
/home/lorek/Workplace/IM/2020/ocena_okresowa/pca_dataset.py
Page 1 of 2 Thu 05 Mar 2020 08:47:52 AM EST

1 #

2 # pca_dataset.py

3 #

4

5 import cv2

6 import numpy as np

7 import argparse

8

9 from sklearn import decomposition

10 import matplotlib.pyplot as plt

11 from mpl_toolkits.mplot3d import Axes3D

12 import time

13

14 from sklearn import datasets

15

16

17 #one of three options only should be neq ""

18 #--dataset = mnist, wines, iris (built-in datasets)

19

20 def ParseArguments():

21 parser = argparse.ArgumentParser(description="Project ")

22 parser.add_argument('--dataset', default="wine", required=False, help='mnist,

wines, iris (default: %(default)s)')

23

24 args = parser.parse_args()

25

26 return args.dataset

27

28

29 # main progam

30 dataset = ParseArguments()

31

32

33 if(dataset!=""):

34 print("Using built-in dataset: ", dataset)

35

36

37

38 if(dataset=="mnist" or dataset=="MNIST"):

39

40 ile=1000

41 our_data = datasets.load_digits()

42 points = our_data.data[:ile]

43 data_classes = our_data.target[:ile]

44 classes = our_data.target_names

- 1 -

/home/lorek/Workplace/IM/2020/ocena_okresowa/pca_dataset.py
Page 2 of 2 Thu 05 Mar 2020 08:47:52 AM EST

45 classes_names= classes

46

47

48

49 if(dataset=="wine"):

50 our_data = datasets.load_wine()

51 points = our_data.data

52 data_classes = our_data.target

53 classes = our_data.target_names

54 classes_names= classes

55

56

57 if(dataset=="iris"):

58 our_data = datasets.load_iris()

59 points = our_data.data

60 data_classes = our_data.target

61 classes = our_data.target_names

62 classes_names= classes

63

64

65 print("Calculating PCA...", end="", flush=True)

66 start_time = time.time()

67 pca = decomposition.PCA(n_components=3)

68 pca.fit(points)

69 points_pca_reduced = pca.transform(points)

70 print("\t\t took %s seconds " % round((time.time() - start_time),5))

71

72

73 fig_pca = plt.figure(1)

74 ax_pca = fig_pca.add_subplot(111, projection='3d')

75

76 ax_pca.set_title(dataset + ": PCA")

77

78

79 for wt in range(0,data_classes.max()+1):

80 points_pca=points_pca_reduced[data_classes == wt];

81 ax_pca.scatter(points_pca[:,0], points_pca[:,1], points_pca[:,2],

label=classes_names[wt])

82

83 ax_pca.legend()

84 plt.show();

85

- 2 -

