Examples of macroscopically large rationally inessential manifolds

Michał Marcinkowski
Universität Regensburg and Uniwerystet Wrocławski

June 3, 2016

Large manifolds

Let M be a closed smooth n-dimensional manifold. We want to define what it means for M to be large.

Large manifolds

Let M be a closed smooth n-dimensional manifold. We want to define what it means for M to be large.
Definition

- Let X be a metric space and Y be a topological space. A map $f: X \rightarrow Y$ is uniformly cobounded if there exist D such that for all $y \in Y$ we have $\operatorname{diam}\left(f^{-1}(y)\right)<D$.

Large manifolds

Let M be a closed smooth n-dimensional manifold. We want to define what it means for M to be large.
Definition

- Let X be a metric space and Y be a topological space. A map $f: X \rightarrow Y$ is uniformly cobounded if there exist D such that for all $y \in Y$ we have $\operatorname{diam}\left(f^{-1}(y)\right)<D$.
- The macroscopic dimension of X, denoted $\operatorname{dim}_{m c}(X)$, is the minimal k such that there exist a k-dimensional simplicial complex K and a uniformly cobounded $\operatorname{map} f: X \rightarrow K$.

Large manifolds

In our context: $X=\widetilde{M^{n}}$.
Note that \widetilde{M} is itself a simplicial complex, thus $\operatorname{dim}_{m c}(\widetilde{M}) \leq n$.

Large manifolds

In our context: $X=\widetilde{M^{n}}$.
Note that \widetilde{M} is itself a simplicial complex, thus $\operatorname{dim}_{m c}(\widetilde{M}) \leq n$.
If $\operatorname{dim}_{m c}\left(\widetilde{M^{n}}\right)=n$, then M is macroscopically large.

Large manifolds

In our context: $X=\widetilde{M^{n}}$.
Note that \widetilde{M} is itself a simplicial complex, thus $\operatorname{dim}_{m c}(\widetilde{M}) \leq n$.
If $\operatorname{dim}_{m c}\left(\widetilde{M^{n}}\right)=n$, then M is macroscopically large.

Example

- If $\pi_{1}(M)$ is finite, then $\operatorname{dim}_{m c}(\tilde{M})=0$.
E.g. if M admits a metric of positive sectional curvature.

Large manifolds

In our context: $X=\widetilde{M^{n}}$.
Note that \widetilde{M} is itself a simplicial complex, thus $\operatorname{dim}_{m c}(\widetilde{M}) \leq n$.
If $\operatorname{dim}_{m c}\left(\widetilde{M^{n}}\right)=n$, then M is macroscopically large.

Example

- If $\pi_{1}(M)$ is finite, then $\operatorname{dim}_{m c}(\widetilde{M})=0$.
E.g. if M admits a metric of positive sectional curvature.
- If $\widetilde{M} \cong R^{n}$, then $\operatorname{dim}_{m c}(\widetilde{M})=n$.
E.g. if M admits a metric of non-positive sectional curvature.

Large manifolds

In our context: $X=\widetilde{M^{n}}$.
Note that \widetilde{M} is itself a simplicial complex, thus $\operatorname{dim}_{m c}(\widetilde{M}) \leq n$.
If $\operatorname{dim}_{m c}\left(\widetilde{M^{n}}\right)=n$, then M is macroscopically large.

Example

- If $\pi_{1}(M)$ is finite, then $\operatorname{dim}_{m c}(\widetilde{M})=0$.
E.g. if M admits a metric of positive sectional curvature.
- If $\widetilde{M} \cong R^{n}$, then $\operatorname{dim}_{m c}(\widetilde{M})=n$.
E.g. if M admits a metric of non-positive sectional curvature.
- Let $f: M \rightarrow B \pi_{1}(M)$ be a map classifying the universal bundle. If $f_{*}([M])=0 \in H_{n}\left(B \pi_{1}(M), \mathbf{Z}\right)$, then we can assume that the image of f is contained in $B \pi_{1}(M)^{[n-1]}$. Moreover, the lift of $f, \widetilde{f}: \widetilde{M} \rightarrow E \pi_{1}(M)^{[n-1]}$, is uniformly cobounded. Thus M is not macroscopically large.

Gromov Conjecture

Gromov Conjecture
If M^{n} admits a Riemannian metric of positive scalar curvature, then $\operatorname{dim}_{m c}(\widetilde{M}) \leq n-2$.

Gromov Conjecture

Gromov Conjecture

If M^{n} admits a Riemannian metric of positive scalar curvature, then $\operatorname{dim}_{m c}(\widetilde{M}) \leq n-2$.

Scalar curvature is a function $s: M \rightarrow \mathbf{R}_{+}$defined in terms of the Riemann tensor. It is a relatively weak notion of curvature.

Gromov Conjecture

Gromov Conjecture

If M^{n} admits a Riemannian metric of positive scalar curvature, then $\operatorname{dim}_{m c}(\widetilde{M}) \leq n-2$.

Scalar curvature is a function $s: M \rightarrow \mathbf{R}_{+}$defined in terms of the Riemann tensor. It is a relatively weak notion of curvature.
Prototypical example
Consider $M^{n}=N \times S^{2}$. Then:
$\operatorname{dim}_{m c}\left(\widetilde{N \times S^{2}}\right)=\operatorname{dim}_{m c}\left(\widetilde{N} \times S^{2}\right)=\operatorname{dim}_{m c}(\widetilde{N}) \leq n-2$.

Gromov Conjecture

Gromov Conjecture

If M^{n} admits a Riemannian metric of positive scalar curvature, then $\operatorname{dim}_{m c}(\widetilde{M}) \leq n-2$.

Scalar curvature is a function $s: M \rightarrow \mathbf{R}_{+}$defined in terms of the Riemann tensor. It is a relatively weak notion of curvature.
Prototypical example
Consider $M^{n}=N \times S^{2}$. Then:
$\operatorname{dim}_{m c}\left(\widetilde{N \times S^{2}}\right)=\operatorname{dim}_{m c}\left(\widetilde{N} \times S^{2}\right)=\operatorname{dim}_{m c}(\widetilde{N}) \leq n-2$.

Gromov Conjecture was proven for many manifolds by Bolotov and Dranishnikov.

Large manifolds

Let us put macroscopic dimension into a broader context. There are different notions of large manifolds.

Large manifolds

Let us put macroscopic dimension into a broader context. There are different notions of large manifolds.

- Macroscopically large manifolds as defined by Gong-Yu
- Enlargeable manifolds
- Hypereuclidean or hyperspherical universal cover

Large manifolds

Let us put macroscopic dimension into a broader context. There are different notions of large manifolds.

- Macroscopically large manifolds as defined by Gong-Yu
- Enlargeable manifolds
- Hypereuclidean or hyperspherical universal cover

Gromov-Lawson: If a spin manifold M admits a Riemannian PSC metric, then M is not enlargeable.

Large manifolds

Let us put macroscopic dimension into a broader context. There are different notions of large manifolds.

- Macroscopically large manifolds as defined by Gong-Yu
- Enlargeable manifolds
- Hypereuclidean or hyperspherical universal cover

Gromov-Lawson: If a spin manifold M admits a Riemannian PSC metric, then M is not enlargeable.

Definition
M is enlargeable if for every $\epsilon>0$ there exist an orientable cover of M which admits an ϵ-contracting map onto S^{n} which is constant at the infinity and of non-zero degree.

Homological characterisation

Consider a classifying map $f: M \rightarrow B \pi_{1}(M)$. We are interested in $f_{*}([M]) \in H_{n}\left(B \pi_{1}(M), \mathbf{Q}\right)$. If $f_{*}([M])=0$ then M is rationally inessential.

Homological characterisation

Consider a classifying map $f: M \rightarrow B \pi_{1}(M)$. We are interested in $f_{*}([M]) \in H_{n}\left(B \pi_{1}(M), \mathbf{Q}\right)$. If $f_{*}([M])=0$ then M is rationally inessential.

Theorem (Brunnbauer-Hanke)

Let π be a finitely generated group and $n \in \mathbf{N}$. For each notion of largeness from the above list, there exist a linear subspace $H_{n}^{s m}<H_{n}(B \pi, \mathbf{Q})$ with the following property:

$$
f_{*}\left(\left[M^{n}\right]\right) \notin H_{n}^{s m} \quad \leftrightarrow \quad M \text { is large in the respective sense. }
$$

Homological characterisation

Theorem (Dranishnikov)
Assume that $B \pi$ is compact. There exist $H_{n}^{m c}<H_{n}(B \pi, \mathbf{Z})$ such that:

$$
f_{*}\left(\left[M^{n}\right]\right) \notin H_{n}^{m c} \quad \leftrightarrow \quad M \text { is macroscopically large. }
$$

Homological characterisation

Theorem (Dranishnikov)
Assume that $B \pi$ is compact. There exist $H_{n}^{m c}<H_{n}(B \pi, \mathbf{Z})$ such that:

$$
f_{*}\left(\left[M^{n}\right]\right) \notin H_{n}^{m c} \quad \leftrightarrow \quad M \text { is macroscopically large. }
$$

Rem.: $H_{n}^{m c}=$ kernel of the comparision map $H_{n}(B \pi ; \mathbf{Z}) \rightarrow H_{n}^{f f}(\widetilde{B \pi} ; \mathbf{Z})$.

Homological characterisation

Theorem (Dranishnikov)
Assume that $B \pi$ is compact. There exist $H_{n}^{m c}<H_{n}(B \pi, \mathbf{Z})$ such that:

$$
f_{*}\left(\left[M^{n}\right]\right) \notin H_{n}^{m c} \quad \leftrightarrow M \text { is macroscopically large. }
$$

Rem.: $H_{n}^{m c}=$ kernel of the comparision map $H_{n}(B \pi ; \mathbf{Z}) \rightarrow H_{n}^{f f}(\widetilde{B \pi} ; \mathbf{Z})$.
Dranishnikov conjectured that this theorem is true over \mathbf{Q}.

Homological characterisation

Theorem (Dranishnikov)
Assume that $B \pi$ is compact. There exist $H_{n}^{m c}<H_{n}(B \pi, \mathbf{Z})$ such that:

$$
f_{*}\left(\left[M^{n}\right]\right) \notin H_{n}^{m c} \quad \leftrightarrow \quad M \text { is macroscopically large. }
$$

Rem.: $H_{n}^{m c}=$ kernel of the comparision map $H_{n}(B \pi ; \mathbf{Z}) \rightarrow H_{n}^{l f}(\widetilde{B \pi} ; \mathbf{Z})$.
Dranishnikov conjectured that this theorem is true over \mathbf{Q}.
Theorem (M.)
For every $n>3$ there exist macroscopically large, rationally inessential closed smooth n-manifolds. They are not large for all large notions by the Brunnbauer-Hanke theorem.

The reflection trick of Davis

Let L be a flag simplicial complex of dimension n.
For every vertex v of L we consider a mirror $F_{v}=$ all simplices in the barycentric subdivision of L which contain v.

The reflection trick of Davis

Let L be a flag simplicial complex of dimension n.
For every vertex v of L we consider a mirror $F_{v}=$ all simplices in the barycentric subdivision of L which contain v.

Denote by $C(L)$ the cone of L.
The reflection trick: a recipe how to glue up some number of copies of $C(L)$ along mirrors in such a way that the resulting space, denoted by M_{L}, is aspherical.

The reflection trick of Davis

Special example:
We color mirrors of L on colors e_{0}, \ldots, e_{n} such that non-disjoint mirrors have different colors. Assume that these colors make a linear basis of an $n+1$ dimensional vector space V over the field with two elements.

The reflection trick of Davis

Special example:
We color mirrors of L on colors e_{0}, \ldots, e_{n} such that non-disjoint mirrors have different colors. Assume that these colors make a linear basis of an $n+1$ dimensional vector space V over the field with two elements.

$$
M_{L}=C(L) \times V / \sim,
$$

The reflection trick of Davis

Special example:
We color mirrors of L on colors e_{0}, \ldots, e_{n} such that non-disjoint mirrors have different colors. Assume that these colors make a linear basis of an $n+1$ dimensional vector space V over the field with two elements.

$$
M_{L}=C(L) \times V / \sim,
$$

where \sim is defined as follows: assume that we are in a cone labelled by v and we cross a mirror colored by e in point x. Then we find ourself in the same point x, but in the cone labelled by $v+e$.

The reflection trick of Davis

We need the following properties:

- M_{L} is aspherical, thus $B \pi_{1}\left(M_{L}\right) \cong M_{L}$.

The reflection trick of Davis

We need the following properties:

- M_{L} is aspherical, thus $B \pi_{1}\left(M_{L}\right) \cong M_{L}$.
- If L is a triangulation of a sphere, then M_{L} is a manifold.

The reflection trick of Davis

We need the following properties:

- M_{L} is aspherical, thus $B \pi_{1}\left(M_{L}\right) \cong M_{L}$.
- If L is a triangulation of a sphere, then M_{L} is a manifold.
- $\pi_{1}\left(M_{L}\right)$ is a torsion-free finite index subgroup of a right angled Coxeter group.

Outline of the construction

The construction uses the work of Davis and Januszkiewicz on small covers.

Step 1: The complex.

Outline of the construction

The construction uses the work of Davis and Januszkiewicz on small covers.

Step 1: The complex.
Let L be an n-dimensional complex. Assume that $S<L$ is a subcomplex of L which is topologically an ($n-1$)-dimensional sphere. Assume moreover that $[S] \in H_{n-1}(L ; \mathbf{Z})$ is a non-trivial torsion class.

Outline of the construction

The construction uses the work of Davis and Januszkiewicz on small covers.

Step 1: The complex.
Let L be an n-dimensional complex. Assume that $S<L$ is a subcomplex of L which is topologically an ($n-1$)-dimensional sphere. Assume moreover that $[S] \in H_{n-1}(L ; \mathbf{Z})$ is a non-trivial torsion class.

Using the reflection trick we construct an aspherical space M_{L} together with a subcomplex N_{S} given by a subcomplex S. Since S is a sphere, N_{S} is a manifold.

$$
N_{S}=C(S) \times V / \sim<C(L) \times V / \sim=M_{L}
$$

Step 2: The class.

Outline of the construction

The construction uses the work of Davis and Januszkiewicz on small covers.

Step 1: The complex.
Let L be an n-dimensional complex. Assume that $S<L$ is a subcomplex of L which is topologically an ($n-1$)-dimensional sphere. Assume moreover that $[S] \in H_{n-1}(L ; \mathbf{Z})$ is a non-trivial torsion class.

Using the reflection trick we construct an aspherical space M_{L} together with a subcomplex N_{S} given by a subcomplex S. Since S is a sphere, N_{S} is a manifold.

$$
N_{S}=C(S) \times V / \sim<C(L) \times V / \sim=M_{L}
$$

Step 2: The class.
Because of the properties of $[S]$, the class $\left[N_{S}\right] \in H_{n}\left(M_{L} ; \mathbf{Z}\right)$ is non-trivial and torsion. Moreover: $\left[N_{S}\right] \notin H_{n}^{s m}$.

Outline of the construction

Theorem (Dranishnikov)
There exist $H_{n}^{m c}<H_{n}\left(M_{L}, \mathbf{Z}\right)$ such that:
$f_{*}([M]) \notin H_{n}^{m c} \quad \leftrightarrow M$ is macroscopically large.

Outline of the construction

Theorem (Dranishnikov)
There exist $H_{n}^{m c}<H_{n}\left(M_{L}, \mathbf{Z}\right)$ such that:
$f_{*}([M]) \notin H_{n}^{m c} \quad \leftrightarrow M$ is macroscopically large.
Where $f: M \rightarrow M_{L}$ is a classifying map.

Outline of the construction

Theorem (Dranishnikov)
There exist $H_{n}^{m c}<H_{n}\left(M_{L}, \mathbf{Z}\right)$ such that:
$f_{*}([M]) \notin H_{n}^{m c} \quad \leftrightarrow M$ is macroscopically large.
Where $f: M \rightarrow M_{L}$ is a classifying map.

Now: $M=N_{S}, f$ is an inclusion,

Outline of the construction

Theorem (Dranishnikov)
There exist $H_{n}^{m c}<H_{n}\left(M_{L}, \mathbf{Z}\right)$ such that:

$$
f_{*}([M]) \notin H_{n}^{m c} \quad \leftrightarrow \quad M \text { is macroscopically large. }
$$

Where $f: M \rightarrow M_{L}$ is a classifying map.

Now: $M=N_{S}, f$ is an inclusion, but it is not a classifying map.

Outline of the construction

Theorem (Dranishnikov)
There exist $H_{n}^{m c}<H_{n}\left(M_{L}, \mathbf{Z}\right)$ such that:

$$
f_{*}([M]) \notin H_{n}^{m c} \quad \leftrightarrow \quad M \text { is macroscopically large. }
$$

Where $f: M \rightarrow M_{L}$ is a classifying map.

Now: $M=N_{S}, f$ is an inclusion, but it is not a classifying map.
Step 3: Surgery.

Outline of the construction

Theorem (Dranishnikov)
There exist $H_{n}^{m c}<H_{n}\left(M_{L}, \mathbf{Z}\right)$ such that:

$$
f_{*}([M]) \notin H_{n}^{m c} \quad \leftrightarrow \quad M \text { is macroscopically large. }
$$

Where $f: M \rightarrow M_{L}$ is a classifying map.

Now: $M=N_{S}, f$ is an inclusion, but it is not a classifying map.
Step 3: Surgery.
We perform a surgery on N_{S} to obtain a new manifold N together with a map $f: N \rightarrow M_{L}$ such that f is now a classifying map and $f_{*}([N])=\left[N_{S}\right]$.

Outline of the construction

Theorem (Dranishnikov)
There exist $H_{n}^{m c}<H_{n}\left(M_{L}, \mathbf{Z}\right)$ such that:

$$
f_{*}([M]) \notin H_{n}^{m c} \quad \leftrightarrow \quad M \text { is macroscopically large. }
$$

Where $f: M \rightarrow M_{L}$ is a classifying map.

Now: $M=N_{S}, f$ is an inclusion, but it is not a classifying map.
Step 3: Surgery.
We perform a surgery on N_{S} to obtain a new manifold N together with a map $f: N \rightarrow M_{L}$ such that f is now a classifying map and $f_{*}([N])=\left[N_{S}\right]$.

Thus: N is macroscopically large and rationally inessential.

Gromov Conjecture

Gromov Conjecture
If M^{n} admits a Riemannian metric of positive scalar curvature, then $\operatorname{dim}_{m c}(\widetilde{M}) \leq n-2$.

Gromov Conjecture

Gromov Conjecture

If M^{n} admits a Riemannian metric of positive scalar curvature, then $\operatorname{dim}_{m c}(\widetilde{M}) \leq n-2$.

If N is spin then, by a result of Bolotov and Dranishnikov, N does not support any Riemannian metric of positive scalar curvature.

Gromov Conjecture

Gromov Conjecture

If M^{n} admits a Riemannian metric of positive scalar curvature, then $\operatorname{dim}_{m c}(\widetilde{M}) \leq n-2$.

If N is spin then, by a result of Bolotov and Dranishnikov, N does not support any Riemannian metric of positive scalar curvature.

In general Gromov Conjecture for N is open.

References

Dmitry V. Bolotov and Alexander N. Dranishnikov.
On Gromov's scalar curvature conjecture.
Proc. Amer. Math. Soc., 138(4):1517-1524, 2010.
Michael W. Davis and Tadeusz L. Januszkiewicz.
Convex polytopes, Coxeter orbifolds and torus actions.
Duke Math. J., 62(2):417-451, 1991.
Alexander N. Dranishnikov.
On macroscopic dimension of universal covering of closed manifolds.
Tr. Mosk. Mat. Obs., 74:2:279296, 2013.
T- Alexander N. Dranishnikov.
On Gromov's positive scalar curvature conjecture for duality groups.
J. Topol. Anal., 6(3):397-419, 2014.
©
Michał Marcinkowski.
Gromov positive scalar curvature conjecture and rationally inessential macroscopically large manifolds.
J. Topol., 9(1):105-116, 2016.

