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define what it means for M to be large.

Definition

◮ Let X be a metric space and Y be a topological space. A
map f : X → Y is uniformly cobounded if there exist D such
that for all y ∈ Y we have diam(f −1(y)) < D.

◮ The macroscopic dimension of X , denoted dimmc(X ), is the
minimal k such that there exist a k-dimensional simplicial
complex K and a uniformly cobounded map f : X → K .
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In our context: X = M̃n.
Note that M̃ is itself a simplicial complex, thus dimmc(M̃) ≤ n.

If dimmc(M̃n) = n, then M is macroscopically large.

Example

◮ If π1(M) is finite, then dimmc(M̃) = 0.
E.g. if M admits a metric of positive sectional curvature.

◮ If M̃ ∼= Rn, then dimmc(M̃) = n.
E.g. if M admits a metric of non-positive sectional curvature.

◮ Let f : M → Bπ1(M) be a map classifying the universal
bundle. If f∗([M]) = 0 ∈ Hn(Bπ1(M),Z), then we can assume
that the image of f is contained in Bπ1(M)[n−1]. Moreover,
the lift of f , f̃ : M̃ → Eπ1(M)[n−1], is uniformly cobounded.
Thus M is not macroscopically large.
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Gromov Conjecture

If Mn admits a Riemannian metric of positive scalar curvature,
then dimmc(M̃) ≤ n − 2.

Scalar curvature is a function s : M → R+ defined in terms of the
Riemann tensor. It is a relatively weak notion of curvature.

Prototypical example

Consider Mn = N × S2. Then:

dimmc(Ñ × S2) = dimmc(Ñ × S2) = dimmc(Ñ) ≤ n − 2.

Gromov Conjecture was proven for many manifolds by Bolotov and
Dranishnikov.
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Large manifolds

Let us put macroscopic dimension into a broader context.
There are different notions of large manifolds.

◮ Macroscopically large manifolds as defined by Gong-Yu

◮ Enlargeable manifolds

◮ Hypereuclidean or hyperspherical universal cover

Gromov-Lawson: If a spin manifold M admits a Riemannian PSC
metric, then M is not enlargeable.

Definition
M is enlargeable if for every ǫ > 0 there exist an orientable cover
of M which admits an ǫ-contracting map onto Sn which is
constant at the infinity and of non-zero degree.
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Theorem (Brunnbauer-Hanke)

Let π be a finitely generated group and n ∈ N. For each notion of

largeness from the above list, there exist a linear subspace

Hsm
n < Hn(Bπ,Q) with the following property:

f∗([Mn]) /∈ Hsm
n ↔ M is large in the respective sense.
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Homological characterisation

Theorem (Dranishnikov)

Assume that Bπ is compact. There exist Hmc
n < Hn(Bπ,Z) such

that:

f∗([Mn]) /∈ Hmc
n ↔ M is macroscopically large.

Rem.: Hmc
n = kernel of the comparision map Hn(Bπ;Z) → H lf

n (B̃π;Z).

Dranishnikov conjectured that this theorem is true over Q.

Theorem (M.)

For every n > 3 there exist macroscopically large, rationally

inessential closed smooth n-manifolds. They are not large for all

large notions by the Brunnbauer-Hanke theorem.
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copies of C (L) along mirrors in such a way that the resulting
space, denoted by ML, is aspherical.
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The reflection trick of Davis

Special example:

We color mirrors of L on colors e0, . . . , en such that non-disjoint
mirrors have different colors. Assume that these colors make a
linear basis of an n + 1 dimensional vector space V over the field
with two elements.

ML = C (L) × V /∼,

where ∼ is defined as follows: assume that we are in a cone
labelled by v and we cross a mirror colored by e in point x . Then
we find ourself in the same point x , but in the cone labelled by
v + e.
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We need the following properties:

◮ ML is aspherical, thus Bπ1(ML) ∼= ML.

◮ If L is a triangulation of a sphere, then ML is a manifold.

◮ π1(ML) is a torsion-free finite index subgroup of a right angled
Coxeter group.
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Step 1: The complex.
Let L be an n-dimensional complex. Assume that S < L is a
subcomplex of L which is topologically an (n − 1)-dimensional
sphere. Assume moreover that [S ] ∈ Hn−1(L;Z) is a non-trivial
torsion class.

Using the reflection trick we construct an aspherical space ML

together with a subcomplex NS given by a subcomplex S . Since S

is a sphere, NS is a manifold.

NS = C (S) × V /∼ < C (L) × V /∼ = ML

Step 2: The class.
Because of the properties of [S ], the class [NS ] ∈ Hn(ML;Z) is
non-trivial and torsion. Moreover: [NS ] /∈ Hsm

n .
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Theorem (Dranishnikov)

There exist Hmc
n < Hn(ML,Z) such that:

f∗([M]) /∈ Hmc
n ↔ M is macroscopically large.

Where f : M → ML is a classifying map.

Now: M = NS , f is an inclusion, but it is not a classifying map.

Step 3: Surgery.
We perform a surgery on NS to obtain a new manifold N together
with a map f : N → ML such that f is now a classifying map and
f∗([N]) = [NS ].

Thus: N is macroscopically large and rationally inessential.
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Gromov Conjecture

If Mn admits a Riemannian metric of positive scalar curvature,
then dimmc(M̃) ≤ n − 2.

If N is spin then, by a result of Bolotov and Dranishnikov, N does
not support any Riemannian metric of positive scalar curvature.

In general Gromov Conjecture for N is open.
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