
Wprowadzenie do symulacji i metod Monte Carlo 10.10.2019

Projekt nr 1
Paweł Lorek

1 Opis projektu
Opis pojęć pojawiających się poniżej podany jest w następnych rozdziałach. Generator
liczb pseudolosowych będzie oznaczany przez PRNG. Dużo rzeczy, które są tutaj opisane
występuje (być może trochę inaczej sformułowane) w skrypcie prof. Rolskiego:
http://www.math.uni.wroc.pl/~rolski/Zajecia/sym.pdf

• Będziemy rozpatrywać wyniki działań następujących PRNG (większość do samodziel-
nego zaimplementowania, opisane w Rozdziale 4) Jeśli ziarno nie zostało wyspecy-
fikowanie - wybór należy do Ciebie.

– LCG(13, 1, 5)
– LCG(210, 3, 7)
– GLCG(210, {3, 7, 68})
– “state” (Matlabowski)
– “twister” (Matlabowski)

a) z ziarnem u0 = 0

b) z ziarnem u0 = 1812433253

– Excellowski:
ui = (0.9821ui−1 + 0.211327) mod 1

– RC4(32), rozpatrz dwie wersje:
i) Zainicjalizuj jednym kluczem (np. jakąś funkcją obecnego czasu itp) i

następnie badaj wynik PRGA, który powinien być tak długi jak potrze-
bujesz.

ii) Skonkatenuj krótsze (ustal długość) wyniki PRGA dla kluczy 1 K =
0, 1, 2, . . .

Dodatkowo będziemy rozpatrywać binarne rozwinięcia liczb
√
2, e, π dostępne

pod adresem:

π: http://www.math.uni.wroc.pl/~rolski/Zajecia/data.pi

e: http://www.math.uni.wroc.pl/~rolski/Zajecia/data.e
√
2: http://www.math.uni.wroc.pl/~rolski/Zajecia/data.sqrt2

1związane jest to z tzw. “key-related attacks”, zob. https://en.wikipedia.org/wiki/
Related-key_attack

2019_symulacje_projekt1 1 1 OPIS PROJEKTU

http://www.math.uni.wroc.pl/~rolski/Zajecia/sym.pdf
http://www.math.uni.wroc.pl/~rolski/Zajecia/data.pi
http://www.math.uni.wroc.pl/~rolski/Zajecia/data.e
http://www.math.uni.wroc.pl/~rolski/Zajecia/data.sqrt2
https://en.wikipedia.org/wiki/Related-key_attack
https://en.wikipedia.org/wiki/Related-key_attack


• ZADANIE.

1) Dla RC(32) i minimum 3 innych generatorów (w tym min. jednego, który
nie jest opisany w tym dokumencie) wykonaj wybrane testy statystyczne.
Rozważ używanie testu χ2 (licząc statystykę χ̂2), testu Kołmogorowa-Smirnova
(licząc statystykę D̂n), testu serii, testu odstępów dni urodzin, testu kolizji.
Generatory porównuj poprzez porównanie stosownych p-wartości.

2) Dla liczb π, e,
√
2 wykonaj Frequency monobit test

a) dla całych ciągów (wyliczając jedną p-wartość)
b) każdy ciąg podziel na m części (na każdej zapuszczając test, otrzymując

łącznie m p-wartości). Zobacz opis w Rozdziale 3.2 (możesz przyjąć
α = 0.05).

W powyższym punkcie 1) wykorzystaj min 3 testy, w tym także min. 1 test, który
nie jest opisany w tym dokumencie. Rozważ jeden z testów dostępnych w pakiecie
DieHarder, opisane są na stronie:

https://sites.google.com/site/astudyofentropy/background-information/the-tests/
dieharder-test-descriptions

albo występują w Nist Test Suite, a opisane są w dokumencie [4] dostępnym
również pod adresem:

http://www.math.uni.wroc.pl/~lorek/teaching/files/nistspecialpublication800-22r1a.pdf

Całość opisz w raporcie w formacie .pdf. Raport powinien zawierać wyjaśnienie wszyst-
kich użytych rzeczy (tak, aby ktoś niechodzący na wykład mógł zrozumieć całość) oraz
wnioski.

2 O dwóch statystykach
Opiszemy krótko dwa testy, χ2 oraz test Kołmogorowa-Smirnova. Generator liczb pseu-
dolosowych będzie w skrócie oznaczany przez PRNG.

2.1 Test χ2

Załóżmy, że mamy n obserwacji (funkcja ciągu generowanego przez PRNG), każda jest
z jednej z k możliwych kategorii. Niech Ys oznacza liczbę obserwacji z kategorii s,
oraz niech ps będzie prawdopodobieństwem “wpadnięcia” do kategorii s. Dla dużych n
oczekujemy, iż

Ys ≈ nps.

Przy założeniu, że obserwacje są niezależne i każda rzeczywiście wpada do kategorii s z
prawd. ps statystyka

χ̂2 =
k∑
i=1

(Yi − npi)2

npi

ma rozkład χ2 z k − 1 stopniami swobody, co będziemy oznaczać przez χ2(k − 1).

2019_symulacje_projekt1 2 2 O DWÓCH STATYSTYKACH

https://sites.google.com/site/astudyofentropy/background-information/the-tests/dieharder-test-descriptions
https://sites.google.com/site/astudyofentropy/background-information/the-tests/dieharder-test-descriptions
http://www.math.uni.wroc.pl/~lorek/teaching/files/nistspecialpublication800-22r1a.pdf


2.2 Test Kołmogorowa-Smirnova

Załóżmy, że zmienna losowa X ma rozkład ciągły o dystrybuancie FX(x). Załóżmy
także, że mamy n obserwacji X1, . . . , Xn i chcemy testować czy są one niezależne i
pochodzą z rozkładu FX(x). Zdefiniujmy dystrybuantę empiryczną Fn(x) jako

F̂n(x) =
1

n

n∑
i=1

1(Xi ≤ x)

Twierdzenie Gliwienki-Cantellego mówi, że jeśli X1, . . . , Xn jest próbką z rozkładu FX ,
to

sup
x∈R
|F̂n(x)− F (x)| → 0, n→∞,

z prawdopodobieństwem 1. Co więcej, statystyka

D̂n =
√
n sup
x∈R
|F̂n(x)− F (x)|

dąży, gdy n→∞, do znanego rozkładu:

Pr(D̂n ≤ t)→ H(t) = 1−
∞∑
i=1

(−1)i−1e−2i2t,

H jest dystrybuantą rozkładu Kolmogorova-Smirnova.

Dla rozkładu dyskretnego, sposób wyliczania Dn podany jest w [3].

3 Testowanie generatorów liczb pseudolosowych poprzez
testy empiryczne

Istnieje wiele testów dla PRNG. Można je podzielić na dwie kategorie: testy em-
piryczne oraz testy teoretyczne. Testy teoretyczne wymagają wiedzy o działaniu
samego generatora, ale sam ciąg nie musi de facto być generowany, dobre są zazwyczaj
trudne do znalezienia. Z kolei testy empiryczne są wykonywane na ciągach otrzymanych
z PRNG, żadna wiedza o tym jak zostały wygenerowane nie jest potrzebna.

Testy wymagają liczb o rozkładzie na odcinku (0, 1) albo o rozkładzie dyskretnym na
{0, 1, . . . ,M}. W zależności od generatora, jego wynikiem może również być albo ciąg
liczb z przedziału (0,1) albo liczby dyskretne. Niech U1, U2, . . . oznaczają liczby z przedzi-
ału (0,1), wtedy możemy je przekształcić na liczby dyskretne ze zbioru {0, 1, . . . ,M}
poprzez

Yi = bMUic.

Podobnie - dla liczb dyskretnych Yi z przedziału {0, 1, . . . ,M} możemy otrzymać liczby
z (0,1) poprzez

Ui =
Yi
M
.

2019_symulacje_projekt1 33 TESTOWANIE GENERATORÓW LICZB PSEUDOLOSOWYCH POPRZEZ TESTY EMPIRYCZNE



3.1 p-wartość

W kontekście χ̂2: możemy testować hipotezę:

H0 obserwacje są niezależne, każda jest z kategorii s z prawd. ps

H1 obserwacje są nie pochodzą z takiego rozkładu

Jakie jest prawd., że jeśli obserwacje rzeczywiście są niezależne i pochodzą z omawianego
rozkładu to zaobserwowalibyśmy coś ≥ Ŷ ? Jest to

p = Pr(χ2(k − 1) > χ̂2)

(co odczytujemy z tablic). Małe p-wartości oznaczają, iż prawdopodobieństwo zaobser-
wowania χ̂2, lub czegoś większego, jest małe. Ustalając poziom ufności na α (typowo
0.05 lub 0.01) odrzucimy hipotezę H0 jeśli p ≤ α.
W kontekście zmiennej losowej N o rozkładzie normalnym N(0, 1) p-wartość liczona jest
jako (gdzie s jest zaobserwowaną statystyką) p = Pr(|N | > |s|)

3.2 Testy empiryczne

Idea testowania: dla określonych zdarzeń, których prawdopodobieństwa znamy (za-
kładając jednostajność) liczymy statystyki χ̂2 oraz D̂n (lub inne) i wyliczamy ich p-
wartości. Mamy dwa podejścia:

• Dla całego ciągu wyliczmy daną p-wartość. Generatory porównujemy porównując
p-wartości.

• (tzw. testy “second-level”). Dzielimy ciąg nam części, każda długości n. Na każdej
wyliczamy statystykę i stosowne pi-wartości, i = 1, . . . ,m. Rozkład otrzymanych
pi jest jednostajny (przy załóżeniu, że testowane bity/liczby pochodzą z rozkładu
jednostajnego). Testujemy to (zalecenia z Rozdziału 4.2.2 “Nist Test Suite” [4]) za
pomocą testu ξ2 dzieląc odcinek [0, 1] na dziesięć części: Yi niech oznacza liczbę
obserwacji z przedziału [(i− 1)/10, i/10), i = 1, . . . , 10. Wówczas

χ̂2 =
10∑
i=1

(Yi − n/10)2

n/10

ma rozkład χ2(9) (przy założeniu, p-wartości pi, i = 1, . . . ,m pochodzą z rozkładu
jednostajnego). Ostatecznym wynikiem jest “p-wartość p-wartości”:

pχ2 = P (X > χ̂2),

gdzie X jest zmienną losową o rozkładzie χ2(9).

2019_symulacje_projekt1 43 TESTOWANIE GENERATORÓW LICZB PSEUDOLOSOWYCH POPRZEZ TESTY EMPIRYCZNE



3.2.1 Frequency monobit test

Załóżmy, że X1, X2, . . . , są niezależnymi zmiennymi losowymi o jednakowym rozkładzie
Pr(Xi = −1) = Pr(Xi = 1) = 1/2. Zauwązmy, że EX = 0, V arX = 1. Zdefiniujmy

Sn =
1√
n

n∑
i=1

Xi

Z CTG mamy, iż dla dużego n rozkład Sn jest w przybliżeniu N(0, 1). Dlatego, p-
wartością jest

p = Pr(|N | > |Sn|) = 2(1− φ(|Sn|),
gdzie N jest zmienną losową o rozkładzie N(0, 1), a φ jego dystrybuantą.

3.2.2 Frequency Test

Jeden z podstawowych testów. Mając dany ciąg U1, . . . , Un możemy

• zastosować test K-S z dystrybuantą FX(x) = x, x ∈ (0, 1).

• zastosować test χ2 w następujący sposób: ustalmy M i wyliczmy Yi = bMUic.
Mamy M kategorii, pi =

1

M
.

3.2.3 Test serii

Podobny do Frequency test, ale sprawdzane jest czy występowanie par elementów. Za-
łóżmy, że Ui ∈ {0, 1, . . . ,M − 1}. Podzielmy ciąg na podciągi długości 2n:

(U1, U2), (U3, U4), . . . , (U2n−1, U2n).

Policz wystąpienie każdej z par (q, r), 0 ≤ q, r < M i zastosuj test χ2 zM2−1 stopniami
swobody.

Test może być łatwo rozszerzony na badanie dowolnych krotek (zob. skrypt [3]).

3.2.4 Test odstępów dni urodzin

Zapiszmy dni urodzin kolejnych osób Y1, . . . , Yn ∈ {1, . . . , k} i ustawmy je w porządku
niemalejącym Y(1) ≤ . . . ≤ Y(n). Zdefiniujmy odstępy

S1 = Y(2) − Y(1), . . . Sn−1 = Y(n) − Y(n−1).

Niech K będzie liczbą równych odstępów (tzn. ile razy mamy równość pomiędzy S-ami)

• Okazuje się, że jeśli n jest duże i λ = n3/(4k)małe, to przy założeniu o równomiernym
rozkładzie Yi (hipoteza H0) zmienna K ma w przybliżeniu rozkład Poissona z
parametrem λ. Jednym z wyborów jest n = 210, k = 224, wtedy λ = 16. Zatem,
jeśli K = y, to p-wartość wynosi

Pr(K ≥ y|H0) ≈ 1−
y−1∑
j=0

λj

j!
e−λ

2019_symulacje_projekt1 53 TESTOWANIE GENERATORÓW LICZB PSEUDOLOSOWYCH POPRZEZ TESTY EMPIRYCZNE



• Knuth [1] sugeruje k = 512 = 29 oraz n =25. Prawdopodobieństwa liczby równych
odstępów podane są w Fig. 1. Używając tych prawdopodobieństw można zas-
tosować test χ2.

s 0 1 2 ≥ 3
Pr(K = s) 0.368801 0.369035 0.183471 0.078692

Figure 1: Prawd. dla testu odstępów dni urodzin, k = 225, k = 29

3.2.5 Test kolizji

Zob. skrypt [3].

3.2.6 Test pokerowy

Zob. skrypt [3].

4 Generatory liczb pseudolosowych
Tutaj nalezaloby krotko wypisac podstawowe, tak by studenci mogli zaprogramowac
(glownie LCG) z roznymi parametrami, by byly tez “kiepskie”.
Moze tutaj wersja RC4 ? (krotki opis)

4.1 LCG(M,a, c)

Generatory LCG (z ang. linear congruential generator) zmieniają swój stan zgodnie z
rekurencją

xn = (asn−1 + c) modM

Stan początkowy: x0

4.2 GLCG(M, {ai}ki=1)

Generatory te zmieniają stan zgodnie z rekurencją

xn = (a1xn−1 + . . . akxn−k) modM

Stan początkowy: x0, x1, . . . , xk−1

4.3 RC4(n)

RC4 (w opisie będziemy pomijali (n)) jest tzw. szyfrem strumieniowym2, który może
być wykorzystany jako PRNG. Oznaczmy [n] := {0, 1, . . . , n− 1}.
Jego tzw. stanem wewnętrznym jest (S, i, j), gdzie S jest permutacją [n], a i, j ∈ [n] są
indeksami. Jako wejście algorytm bierze klucz: L liczb, każda z [n] (możemy myśleć, iż
klucz jest dodatkowym parametrem naszego PRNG). Następnie:

2http://pl.wikipedia.org/wiki/Szyfr_strumieniowy

2019_symulacje_projekt1 6 4 GENERATORY LICZB PSEUDOLOSOWYCH

http://pl.wikipedia.org/wiki/Szyfr_strumieniowy


• KSA (z ang. key scheduling algorithm) inicjuje S permutacją identycznościową,
następnie używając klucza K zmienia S w inną permutację (w zamyśle losową

• PRGA (z ang. Pseudo Random Generation Algorithm) zwraca elementy tej per-
mutacji jednocześnie ją updateując.

KSA oraz PRGA przedstawione są na Fig. 2. W oryginalnym RC4 mamy n = 256,
natomiast liczby zwracane przez PRGA są “XORowane” z wiadomością otrzymując kryp-
togram. RC4 używany w trybie PRNG po prostu zwraca wyjście PRGA.

KSA(K) PRGA

for i := 0 to n− 1 do
S[i] := i

end for

j := 0
for i := 0 to n− 1 do
j := j + S[i] +K[i mod L]
swap(S[i], S[j])

end for
i, j := 0

while r ∈ N+ do
i := i+ 1
j := j + S[i]
swap(S[i], S[j])
Yr ← S[S[i] + S[j]]

end while

Figure 2: RC4: KSA i PRGA. Wszystkie dodawania są wykonywane modn

Uwaga. RC4 z n = 256 był do niedawna intensywnie używany. Jeśli w KSA zamienimy
linijkę j := j+S[i]+K[i mod L] na j := random(n), to można o tym algorytmie myśleć
jako o tasowaniu kart. W kroku i-tym zamieniamy kartę na pozycji i z kartą na losowej
pozycji. Jest to tzw. tasowanie Cyclic-To-Random, o którym wiadomo, iż potrzebne
jest O(n lg n) kroków, by uzyskać jednostajną permutację. KSA wykonuje ich jednak
tylko n, co jest jednym z jego poważnym mankamentów.

References
[1] D. E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumer-

ical Algorithms,. Addison-Wesley, 1997.

[2] P. L’Ecuyer, R. Simard, TestU01: A c library for empirical testing of random number
generators, ACM Trans. Math. Sofw. 33(4), 2007.

[3] T. Rolski, Symulacje stochastyczne i teoria Monte Carlo, skrypt UWr, 2017. http:
//www.math.uni.wroc.pl/~rolski/Zajecia/sym.pdf

[4] Lawrence E. Bassham, Andrew L. Rukhin, Juan Soto, James R. Nechvatal, Miles
E. Smid, Stefan D. Leigh, M Levenson, M Vangel, Nathanael A. Heckert, D L.
Banks , A Statistical Test Suite for Random and Pseudorandom Number Gener-
ators for Cryptographic Applications, 2010, https://www.nist.gov/publications/
statistical-test-suite-random-and-pseudorandom-number-generators-cryptographic

2019_symulacje_projekt1 7 REFERENCES

http://www.math.uni.wroc.pl/~rolski/Zajecia/sym.pdf
http://www.math.uni.wroc.pl/~rolski/Zajecia/sym.pdf
https://www.nist.gov/publications/statistical-test-suite-random-and-pseudorandom-number-generators-cryptographic
https://www.nist.gov/publications/statistical-test-suite-random-and-pseudorandom-number-generators-cryptographic

	Opis projektu
	O dwóch statystykach
	Test 2
	Test Kołmogorowa-Smirnova

	Testowanie generatorów liczb pseudolosowych poprzez testy empiryczne
	p-wartosc
	Testy empiryczne
	Frequency monobit test
	Frequency Test
	Test serii
	Test odstepów dni urodzin
	Test kolizji
	Test pokerowy


	Generatory liczb pseudolosowych
	LCG(M,a,c)
	GLCG(M,{ai}i=1k)
	RC4(n)


