Wprowadzenie do symulacji i metod Monte Carlo 10.10.2019

Projekt nr 1
Pawel Lorek

1 Opis projektu

Opis poje¢ pojawiajacych sie ponizej podany jest w nastepnych rozdziatach. Generator
liczb pseudolosowych bedzie oznaczany przez PRNG. Duzo rzeczy, ktore sa tutaj opisane
wystepuje (by¢ moze troche inaczej sformutowane) w skrypcie prof. Rolskiego:
http://www.math.uni.wroc.pl/“rolski/Zajecia/sym.pdf

e Bedziemy rozpatrywaé wyniki dziatan nastepujacych PRNG (wiekszosé do samodziel-
nego zaimplementowania, opisane w Rozdziale 4) Jesli ziarno nie zostato wyspecy-
fikowanie - wybor nalezy do Ciebie.

— LCG(13,1,5)
— LCG(2Y,3,7)

GLCG(2",{3,7,68})

“state” (Matlabowski)

“twister” (Matlabowski)

a) z ziarnem ug =0
b) z ziarnem uo = 1812433253

— Excellowski:
u; = (0.9821u;_1 + 0.211327) mod 1

RC4(32), rozpatrz dwie wersje:

i) Zainicjalizuj jednym kluczem (np. jakas funkcja obecnego czasu itp) i
nastepnie badaj wynik PRGA, ktory powinien by¢ tak dtugi jak potrze-
bujesz.

ii) Skonkatenuj krotsze (ustal dtugogé) wyniki PRGA dla kluczy ' K =
0,1,2,...

Dodatkowo bedziemy rozpatrywaé¢ binarne rozwiniecia liczb V2, e, dostepne
pod adresem:

m: http://www.math.uni.wroc.pl/ rolski/Zajecia/data.pi

e: http://www.math.uni.wroc.pl/"rolski/Zajecia/data.e

V2: http://www.math.uni.wroc.pl/ rolski/Zajecia/data.sqrt2

lzwiazane jest to z tzw. ‘“key-related attacks”, zob. https://en.wikipedia.org/wiki/

Related-key_attack
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e ZADANIE.

1) Dla RC(32) i minimum 3 innych generatoréw (w tym min. jednego, ktory
nie jest opisany w tym dokumencie) wykonaj wybrane testy statystyczne.
Rozwaz uzywanie testu x* (liczac statystyke x?), testu Kolmogorowa-Smirnova
(liczac statystyke ﬁn), testu serii, testu odstepéw dni urodzin, testu kolizji.
Generatory poréwnuj poprzez poroéwnanie stosownych p-wartosci.

2) Dla liczb e, V2 wykonaj Frequency monobit test
a) dla calych ciagow (wyliczajac jedna p-wartosc)
b) kazdy ciag podziel na m czesci (na kazdej zapuszczajac test, otrzymujac

tacznie m p-wartosci). Zobacz opis w Rozdziale 3.2 (mozesz przyjaé
a = 0.05).

W powyzszym punkcie 1) wykorzystaj min 3 testy, w tym takze min. 1 test, ktory
nie jest opisany w tym dokumencie. Rozwaz jeden z testéw dostepnych w pakiecie
DieHarder, opisane sa na stronie:

https://sites.google.com/site/astudyofentropy/background-information/the-tests/

dieharder-test-descriptions

albo wystepuja w Nist Test Suite, a opisane sa w dokumencie [4]| dostepnym
rowniez pod adresem:

http://www.math.uni.wroc.pl/ lorek/teaching/files/nistspecialpublication800-22rla.pdf

Caltosé opisz w raporcie w formacie .pdf. Raport powinien zawiera¢ wyjasnienie wszyst-
kich uzytych rzeczy (tak, aby kto§ niechodzacy na wyktad mogt zrozumieé catosé) oraz
wnioski.

2 O dwoch statystykach

Opiszemy krotko dwa testy, x> oraz test Kolmogorowa-Smirnova. Generator liczb pseu-
dolosowych bedzie w skrocie oznaczany przez PRNG.

2.1 Test y?

Zalozmy, ze mamy n obserwacji (funkcja ciagu generowanego przez PRNG), kazda jest
z jednej z k mozliwych kategorii. Niech Y, oznacza liczbe obserwacji z kategorii s,
oraz niech p, bedzie prawdopodobienstwem “wpadniecia” do kategorii s. Dla duzych n
oczekujemy, iz

Y, ~ np;.

Przy zalozeniu, ze obserwacje sa niezalezne i kazda rzeczywiscie wpada do kategorii s z

prawd. p, statystyka
k 2
) j : (Y; - npz)
X = _—_—
i=1 "pi

ma rozktad x? z k — 1 stopniami swobody, co bedziemy oznacza¢ przez x*(k — 1).
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2.2 Test Kolmogorowa-Smirnova

Zalozmy, ze zmienna losowa X ma rozktad ciagly o dystrybuancie Fy(x). Zal6zmy
takze, ze mamy n obserwacji Xi,..., X, i chcemy testowaé¢ czy sa one niezalezne i
pochodza z rozkladu Fx(x). Zdefiniujmy dystrybuante empiryczna F,(z) jako

. 1 —
0= D1 <)
Twierdzenie Gliwienki-Cantellego mowi, ze jesli X, ..., X, jest probka z rozktadu Fy,
to
sup |[F,(z) — F(z)] = 0, n — oo,
zeR

z prawdopodobienistwem 1. Co wiecej, statystyka

D, = v/nsup|Fy(x) — F(z)]

z€R

dazy, gdy n — 0o, do znanego rozktadu:

Pr(ﬁn <t)—-> H({t)=1- Z(_l)i—le_gﬂt’

i=1
H jest dystrybuanta rozktadu Kolmogorova-Smirnova.

Dla rozktadu dyskretnego, sposéb wyliczania D,, podany jest w [3].

3 Testowanie generatorow liczb pseudolosowych poprzez
testy empiryczne

Istnieje wiele testow dla PRNG. Mozna je podzieli¢c na dwie kategorie: testy em-
piryczne oraz testy teoretyczne. Testy teoretyczne wymagaja wiedzy o dziataniu
samego generatora, ale sam cigg nie musi de facto by¢ generowany, dobre sa zazwyczaj
trudne do znalezienia. Z kolei testy empiryczne sa wykonywane na ciggach otrzymanych
z PRNG, zadna wiedza o tym jak zostaly wygenerowane nie jest potrzebna.

Testy wymagaja liczb o rozktadzie na odcinku (0, 1) albo o rozktadzie dyskretnym na
{0,1,..., M}. W zaleznosci od generatora, jego wynikiem moze rowniez by¢ albo ciag
liczb z przedziatu (0,1) albo liczby dyskretne. Niech Uy, Us, . . . oznaczaja liczby z przedzi-
alu (0,1), wtedy mozemy je przeksztalci¢ na liczby dyskretne ze zbioru {0,1,..., M}
poprzez

Y = [MU,].

Podobnie - dla liczb dyskretnych Y; z przedziatu {0, 1, ..., M} mozemy otrzymac liczby
z (0,1) poprzez
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3.1 p-wartoscé

W kontekscie x*: mozemy testowaé hipoteze:

Hy obserwacje sa niezalezne, kazda jest z kategorii s z prawd. p;

H, obserwacje sa nie pochodza z takiego rozktadu

Jakie jest prawd., ze jesli obserwacje rzeczywiscie sg niezalezne i pochodza z omawianego
rozkladu to zaobserwowaliby$Smy co§ > Y7 Jest to

p=Prod(k—1)> )

(co odezytujemy z tablic). Mate p-wartosci oznaczaja, iz prawdopodobieristwo zaobser-
wowania Y7, lub czego$ wickszego, jest male. Ustalajac poziom ufnosci na o (typowo
0.05 lub 0.01) odrzucimy hipoteze Hy jesli p < a.

W kontekscie zmiennej losowej N o rozktadzie normalnym N (0, 1) p-wartosé liczona jest
jako (gdzie s jest zaobserwowana statystyka) p = Pr(|N| > |s|)

3.2 Testy empiryczne

Idea testowania: dla okreslonych zdarzen, ktorych prawdopodobienistwa znamy (za-
kladajac jednostajnogé¢) liczymy statystyki ¥* oraz D, (lub inne) i wyliczamy ich p-
wartosci. Mamy dwa podejscia:

e Dla catego ciagu wyliczmy dana p-warto$¢. Generatory poréwnujemy pordéwnujac
p-wartosci.

o (tzw. testy “second-level”). Dzielimy ciag na m czesci, kazda dtugosci n. Na kazdej
wyliczamy statystyke i stosowne p;-wartosci, ¢ = 1,..., m. Rozklad otrzymanych
p; jest jednostajny (przy zalozeniu, ze testowane bity /liczby pochodza z rozktadu
jednostajnego). Testujemy to (zalecenia z Rozdziatu 4.2.2 “Nist Test Suite” [4]) za
pomocy testu 2 dzielac odcinek [0, 1] na dziesie¢ czeéci: Y; niech oznacza liczbe
obserwacji z przedziatu [(i — 1)/10,i/10),i = 1,...,10. Wowczas

10

b (Y - n/10)?
= ZZI n/10
ma rozktad x*(9) (przy zalozeniu, p-wartosci p;,i = 1, ..., m pochodza z rozktadu

jednostajnego). Ostatecznym wynikiem jest “p-wartosé¢ p-wartosci”:
P = P(X > \2),

gdzie X jest zmienna losows o rozkladzie x*(9).
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3.2.1 Frequency monobit test

Zalozmy, ze X1, Xo, ..., sa niezaleznymi zmiennymi losowymi o jednakowym rozktadzie
Pr(X; =—-1) = Pr(X; =1) = 1/2. Zauwazmy, ze EX = 0,VarX = 1. Zdefiniujmy

1 n
Sn:_ 7
IS

Z CTG mamy, iz dla duzego n rozktad S, jest w przyblizeniu N(0,1). Dlatego, p-

wartoscig jest
p = Pr(|N| > [5u]) = 2(1 = 6(]Sn]),
1),

gdzie N jest zmienna losowa o rozkladzie N(0,1), a ¢ jego dystrybuanta.

3.2.2 Frequency Test
Jeden z podstawowych testow. Majac dany ciag Uy, ..., U, mozemy
e zastosowac test K-S z dystrybuanta Fx(z) = z,z € (0,1).

e zastosowad test X2 W nast@puj@cy SpOS()bZ ustalmy M i wyhczmy }/; = LMI/ZJ
M M k t 1i — 1
alny ategoril, p; .
g 7p 7‘[‘
3.2.3 Test serii

Podobny do Frequency test, ale sprawdzane jest czy wystepowanie par elementéw. Za-
tozmy, ze U; € {0,1,..., M — 1}. Podzielmy ciag na podciagi dtugosci 2n:

(U1,Us), (Us,Uy), ..., (Usp_1,Us,).

Policz wystapienie kazdej z par (¢,7),0 < ¢,r < M i zastosuj test x* z M? —1 stopniami
swobody.

Test moze by¢ tatwo rozszerzony na badanie dowolnych krotek (zob. skrypt [3]).

3.2.4 Test odstepé6w dni urodzin

Zapiszmy dni urodzin kolejnych os6b Y1,....Y, € {1,...,k} i ustawmy je w porzadku
niemalejagcym Yy < ... <Y, ZdeﬁDIUme odstegpy

S = Y(2) - Yv(l)7 s Sn—l = Yv(n) - Yv(nfl)-
Niech K bedzie liczba rownych odstepow (tzn. ile razy mamy rownosé pomiedzy S-ami)

e Okazuje sie, ze jesli n jest duze i A = n®/(4k) male, to przy zalozeniu o réwnomiernym
rozkladzie Y; (hipoteza Hy) zmienna K ma w przyblizeniu rozktad Poissona z
parametrem \. Jednym z wyboréw jest n = 2'° k = 2% wtedy A\ = 16. Zatem,
jesli K =y, to p-wartos¢ wynosi

—_

>~

y—

Pr(K2y|H0)%1—
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o
|

.
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e Knuth [1] sugeruje k = 512 = 2” oraz n =. Prawdopodobienstwa liczby réwnych
odstepow podane sa w Fig. 1. Uzywajac tych prawdopodobienistw mozna zas-
tosowac test XQ.

s 0 1 2 >3
Pr(K =s) | 0.368801 | 0.369035 | 0.183471 | 0.078692

Figure 1: Prawd. dla testu odstepow dni urodzin, k = 2%° k = 2°

3.2.5 Test kolizji
Zob. skrypt [3].

3.2.6 Test pokerowy
Zob. skrypt [3].

4 Generatory liczb pseudolosowych

Tutaj nalezaloby krotko wypisac podstawowe, tak by studenci mogli zaprogramowac
(glownie LCG) z roznymi parametrami, by byly tez “kiepskie”.
Moze tutaj wersja RC4 7 (krotki opis)

4.1 LCG(M,a,c)

Generatory LCG (z ang. linear congruential generator) zmieniaja swoj stan zgodnie z
rekurencja
T, = (as,—1 + ¢) mod M

Stan poczatkowy: x

4.2 GLCG(M, {a;}F))
Generatory te zmieniajg stan zgodnie z rekurencja
Ty = (@1Tp_1 + ... Ty—) mod M

Stan poczatkowy: xg,x1, ..., Tr_1

4.3 RC4(n)

RC4 (w opisie bedziemy pomijali (n)) jest tzw. szyfrem strumieniowym?, ktéry moze
by¢ wykorzystany jako PRNG. Oznaczmy [n] := {0,1,...,n — 1}.

Jego tzw. stanem wewnetrznym jest (S,1,j), gdzie S jest permutacja [n], a i,7 € [n] sa
indeksami. Jako wejscie algorytm bierze klucz: L liczb, kazda z [n] (mozemy mysle¢, iz
klucz jest dodatkowym parametrem naszego PRNG). Nastepnie:

2http://pl.wikipedia.org/wiki/Szyfr_strumieniowy
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e KSA (z ang. key scheduling algorithm) inicjuje S permutacja identycznosciowa,
nastepnie uzywajac klucza K zmienia S w inng permutacje (w zamysle losowa

e PRGA (z ang. Pseudo Random Generation Algorithm) zwraca elementy tej per-
mutacji jednoczesnie ja updateujac.

KSA oraz PRGA przedstawione sa na Fig. 2. W oryginalnym RC4 mamy n = 256,
natomiast liczby zwracane przez PRGA sg “XORowane” z wiadomoscig otrzymujac kryp-
togram. RC4 uzywany w trybie PRNG po prostu zwraca wyjscie PRGA.

KSA(K) PRGA

fori:=0ton—1do

Sli] =1

end for while r € N, do

1:=1+1

j:=0 Jj =7+ S

for i:=0ton—1do swap(S[i], S[j])
=7+ S[i] + K[i mod L] Y, < S[S[i] + S[J]]
swap(S[i], S[j]) end while

end for

1,7 : =0

Figure 2: RC4: KSA i PRGA. Wszystkie dodawania sa wykonywane modn

Uwaga. RC4 zn = 256 byl do niedawna intensywnie uzywany. Jesli w KSA zamienimy
linijke j := j+S[i]+ K[i mod L] na j := random(n), to mozna o tym algorytmie mysle¢
jako o tasowaniu kart. W kroku i-tym zamieniamy karte na pozycji ¢ z karta na losowej
pozycji. Jest to tzw. tasowanie Cyclic-To-Random, o ktérym wiadomo, iz potrzebne
jest O(nlgn) krokow, by uzyska¢ jednostajna permutacje. KSA wykonuje ich jednak
tylko n, co jest jednym z jego powaznym mankamentow.
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