CoNOUTA,WNRF

import cv2

import numpy as np

#import random

import sys

import argparse

#import json

#from json tricks import dump, dumps, load, loads, strip comments
import glob, os

import scipy.misc as misc

from sklearn import decomposition

import matplotlib.pyplot as plt

from mpl toolkits.mplot3d import Axes3D

import time

from sklearn.discriminant analysis import LinearDiscriminantAnalysis
from metric learn import NCA

from sklearn.manifold import TSNE

from dim module import *

def ParseArguments():
parser = argparse.ArgumentParser(description= )
parser.add argument ( , default="", required=True, help=
args = parser.parse args()

return args.image

# main progam

image file = ParseArguments()
image = misc.imread(image file ,mode= )
image misc bw = misc.imread(image file ,mode= )

image height=image.shape[0]
image width=image.shape[1]

image2=image.reshape(-1,3)

print( , end="", flush=True)
start time = time.time()

pca = decomposition.PCA(n components=3)
pca.fit(image2)

points pca reduced = pca.transform(image2)

print( % round((time.time() - start time),5))
print( , points pca reduced.shape)
#quit ()

points pca reduced[:,0].reshape(image height,image width)
points pca reduced[:,1].reshape(image height,image width)
points pca reduced[:,2].reshape(image height,image width)

image bw pcl
image bw pc2
image bw pc3

# ~ image rgb pca=np.zeros(image.shape)

~ image rgb pcal:,:,0]
~ image rgb pcal:,:,1]
image rgb pcal:,:,2]

~ #image rgb pcal:,:,1]
~ #image rgb pcal:,:,2]

image bw pc2
image bw pcl

HH O HHHR
l

axesl, centerl, eigenvalsl, explained varl = perform PCA(image2);

fig orig = plt.figure(1)
ax orig = fig orig.add subplot(111)
ax orig.imshow(image )

255*(image bw pcl - np.min(image bw pcl))/np.ptp(image bw pcl).astype(int)
255*(image bw pc2 - np.min(image bw pc2))/np.ptp(image bw pc2).astype(int)
255*(image bw pc3 - np.min(image bw pc3))/np.ptp(image bw pc3).astype(int)



81 fig misc bw = plt.figure(2)

82 ax misc bw = fig misc bw.add subplot(111)

83 ax misc bw.imshow(image misc bw, cmap= )

84

85

86

87 fig pca = plt.figure(3)

88 ax pca = fig pca.add subplot(111)

89 ax pca.imshow(image bw pcl, cmap= )

90

91

92 fig pca2 = plt.figure(4)

93 ax pca2 = fig pca2.add subplot(11l1l)

94 ax pca2.imshow(image bw pc2,cmap= )

95

96

97 fig pca3 = plt.figure(5)

98 ax pca3 = fig pca3.add subplot(111)

99 ax pca3.imshow(image bw pc3, cmap= )
100
101
102
103
104 # ~ fig rgb pca = plt.figure(6)

105 # ~ ax rgb pca = fig rgb pca.add subplot(111)
106 # ~ ax rgb pca.imshow(image rgb pca )

107

108

109

110 fig orig3d = plt.figure(7)

111 ax orig3d = fig orig3d.add subplot(11ll, projection= )

112 tmp=np.arange(image2.shape[0])
113 np.random.shuffle(tmp);

114

115 if(tmp.shape[0]>2000):

116 image2s=image2[tmp[:2000], :1]

117 else:

118 image2s=image2[tmp, : ]

119 ax orig3d.scatter(image2s[:,0], image2s[:,1], image2s[:,2],s=1)
120

121 #draw mean

122 image2 mean=np.mean(image2,axis=0)

123 ax orig3d.scatter(image2 mean[Q], image2 mean[1l], image2 mean[2],s=15, color= )
124
125 #draw axes

126 X, Y, Z, U, V, W= axes quiver form(axesl, centerl, explained varl);# psl wl,psl w2, psl w3);
127 ax orig3d.quiver(X,Y,zZ,U,V,W,(5,2,1),arrow length ratio=0.1, color= )

128
129
130 ax orig.set title( )
131 ax pca.set title( )

132 ax pca2.set title( )

133 ax pca3.set title( )

134
135 # ~ ax rgb pca.set title("(R,G,B) = (PC1l, PC2, PC3)")
136
137 ax misc bw.set title( )
138
139
140
141
142
143
144
145 ax orig.legend()
146 ax pca.legend()

147 ax pca2.legend()
148 ax pca3.legend()
149 ax misc bw.legend()
150
151
152 plt.show()
153
154
155
156
157
158
159
160




161
162
163
164
165 quit()
166




