzn—2 — Uzp) = Up.

Udowodnimy teraz indukcyjnie, ze
P0,2n = U2p. (1.6)

bLatwo sprawdzi¢, ze pp2 = % = uo. Zaldézmy, ze po 27 = u2n dla i < n. Zauwazmy, ze aby spedzi¢

cala gre na minusie, musieliémy w pierwszym kroku p6j$¢ w dot, co dzieje sie z prawdopodobien-
stwem % Dalej musiala zaj$¢ jedna z dwoch mozliwoéci. Z prawdopodobienstwem go,, mogliémy
ani razu nie wrocié¢ do zera. Moglo sie tez zdarzy¢, ze dla pewnego r wréciliSmy do zera po raz
pierwszy w kroku 2r (z prawdopodobienstwem fa,), ale reszte czasu mimo tego spedzilismy ,,pod
kreska” (z prawdopodobienstwem pg 2,,—2,). Te rozwazania, zatozenie indukcyjne oraz wzoér (1.2)
daja

N |

1 n
Po,2n = 5 <q2n + Z f2rp0,2n27'> =

r=1

n
<u2n + Z f2ru2n2r>
r=1

1
= 5 (ugn + ugpn) = u2p,

co chcieliémy pokazac.

Teraz uogdlniamy ten wynik postepujac réwniez indukcyjnie. Twierdzenie 1.4 jest w oczy-
wisty sposéb prawdziwe dla n = 0. Zalézmy teraz, ze dla wszystkich n < n zachodzi V0 < k <
N Pak2n = U2kU2i—2k 1 pokazemy, ze VO < bk < 1 pagon = UkUz,—2k. Wiemy juz, ze teza jest
prawdziwa dla k = 0 oraz k = n, gdyz

DP2n,2n = P0,2n = U2n = U2nUQ-

Dlatego wezmy dowolne k, takie ze 0 < k < n. Aby zaszlo rozwazane zdarzenie, btadzenie musi
przechodzi¢ przez 0. Zalézmy, ze pierwszy raz dzieje sie to w pewnym punkcie 2r. Jezeli w pierw-
szym kroku poszliémy w gére (co dzieje sie z prawdopodobienstwem %), to po powrocie musimy
spedzi¢ ,nad kresky” jeszcze 2k — 2r krokéw, a szanse tego zdarzenia wynosza pok—2r2n—2r- W
przeciwnym razie po powrocie ciagle musimy by¢ na plusie przez 2k krokéw, co zdarzy sie z
prawdopodobienstwem pay, 2,,—2,. Stad

k n—=k
1
Pakon = 5 (E JorDok—2r2n—2r + E f2rp2k,2n—2r> = (%)
r=1 r=1

14 Czes$¢ 1. Bladzenie przypadkowe

7 zatozenia indukcyjnego

Dok—2r2n—2r = U2k—2rU2n—2r—(2k—2r) = U2k—2r U2n—2k

oraz
P2k 2n—2r = U2EU2n—2r—2k
zatem
1 k n—k
(%) =5 (Z Jortgk—arton—ok + Y f2ru2k:u2n—2r—2k>
r=1 r=1
1 k n—k
=3 <U2n—2k > fortiop—gp + Uz Y f2ru2n—2r—2k>
r=1 r=1
1
= 5 (Uan—akUzk + UgkUzn—2k) = UzkUzn—2k,
co byto do okazania. Korzystajac z (1.1) otrzymujemy teze. O

Dzigki Twierdzeniu 1.4 mozemy oblicza¢ doktadne prawdopodobienstwa frakcji przewagi.
Na Rysunku 1.4 przedstawiony jest ich rozklad dla n = 20. Widaé¢ wyraznie, ze rownomierny
podzial czasu na przewage jednego i drugiego gracza jest najmniej prawdopodobny. Najbardziej
prawdopodobna jest dominacja jednego z graczy przez wiekszosé czasu. Przykladowo prawdo-
podobienstwo, ze po 100 rzutach

e jeden z graczy wygrywa przez 90-100% czasu, wynosi 44%.
e jeden z graczy ani razu nie wyjdzie na prowadzenie, wynosi 16%.
e ustalony gracz bedzie prowadzil przez 40-60% czasu, wynosi 14%.

Wzér (1.5) jest dokladny, ale czesto nieporeczny. Sprobujmy znalezé rozsadne przyblizenie.
Zakladajac k — oo, n — k — oo i korzystajac ze wzoru Stirlinga (n! ~ v/27mn (%)n), dostajemy

k) klkl T %k(%) - Vrk'

2n —2k\ 222
n—k | Jrn—k)

Podstawiajac to do wzoru (1.5) otrzymujemy

<2k> (2R Vark (%) g
2k

i podobnie

1

mk(n —k) (L.7)

P2k2n =

Odpowiemy teraz na nastepujace pytanie: jaka jest szansa, ze w bardzo dlugiej grze
byliSmy na prowadzeniu przez co najwyzej frakcje x czasu? (0 <z < 1)

1.2. Prawo arcusa sinusa 15

0.124

o
o
o

Prawdopodobienstwo

o
o
=

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Czas przewagi

0.00 -

o

Rysunek 1.4: Rozktad czasu prowadzenia ustalonego gracza przy 40 rzutach moneta.

Niech P, (z) oznacza szukane prawdopodobienstwo przy 2n rzutach moneta. Zalézmy na
poczatek, ze x > % Wtedy

Py, (x Z D2k,2n = Z D2k,2n + Z D2k,2n

k k-1 .1 k
(W) (%)

Pamigtajac o symetrycznosci rozkladu mozna zauwazyé, ze (#) — % (mozna to tez uzasadnié

inaczej — jeden z graczy musi by¢ na prowadzeniu przez co najwyzej potowe czasu). Przy n — oo
i % < % < x < 1 zachodzi réwniez k — oo oraz n — k — oo. Dlatego druga sume mozemy
estymowaé korzystajac z (1.7) oraz definicji catki Riemanna

1 1

1
D N =P g k() k)

1 1
k: §<E<I k: §<;<CE

1 /e dt 2 1
—/ ———— = —arcsin(v/z) — 3
1

n—oo m Jijo /(1 —1t) w

czyli
2
Py, (7)) —— — arcsin(+v/7).

n—oo

W celu znalezienia Pa,(x) dla 0 < z < % skorzystamy ze znanych wtasnosci funkeji cyklome-

16 Czes$¢ 1. Bladzenie przypadkowe

trycznych: arcsin « + arccosz = T oraz arccos x = arcsin(v/1 — x2).
2

2 2
Py () =1— Py,(1 —2) —— 1 — = arcsin(v/1 — x) = 1 — = arccos(v/7)
77 77

2 2
=1-Z= <7r — arcsin(ﬁ)) = — arcsin(v/7).
T\ 2 ™

W ten sposéb udowodnilismy

Twierdzenie 1.5 (Prawo arcusa sinusa). Prawdopodobieristwo, ze w n krokach frakcja czasu
z (0 <z < 1), wktdrej ustalony gracz ma przewage (stan blgdzenia przypadkowego jest dodatni),
dgzy przy n — oo do

1 /m dt 2 in(+/7)
— ———— = —arcsin(v/z
mJo Jt(l—t) =
Innymi stowy w bardzo dlugiej grze frakcja czasu x spedzona “na plusie” ma rozklad arcusa
sinusa. Oto jego podstawowe wlasnosci:

e gestos$é: f(t) = W\/ﬁ, e dystrybuanta: F(t) = %arcsin(\/f),
1

e wartos¢ oczekiwana: %, e wariancja: g.
Wykres gestosci i dystrybuanty przedstawia Rysunek 1.5. Funkcja gestosci w ksztalcie litery
U pokazuje, ze nieréwny podzial czasu przewagi jest zdecydowanie bardziej prawdopodobny niz

wzglednie rownomierny.

Gestosé Dystrybuanta
1.00

IS

@

o

0.25

0.00

Rysunek 1.5: Rozklad arcusa sinusa.

Ludzka intuicja silnie podpowiada, ze w grze z symetryczna moneta, kazdy z graczy powinien
by¢ na plusie przez okoto potowe czasu. Wydaje si¢ to logiczne — wiadomo, ze liczba powrotéw
btadzenia przypadkowego do zera jest nieskonczona w nieskonczenie dlugiej grze. Zatem obaj
gracze majg mniej wiecej tyle samo fal kiedy sa na plusie. Ponadto, jak wynikatoby z MPWL,
srednia dlugo$é dodatniej fali powinna by¢ dla obu graczy zblizona. Co z kolei prowadzi do wnio-
sku, ze obaj powinni by¢ na prowadzeniu przez podobng frakcje czasu. Gdzie tkwi blad w tym
rozumowaniu? Ot6z nie mozemy tu zastosowa¢ MPWL. Dotyczy ono zmiennych o skonczonej
wartosci oczekiwanej. Tymczasem oczekiwany czas powrotu do zera w btadzeniu przypadkowym
okazuje sie by¢ nieskonczony, co kompletnie zmyla nasze intuicje.

CZESC Il

Generatory liczb pseudolosowych

Kazdy intuicyjnie rozumie czym jest generator liczb pseudolosowych. Jednak dla pelnosci ma-
tematycznego opisu zaczniemy od przedstawienia jego $cistej definicji. Przedstawiona tu teoria
opiera si¢ na ksiazce [1]. Na jej podstawie opisujemy réwniez kilka rodzajow generatoréw liczb
pseudolosowych. Sposéb otrzymania z GLP ciagu bitow o dobrych wtasnodciach réwniez wy-
maga pewnego komentarza, o czym piszemy dalej. Na konicu tej czesci krotko oméwimy znane
metody testowania generatoréow liczb pseudolosowych.

2.1 Definicja GLP

Istnieja metody otrzymania liczb ,prawdziwie losowych”. Najprostszym sposobem jest wielo-
krotne rzucenie kostka do gry lub monetg i stablicowanie otrzymanych wynikéw. Lepszym sposo-
bem jest obserwowanie czasteczek emitowanych przez probke radioaktywnego pierwiastka — uwa-
za sie, ze rozklad radioaktywny jest dobrze modelowany przez proces Poissona. Kolejnym pomy-
stem jest wykorzystanie szumu atmosferycznego, z tej metody korzysta strona www.random.org,
ktéra wykorzystamy w testach GLP. Zrédla takiej losowoéci sa jednak zazwyczaj zbyt wolne,
trudno dostepne lub maja pewne inherentne wady (moneta moze by¢ niesymetryczna, detektor
czastek nie rejestruje zgloszen o zbyt krétkim odstepie, itp.). Wynika stad potrzeba utworze-
nia deterministycznych algorytmoéow ktore imitowalyby losowosé. Takie algorytmy nazywamy
generatorami liczb pseudolosowych. Aby byly praktyczne, muszg by¢ szybkie i obliczalne na
zwyklych komputerach. Liczby przez nie generowane jedynie ,udaja’ losowe, dlatego nazywamy
je pseudolosowymi.

Definicja 2.1. Generator liczb pseudolosowych jest to piatkal (E,V, sq, f, g), gdzie E jest skon-
czona przestrzenia stanéw, V' jest zbiorem wartosci zwracanych przez generator, sg jest to tzw.
ziarno, czyli poczatkowy stan w ciggu stanéw (s;):2,, funkcja f : E — E opisuje przejscia mie-
dzy kolejnymi stanami: s, = f(sn—1), za$ g : E — V, odwzorowuje stan generatora w wartosé
przez niego zwracana.

1Jest to nieco inna definicja niz w [1], dostosowana do naszych potrzeb. W ksigzce Asmussena przyjmuje sie
V =0, 1], za$ zamiast so w definicji znajduje sie u — rozktad prawdopodobiefistwa poczatkowego stanu.

17

18 Czes$¢ 2. Generatory liczb pseudolosowych

Najczedciej przyjmuje sie V = (0,1) lub V = M dla pewnego M (dlan € N symbol 72 oznacza
zbiér {0,1,...,n — 1}). U nas bedzie zachodzi¢ wlasnie ta druga mozliwos¢.

Zauwazmy, ze kazdy GLP predzej lub pdzniej ,zapetla sie”, tzn. musi istnieé¢ takie d, ze dla
pewnego [zachodzi s;14 = s; (wynika to ze skoficzonosci przestrzeni stanéw). Minimalne d o
tej wlasnosci nazywane jest okresem generatora. Dobre generatory powinny mie¢ jak najdtuzsze
okresy, optymalnie réwne |E|.

Ponizej przedstawiamy popularne rodzaje GLP.

LCG

Generatory LCG (od ang. linear congruential generator) zmieniaja swoj stan zgodnie z reku-
rencja
Sp = (asp—1 +c¢) mod M. (2.1)

Generator tej klasy jest okreslony przez modul M, mnoznik a oraz przyrost ¢, co oznaczamy
LCG(M,a,c). Zauwazmy, ze LCG(M, a,c) spetnia definicie GLP z E = M, V = M, f(z) =
(ax +¢) mod M oraz g(z) = x.

Dobranie warto$ci M, a,c o dobrych wlasnosciach przysparza sporych probleméw. Jak sie
jednak okazuje, istnieje kryterium utatwiajace zapewnienie generatorowi dlugiego okresu.

Twierdzenie 2.1. Przy ponizszych warunkach LCG(M,a,c) ma okres réwny M :
e c oraz M sq wzglednie pierwsze,
e jesli p jest liczbg pierwszq i p|M, to p|(a — 1),
o jesli 4| M, to 4|(a —1).

Powyzsze twierdzenie pochodzi z pracy [3].

Zauwazmy jednak, ze znalezienie LCG o pelnym okresie nie gwarantuje, ze generator bedzie
dobrej jakosci. Latwo zauwazy¢ nastepujacy

Fakt 2.2. Niech M = 2. Wowczas d najmniej istotnych bitéw LCG (M, a,c) ma okres réwny
co najwyzej 2%.

W tym przypadku nie ma wiec mowy o niezaleznosci liczb generowanych przez LCG. Niekto-
re pakiety korzystajace z LCG czesciowo obchodzg ten problem zwracajac tylko najbardziej
znaczace bity wygenerowanych liczb.

MCG

MCG (od ang. multiplicative congruential generator) znany jest tez jako GLP Lehmera lub GLP
Parka-Millera. Jest to szczegdlny przypadek LCG, w ktérym ¢ = 0, czyli kolejne stany opisuje
rekurencja

Sy = as,—1 mod M. (2.2)

MCG o parametrach M oraz a oznaczamy MCG(M,a). Aby MCG(M,a) mogto mie¢ dobre
wlasnosci, M powinno by¢ liczba pierwsza lub jej potega, a powinno by¢ generatorem grupy
V> a ziarno s powinno by¢ wzglednie pierwsze z M.

2.1. Definicja GLP 19

GLCG

Wyzej opisane GLP dziela pewna wade — maja stosunkowo krétkie okresy. W przypadku gdy
potrzebujemy dluzszych okreséw przydatne moga by¢ uogélnione LCG (od ang. generalized
linear congruential generator). Postepuja one zgodnie z rekurencja

Tp = (@1@p—1 + agxp—o2+ ...+ apry_) mod M. (2.3)

GLCG zmieniajacy stany w ten sposéb oznaczamy GLCG(M, (a;)¥_,). Jest to ciagle GLP w mysl
definicji 2.1, gdzie E = M*, s, = (xn,Tn_1,... Tn_ks1), 9(Sn) = Tn. Dobry dobér parametréw
moze daé okres réwny M* — 1.

Generatory mieszane

Dobrym pomystem na ulepszenie GLP jest potaczenie kilku generatoréw w jeden. Zalézmy, ze
mamy dane k GLP (E;,V},s;0, f,9;), 1 < j < k, gdzie j-ty generator zmienia stan wedlug
zaleznosci

Sjn = [j(8jn-1)-

Mozemy teraz zdefiniowa¢ mieszany generator w taki sposob, aby ciag jego standéw spelnial

Sn = <51,n, S2my .- 5k;,n>

Niech ponadto d; oznacza okres j-tego ,skladowego” generatora. Jak pokazal L’Ecuyer ([7],
Lemma 2) mieszany generator ma okres d = NWW (dy,ds, ..., d).

Szczegblnym przypadkiem generatoréw mieszanych sa CMCG (od ang. combined multipli-
cative congruential generator). Sklada si¢ on k generatoréw M CG(Mj,a;), gdzie M; sa liczbami
pierwszymi, czyli funkcja przejscia jest

Sj,n = aij’nfl mod Mj.

Wyjécie generatora mieszanego otrzymujemy ze wzoru

k
g(sn) = Z(—I)J_lsj,n mod M; — 1
j=1
Ponadto jesli liczby M1 sa wzglednie pierwsze, to CMCG ma optymalny okres wynoszacy
g (My—1) ...« (M} —1).
LFSR

LFSR (od ang. Linear feedback shift register) to, z grubsza rzecz ujmujac, generator produkujacy
liczby pseudolosowe na podstawie obwodu bramek logicznych. Stanem takiego generatora jest
sekwencja bitéw, ktore przekazywane sg na wejscie wybranych bramek. Wyjscia tych bramek
stanowia wejscie innych bramek, te z kolei przekazuja swoje wyjécia kolejnym bramkom, itd.
Wyjscia ustalonych bramek moga zmienia¢ stan generatora lub by¢ zwracane jako rezultat pracy
generatora.

20 Czes$¢ 2. Generatory liczb pseudolosowych

Mersenne Twister

Mersenne Twister (MT19937) zostal zaproponowany przez Matsumoto i Nashimure w [9]. Nie
jest to wprawdzie klasa generatoréw, ale przyktad konkretnego GLP, jednak ze wzgledu na jego
ogromna popularnosé¢ warto go opisac¢. Jest on standardowym generatorem w wielu narzedziach
programistycznych, migdzy innymi w R, Python, MATLAB, Julia. Zostal dotaczony réwniez do
standardowej biblioteki C++11.

Do opisu generatora wykorzystamy notacje, w ktorej zapis d[i..j] oznacza bity o indeksach od
i do j w liczbie d, symbol @ to operacja XOR na kolejnych bitach, symbol & to operacja AND
na kolejnych bitach, zas symbole < oraz > to operacja bitowego przesuniecia odpowiednio w
lewo i w prawo.

Stan generatora opisany jest przez 624 32-bitowe liczby

Ligy Lk+15 - - - Lk+623-

Kolejne stany otrzymujemy ze wzoru

+ 23974k @ (0, 2x[0], 2341[1..30)) D @ jesli ap1[31] = 1,

gdzie a = (9908 BOD)14. Przy k-tym wywolaniu MT19937 zwraca jako wyjscie wartosé t(xg23+%),
przy czym
tz) =ys & (y3 > 18),

gdzie

Y3 = yo @ ((y2 < 15) & (EFC60000)6)
v =11 @ ((y1 < 7) & (9D2C5680)16)
yy=x® (x> 11)

Generator uzyskany w ten sposéb ma okres réwny 29937 — 1, co wyjasnia jego skrétowa
nazwe.

2.2 Generowanie sekwencji bitow

Komputery operuja tylko i wylacznie na ciagach bitéw, dlatego wyjscie kazdego programu, w
szczegdlnosci GLP, moze by¢ traktowane jako ciag zerojedynkowy. My potrzebujemy jednak
ciggdw specyficznych: kazdy bit musi by¢ generowany niezaleznie i z jednakowym prawdopodo-
biefistwem przyjmowaé wartosci zero i jeden. Dlatego dla wygody jezyka wprowadZmy ponizszy
termin.

Definicja 2.2. Idealnym ciggiem losowych bitéw nazywamy proces Bernoulliego z prawdopo-

dobienstwem sukcesu p = %

2.2. Generowanie sekwencji bitow 21

Algorytm 2.1 Generowanie sekwencji bitow przy uzyciu GLP.
procedura GENERUJCIAGBITOW(glp)

1:

2 §— € > € to stowo puste
3 dopdki s nie jest wystarczajaco dtugi wykonuj

4: a < nastepna liczba z glp

5 b < binarny zapis a na [logy M| bitach

6 §+—sOb > © to operator konkatenacji
7

ZwWroé s.

Ponizej opisujemy jak zmieni¢ generator liczb pseudolosowych w , generator pseudolosowych
ciggdw zerojedynkowych”.

Mamy dany GLP generujacy liczby calkowite ze zbioru M = {0,1,..., M — 1}. Kolejne wy-
woltania powinny dawaé niezalezne wyniki. Aby wykorzysta¢ GLP do wygenerowania idealnego
ciagu losowych bitéw mozemy uzyé Algorytmu 2.1. Je$li M jest potega dwdjki, to zadziata on
dobrze, mamy bowiem

Lemat 2.3. Niech M = 2k Jezeli GLP w kazdym kroku generuje liczby niezaleznie i jednostajnie
w zbiorze M, to Algorytm 2.1 generuje idealny cigg losowych bitéw.

Dowdd. W przypadku M = 2* mamy wzajemnie jednoznaczna odpowiednioéé¢ pomiedzy zbiorem
M oraz ukladami k bitéw. Oznacza to, ze w jednym kroku otrzymujemy z GLP kazdy mozli-
wy uktad k bitéw z jednakowym prawdopodobienstwem 2% Latwo zauwazy¢, ze wtedy kazdy
generowany bit ma réwne szanse bycia jedynka i zerem, oraz jest niezalezny od pozostatych. [

Jednak jedli M nie jest potega dwdjki, to procedura nie dziata — przyktadowo dla M =5 w
kazdym kroku doklejamy jedna z sekwencji {000, 001,010,011, 100}. Wéwcezas w wygenerowanym
ciggu spotkanie jedynki jest mniej prawdopodobne niz zera — jedynki stanowia tylko okoto %
wszystkich wygenerowanych bitow. Ponadto nie ma niezaleznosci — wystapienie jedynki na bicie
o indeksie podzielnym przez 3 oznacza, ze kolejne dwa bity beda zerami.

Jak wida¢, gdy M nie jest postaci 2¥ nie mozemy w wyjéciowym ciagu tak po prostu umie-
$ci¢ binarnego zapisu wygenerowanej liczby, gdyz na najbardziej znaczacych bitach zera moga
znaczaco przewazac. Prostym obej$ciem tego problemu jest ograniczenie sie do mniej znaczacych
bitéw generowanych liczb. Wprawdzie one réwniez nie majg idealnego rozktadu, co mozna tatwo
zauwazy¢ liczac prawdopodobienstwo wystapienia jedynki na najmniej znaczacym bicie, jednak
odstepstwa sa stosunkowo niewielkie.

Inne podejécie przedstawia Algorytm 2.2. Jego dodatkowa zaleta jest mozliwosé modyfikacji,
tak by dzialal dla GLP zwracajacych liczby z odcinka (0, 1).

22 Czes$¢ 2. Generatory liczb pseudolosowych

Algorytm 2.2 Generowanie sekwencji bitow przy uzyciu GLP.
procedura GENERUJCIAGBITOW(glp, d)

1:
2 S €
3 dopdki s nie jest wystarczajaco dtugi wykonuj

4: a < nastepna liczba z glp

5 b « d pierwszych bitéw rozwiniecia dwéjkowego 17
6 5—s50Ob

7 zwrod s.

2.3 Popularne metody testowania GLP

Ponizej przedstawiamy kilka wybranych metod testowania GLP. Lista z pewnoscig jest daleka
od kompletnosci, zwlaszcza, ze zagadnienie testowania GLP cieszy sie duza popularnoscia.

Do testow uzywany jest ciag liczb wygenerowanych przez GLP. Ponizej zazwyczaj bedzie
nam wygodnie przyjmowac, ze jest to ciag liczb

U17U27U37 v

pretendujacy do miana ciagu niezaleznie i réwnomiernie rozlozonego na odcinku (0, 1).

Zgodnos¢ z rozkladem jednostajnym

Pierwszym nasuwajacym si¢ sposobem sprawdzenia jakosci liczb generowanych przez GLP jest
zastosowanie znanego aparatu statystycznego. Mozemy uzy¢ testéw zgodnosci z rozkladem jed-
nostajnym, np. testu Kolmogorowa-Smirnowa. Niech n bedzie dlugoscia ciagu (U;). Dys-
trybuanta empiryczna jest zdefiniowana jako

Fu(t) =

S|

i H(UZ < t).
=1

Niech
D, = sup |F,(t) — F(t)|.
0<t<1

Zauwazmy, ze obliczenie D,, nie stanowi problemu, gdyz F), jest funkcja schodkowsg zmieniajaca
warto$¢ w punktach Uy, Us, Twierdzenie Kolmogorowa méwi, ze \/nD,, LK , gdzie K jest
zmienna losowg o rozktadzie Kolmogorowa. Korzystajac z tablic lub pakietow statystycznych
mozemy znalezé p-warto$é tego testu.

Mozna tez uzyé¢ testu x? Pearsona. Polega on na podzieleniu odcinka na r czeéci. Niech
FE; bedzie oczekiwang liczba zmiennych U;, ktérych warto$¢ wpada to i-tego odcinka, zas O;
obserwowana liczba.

Wowczas statystyka
r 2
(O; — E;)
T = E i — 2.4
; E; (24)

2.3. Popularne metody testowania GLP 23

dazy do rozktadu x? z (r — 1) stopniami swobody, oznaczanego x?(r — 1). Tak jak w przypad-
ku testu Kolmogorowa-Smirnowa mozemy poznaé p-wartoéé¢ testu korzystajac z odpowiednich
narzedzi.

Wiele testéw zgodnosci opracowano dla rozktadu normalnego, do najbardziej znanych naleza
test Shapiro-Wilka, test Jarque-Bera, test Andersona-Darlinga. Aby méc z nich skorzy-
sta¢, wystarczy zmapowaé ciag (U;) na ciag (N;) zmiennych losowych o rozkladzie normalnym,
np. przy uzyciu transformacji Boxa-Mullera.

Powyzsze testy sprawdzaja jedynie zgodnos¢ z rozkladem jednostajnym. Do sprawdzenia
niezaleznos$ci teoretycznie mozna ponownie wykorzystaé test x2. Dla ustalonego t dzielimy cigg
(U;) na bloki

(U1, ..., Up), (Upgt, .- Usg), - . (2.5)

Otrzymujemy w ten sposob obserwacje, ktére powinny by¢ jednostajnie roztozone w hiperko-
stce (0, 1)t. Mozemy ja podzieli¢ na mniejsze kostki i skorzystaé ze statystyki (2.4), aby stwierdzié
czy wpada do nich odpowiednio wiele obserwacji. W praktyce jednak, oczekiwana liczba obser-
wacji w pojedynczej kostce spada do zera tak szybko, ze T nie jest dobrze przyblizane przez
rozktad x?.

Zgodnos¢ z twierdzeniami rachunku prawdopodobienstwa

Wiele faktéw w rachunku prawdopodobienstwa opiera si¢ na ciagach niezaleznych zmiennych
losowych o jednakowym rozkladzie. Dzieki temu na podstawie ciagu (U;) jesteSmy w stanie
otrzymac kolejne zmienne losowe, ktérych teoretyczne rozklady sa znane. W [6] zaproponowa-
nych jest kilka praw, ktére mozna wykorzysta¢ w ten sposéb. Oto niektore z nich:

e Test odstepéw. Dla ustalonego przedzialu (a, 3) mierzymy czasy oczekiwania na kolejne
U; wpadajace do tego przedziatu. Otrzymane wartoséci powinny mieé rozktad geometryczny,
co sprawdzamy testem X2-

e Test permutacyjny. Podzielmy ciag (U;) na bloki jak w (2.5), przy niezbyt duzym t. W
kazdym bloku zachodzi jedno z t! mozliwych uporzadkowan. Rozklad na uporzadkowaniach
powinien byé jednostajny, co ponownie weryfikujemy testem x?2.

e Test kolizji. Stanowi rozwigzanie, gdy mamy n obserwacji wpadajacych do m ,pudelek”,
przy czym n < m. Jak powiedzieliémy wczesniej, w takiej sytuacji nie mozemy zastosowac
testu x2. Jednak da sie wyliczy¢ teoretyczne prawdopodobienstwo otrzymania k kolizji
(kolizja jest trafienie obserwacji do pudelka, w ktérym jest juz inna obserwacja). Jesli
zaobserwowana liczba kolizji nie miesci sie w pewnych ramach, to mozemy stwierdzié, ze
cigg nie jest losowy.

Metody opisane tutaj maja pewna zalete w stosunku do przedstawionych wczedniej testéw zgod-
nosci (U;) z rozkladem jednostajnym — niejawnie testuja réwniez niezaleznosé.

24 Czes$¢ 2. Generatory liczb pseudolosowych

Zestawy testow

Rozwinigciem podejscia z poprzedniego paragrafu jest tworzenie paczek testowych. Zawieraja one
kilkanascie lub wiecej testéw opartych o fakty rachunku prawdopodobienstwa, ktére powinien
spelnia¢ idealny ciag losowych bitéw. Znane przyktady to:

e Diehard tests. Zestaw opracowany przez George’a Marsaglia w 1995 r. Obecnie uwazany
juz za przestarzaly.

e TestUO1. Nastepca zestawu Diehard, ktéry opracowali Pierre L’Ecuyer oraz Richard Si-
mard w 2007 r.

e NIST Test Suite. Zestaw opracowany przez organizacje National Institute of Standards
and Technology i ciagle rozwijany.

Powiemy wiecej o tym ostatnim zestawie. Zawiera on kilkanascie testéw rozstrzygajacych
losowosé ciagdéw zerojedynkowych. Hipoteza zerowa jest stwierdzenie, ze testowana sekwencja
jest realizacja idealnego ciggu losowych bitéw. Testy badaja m.in.: stosunek liczby jedynek do
dtugosci ciaggu, liczbe jednocyfrowych podciagéw, dtugosé najdiuzszego podciagu zawierajacego
same jedynki.

Jakos¢ GLP oceniana jest w systematyczny sposob. Dla kazdego testu w NIST Test Suite
postepujemy nastepujaco. Generujemy m sekwencji bitow. Po kolei dla kazdej z nich przepro-
wadzamy wybrany test na ustalonym poziomie istotnosci o = 0.01. Test zwraca nam p-wartosé,
i jezeli p > «, to uznajemy, ze dany ciag bitéw jest losowy. Przyjmuje si¢, ze GLP zaliczyt
wykonywany test jezeli okoto 97% lub wiecej sekwencji zostalo uznanych za losowe (oczywiscie
nie mozna wymagac, zeby wszystkie ciagi zostaly uznane za losowe, bo nawet sposrdd idealnych
ciagéw losowych bitéw okolo « z nich zostanie odrzucona).

Takie podejscie wydaje sie rozsadne, ma jednak zasadniczg wade. Wyobrazmy sobie, ze mamy
znakomity GLP g;. Na jego podstawie tworzymy nowy GLP gs w taki sposob, ze co setny ciag
bitéw otrzymanych z ga , a w pozostatych przypadkach go deleguje wygenerowanie ciagu do g;.
NIST Test Suite prawdopodobnie uznatby generator g, za dobry. Metoda opisana w czesci 3 ma
potencjal do wykrywania tego rodzaju nieprawidtowosci.

Test spektralny

Testowi spektralnemu Donald Knuth po$wigcit kilkanascie stron w swoim dziele [6], czego nie
sposéb tutaj stresci¢. Idea polega na spostrzezeniu, ze punkty w t-wymiarowej przestrzeni, utwo-
rzone z kolejnych wyrazéw ciagu (U;) wygenerowanego przez LCG, leza na stosunkowo niewielkiej
liczbie (t — 1)-wymiarowych hiperplaszczyzn. Zaglebiajac si¢ w ten temat mozna dojsé do dosé
skomplikowanej metody testowania LCG. Jednak w niektorych przypadkach wida¢ gotym okiem,
ze generator jest zty. Takim przykltadem jest niechlubny RANDU (jest to MCG(23!,216+3)). Na
Rysunku 2.1 przedstawiono punkty w przestrzeni otrzymane z tego generatora. Widaé¢ wyraznie,
ze ukladaja sie one na 15 plaszczyznach.

2.3. Popularne metody testowania GLP 25

Rysunek 2.1: Tlustracja rozmieszczenia w przestrzeni punktéw generowanych przez RANDU.
Kazdy punkt zostal utworzony z trzech kolejnych liczb otrzymanych z generatora i przeskalowa-
nych na odcinek (0, 1)

Ztozonosé¢ Kolmogorowa

Zacznijmy od przyktadu. Rozwazmy ciggi binarne dtugoéci 32

01010101010101010101010101010101
oraz

00110111001101001101101000110110.
Cho¢ wylosowanie obydwu z nich jest réwnie prawdopodobne, ten drugi uznajemy za bardziej
HSosowy”. Dzieje sie tak dlatego, ze pierwszy ciag mozna jednoznacznie opisa¢ w znacznie mniej-
szej liczbie znakdéw:

16x01,

za$ najkrétszym opisem drugiego ciagu jest prawdopodobnie przepisanie go catego.

Tego typu intuicje probujemy wyjaéniaé za pomoca, tzw. ztozonoéci Kotmogorowa. Stuzy ona
do mierzenia stopnia skomplikowania ciggdéw znakdéw. Ustalmy dowolny jezyk programowania L.
Zlozonoscia Kolmogorowa tancucha znakéw s jest dlugo$é najkrétszego programu P w jezyku
L, takiego ze P wypisuje s.

Rzadko kiedy jestedmy w stanie znalezé¢ doktadna warto$¢ ztozonosci tancucha s. Dlatego
moze sie wydawacé, ze powyzsze podejscie jest czysto teoretyczne. Okazuje sie jednak, ze mozna
zlozono$é s oszacowac. Niech P bedzie programem implementujacym ustalony algorytm kompre-
sji, a P odpowiadajacym mu programem dekompresji. Ponadto niech § bedzie skompresowanym
laficuchem s. Wéwczas zlozono$é lancucha s jest oszacowana z goéry przez sume dlugoéci P
oraz §. Odrzucamy hipoteze o losowoéci s, gdy otrzymana warto$¢ jest znacznie mniejsza od
dtugosci s.

26 Czes$¢ 2. Generatory liczb pseudolosowych

Zagadnienie ruiny gracza

Bardzo interesujaca metoda testowania GLP zostala przedstawiona w pracy [5]. Rozwazane jest
bladzenie po grupie Z,. Autorzy badaja czas dojscia do stanu 0, co odpowiada zbiciu majatku
wysokosci n lub bankructwu gracza ze znanego zagadnienia. W pracy opisane sa trzy warianty
zastosowanej metody, tutaj przedstawiamy podstawowa z nich.

Ustalmy p € (0,1). Ciag (U;) otrzymany z generatora wykorzystywany jest do poruszania
si¢ po grupie Zy. Jedli w kroku i-tym byliSmy w stanie s, to przechodzimy do stanu s + 1, gdy
Uir1 < p, ado s — 1 w przeciwnym przypadku. Dla kazdego = € Z,, x # 0 niech T, oznacza
czas dojscia do 0 ze stanu x. N-krotnie z punktu x rozpoczynamy bladzenie po grupie. W ten
sposob otrzymujemy N replikacji zmiennej T},. Oznaczmy ich érednia przez T,. Niech p oraz o>
oznaczaja warto$¢ oczekiwang oraz wariancje T,, gdy prawdopodobienstwa przejsé¢ do standéw
s+1 oraz s—1 wynosza odpowiednio p oraz 1 —p. Wartosci y i 02 mozna wyznaczy¢ teoretycznie.
Niech -

_ T

oV N
Przy zalozeniu hipotezy, o niezaleznoéci i rozkladzie jednostajnym zmiennych (U;), statystyka
Z, ma w przyblizeniu rozklad normalny N (0,1). W zwigzku z tym przy duzych warto$ciach
| Z.| nalezy stwierdzi¢, ze generator nie przeszedl testu w punkcie x.

Ly

Bladzenie przypadkowe

Testom opartym na wtasnosciach btadzenia przypadkowego po$wiecone sg kolejne dwie czesci
pracy.

CZESC Il

Metoda testowania oparta na btadzeniu
przypadkowym

W czeéei 1 przedstawiliSmy teorie przydatng do testowania GLP. W tej czesci pokazujemy jak
zastosowaé ja w praktyce. Opisujemy w jaki sposéb sprawdzaé¢ czy wygenerowane ciagi odpo-
wiadaja prawdziwie losowym realizacjom btadzenia przypadkowego. Przedstawiona tu metoda
wykorzystujaca prawo iterowanego logarytmu pochodzi z pracy [10]. Dodatkowo proponujemy
podobna metode oparta o prawo arcusa sinusa. W wykonywanych obliczeniach czesto polegamy
na aproksymacjach, dlatego w ostatnim paragrafie tej czesci analizujemy wielkosé popelnianego
btedu.

3.1 Opis metody

Ogodlna idea testow, ktére omawiamy w tej czesci pracy, nie jest skomplikowana. Metoda polega
na obliczeniu pewnych charakterystyk ciagéw wygenerowanych przez GLP i poréwnaniu ich
empirycznych rozkladow z rozkladami, ktére sa znane dla idealnego ciggu losowych bitéw.

Przyktadowo, w czeéci posSwieconej prawu arcusa sinusa uzasadniliémy, ze bardziej prawdo-
podobna jest dtuga przewaga liczby jedynek nad liczbg zer niz réwnomierny rozktad prowadze-
nia. Jedli generator sztucznie wyréwnuje czestosé zer i jedynek, to zauwazymy odstepstwa od
tej reguly. Zgodnosé z prawem arucsa sinusa sprawdzajg testy oparte o zdefiniowana ponizej
charakterystyke S5,

Podobnie kto§ moégtby pomysle¢, ze czyms$ pozytywnym bylyby niewielkie réznice miedzy
liczba jedynek i zer w ciggu bitéw otrzymanym z GLP. Moglibysmy zdecydowaé si¢ na jakas
,rozsadna” stata, powiedzmy 100, i uznaé, ze generator jest dobry jesli réznica liczby zer i
jedynek w ciagu nie przekroczy 100. Wszak duze réznice mogltyby sugerowaé, ze mamy rozne
prawdopodobienstwa wystapienia zer i jedynek. Jednak prawo iterowanego logarytmu pokazuje,
ze to rozumowanie jest bledne. Nalezy spodziewaé sie fluktuacji i odstepstw od zera, a ich brak
oznacza, ze GLP nie generuje idealnego ciagu losowych bitéw. Te obserwacje wykorzystuja testy
oparte o charakterystyke S'.

27

28 Cze$¢ 3. Metoda testowania oparta na bladzeniu przypadkowym

3.1.1 Test arcusa sinusa

Niech
D=1(St >0V Sk_1>0),k=1,2,...,n. (3.1)

Zmienna Dy, przyjmuje wartos¢ 1, gdy w k-tym kroku btadzenia przypadkowego zachodzi prze-
waga liczby jedynek nad zerami (traktujac remisy tak jak w paragrafie 1.2), zas 0 w przeciwnym
przypadku. Zdefiniujmy charakterystyke S wzorem

) 12
asin — = N" Dy 2
Sn nk,1 k (3)

Zatem S%5" jest to frakcja czasu podczas ktérej jedynki dominowaly nad zerami. Wiemy z

; k
P (Sﬁsm =) = Dk
n

za$ korzystajac z prawa arcusa sinusa

paragrafu 1.2, ze

asin a ~ b dt
Pl e @)= | T 53)

2 2
= Zarcsin(vb) — = arcsin(v/a).
m m

W celu przetestowania GLP generujemy przy jego uzyciu m ciagbéw zerojedynkowych dtugo-
éci n. Otrzymujemy w ten sposéb m realizacji zmiennej S, j-ta replikacje oznaczamy Sﬁf;”
Ustalamy partycje prostej rzeczywistej i dla kazdego odcinka w tej partycji zliczamy ile realizacji
Sasin do niego wpadto.

W testach opartych o wielko§é S2" korzystamy z (s + 2)-elementowej partycji postaci
rp;zsin — {Poasin7 PfSin, o 7Psa—ii1n}7 gdzie

. 1
paosin — | _ =
0 (> 2s>’

R:asin:[2z_3 22—1)7 1<2<5’

2s 7 2s
, 1
i = 1= 5o0).
Mozemy teraz zdefiniowaé dwie miary okreslone na partycji P2, Pierwsza z nich, pd*"
reprezentuje teoretyczny rozktad rozwazanej charakterystyki:

pgsin (Ppsim) = P (St € PR) 0 < < s+ 1 (3.4)

Powyzsza warto$é mozemy wyliczy¢ ze wzoru (3.3).

Druga miara, 2", reprezentuje rozklad empiryczny, wyznaczony w testach. Okreslamy

- Sas@nepqsm’1< < m
):‘{] n,j i SIS }" 0<i<s+1. (3.5)

pasin (Piaszn
m

n

3.1. Opis metody 29

Jezeli testowany GLP jest dobry, to obie miary powinny by¢ ,mniej wiecej takie same”. Sci-
slej, odlegtos¢ miedzy otrzymanymi miarami powinna by¢ mata. Korzystamy ze znanych funkcji
odlegloéci total variation distance oraz separation distance. Sa one zdefiniowane nastepujaco dla
dowolnych miar p oraz v:

#(1.0) = sup |u(4) (4] (36)
o7 = (1) e

Poniewaz nie jesteSmy w stanie wyznaczy¢ supremum na calej prostej, skorzystamy z nieco
uproszczonych definicji. Dla partycji P prostej rzeczywistej, definiujemy:

) =5 3) v)= Y (uA) - v(4)) (38)

AeP AeP,
u(A)>v(A)
se p(A
dp" (i, v) = max (1 - VEAD (3.9)

Inne podejscie polega na testowaniu hipotezy o zgodnoéci rozktadow. Korzystajac z ter-
minologii statystycznej wielkosci Sp*™ bedziemy nazywac obserwacjami. Hipotezg zerowa jest

stwierdzenie, ze obserwacje maja rozklad u2*™, czyli de facto, ze GLP generuje idealny ciag

losowych bitéw. Niech O; oznacza liczbe obserwacji wpadajacych do przedziatu P*™ tzn.
Oi={j: SiLeP*™ 1<j<m}|, 0<i<s+]1, (3.10)
oraz E; oznacza oczekiwang liczbe obserwacji wpadajacych do tego przedziatu, czyli
Ei=m-P(Spm e Pem), 0<i<s+1. (3.11)
Wartos$é E; obliczamy ze wzoru (3.3). Przy hipotezie zerowej statystyka

T = f = TEiEi)Q (3.12)

=0

ma w przyblizeniu rozktad x2(s + 1). Duze wartosci tej statystyki sa dowodem wadliwoéci GLP.

3.1.2 Test iterowanego logarytmu

Przyjrzyjmy sie teraz metodzie zastosowanej w [10]. Jest ona podobna do metody opisanej w
poprzednim paragrafie. Liczymy jedynie inng charakterystyke ciagdéw i dostosowujemy partycje
prostej. Przypomnijmy oznaczenie

Sn

Slil _)
" /2nloglogn

(3.13)

30 Cze$¢ 3. Metoda testowania oparta na bladzeniu przypadkowym

Mozna latwo znalezé teoretyczny rozklad tej charakterystyki (tzn. rozklad dla idealnego ciagu
losowych bitéw). Istotnie, korzystajac z centralnego twierdzenia granicznego dostajemy

P (Sﬁfl € (a,b)) =P (j% € (a\/210glogn,b\/2 loglogn))

~ ®(by/2loglogn) — ®(a/2loglogn)

Jako, ze S! przyjmuje swoje wartoéci w szerszym przedziale niz S, dlatego korzystamy z
innej partycji prostej, mianowicie P4 = { Pl Pt .. Pslil}, gdzie

(3.14)

P(l)il = (—OO, _1)7
2(i — 1)

, 2i
P}”:{—H,—HZ), I<iss,
S S

Pé:l—l = [1700)

Teoretyczny i empiryczny rozktad okreslamy w tym przypadku nastepujaco:

it (P =P (st e PI"), 0<i<s+1, (3.15)

L 0<i<s+]1, (3.16)

ity 16 Sy < P LS5 <
n 1 - m
przy czym warto$¢ (3.15) znamy dzieki (3.14), za$ Sffl] oznacza oczywiscie replikacje S!, obli-
czone dla kolejnych ciagdw.

3.2 Analiza btedu

Omawiajac test arcusa sinusa oraz test iterowanego logarytmu dokonywalidmy w obliczeniach
pewnych przyblizen. Wystarcza to do przekazania idei opisanych metod testowania, jednak dla
porzadku nalezy dowiesé, ze wprowadzona niedokladnosé nie ma istotnego znaczenia. W [10]
uzasadniono, ze dla n > 26 blad przyblizenia w (3.14) jest pomijalny. Tutaj oszacujemy btad
popeliany w (3.3).

W przypadku testu arcusa sinusa korzystaliSmy z aproksymacji dwukrotnie: najpierw przybli-
7ajac pak.2n, UZywajac wzoru Stirlinga, a pézniej przyblizajac sume catky. Dla analizy pierwszego
z tych przyblizen przyda nam sie nastepujacy fakt, pochodzacy z [8].

Lemat 3.1. Dia kazdej liczby naturalnej n istnieje liczba 0, 0 < 0, < 1, taka ze
n! 2mn <n>ne { On }
| = s — Xp 1 ——
¢) “Pli2n

Uzupelniajac obliczenia, ktére wykonaliSmy, aby otrzymaé (1.7) o czynnik exp {f‘;—"n} otrzy-
mujemy

(3.17)

e 1 {92k — 46y, n O2(n—k) — 49n—k}

k) P\ 24k 24(n — k)

3.2. Analiza bledu 31

Oznaczmy

1
der::

’ m/k(n —k)

Naszym celem jest pokazanie, ze |paj 2n — di | jest male. Z (3.17) dostajemy

Pokan oo {1 n 1 } — exp { n }
dem 24k ' 24(n — k) 24k(n — k)

oraz

e
din 24k ' 24(n — k) 6k(n—k)J

Korzystajac z powyzszych i z nieréwnosci e” — 1 < 2z (dla z > 0 i dostatecznie matych) oraz
1 — e™® < x uzyskujemy

n n

n n < n — > —1) <d NTo77/ . 9N
P2k = Ao < d, (eXp{24k(n—k)}) k19K (n — k)

oraz

n n
n n S dpn | 1— Y YEAY Sdongr— 1
don = Paian < di (eXp{ 6k(n — k) }) “"6k(n — k)

co razem daje
n n
P2k 2n — dien| < dip - 5=
(n=k) " 6x (k(n — k))

Nl

Ustalmy 6 > 0 i zalozymy dodatkowo, ze § < % < 1 — 0. Funkcja k — (k(n — k))3/2 przyjmuje
minimalng warto$¢ na brzegu przedziatu, w ktérym sie jg rozpatruje, dlatego
n 1

[P2k,2n — din| < ;= .
67 (on(n —dn))2 6702 (6(1 —0))

njw

Wielkos¢ bledu aproksymacji w (3.3) oszacujemy w dwéch etapach. Na poczatek wezmy takie
liczby a,b, ze 6 < a <b<1—9. Wtedy

1

> pron— Y, dim > Ip2kan — dinl <Y

a<kgh a<E<h a<E<h a<E<h 6mn? (6(1 —0))
[bn — an b—a
3 < 3
6mn2 (0(1—0))2 3mn(6(1 —9))2

1
3mn (6(1 —9)) ®

VA

Nlw

VAN
|

[SI[9)

Drugim zrédtem niedoktadnosci jest zastapienie sumy przez catke. Rozpatrzmy dowolna funkcje

f, rézniczkowalna w przedziale (a,b). Podzielmy (a,b) na odcinki dlugosci % i niech z; bedzie

32 Cze$¢ 3. Metoda testowania oparta na bladzeniu przypadkowym

dowolnym punktem w odcinku zawierajacym %, a My, i my odpowiednio maksymalng i minimalna
wartoscig funkcji na tym odcinku. Korzystajac z twierdzenia Lagrange’a dostajemy

a<E<b a<E<b a<E<h
1 bn —an
< ¥ L @)= ap @) 619
agfgb a<lx<b a<z<b
2(b—a
<2 g 1)l
n a<z<b
W szczegoblnosei dla
1
/(@) m/z(l — x)
mamy
20 — 1
fl@) = 7
2 (x(1 —x))2
1f (k:) 1 1 d
—_ —_ = — — k7n
noAn nmy/E(1 - E) T k(n — k)
a stad w interesujacym nas przedziale
b 2 1-26
[f@de = Y dia <5 sup @) = = ()
a oy N §<z<1—5 mn(6(1 —0))2

W testach wykorzystamy partycje prostej Pg5™", dlatego unas § = 8—10 > (0.01. Bedzie ponadto
n > 220, Zatem

107.72

(#) < <1.6-107°

n
316.69
n

(%) < <4.7-1076

Ostatecznie

b b
/f(.’L‘)d.T— Z P2k 2n < / f(.f)d:(}— Z dk,n + Z dk,n_ Z D2k.2n

a<E<h a<E<h a<E<h a<E<h

= (#)+ (k) <6.3-107°

co uzasadnia wzor (3.3) w przypadku 6 <a <b<1-4.

3.2. Analiza bledu

33

Musimy jeszcze zbadaé niedoktadnos¢ ,na brzegu”. Mamy

/f iz = 3 pakan| =

o<k <0

/:f(@dm—/:f@)dﬂ?— > pokon + Z P2k2n

<kgl <kg
n n

1 3 1
5—/62f($)d33—§+ Z D2k,2n

o<k

m\
w\»-‘

VAN
N[

1
/Qf(x)dx— 3" Pokan| <6.3-1076,
1)

k 1
OSy S

N \

gdzie ostatnie przejscie wynika z wczedniej przeprowadzonych rachunkéw. Powyzsza analiza po-
kazuje, ze blad przyblizenia jest pomijalny.

34

Cze$¢ 3. Metoda testowania oparta na bladzeniu przypadkowym

CZESC IV

Testy

Przebrnawszy przez dlugie teorie i rozwazania, przechodzimy do najciekawszej czesci pracy, czyli
do implementacji opisanej metody testowania i sprawdzenia jej na powszechnie wykorzystywa-
nych generatorach.

4.1 Implementacja

Testy oparte o prawa arcusa sinusa i iterowanego logarytmu przedstawione w czeéci 3 zaimple-
mentowalem w jezyku Julia. Napisany program stanowi rownie wazna cze$¢ tej pracy.

Julia jest to nowoczesny (prace nad nim rozpoczeto w roku 2009) i szybki jezyk programo-
wania przeznaczony do obliczen naukowych. Jest to wiec narzedzie bardzo dobrze nadajace sie
do naszych eksperymentow.

Powstaly skrypt mozna wykorzystaé¢ do przetestowania dowolnego generatora. Trzeba zadbaé
jedynie o to, aby wyjscie z GLP bylo przekazywane do programu testujacego w odpowiednim for-
macie. Ponizej opisujemy doktadniej jak to zrobié. Jednak najpierw oméwmy kilka prozaicznych
kwestii, ktére wplynely na konicows architekture programu.

4.1.1 Uwagi praktyczne

Najwygodniejszym sposobem testowania GLP bytoby prawdopodobnie podzielenia zadania na
dwa etapy. W pierwszej kolejnosci uzylibyémy GLP do wygenerowania m sekwencji bitow dtu-
gosci n, ktére zapisalibySmy do pliku. Nastepnie program testujacy wezytatby ten plik i wyliczyt
odpowiednie statystki, rozstrzygnat czy dane sa losowe, itd. Niestety nie da sie¢ zaprojektowac
systemu w taki sposéb, aby opisany tryb pracy byl mozliwy.

Powodem jest olbrzymia ilos¢ uzywanych danych. W celu przetestowania wiekszosci GLP
wykorzystujemy je do wygenerowania m = 10000 ciggéw bitéw diugosci n = 23%. Rodzi to nie-
bagatelne problemy implementacyjne. Pojedynczy ciag ma rozmiar 2G B, wiec w pamieci prze-
cigtnego komputera nie zmiesci sie ich nawet kilka. Wymusza to przetwarzanie ciggdéw jednego
po drugim — po obliczeniu statystyk dla jednego ciagu nalezy natychmiast zwolni¢ pamieé dla
kolejnego. Wiekszym problemem jest jednak fakt, ze dane zajmuja tacznie 207 B, wiec zapisanie

35

36 Czesé 4. Testy

ich do pliku jest mozliwe na malo ktérej maszynie — co uzasadnia dlaczego pomyst przedstawiony
w poprzednim akapicie jest niewykonalny.

Jedyna mozliwoscig jest postepowanie w taki sposéb, by GLP i skrypt funkcjonowaly naprze-
miennie. GLP generuje sekwencje bitéw, program testujacy ja analizuje, po czym pamieé zostaje
zwolniona i mozemy powtorzy¢ procedure. Na szczeScie istnieje prosty srodek pozwalajacy zor-
ganizowaé obliczenia w ten sposob. Mowa tu o uniksowym mechanizmie potoku. Wystarczy
wyniki z GLP przekazywaé¢ na standardowe wyjscie, ktére bedzie potaczone ze standardowym
wejSciem programu testujacego. System operacyjny sam zadba o to, zeby oba procesy dziataly
na zmiane.

Kolejng istotng kwestia jest tryb zapisu danych do strumienia wejscia-wyjscia. Zwrdémy
uwage, ze gdybysmy przekazywali dane w trybie tekstowym, to przekazywany tancuch znakdéw
zajmowalby 8 razy wiecej miejsca niz jest to potrzebne — kazdy bit bylby reprezentowany jako
jednobajtowy znak ’0° lub ’1’. Byloby to fatalne podejscie, gdyz, po pierwsze, prawdopodobnie
nie starczytoby pamieci do zapisania calego ciagu. Po drugie, nawet gdyby pamieci byto wystar-
czajaco, to zapisywanie i wezytywanie tych danych do i ze strumienia kilkukrotnie wydtuzytoby
(i tak bardzo dlugi) czas pracy programu. Dlatego dane przekazujemy w trybie binarnym.

Ostatnia rzecza, na ktéra warto zwroci¢ uwage, jest optacalno$é¢ oddzielenia obliczania cha-
rakterystyk ciggéw (525 lub S%) od ich poréwnywania z teoretycznym rozkladem. Lepiej jest
zapisywaé wartosci charakterystyk do pliku, a nastepnie oddzielnym skryptem badaé zgodno$é
z oczekiwanym rozkltadem. Dzigki takiemu podejéciu mozna uruchomié¢ instancje generatora na
wielu maszynach (zadbawszy o to by korzystaly one z innych ziaren). Po zakonczeniu obliczen
tatwo jest scali¢ wyniki i wyznaczy¢ sumaryczne statystyki.

4.1.2 Uzycie programu

Uruchomienie. Zalézmy, ze dysponujemy programem gen.bin generujacym sekwencje pseu-
dolosowych bitéw. Powiedzmy, ze przyjmuje on z linii polecen dwa argumenty oznaczajace liczbe
i logarytm dtugosci generowanych ciagéw. Opiszemy jak przetestowac ten generator.

7 perspektywy uzytkownika najwazniejsze jest, ze punkt startowy programu testujacego
jest w pliku Tester.jl. Program wczytuje ze standardowego wejscia strumien bitéw. Do pliku
podanego w linii polecei zapisuje wyniki swoich obliczen, tj. wartogci S lub S!!. Po zakon-
czeniu dziatania uzywamy skryptu ResultReader.jl do wyznaczenia rozkladéw empirycznych
ze wzoréw (3.5) i (3.16). Skrypt nastepnie wyliczy odlegtosci d i d*®P oraz p-wartosci testu
zgodnosci x2.

Skrypt Tester.jl przyjmuje z linii polecen naste¢pujace argumenty:

e testType — stowo asin lub 1il oznaczajace ktéra z charakterystyk S2™ i SU obliczamy,

e nr0fCheckPoints — Dla ciagéw dlugosci n do pliku wynikowego zapisujemy nie tylko Sy,
ale réwniez S» /2 Sy Ja itd. nrOfCheckPoints to liczba tych wartosci.

e pathToFile — nazwa pliku do ktorego zapisujemy wyniki.

Podobne argumenty ma skrypt ResultReader. jl:

4.2. Wyniki 37

e testType — slowo asin lub 1il moéwiace, z ktéra teoretyczng miara nalezy pordwnywaé
wyniki,

e logLength — liczba naturalna oznaczajaca logarytm diugosci ciagéw wykorzystanych do
otrzymania podanych wynikéw,

e pathToFile — nazwa pliku z ktérego odczytujemy wyniki.

Wréémy do generatora gen.bin. Mozemy go przetestowaé wywolujac z konsoli przykladowo

$./gen.bin 1000 25 | julia Main.jl asin 5 wyniki.csv
W ten sposéb testujemy generator gen.bin na podstawie 1000 ciagéw zawierajacych 22° bitéw
przy uzyciu charakterystyki S, Wyniki znajda sie w pliku wyniki.csv. Po zakofczeniu ob-
liczen mozemy je zinterpretowaé poleceniem

$ julia ResultReader.jl asin 25 wyniki.csv
Podobnie mozna przetestowaé¢ dowolny inny generator, pamietajac, ze jego wyjscie musi by¢
zapisane zgodnie z formatem opisanym ponize;j.

Testowanie wlasnych GLP. Z punktu widzenia osoby, ktéra chce wykorzystaé¢ program do
sprawdzenia swojego GLP wazne jest co doktadnie ma sie znalezé w strumieniu wejéciowym
programu testujacego. Format jest prosty:

e Pierwsze 8 bajtow strumienia zawiera 64-bitowa wartosé typu integer oznaczajaca liczbe
ciggdéw bitow.

e Kolejne 8 bajtéw zawiera 64-bitowa wartos¢ typu integer oznaczajaca dlugos$é pojedyn-
czego ciagu.

e Dalej nastepuje m - n bitéw danych, przy czym kazde kolejne n bitéw traktowane jest jako
jeden ciag uzywany w testach.

Uwaga. Nie ma zadnych ,specjalnych” bitéw oznaczajacych przerwy miedzy ciagami, ani nicze-
go podobnego. Po wczytaniu n bitow jednego ciagu, kolejny bit jest uwazany za pierwszy bit
nastepnego ciagu.

4.2 Wiyniki

Przyjrzyjmy sie wynikom testowania kilku znanych GLP. Kazdy z nich testowany byt przy uzyciu
m = 10000 ciagéw. Dlugoscia uzywanej sekwencji bylo w wiekszosci praypadkéw n = 234,

Wartosci S lub SU obliczone zostaly nie tylko dla catych ciagéw, ale takze dla podciagdw
dtugosci n/2, n/4, itd. Pozwala to obserwowaé zgodnosé¢ z pozadana miara na réznych etapach.
Do badania zgodnoéci uzyto partycji Pffol dla testéw korzystajacych z charakterystyki S4 i
partycji PE5™ dla testéw korzystajacych z charakterystyki S5,

Do testéw wykorzystano wlasne implementacje rozpatrywanych GLP (za wyjatkiem MT19937).
Program wywotujacy GLP korzystal losowych ziaren pobranych ze strony www.random.org.
Przed wygenerowaniem kazdej kolejnej sekwencji bitéw ustawiano nowe ziarno generatora.

Podkreslmy, ze otrzymanie ponizszych wynikéw nie bylto btahostka. Przetestowanie jednego
GLP na 10 komputerach w pracowni Instytutu Informatyki zajmowalo okoto péttorej doby.

38 Czesé 4. Testy

4.2.1 RANDU

Na rozgrzewke rozpoczynamy od generatora, ktory od dawna nie jest w uzyciu. RANDU powstat
na poczatku lat 60. Wspominalidémy juz o nim w paragrafie 2.3, dajac go jako przyktad generatora
fatalnie oblewajacego test spektralny.

RANDU jest to po prostu MCG(23!,65539). Wybér liczby 65539 wydawat sie dobry, gdyz
65539 = 216 + 3, co umozliwialo szybkie, sprzetowe wykonanie mnozenia.

Rezultaty testowania RANDU przedstawione sa w Tabelach 4.1 i 4.2. Pierwszy wiersz w
tabelach oznacza dlugosci podciagéw. Dla podciagu dtugosci ny zostata obliczona teoretyczna
miara f,, wedlug wzoru (3.4) lub (3.15) oraz empiryczna miara vy, wedlug wzoru (3.5) lub (3.16).
Kazda kolumna zawiera warto$ci d™(tn,, Vn,,)s d*P (finy,s Vny)y A5P (Vny,, fin,,) Oraz p-warto$¢ sta-
tystyki (3.12). Dla wszystkich GLP tabele z wynikami sporzadzono w analogiczny
sposab.

Tabela 4.1: Wyniki testu arcusa sinusa dla generatora RANDU.
n 521 922 923 924 925 926
tv | 0.4604 | 0.4616 | 0.4637 | 0.4670 | 0.4695 | 0.4697

sepl | 0.6017 | 0.6646 | 0.6229 | 0.6138 | 0.5934 | 0.6453

sep2 | 0.8659 | 0.8662 | 0.8667 | 0.8675 | 0.8681 | 0.8682

p-val | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Tabela 4.2: Wyniki testu iterowanego logarytmu dla generatora RANDU.
n 221 222 223 224 225 226
tv | 0.4955 | 0.496 | 0.4965 | 0.4969 | 0.4973 | 0.4977

sepl | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000

sep2 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000

p-val | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Jak widaé nie trzeba bardzo dtugich ciagdéw, aby przekonaé sie, ze wyjscia RANDU nie mozna
uzna¢ za losowe. Nie bez przyczyny zostal on szybko wyparty przez lepsze generatory.

4.2.2 Biblioteczny rand w Microsoft Visual C++4

Funkcja rand w Microsoft Visual C++ opiera si¢ o LOG(232,214013,2531011). Od zwyktego
LCG ro6zni sie jednak tym, ze zwracane sa jedynie bity na pozycjach 30..16.

Jest to jeden z generatoréw testowanych w [10]. Podobnie jak autorzy tej pracy odrzucamy
najmniej istotne 7 bitéw liczb zwracanych przez funkcje rand (czyli uzywamy tylko bitéw 30..23
liczby otrzymanej z LCG). Wyniki testéw zestawiono w Tabelach 4.3 i 4.4.

Pamietajmy, ze okresem tego LCG jest 23!, a z jednego wywolania otrzymujemy 8 = 23 bitéw.
Oznacza to, ze aby dostaé cigg bitéw ditugoéci 23 przechodzimy przez peten cykl generatora.
Musieliémy wiec kazdy uktad 8 bitéw wygenerowaé tyle samo razy, skad wniosek, ze po 23
krokach bladzenie losowe zawsze wracalo do zera. Widaé¢ to wyraznie w wynikach testowania

4.2. Wyniki 39

Tabela 4.3: Wyniki testu arcusa sinusa dla generatora w Visual C+—+.
n 926 927 928 929 930 931 932 933 931
tv | 0.0289 | 0.0387 | 0.0615 | 0.0768 | 0.0848 | 0.0928 | 0.0965 | 0.1870 | 0.2093
sepl | 0.2030 | 0.1548 | 0.1952 | 0.2605 | 0.3664 | 0.4210 | 0.5528 | 0.6533 | 0.8163
sep2 | 0.1780 | 0.2260 | 0.2524 | 0.2364 | 0.2841 | 0.3160 | 0.4336 | 0.6112 | 0.4328
p-val | 0.0128 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Tabela 4.4: Wyniki testu iterowanego logarytmu dla generatora w Visual C++-.
0 526 527 528 929 930 531 932 933 931
tv | 0.0350 | 0.0512 | 0.0938 | 0.1234 | 0.1672 | 0.2423 | 0.3100 | 0.4991 | 0.9500
sepl | 0.2831 | 0.7419 | 0.9731 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
sep2 | 0.2670 | 0.1416 | 0.2635 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
p-val | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

charakterystyka S%'. Dla n = 23* wszystkie obserwacje wpadaja do przedziatu [0,0.05). Jego
teoretyczna miara wynosi ~ 0.05, a stad d*(pl, Vi) ~ 0.95.

Kto$ ztodliwy mogtby powiedzieé, ze w bardzo zlozony sposéb udowodnilidémy oczywisty fakt,
ze generatory o krotkich okresach nie nadaja sie do generowania duzych ilosci liczb pseudoloso-
wych. Zauwazmy jednak, ze analizowany generator ma problemy juz przy n = 22, a do wyge-
nerowania bladzenia tej dtugosci potrzeba tylko 223/23! = 1/28 ~ 0.4% catego okresu. Trudno
jest wiec oceni¢ ten generator dobrze, nawet w kategorii generatoréw o krétkich okresach.

Co zaskakujgce, NIST Test Suite uznaje ten generator za poprawny, jak zauwazyli
autorzy [10].

4.2.3 Biblioteczny rand w Borland C/C++

Funkcja rand w érodowisku Borland jest implementacja LCG(232,22695477, 1), ktéra, podobnie
jak rand w Visual C++, zwraca jedynie bity 30..16.

Postepujac tak jak w poprzednim przykladzie bierzemy do testow tylko 8 najistotniejszych
bitow zwrdconej liczby.

Tabela 4.5: Wyniki testu arcusa sinusa dla generatora w Borland C/C++.
n 226 227 228 229 230 231 232 233 234
tv | 0.0384 | 0.0502 | 0.0697 | 0.0861 | 0.1394 | 0.1562 | 0.1231 | 0.1466 | 0.2148
sepl | 0.1293 | 0.1840 | 0.2513 | 0.3733 | 0.5485 | 0.5149 | 0.5696 | 0.6873 | 0.8219
sep2 | 0.2024 | 0.2120 | 0.2096 | 0.3137 | 0.3702 | 0.3730 | 0.3799 | 0.5167 | 0.4009
p-val | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Wiyniki przedstawione sg w Tabelach 4.5 i 4.6. Sa one bardzo podobne do wynikéw generatora
z Visual C++ i tycza sie ich te same uwagi.

40 Czesé 4. Testy

Tabela 4.6: Wyniki testu iterowanego logarytmu dla generatora w Borland C/C++.
n 226 227 228 229 230 231 232 233 234
tv | 0.0684 | 0.1002 | 0.1395 | 0.1940 | 0.3187 | 0.4136 | 0.4685 | 0.5911 | 0.9500

sepl | 0.6752 | 0.7357 | 0.9193 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000

sep2 | 0.1610 | 0.2565 | 0.2978 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000

p-val | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

4.2.4 Biblioteczny rand w BSD libc

Funkcja rand z biblioteki systemu BSD uzywata kiedy$ implementacji LCG(23!, 1103515245, 12345)
i w przeciwienstwie do dwoch poprzednich generatoréw zwraca wszystkie bity generowanych liczb
—1do tego testu uzylismy ich wszystkich. Tabele 4.7 i 4.8 obrazuja dlaczego generator zmieniono.

Tabela 4.7: Wyniki testu arcusa sinusa dla starego generatora z BSD libc.
n 221 222 223 224 225 226
tv | 0.0883 | 0.0980 | 0.0862 | 0.0951 | 0.0936 | 0.1081

sepl | 0.3402 | 0.3979 | 0.4111 | 0.4980 | 0.4346 | 0.4751

sep2 | 0.3634 | 0.4198 | 0.3053 | 0.2805 | 0.3424 | 0.4070

p-val | 0.1829 | 0.0326 | 0.1874 | 0.1767 | 0.1181 | 0.0051

Tabela 4.8: Wyniki testu iterowanego logarytmu dla starego generatora z BSD libc.
n 221 222 223 224 225 226
tv | 0.1956 | 0.2191 | 0.2472 | 0.2539 | 0.2464 | 0.2707

sepl | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000

sep2 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000

p-val | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Wystarczaja stosunkowo krétkie ciggi, by zobaczyé, ze wyjécie funkcji rand z BSD nie jest
losowe. Przyczyng tak ztych wynikéw jest fakt, ze to LCG wykonuje obliczenia modulo 23
Fakt 2.2 méwi, ze w takiej sytuacji okres d najmniej znaczacych bitéw wynosi 2¢. W efekcie
liczba zer i jedynek jest zbyt wyréwnana co latwo wylapuja testy oparte o wlasnosci btadze-
nia przypadkowego. Trzeba jednak przyznaé, ze charakterystyka S!! pokazuje to zdecydowanie
wyrazniej.

4.2.5 Biblioteczny rand w GLIBC

Funkcja rand z GNU C Library korzysta z bardziej skomplikowanego generatora od testowanych
do tej pory. Jego stan opisany jest przez 34 liczby z;, it1, .. ., Tit+33. Generator inicjowany jest

4.2. Wyniki 41

ziarnem s, 0 < s < 23!, zag poczatkowym stanem jest

Trog—S
z; = 16807z;,_; mod (23! — 1), gdy 0 < i < 31
Ti = X314, gdy i € {31, 32,33}.

Kolejne wartosci z; wyznaczane sg ze wzoru
x; = (Ti—3 +x;—31) mod 232,
Przy k-tym wywolaniu generator zwraca xgy343 > 1.

Tabela 4.9: Wyniki testu arcusa sinusa dla standardowego generatora w GCC.
226 227 228 229 230 231 232 233 234

n

tv | 0.0287 | 0.0217 | 0.0264 | 0.0228 | 0.0202 | 0.0289 | 0.0237 | 0.0254 | 0.0230
sepl | 0.1157 | 0.1249 | 0.1629 | 0.1186 | 0.1661 | 0.1717 | 0.1306 | 0.1316 | 0.1405
sep2 | 0.1754 | 0.1909 | 0.1436 | 0.1869 | 0.1110 | 0.1344 | 0.1786 | 0.1262 | 0.1879
p-val | 0.0649 | 0.5511 | 0.2565 | 0.4887 | 0.7967 | 0.1115 | 0.5880 | 0.2599 | 0.3930

Tabela 4.10: Wyniki testu iterowanego logarytmu dla standardowego generatora w GCC.
o 926 927 928 929 930 931 932 933 931
tv | 0.0185 | 0.0243 | 0.0242 | 0.0244 | 0.0210 | 0.0220 | 0.0330 | 0.0237 | 0.0221

sepl | 0.2593 | 0.1640 | 0.1844 | 0.2573 | 0.2010 | 0.1853 | 0.2882 | 0.4129 | 0.2563

sep2 | 0.0807 | 0.2133 | 0.2299 | 0.2060 | 0.1839 | 0.2361 | 0.3456 | 0.2078 | 0.1405

p-val | 0.9627 | 0.4878 | 0.5225 | 0.3022 | 0.6978 | 0.5382 | 0.0009 | 0.4903 | 0.7901

Do testow brane byly wszystkie 31 bitéw zwracanych przez GLP. Na podstawie wynikéw
zebranych w Tabelach 4.9 i 4.10 mozna stwierdzié, ze test arcusa sinusa nie daje podstaw do
odrzucania hipotezy o losowosci sekwencji generowanych przez analizowany GLP. W przypadku
testu iterowanego logarytmu, rezultaty dla n = 23* i n = 233 réwniez sugerowaltyby, ze GLP
jest dobry. Jednakze dla n = 232 obserwujemy co$ dziwnego, mamy bardzo niska p-wartosé
wynoszaca okolo 1/1000. Moze to byé¢ kwestia przypadku — z prawdopodobienstwem 1/1000
zdarzytoby sie to nawet generatorowi liczb prawdziwie losowych. Popatrzmy jednak na p-wartosci
dla dziesigciu 1000-elementowych podzbioréw danych. Wynosza one: 0.9313, 0.0949, 0.8859,
0.1739, 0.3675, 0.0334, 0.0321, 0.1824, 0.0017, 0.6205. Zauwazmy, ze az 4 p-wartosci sa mniejsze
niz 0.1. W przypadku ciaggéw prawdziwie losowych zdarzenie, ze 4 lub wiecej otrzymanych p-
wartosci znajdzie sie w tym przedziale wynosi

3 7 10—1
10 1 1
1— — 11— — ~ 0.0016
> (V) (3) (1-)

To przemawia za tym, by generator z GLIBC réwniez uznaé za podejrzany. Jednak mimo tego
jest to wyraznie najlepsza implementacja funkcji rand.

42

Czesé 4. Testy

4.2.6 Minstd

Minstd (skrét od ang. minimal standard generator) jest to MCG z parametrami zasugerowanymi
przez Parka i Millera. Ich celem bylo zaprojektowanie prostego generatora, ktéry wprawdzie
nie bylby doskonaly, ale za to szybki, prosty w implementacji i nadajacy sie do wiekszosci
niespecjalistycznych zastosowan. W efekcie zaproponowali M CG(23! —1,16807). Do generowania
ciagdw zerojedynkowych uzyto oSmiu najbardziej znaczacych bitéw zwracanych przez GLP.

Rezultaty testow pokazuja Tabele 4.11 i 4.12.

Tabela 4.11: Wyniki testu arcusa sinusa dla generatora Minstd z mnoznikiem 16807.

n

226

227

228

229

230

231

232

233

234

tv

0.0321

0.0321

0.0402

0.0725

0.0917

0.1116

0.1648

0.2003

0.2109

sepl

0.1172

0.1686

0.1407

0.2985

0.2880

0.6670

0.5203

0.7345

0.8486

sep2

0.1302

0.1490

0.2420

0.3986

0.4051

0.3735

0.3822

0.5352

0.3894

p-val

0.0360

0.0203

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Tabela 4.12: Wyniki testu iterowanego logarytmu dla generatora Minstd z mnoznikiem 16807.

n

226

227

228

229

230

231

232

233

234

tv

0.0370

0.0622

0.0823

0.1120

0.1877

0.2002

0.3538

0.3194

0.9500

sepl

0.5035

0.5465

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

sep2

0.1444

0.2366

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

p-val

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Kilka lat p6zniej p6zniej Park i Miller zasugerowali, ze lepiej uzywaé mnoznika 48271. Czy

zmiana mnoznika poprawilta wyniki testow wida¢ w Tabelach 4.13 i 4.14.

Tabela 4.13: Wyniki testu arcusa sinusa dla generatora Minstd z mnoznikiem 48271.

n

226

227

228

229

230

231

232

233

234

tv

0.0318

0.0430

0.0477

0.0982

0.1303

0.0918

0.0848

0.1131

0.2089

sepl

0.1607

0.1467

0.1901

0.3803

0.4280

0.3845

0.4583

0.3975

0.8079

sep2

0.1828

0.1719

0.2120

0.2548

0.3449

0.3179

0.3192

0.3186

0.4579

p-val

0.0115

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Tabela 4.14: Wyniki testu iterowanego logarytmu dla generatora Minstd z mnoznikiem 48271.

n

226

227

228

229

230

231

232

233

234

tv

0.0372

0.0563

0.0590

0.2573

0.2879

0.3408

0.3167

0.3434

0.9500

sepl

0.3298

0.4839

0.9328

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

sep2

0.3843

0.1850

0.2207

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

p-val

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

4.2. Wyniki 43

W przypadku test arcusa sinusa odlegtos¢ total variation poprawila sie po zmianie mnoznika.
Jednak w tedcie iterowanego logarytmu wyszto doktadnie odwrotnie, trudno jest wiec powiedzie¢
czy zmiana mnoznika wniosta istotna poprawe. W kazdym razie test x> w obu przypadkach
pokazuje, ze Minstd to nie jest dobry generator.

Mimo swoich niedoskonaloéci Minstd wszedl w zakres biblioteki standardowej C++11. Im-
plementacjami sa klasy std::minstd_randO (z mnoznikiem 16807) oraz std::minstd_rand (z
mnoznikiem 48271).

4.2.7 CMRG

CMRG (od ang. combined multiple recursive generator) jest jednym z generatoréw mieszanych,
omawianych w paragrafie 2.1. Zwraca on liczby Z,, wyznaczone wedhig wzoru

Zn =X, —Y, mod?23 —1
X,, = 63308X,,_5 — 183326X,,_3 mod 23! — 1 (4.1)
Y,, = 86098Y,,_1 — 539608Y,,_5 mod 23! — 2000169

Do testéw braliSmy bity 15..8 zmiennej Z,,. Tabele 4.15 i 4.16 przedstawiajg ich wyniki.

Tabela 4.15: Wyniki testu arcusa sinusa dla generatora CMRG.
226 227 228 229 230 231 232 233 234
tv | 0.0191 | 0.0234 | 0.0235 | 0.0239 | 0.0232 | 0.0228 | 0.0218 | 0.0268 | 0.0272
sepl | 0.1135 | 0.2090 | 0.1187 | 0.1450 | 0.1607 | 0.1191 | 0.1232 | 0.1592 | 0.2084
sep2 | 0.1402 | 0.0900 | 0.1084 | 0.1477 | 0.1934 | 0.1666 | 0.0931 | 0.1353 | 0.1158
p-val | 0.9752 | 0.4101 | 0.8062 | 0.7402 | 0.4043 | 0.6841 | 0.9821 | 0.2394 | 0.1343

Tabela 4.16: Wyniki testu iterowanego logarytmu dla CMRG.
926 927 928 929 930 931 932 933 931

n

tv | 0.0218 | 0.0241 | 0.0272 | 0.0203 | 0.0231 | 0.0251 | 0.0330 | 0.0233 | 0.0234
sepl | 0.2336 | 0.3273 | 0.1803 | 0.2551 | 0.3085 | 0.1690 | 0.3146 | 0.3310 | 0.2829
sep2 | 0.3450 | 0.2105 | 0.1234 | 0.1032 | 0.1901 | 0.1658 | 0.2302 | 0.2486 | 0.1761
p-val | 0.6046 | 0.2689 | 0.2030 | 0.8653 | 0.4581 | 0.3966 | 0.0128 | 0.4106 | 0.6803

Na pierwszy rzut oka widaé, ze mamy tu do czynienia z generatorem o dluzszym okresie.
Wyniki nie daja zadnych podstaw do odrzucenia hipotezy o losowosci ciagéw bitow. Trzeba
tu jednak odnotowaé, ze w [5] przedstawiono silne dowody, ze wyjscie tego generatora nie jest
dobre.

4.2.8 Mersenne Twister

Generator Mersenne Twister zostal przetestowany przy uzyciu implementacji dostepnej w je-
zyku C++411. Wykorzystana zostala wersja 64-bitowa (czyli klasa std: :mt19937_64). Jest ona

44 Czesé 4. Testy

nieznaczna modyfikacja 32-bitowej wersji opisanej w paragrafie 2.1, dostosowana do maszyn
operujacych na 8-bajtowych stowach. Do testéw uzyto wszystkie 64-bity zwracana przy jedno-
krotnym wywotaniu generatora.

Tabela 4.17: Wyniki testu arcusa sinusa dla generatora MT19967-64.
226 227 228 229 230 231 232 233 234

n

tv | 0.0271 | 0.0245 | 0.0226 | 0.0281 | 0.0276 | 0.0228 | 0.0271 | 0.0230 | 0.0255
sepl | 0.1421 | 0.1606 | 0.1167 | 0.1824 | 0.1938 | 0.1571 | 0.1760 | 0.1397 | 0.1573
sep2 | 0.1133 | 0.1195 | 0.1056 | 0.1399 | 0.1256 | 0.1287 | 0.1391 | 0.0994 | 0.1444
p-val | 0.2755 | 0.6823 | 0.8804 | 0.0801 | 0.1267 | 0.7343 | 0.1094 | 0.7596 | 0.2029

Tabela 4.18: Wyniki testu iterowanego logarytmu dla generatora MT19967-64.
226 227 228 229 230 231 232 233 234

n

tv | 0.0254 | 0.0264 | 0.0238 | 0.0234 | 0.0266 | 0.0265 | 0.0290 | 0.0299 | 0.0215
sepl | 0.1853 | 0.2147 | 0.1689 | 0.3093 | 0.1887 | 0.2015 | 0.2877 | 0.2318 | 0.1953
sep2 | 0.2841 | 0.1696 | 0.1917 | 0.1282 | 0.2017 | 0.2492 | 0.1842 | 0.1541 | 0.1716
p-val | 0.2483 | 0.3690 | 0.5965 | 0.5066 | 0.2196 | 0.1495 | 0.0499 | 0.0189 | 0.8170

Wyniki zgromadzone w Tabelach 4.17 i 4.18 pokazuja, ze nie bez powodu Mersenne Twi-
ster jest najpopularniejszym generatorem. Wyniki nie daja powodéw do podejrzen, ze wyjscie
generatora nie jest losowe.

4.2.9 Hipotetyczny, wadliwy generator

Przedstawiajac NIST Test Suite w paragrafie 2.3 wspomnieliSmy o pewnej jego wadzie, tkwiacej
nieodlagcznie w zastosowanym podejsciu. Ten zestaw testowy skupia sie jedynie na jakosci po-
szczegblnych sekwencji bitéw otrzymanych z GLP, nie ocenia natomiast jakosci zbioru wszystkich
ciagow ,,jako calosci”. Moglibyémy mie¢ do czynienia z generatorem, ktéry zazwyczaj generu-
je sekwencje doskonale imitujace idealny ciag losowych bitéw, ale z jakiego$ powodu, np. dla
niektérych wartosci ziaren, produkuje wyjscie ewidentnie nielosowe. Ten wadliwy ciag zapew-
ne zostal by rozpoznany przez NIST Test Suite jako nielosowy, jednak nie przewazyltoby to do
uznania calego generatora za zly.

Zeby sprawdzi¢ jak z taka sytuacja moga radzi¢ sobie testy iterowanego logarytmu i arcusa
sinusa, przyjrzyjmy sie nastepujacemu eksperymentowi. Wykorzystamy generator, ktory

e dla co setnego ziarna bedzie produkowal ciag opisany wyrazeniem regularnym 10(0110)*01,
e w pozostatych przypadkach zwraca wyjscie generatora MT19997-64.
Rezultaty zebrane sa w Tabelach 4.19 i 4.20.
Od razu widaé, ze test arcusa sinusa jednoznacznie nakazuje odrzuci¢ hipoteze o losowosci
bitéw generowanych przez GLP.

Dlaczego w tym wypadku test iterowanego logarytmu sie nie sprawdzil? Bladzenie (zdecy-
dowanie nieprzypadkowe) opisane wyrazeniem 10(0110)*01 oscyluje wokét osi OX jak sinusoida.

4.2. Wyniki 45

Tabela 4.19: Wyniki testu arcusa sinusa dla opisanego generatora.
220 221 222 223 224 225 226 227 228

n

tv | 0.0326 | 0.0241 | 0.0281 | 0.0285 | 0.0298 | 0.0339 | 0.0298 | 0.0285 | 0.0276
sepl | 0.1466 | 0.1754 | 0.1529 | 0.1124 | 0.1249 | 0.1752 | 0.1594 | 0.1666 | 0.1257
sep2 | 0.3255 | 0.334 | 0.345 | 0.4212 | 0.3608 | 0.3582 | 0.3556 | 0.3925 | 0.3901
p-val | 0.0000 | 0.0031 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Tabela 4.20: Wyniki testu iterowanego logarytmu dla opisanego generatora.
220 221 222 223 224 225 226 227 228

n

tv | 0.0239 | 0.0303 | 0.0255 | 0.0269 | 0.0241 | 0.0280 | 0.0248 | 0.0294 | 0.0229
sepl | 0.1929 | 0.2834 | 0.1541 | 0.2018 | 0.2327 | 0.1586 | 0.1631 | 0.2654 | 0.1689
sep2 | 0.1625 | 0.1517 | 0.1663 | 0.1469 | 0.1381 | 0.1648 | 0.2106 | 0.1667 | 0.1815
p-val | 0.4073 | 0.0199 | 0.2584 | 0.1250 | 0.5742 | 0.1250 | 0.2703 | 0.0436 | 0.5789

Oznacza to, ze frakcja czasu przewagi liczby jedynek nad liczba zer jest réwna dokladnie %
Dzieki temu wartos¢ charakterystyki Sp*" wpada do najmniej prawdopodobnego przedziatu w
partycji P2 w prawie 0.01m przypadkach czesciej niz dla dobrego generatora. Wystarcza to by
warto$é statystyki (3.12) bardzo urosta. Tymczasem charakterystyka S! przyjmuje dla ciggu
10(0110)*01 wartos¢ zero, a tym samym wpada do najbardziej prawdopodobnego przedzialu.
Dlatego testowi x? trudniej jest to wykryé.

Gdybysmy jednak w powyzszym eksperymencie wykorzystali m = 100000 ciagdéw, to réwniez
test iterowanego logarytmu zauwazylby zbyt duze odstepstwo. Wyplywa stad wniosek, ze w celu
wykrywania tego rodzaju wad generatoréw lepiej postawi¢ na liczbe ciagdéw, a nie na ich dhugosé.

46 Czesé 4. Testy

4.3 Podsumowanie

PrzedstawiliSmy stosunkowo nowatorska metode testowania GLP. Od standardowych metod
rézni sie tym, ze wyjscie GLP traktuje jak ciag bitow, a nie jako ciag liczb. Daje to szerokie pole
do wymyslania testéw opartych o bladzenie przypadkowe.

Wyniki z poprzedniego paragrafu pokazuja, ze testy arcusa sinusa oraz iterowanego loga-
rytmu dobrze wykrywaja regularnosci w generatorach opartych na kongruencjach liniowych. Sa
jednak generatory, o ktérych wiemy, ze sa wadliwe, a zaproponowana metoda tego nie wylapuje,
przyktadem jest CMRG. Przedstawione testy, tak jak wszystkie inne testy statystyczne, biorag
pod lupe tylko pewien aspekt analizowanego zagadnienia. Znalezienie odchylen w tym aspekcie
jest oczywiscie dowodem wadliwosci calego generatora, jednak pomyslny wynik testu méwi tak
naprawde tylko tyle, ze ,,pod rozpatrywanym wzgledem nie dopatrzono sie nieprawidtowosci”.

Przedstawiona metode trudno byloby uznaé za przetomowa — z pewnoscia nie jest ona uni-
wersalna, gdyz, jak zauwazyliémy powyzej, nie wykryjemy nig wszystkich mozliwych usterek
generatoréw. Zdaje sie jednak, ze testy oparte o wlasnosci btadzenia przypadkowego bytyby do-
brym uzupelnieniem standardowych pakietéw testowych takich jak np. NIST Test Suite, zwtasz-
cza, ze maja potencjal do wylapywania problemow nieco innej natury, tak jak to wyjasniliémy
w paragrafie 4.2.9.

7 pewnoscia mozna wymysli¢ wiecej testéw dziatajacych na podobnej zasadzie jak test arcusa
sinusa czy test iterowanego logarytmu. Warto pracowaé¢ nad nowymi testami wytapujacymi
miedzybitowe zaleznodci, ktére sa niezauwazane przez dotychczasowe metody. Przystuzytoby sie
to utworzeniu szczelniejszej paczki testéow. Jest to ciekawe zagadnienie, nad ktorym z pewnoscia
optaca sie prowadzi¢ dalsze badania.

Bibliografia

[1] S. Asmussen, P. Glynn, Stochastic Simulation: Algorithms and Analysis, Springer, New
York, 2007.

[2] W. Feller, Wstep do rachunku prawdopodobieristwa, Wydanie piate, PWN, Warszawa, 1987.
[3] T. Hull, A. Dobell, Random number generators, SIAM Review 4, 1962, s. 230-254.

[4] J. Jakubowski, R. Sztencel, Wstep do teorii prawdopodobienstwa, Wydanie IV, Script, War-
szawa, 2010.

[5] C.Kim, G.H. Choe, D.H. Kim, Tests of randomness by the gambler’s ruin algorithm, Applied
Mathematics and Computation 199, 2008, s. 195-210.

[6] D. Knuth, The Art of Computer Programming volume 2: Seminumerical algorithms (2nd
ed.), Addison-Wesley, 1981.

[7] P. L’Ecuyer, Efficient and Portable Combined Random Number Generator, Communica-
tions of the ACM 31, 1988, s. 742-749, 774.

[8] F. Leja, Rachunek rézniczkowy i calkowy ze wstepem do réwnan rézniczkowych, Wydanie
dziesiate, PWN, Warszawa, 1969.

[9] M. Matsumoto, T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uni-
form pseudo-random number generator, ACM Transactions on Modeling and Computer
Simulation 8 (1), 1998, s. 3-30.

[10] Y. Wang, T. Nicol, On Statistical Distance Based Testing of Pseudo Random Sequences and
Experiments with PHP and Debian OpenSSL, Computers & Security 53, 2015, s. 44—64.

47

