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Introduction: Lp-norm

Let S be a surface with a Riemannian metric.

Diff0(S , area) is the group of area preserving di�eo's of S isotopic

to IdS .

Let p = 1, and let ft ∈ Diff0(S , area) an isotopy between f0 and f1.

Thus l1({ft}) is the average of the lengths of all paths ft(x).
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Introduction: Lp-norm

Let f ∈ Diff0(S , area), we de�ne the L1-norm of f by

l1(f ) = inf l1({ft}),

where the in�mum is taken over all isotopies ft ∈ Diff0(S , area)
connecting the identity on S with f .

The L1-diameter of Diff0(S , area) equals

sup{l1(f ) : f ∈ Diff0(S , area)}.

In general:

lp({ft}) =

∫
1

0

(

∫
S

|ḟt(x)|pdx)
1
p dt

Hölder inequality: lp(f ) ≥ C ∗ l1(f ).
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History

• A. Shnirelman: M is the n-dimensional disc, n > 2. Lp-diameter

of Diff0(M, vol) is �nite.

• Eliashberg and Ratiu: Lp-diameter (p ≥ 1) of Diff0(S , area) is

in�nite if S is a surface with boundary. They show that the Calabi

homomorphism is Lipschitz with respect to the Lp-norm.
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History

• Gambaudo and Lagrange: similar result for a huge class of

quasimorphisms on Diff0(S , area) if S is the closed disc. Their proof

makes use of the braid group of the disc and inequalities relating

the geometric intersection number of a braid and its word-length.

• The last unsolved case was the sphere. Recently Brandenbursky

and Shelukhin showed that in this case the diameter is as well

in�nite. They show as well that e.g. right angled Artin groups

embed quiasi-isometrically (as well Kim-Koberda, Crisp-Wiest).
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Theorem 1 (Short proof, M.).

Lp-diameter, p ≥ 1, of Diff0(S , area) is in�nite.

We can show more:

Theorem 2 (Brandenbursky-M.-Shelukhin).

Every f.g. right angled Artin group and Rk , for every k, embed

quasi-isometrically in Diff0(S , area) with Lp-metric, p ≥ 1.

Theorem 2 is new for hyperbolic surfaces. For disc, sphere and

torus it was shown by Kim-Koberda and Brandenbursky-Shelukhin.
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Warm-up: hyperbolic surface

Proposition 1.

The Lp-diameter, p ≥ 1, of Diff0(S , area) is in�nite for S a

hyperbolic surface.

Proof:
Let U ⊂ S be a small ball.

Let γ be a nontrivial loop based at x ∈ U.

Assume it is the shortest based loop in its homotopy

class.

Imagine an isotopy ft , t ∈ [0, 1], that takes the set U

and moves it along γ, such that at time 1 the set U

comes back to the initial place.
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Warm-up: hyperbolc surface

Reminder:

U ⊂ S a small ball, γ a geodesic based at x , f1 is the identity on U.

For any z ∈ U, ft(z) is a loop of length at least

L = length(γ)− 2 diam(U).

Moreover, any loop (based at z) homotopic to ft(z)
has length at least L.

Let gt be an isotopy connecting Id to f1.

Lemma: Let ht be a loop in Di�0(X ) based at IdX (h0 = h1 = IdX ).

For every x ∈ X , the loop ht(x) is in the center of π1(X , x).

For every z ∈ U, the trajectories gt(z) and ft(z) are homotopic,

thus gt(z) has length at least L.

Hence l1({gt}) ≥ area(U)L and l1(f1) ≥ area(U)L.
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A metric on Cn(S)

We want to do a similar thing when S is a disc, annulus, sphere or

a torus.

Let Cn(S) be the set of tuples of n pairwise distinct points in S .

On Cn(S) we have a product metric restricted from Sn and

π1(Cn(S)) = Pn(S), the pure braid gorup.

An di�eomorphism f of S induces a di�eomorphism on Cn(S). One
can try to use the same idea as for hyperbolic spaces.

Problem: There exists C , such that every element of Pn(S) can be

realized as a loop of length < C .
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A metric on Cn(S)

We introduce a new metric.

Cn(S) = Sn −
⋃
i ,j

Dij where Dij = {x ∈ Sn : xi = xj}.

Let x ∈ Cn(S), D =
⋃

i ,j Dij and de�ne

d(x) = dCn(S)(x ,D) =
1√
2
min{dS(xi , xj) : 1 ≤ i < j ≤ n}

Let v ∈ Tx(Cn(S)) is a vector tangent

to a point x ∈ Cn(S). We de�ne gb, a

new metric on Cn(S):

|v |gb =
|v |
d(x)

.

Cn(S) is a C 0-Riemannian m�d.
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Lemma 3.

The metric induced on Cn(S) by gb is complete.

Let z ∈ Cn(S) be a base point. For γ ∈ π1(Cn(S), z) by l(γ)
denote the length (in gb) of the shortest loop based at z

representing γ.

Lemma 4.

l(γ) can be arbitrary big.
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A metric on Cn(S)

Lemma 4.

l(γ) can be arbitrary big.

Proof:

Let Y → (Cn(S), gb) be the universal cover with the pulled-back

C 0-Riemannian metric.

Since Cn(S) is complete, so is Y .

Let z ′ ∈ Y be in the pre-image of z ∈ Cn(S).
For every C , the closed ball BY (z ′,C ) is

compact.

Thus there is only �nitely γ ∈ π1(Cn(S), z)
such that γ(z ′) ∈ BY (z ′,C ).
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Inequality

Recall: l1({ft}) =
∫
1

0

∫
S
|ḟt(x)|dxdt

On Diff0(Cn(S), arean) we de�ne an L1 metric using gb:

i.e.: for ft an isotopy in Cn(S):

l1({ft}) =

∫
1

0

∫
Sn
|ḟt(x)|gbdxdt

We have an embedding (a product map):

Diff0(S , area) ↪→ Diff0(Cn(S), arean)

Lemma 5.

Diff0(S , area) ↪→ Diff0(Cn(S), arean) is Lipschitz, i.e:

||f ∗|| < C ||f ||.

Proof: certain integral of 1

d(x) is �nite.
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Proof of Theorem 1

Theorem 1.

Let S be a compact surface. The Lp-diameter, p ≥ 1, of

Diff0(S , area) is in�nite.

Proof:
Let z = (z1, . . . , zn) ∈ Cn(S) be a base-point.

U = U1 × . . .× Un ⊂ Cn(S) where Ui is a

small ball around zi .

Suppose [γ] ∈ π1(Cn(S), z).

Let ft be an isotopy of S such that f ∗t (z)
traces γ and f ∗

1
�xes U.
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Proof of Theorem 1

Chose an arbitrary isotopy {gt} connecting IdCn(S) to f ∗
1
.

Let x ∈ U ⊂ Cn(S).

The length of gt(x) (in gb) equals
∫
1

0
|ġt(x)|gbdt.

And is at least Dγ = l(γ)− 2 diam(U).

{gt} was arbitrary, so area(U)Dγ ≤ l1(f ∗
1

).

Michaª Marcinkowski A simple proof that the Lp-diameter of Diff0(S, area) is in�nite
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area(U)Dγ ≤
∫
U

∫
1

0

|ġt(x)|gbdtdx

≤
∫
Sn

∫
1

0

|ġt(x)|gbdtdx

=

∫
1

0

∫
Sn
|ġt(x)|gbdxdt

= l1({gt}).

{gt} was arbitrary, so area(U)Dγ ≤ l1(f ∗
1

).
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Compacti�cation of Cn(S)

C 2(S) = C2(S) ∪ {(x , x , v) : x ∈ S , v ∈ T 1
x S}

In general, there is a compacti�cation Cn(S) ⊂ Cn(S) such that

the inclusion is a homotopy equivalence. Moreover, Cn(S) is a

manifold with corners (D. Sinha).

Michaª Marcinkowski A simple proof that the Lp-diameter of Diff0(S, area) is in�nite



Compacti�cation of Cn(S)

C 2(S) = C2(S) ∪ {(x , x , v) : x ∈ S , v ∈ T 1
x S}

In general, there is a compacti�cation Cn(S) ⊂ Cn(S) such that

the inclusion is a homotopy equivalence. Moreover, Cn(S) is a

manifold with corners (D. Sinha).

Michaª Marcinkowski A simple proof that the Lp-diameter of Diff0(S, area) is in�nite



Compacti�cation of Cn(S)

C 2(S) = C2(S) ∪ {(x , x , v) : x ∈ S , v ∈ T 1
x S}

In general, there is a compacti�cation Cn(S) ⊂ Cn(S) such that

the inclusion is a homotopy equivalence. Moreover, Cn(S) is a

manifold with corners (D. Sinha).

Michaª Marcinkowski A simple proof that the Lp-diameter of Diff0(S, area) is in�nite



Let g be any Riemannian metric on Cn(S). Then

Lemma 1.

There exists C , such that g < Cgb

De�nition of γ(f , x):

Let z = (z1, . . . , zn) ∈ Cn(S), ft an iso

between IdS and f ∈ Diff0(S , area).
For every x ∈ Cn(S), ft(x) is a path

between x and f (x).
Connect points in x with z and f (x)
with z . We get an element

γ(f , x) ∈ Pn(S).
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Compacti�cation of Cn(S)

Corollary 2. ∫
Sn
|γ(f , x)|Pndx ≤ C |f |1 + D.
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Compacti�cation of Cn(S)

Corollary 2. ∫
Sn
|γ(f , x)|Pndx ≤ C |f |1 + D.

|γ(f , x)|Pn ≤ A

∫
1

0

|ḟt(x)|gbdt + B
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Proof of Theorem 2

Corollary 2. ∫
Sn
|γ(f , x)|Pndx ≤ C |f |1 + D.

Theorem 2.

f.g. right angled Artin groups embed quasi-isometrically into

Diff0(S , area) with the Lp-metric.

G Pn(S)

AΓ

H

ι q.i .

Let G < Diff0(S , area) the group

of di�eos that �x nbhds of zi .

H(f ) = trace of ft(z).
H is Lipschitz.

Let AΓ be a RAAG

(Kim-Koberda: Γc is a tree)
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The End

Michaª Marcinkowski A simple proof that the Lp-diameter of Diff0(S, area) is in�nite


