Quasimorphisms, $\text{Diff}_0(S, \text{area})$ and L^p -norm.

Michał Marcinkowski Wrocław University

Talk at Tulane University, 18 10 2021

joint work with M. Brandenbursky and E. Shelukhin

3.5

Let S be a compact oriented surface.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3

Let S be a compact oriented surface. We consider the group

 $\mathsf{Diff}_0(S, \mathsf{area})$

of all diffeomorphisms preserving the area and isotopic to the identity.

Let S be a compact oriented surface. We consider the group

 $\mathsf{Diff}_0(S, \mathsf{area})$

of all diffeomorphisms preserving the area and isotopic to the identity.

Isotopic do the identity means, that there exists a family $\{f_t\}$ of diffeomorphisms in Diff₀(S, area) such that $f_0 = Id$ and $f_1 = f$.

Exmaples

Pseudo-rotations on a disc: in the polar coordinates $f(\theta, r) = (\theta + \alpha(r), r), \alpha$ is any function.

э

Exmaples

Pseudo-rotations on a disc: in the polar coordinates $f(\theta, r) = (\theta + \alpha(r), r), \alpha$ is any function.

Point pushing maps along loops (or paths).

• The Hofer norm (symplectic geometry)

- The Hofer norm (symplectic geometry)
- The fragmentation (more combinatoric)

- The Hofer norm (symplectic geometry)
- The fragmentation (more combinatoric)
- The L^p-norm (dynamics, geometry)

- The Hofer norm (symplectic geometry)
- The fragmentation (more combinatoric)
- The L^p-norm (dynamics, geometry)

Now if $f \in \text{Diff}_0(S, \text{area})$ one can i.e., ask if $|f^n|$ grows linearly (then we say f is undistorted).

- The Hofer norm (symplectic geometry)
- The fragmentation (more combinatoric)
- The L^p-norm (dynamics, geometry)

Now if $f \in \text{Diff}_0(S, \text{area})$ one can i.e., ask if $|f^n|$ grows linearly (then we say f is undistorted).

In general we want to embed finitely generated subgroups in $\text{Diff}_0(S, \text{area})$ and we want to know what is the quality of this embedding.

Let $\{f_t\}$ be an isotopy connecting *ld* with $f_1 = f$.

何 ト イヨ ト イヨ ト 二 ヨ

Let $\{f_t\}$ be an isotopy connecting *Id* with $f_1 = f$. Let $x \in S$, then the length of the trajectory of $f_t(x)$ equals $\int_0^1 |\dot{f}_t(x)| dt$.

$$I_1({f_t}) = \int_{S} \int_0^1 |\dot{f}_t(x)| dt dx.$$

$$I_1({f_t}) = \int_{S} \int_0^1 |\dot{f}_t(x)| dt dx.$$

Let $f \in \text{Diff}_0(S, \text{area})$, we define the L^1 -norm of f by

$$I_1({f_t}) = \int_{S} \int_0^1 |\dot{f}_t(x)| dt dx.$$

Let $f \in \text{Diff}_0(S, \text{area})$, we define the L^1 -norm of f by

$$l_1(f) = \inf l_1(\{f_t\}),$$

where the infimum is taken over all isotopies $f_t \in \text{Diff}_0(S, \text{area})$ connecting the identity on S with f.

3

Unboundedness for a closed surface of genus g > 2 is easy: for f take a point pushing map along a closed geodesic α . Then $l_1(f^n)$ is proportional to the length of α^n .

Unboundedness for a closed surface of genus g > 2 is easy: for f take a point pushing map along a closed geodesic α . Then $l_1(f^n)$ is proportional to the length of α^n .

It turns out, that for simply connected surface L^1 -norm is as well unbounded (this follows from the results of Elishberg-Ratiu, Gambaudo-Lagrange (disk), Brandenbursky-Shelukhin (sphere)).

Unboundedness for a closed surface of genus g > 2 is easy: for f take a point pushing map along a closed geodesic α . Then $l_1(f^n)$ is proportional to the length of α^n .

It turns out, that for simply connected surface L^1 -norm is as well unbounded (this follows from the results of Elishberg-Ratiu, Gambaudo-Lagrange (disk), Brandenbursky-Shelukhin (sphere)).

Caveat: Let S_0 be a subsurface of S_1 . It is an open question whether the natural inclusion $\text{Diff}_0(S_0, \text{area}) \rightarrow \text{Diff}_0(S_1, \text{area})$ is undistorted.

伺 ト イ ヨ ト イ ヨ ト

Let $\{f_t\}$ be an isotopy between Id and f.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

Let $\{f_t\}$ be an isotopy between Id and f. Let us fix points z_1, \ldots, z_n .

→ 母 ▶ → 国 ▶ → 国 ■ → ○ ○ ○

Let $\{f_t\}$ be an isotopy between *Id* and *f*. Let us fix points z_1, \ldots, z_n . For every tuple of points x_1, \ldots, x_n we can produce a braid like in the picture:

Let $\{f_t\}$ be an isotopy between *Id* and *f*. Let us fix points z_1, \ldots, z_n . For every tuple of points x_1, \ldots, x_n we can produce a braid like in the picture:

Let $C_n(S)$ be the configuration space of *n* points in *S* and let $P_n(S) = \pi_1(C_n(S))$ be the pure braid group.

Let $\{f_t\}$ be an isotopy between *Id* and *f*. Let us fix points z_1, \ldots, z_n . For every tuple of points x_1, \ldots, x_n we can produce a braid like in the picture:

Let $C_n(S)$ be the configuration space of *n* points in *S* and let $P_n(S) = \pi_1(C_n(S))$ be the pure braid group.

We get a map $\gamma(f) \colon C_n(S) \to P_n(S)$.

Let $\{f_t\}$ be an isotopy between *Id* and *f*. Let us fix points z_1, \ldots, z_n . For every tuple of points x_1, \ldots, x_n we can produce a braid like in the picture:

Let $C_n(S)$ be the configuration space of *n* points in *S* and let $P_n(S) = \pi_1(C_n(S))$ be the pure braid group.

We get a map $\gamma(f): C_n(S) \to P_n(S)$. (sometimes $\gamma(f): C_n(S) \to P_n(S)/Z(P_n(S))$. Otherwise γ is not well defined.) The image is finite. On $P_n(S)$ we look at the word norm.

Let us consider homomorphisms from $\text{Diff}_0(D, \text{area})$ to the reals.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Let us consider homomorphisms from $\text{Diff}_0(D, \text{area})$ to the reals. It turns out, that they form a *finite* linear space.

3

Let us consider homomorphisms from $\text{Diff}_0(D, \text{area})$ to the reals. It turns out, that they form a *finite* linear space. E.g., for a closed disc we have just one homomorphism called Calabi:

Cal: $\text{Diff}_0(D, \text{area}) \to \mathbb{R}$

Let us consider homomorphisms from $\text{Diff}_0(D, \text{area})$ to the reals. It turns out, that they form a *finite* linear space. E.g., for a closed disc we have just one homomorphism called Calabi:

Cal: $\text{Diff}_0(D, \text{area}) \to \mathbb{R}$

But there is many functions on $\text{Diff}_0(S, \text{area})$ that behave like homomorphisms.

$$|q(ab)-q(a)-q(b)|\leq D.$$

• • = • • = •

$$|q(ab)-q(a)-q(b)| \leq D.$$

If D = 0 we have a homomorphism.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$|q(ab)-q(a)-q(b)| \leq D.$$

If D = 0 we have a homomorphism. Usually we look at the homogenisation $\lim_{n\to\infty} \frac{q(a^n)}{n}$.

A B F A B F

$$|q(ab)-q(a)-q(b)| \leq D.$$

If D = 0 we have a homomorphism. Usually we look at the homogenisation $\lim_{n\to\infty} \frac{q(a^n)}{n}$. Easy inequality for f.g. groups: $|q(a)| \leq C|a|_{word} + C$.

$$|q(ab)-q(a)-q(b)| \leq D.$$

If D = 0 we have a homomorphism. Usually we look at the homogenisation $\lim_{n\to\infty} \frac{q(a^n)}{n}$. Easy inequality for f.g. groups: $|q(a)| \leq C|a|_{word} + C$.

On finitely generated groups there is a lot of quasimorphisms. E.g., let $w \in F_n$,

$$q_w(x) = \#\{ w \text{ is a subword of } x\} - \#\{ w^{-1} \text{ is a subword of } x\}.$$

Remainder: $\gamma(f): C_n(S) \to P_n(S)$.

Let $q: P_n(S) \to \mathbb{R}$ be a quasimorphisms. Thus we have $q \circ \gamma(f): C_n(S) \to \mathbb{R}$.

It induces a quasimorphism GG_q : Diff₀(S, area) $\rightarrow \mathbb{R}$ given by

Remainder: $\gamma(f): C_n(S) \to P_n(S)$.

Let $q: P_n(S) \to \mathbb{R}$ be a quasimorphisms. Thus we have $q \circ \gamma(f): C_n(S) \to \mathbb{R}$.

It induces a quasimorphism GG_q : Diff₀(S, area) $\rightarrow \mathbb{R}$ given by

$$GG_q(f) = \int_{C_n(S)} q \circ \gamma(f, x) dx.$$

Remainder: $\gamma(f): C_n(S) \to P_n(S)$.

Let $q: P_n(S) \to \mathbb{R}$ be a quasimorphisms. Thus we have $q \circ \gamma(f): C_n(S) \to \mathbb{R}$.

It induces a quasimorphism GG_q : Diff₀(S, area) $\rightarrow \mathbb{R}$ given by

$$GG_q(f) = \int_{C_n(S)} q \circ \gamma(f, x) dx.$$

E.g, if n = 2 and $S = D^2$, then $P_2(D^2) = \mathbb{Z}$. This construction gives us (after homogenisation) the Calabi homomorphism.

Theorem (Brandenbursky-M-Shelukhin)

Let S be a compact surface, $n \in \mathbb{N}$. There exist constants A, $B \in \mathbb{R}$ such that for every $f \in \text{Diff}_0(S, \text{area})$

$$\int_{C_n(S)} |\gamma(f,x)|_{P_n(S)} dx < Al_1(f) + B.$$

It was known before for the disc and for the sphere. Our new proof is simpler and works for all surfaces.

Theorem (Brandenbursky-M-Shelukhin)

Let S be a compact surface, $n \in \mathbb{N}$. There exist constants A, $B \in \mathbb{R}$ such that for every $f \in \text{Diff}_0(S, \text{area})$

$$\int_{C_n(S)} |\gamma(f,x)|_{P_n(S)} dx < Al_1(f) + B.$$

It was known before for the disc and for the sphere. Our new proof is simpler and works for all surfaces.

Corollary

- For every homogeneous GG_q quasimorphism: $GG_q(f) \leq Al_1(f)$.
- Every right angled Artin group can be embedded quasi-isometrically into $\text{Diff}_0(S, \text{area})$. E.g., \mathbb{Z}^k , F_k .

 $\int_{C_n(S)} |\gamma(f,x)|_{P_n(S)} dx < Al_1(f) + B.$

伺 とう きょう く きょう しょう

$$\int_{C_n(S)} |\gamma(f,x)|_{P_n(S)} dx < Al_1(f) + B.$$

We want to have a Riemannian metric g on $C_n(S)$, such that $|\gamma(f,x)|_{P_n(S)}$ can be compared to $l_g(\gamma(f,x))$, the minimum over lengths of loops representing $\gamma(f,x)$.

$$\int_{C_n(S)} |\gamma(f,x)|_{P_n(S)} dx < Al_1(f) + B.$$

We want to have a Riemannian metric g on $C_n(S)$, such that $|\gamma(f,x)|_{P_n(S)}$ can be compared to $l_g(\gamma(f,x))$, the minimum over lengths of loops representing $\gamma(f,x)$. There is a problem: if we take an 'obvious' metric on $C_n(S) \subset S^n$ (i.e., the product Riemannian metric), then every braid can be represented by a short loop in $C_n(S)$.

$$\int_{C_n(S)} |\gamma(f,x)|_{P_n(S)} dx < Al_1(f) + B.$$

We want to have a Riemannian metric g on $C_n(S)$, such that $|\gamma(f,x)|_{P_n(S)}$ can be compared to $l_g(\gamma(f,x))$, the minimum over lengths of loops representing $\gamma(f,x)$. There is a problem: if we take an 'obvious' metric on $C_n(S) \subset S^n$ (i.e., the product Riemannian metric), then every braid can be represented by a short loop in $C_n(S)$.

$$\int_{C_n(S)} |\gamma(f,x)|_{P_n(S)} dx < Al_1(f) + B.$$

We want to have a Riemannian metric g on $C_n(S)$, such that $|\gamma(f,x)|_{P_n(S)}$ can be compared to $l_g(\gamma(f,x))$, the minimum over lengths of loops representing $\gamma(f,x)$. There is a problem: if we take an 'obvious' metric on $C_n(S) \subset S^n$ (i.e., the product Riemannian metric), then every braid can be represented by a short loop in $C_n(S)$.

We need a different metric.

$$d(x_1,\ldots,x_n) = \min\{d_S(x_i,x_j): i \neq j\}.$$

★ E ► ★ E ►

3

$$d(x_1,\ldots,x_n) = \min\{d_S(x_i,x_j): i \neq j\}.$$

We define a new Riemannian metric on $C_n(S)$ by the formula:

$$g_d = rac{g_{prod}}{d}.$$

-

$$d(x_1,\ldots,x_n) = \min\{d_S(x_i,x_j): i \neq j\}.$$

We define a new Riemannian metric on $C_n(S)$ by the formula:

$$g_d = rac{g_{prod}}{d}.$$

If two particles collide, the metric explodes.

$$d(x_1,\ldots,x_n) = \min\{d_S(x_i,x_j): i \neq j\}.$$

We define a new Riemannian metric on $C_n(S)$ by the formula:

$$g_d = rac{g_{prod}}{d}.$$

If two particles collide, the metric explodes.

Consider $f \in \text{Diff}_0(S, \text{area})$ and $\{f_t\}$ isotopy. It induces maps f^* , $\{f_t^*\}$ on the configuration space.

< ∃ >

< ∃ →

э

Consider $f \in \text{Diff}_0(S, \text{area})$ and $\{f_t\}$ isotopy. It induces maps f^* , $\{f_t^*\}$ on the configuration space.

< ∃ >

< ∃ →

э

Consider $f \in \text{Diff}_0(S, \text{area})$ and $\{f_t\}$ isotopy. It induces maps f^* , $\{f_t^*\}$ on the configuration space.

We can consider the l_1 -norm of $f^* \colon C_n(S) \to C_n(S)$ with respect to \mathcal{G}_d .

$$\int_{C_n(S)} I_{g_d}(f_t^*(x)) dx$$

Consider $f \in \text{Diff}_0(S, \text{area})$ and $\{f_t\}$ isotopy. It induces maps f^* , $\{f_t^*\}$ on the configuration space.

We can consider the l_1 -norm of $f^*: C_n(S) \to C_n(S)$ with respect to g_d . And we have the following lemma:

$$\int_{C_n(S)} I_{g_d}(f_t^*(x)) dx \leq A I_1(f).$$

Consider $f \in \text{Diff}_0(S, \text{area})$ and $\{f_t\}$ isotopy. It induces maps f^* , $\{f_t^*\}$ on the configuration space.

We can consider the l_1 -norm of $f^*: C_n(S) \to C_n(S)$ with respect to g_d . And we have the following lemma:

$$\int_{C_n(S)} l_{g_d}(f_t^*(x)) dx \leq A l_1(f).$$

One can show that there are braids γ such that $l_{g_b}(\gamma)$ is arbitrary large.

Consider $f \in \text{Diff}_0(S, \text{area})$ and $\{f_t\}$ isotopy. It induces maps f^* , $\{f_t^*\}$ on the configuration space.

We can consider the l_1 -norm of $f^*: C_n(S) \to C_n(S)$ with respect to g_d . And we have the following lemma:

$$\int_{C_n(S)} l_{g_d}(f_t^*(x)) dx \leq A l_1(f).$$

One can show that there are braids γ such that $l_{g_b}(\gamma)$ is arbitrary large.

But still we cannot compare $|\gamma|_{P_n(S)}$ to $l_{g_d}(\gamma)$.

 $C_n(S)$ has an embedding to a high dimensional \mathbb{R}^N (D. Sinha), such that the closure of the image $A_n(S)$ is a manifold with corners and such that $C_n(S)$ is the interior of $A_n(S)$ (so the π_1 does not change).

 $C_n(S)$ has an embedding to a high dimensional \mathbb{R}^N (D. Sinha), such that the closure of the image $A_n(S)$ is a manifold with corners and such that $C_n(S)$ is the interior of $A_n(S)$ (so the π_1 does not change).

If we restrict the euc. metric from \mathbb{R}^N to $A_n(S)$ (call it g_{comp}), then by Milnor-Schwartz we have $|\gamma(f, x)|_{P_n(S)} \sim l_{comp}(\gamma(f, x))$ and

$$\int_{C_n(S)} |\gamma(f,x)|_{P_n(S)} dx \sim \int_{C_n(S)} l_{comp}(\gamma(f,x)) dx$$

$$\int_{C_n(S)} |\gamma(f,x)|_{P_n(S)} dx \sim \int_{C_n(S)} l_{comp}(\gamma(f,x)) dx$$

2

э

$$\int_{C_n(S)} |\gamma(f,x)|_{P_n(S)} dx \sim \int_{C_n(S)} l_{comp}(\gamma(f,x)) dx$$

It turns out that $g_{comp} \leq A'g_d$, thus

$$\int_{C_n(S)} I_{comp}(\gamma(f,x)) dx \le A' \int_{C_n(S)} I_{g_d}(\gamma(f,x)) dx$$

ъ.

э

$$\int_{C_n(S)} |\gamma(f,x)|_{P_n(S)} dx \sim \int_{C_n(S)} I_{comp}(\gamma(f,x)) dx$$

It turns out that $g_{comp} \leq A'g_d$, thus

$$\int_{C_n(S)} I_{comp}(\gamma(f,x)) dx \leq A' \int_{C_n(S)} I_{g_d}(\gamma(f,x)) dx$$
$$\leq A' \int_{C_n(S)} I_{g_d}(f_t^*(x)) dx + B \leq AA' I_1(f) + B.$$

(we had: $\int_{C_n(S)} I_{g_d}(f_t^*(x)) dx \leq AI_1(f)$)

$$\int_{C_n(S)} |\gamma(f,x)|_{P_n(S)} dx \sim \int_{C_n(S)} I_{comp}(\gamma(f,x)) dx$$

It turns out that $g_{comp} \leq A'g_d$, thus

$$\int_{C_n(S)} I_{comp}(\gamma(f,x)) dx \leq A' \int_{C_n(S)} I_{g_d}(\gamma(f,x)) dx$$
$$\leq A' \int_{C_n(S)} I_{g_d}(f_t^*(x)) dx + B \leq AA' I_1(f) + B.$$

(we had: $\int_{C_n(S)} I_{g_d}(f_t^*(x)) dx \leq AI_1(f)$)