Braid groups and Curvature Talk 1: The Basics

Jon McCammond

UC Santa Barbara

Regensburg, Germany Sept 2017

•0000

Dual braids and orthoschemes

It has long been conjectured that the braid groups are non-positively curved in the sense that they have a geometric action on some complete CAT(0) space. In fact, a promising candidate has been known for some time.

In 2001 Tom Brady constructed a contractible *n*-dimensional simplicial complex with a free, cocompact, vertex-transitive *n*-strand braid group action and in 2010 Tom and I added a specific piecewise-euclidean metric to this complex.

I call this the dual braid *n*-complex with the orthoscheme metric.

Braid groups and CAT(0)

Tom and I conjectured that the dual braid n-complex with the orthoscheme metric is a CAT(0) space for every positive integer n and this conjecture has been established when n is very small. In these talks I outline a recent proof of the full conjecture (joint work with M. Dougherty and S. Witzel).

Theorem (Braid groups are CAT(0))

For every integer n > 0, the dual braid n-complex with the orthoscheme metric is a CAT(0) space and, as a consequence, the n-strand braid group is a CAT(0) group.

The lectures will introduce the complexes, metrics and groups under consideration, and outline the proof.

Individual Braids

I like this theorem and its proof because:

Curvature conditions

- it gives a uniform explanation for many properties of braids,
- the structures we introduce lead to many new questions,
- the proof itself is very pretty (in my opinion),
- it is a new class of examples of CAT(0) spaces, and
- I've been trying to prove this (on and off) for 15 years.

The revised plan for these lectures is as follows.

- Talk 1: The Basics
- Talk 2: The Pieces
- Talk 3: The Proof

More precisely,

- Talk 1: curvature conditions and the braid groups
- Talk 2: dual braid complex and orthoschemes
- Talk 3: assemble the pieces and sketch the proof

Parabolic subgroups

Curvature conditions

The Plan

Definition (Triangles)

A geodesic triangle Δ is a triple of points $x,y,z\in X$ and a triple of geodesics [x,y],[y,z] and [z,x] called vertices and sides. A comparison triangle Δ' in $\mathbb E$ is a triple of points x',y' and z' so that the corresponding side lengths are equal.

Definition (CAT(0) spaces)

For every point p in a side of Δ in X there is a corresponding p' in a side of Δ' in $\mathbb E$ that is the same distance from its vertices. The triangle Δ satisfies the CAT(0) inequality if for all p and q in sides of Δ , $d_X(p,q) \leq d_{\mathbb E}(p',q')$. A space X is CAT(0) if all geodesic triangles in X satisfy the CAT(0) inequality.

Convex and Complete

Example (\mathbb{R}^n)

The Plan

n-dimensional Euclidean space is a CAT(0) space.

It is an easy consequence of the CAT(0) inequality that geodesics in CAT(0) spaces are unique.

Definition (Convex and Complete)

A subspace $U \subset X$ is convex if for all $x, y \in U$, the unique geodesic from x to y is in U. A CAT(0) space is complete if it is complete as a metric space.

There are several ways to construct new CAT(0) spaces from existing CAT(0) spaces.

Easy Constructions

The Plan

Lemma (Convex subspaces)

If X is a CAT(0) space and $U \subset X$ is a convex subspace then U is a CAT(0) space.

Lemma (Fixed sets)

If $f: X \to X$ is an isometry of a CAT(0) space X, then the set of points fixed by f is a convex CAT(0) subspace.

Lemma (Products)

If $X = U \times V$ is a direct product of metric spaces, then X is a CAT(0) space if and only if both U and V are CAT(0) spaces.

Lemma (Gluing)

Let $X = U \cup V$ be a metric space. If U, V and $U \cap V$ are non-empty complete CAT(0) spaces, then X is a complete CAT(0) space.

The gluing lemma is really the gluing theorem since its proof is slightly delicate. Once established, a simple induction extends this from 2 subspaces to *n* subspaces.

Lemma (Gluing *n* subspaces)

Let $X = X_1 \cup \cdots \cup X_n$ be a metric space. If for each $\emptyset \neq B \subset [n]$, the corresponding intersection $X_B = \bigcap_{i \in B} X_i$ is a non-empty complete CAT(0) space, then X is a complete CAT(0) space.

The notation [n] means $\{1, 2, \ldots, n\}$.

Non-positively curved means locally CAT(0).

Definition (Non-positively curved)

Let X be a geodeisc metric space. If every point in X has a neighborhood that is a CAT(0) space, then X is said to be non-positively curved.

The Cartan-Hadamard Theorem shows that the difference between the local and the global version is purely topological.

Theorem (Cartan-Hadamard)

Let X be a complete connected metric space. If X is non-positively curved then its universal cover is CAT(0).

Euclidean cell complexes

Definition (Euclidean cell complexes)

Roughly speaking, a euclidean cell complex *X* is a space constructed by gluing together a collection of convex euclidean polytopes along isometric subpolytopes. The shapes in *X* are the equivalence classes of these polytopes up to isometry.

We say that *X* has finitely many shapes when it has only finitely many isometry types of cells. Bridson proved that the local polytope metrics combine to define a well-behaved global metric when the complex has finitely many shapes.

Theorem (Shapes)

If X is connected euclidean cell complex with finitely many shapes, then X is a complete geodesic metric space.

Parabolic subgroups

Gromov's criterion

The Plan

When testing whether a euclidean cell complex is non-positively curved it is sufficient to check whether it is CAT(0) in the neighborhood of each vertex.

Theorem (Gromov's criterion)

If X is a eucldiean cell complex with finitely many shapes, then X is non-positively curved if and only if every vertex has a neighborhood that is CAT(0).

Gromov's criterion follows from the observation that if v is a vertex of the polytopal cell containing $x \in X$, then each neighborhood of v contains an isometric copy of a sufficiently small neighborhood of x. In particular, if this neighborhood of v is CAT(0) then so is the small neighborhood of x.

Gromov's criterion can be simplified using group actions.

Definition (Isometric actions)

The action of a group *G* on a metric space *X* is by isometries when the action of *G* preserves the metric on *X*: for all $g \in G$ and $x, y \in X$, $d_X(g,x,g,y) = d_X(x,y)$.

Combining the group action, Gromov's criterion and the Cartan-Hadamard theorem produces a local CAT(0) test.

Theorem (Local criterion)

Let G be a group acting vertex-transitively by isometries on a connected and simply-connected euclidean cell complex X with finitely many shapes. If X contains a CAT(0) subcomplex that contains a neighborhood of a vertex, then X is a CAT(0) space.

Proof of the Local criterion

Proof.

The Plan

Let Y be the subcomplex and let v be the vertex. Since Y is CAT(0), it is non-positively curved. By hypothesis and by Gromov's criterion we can find a neighborhood N(v) of a vertex v in X such that $N(v) \subset Y$ is CAT(0). Because the action of Gis vertex-transitive, for every vertex $v' \in X$ there is a $g \in G$ such that g.v = v' and since the action is by isometries g.N(v) is a CAT(0) neighborhood of v'. Thus every vertex in X has a CAT(0) neighborhood. By Gromov's criterion X is non-positively curved, by Bridson's theorem X is complete and by hypothesis X connected and simply-connected. Thus by the Cartan-Hadamard Theorem X is a CAT(0) space.

Geometric actions

The Plan

We now shift our attention from spaces to groups. Let G be a group acting on a metric space X.

Definition (Group actions)

The action is free if the identity in *G* is the only element that fixes a point in X. The action is proper if for every point $x \in X$, there is a neighborhood N(x) of x such that the set $\{g \in G \mid g.N(x) \cap N(x) \neq \emptyset\}$ is finite. And the action is cocompact if there is a compact subset $K \subset X$ whose orbit under the G-action is all of X: G.K = X.

Definition (Geometric actions)

When the action of G on X is proper, cocompact and by isometries, it is called a geometric action.

Parabolic subgroups

CAT(0) groups and NPC groups

The Plan

Definition (CAT(0) groups and NPC groups)

A group is CAT(0) if it admits a geometric action on some complete CAT(0) space and it is non-positively curved if it is the fundamental group of a compact non-positively curved space.

These concepts are equivalent when the group is torsion-free.

Proposition (Torsion and curvature)

If G is a group with a geometric action on a CAT(0) space X, then the action of G on X is free if and only if G is torsion-free. As a consequence a group is non-positively curved if and only if it is CAT(0) and torsion-free.

And note that the braid groups are torsion-free.

Braid groups

The Plan

Labeled configuration spaces

The braid groups have many different equivalent definitions. One of the main ones is as the fundamental group of a configuration space of n unlabeled points in the plane. Let X be a topological space and let X^n be the space of all *n*-tuples $\vec{X} = (X_1, X_2, \dots, X_n)$ of elements $X_i \in X$.

Definition (Labeled configuration spaces)

The configuration space of n labeled points in X is the subspace Conf_n(X) of X^n of n-tuples with distinct entries. The thick diagonal of X^n is the subspace

$$\Delta = \{(x_1, \dots, x_n) \mid x_i = x_j \text{ for some } i \neq j\}$$

where this condition fails. Thus $CONF_n(X) = X^n - \Delta$.

Individual Braids

Unlabeled configuration spaces

Definition (Unlabeled configuration spaces)

The symmetric group acts on X^n by permuting coordinates and this action restricts to a free action on Conf_n(X). The configuration space of *n* unlabeled points in *X* is the quotient space UCONF_n(X) = $(X^n - \Delta)/SYM_n$.

Remark (The map SET)

Since the quotient map sends the *n*-tuple (x_1, \ldots, x_n) to *n*-element set $\{x_1, \ldots, x_n\}$, we write

SET:
$$CONF_n(X) \rightarrow UCONF_n(X)$$

for this natural quotient map.

First Examples

Example (Configuration spaces)

When X is the unit circle and n = 2, the space X^2 is a torus, Δ is a (1,1)-curve on the torus, its complement $CONF_2(X)$ is homeomorphic to the interior of an annulus and the quotient $UCONF_2(X)$ is homeomorphic to the interior of a Möbius band.

Example (Braid arrangement)

Let \mathbb{C} be the complex numbers with its usual topology and let $\vec{z} = (z_1, z_2, \dots, z_n)$ denote a point in \mathbb{C}^n . The thick diagonal of \mathbb{C}^n is a union of hyperplanes called the braid arrangement and the hyperplanes in the arrangement are defined by the equations $z_i - z_j = 0$ for all $i \neq j \in [n]$.

Definition (Braids in C)

The configuration space $\mathsf{CONF}_n(\mathbb{C})$ is the complement of the braid arrangement and its fundamental group is called the n-strand pure braid group. The n-strand braid group is the fundamental group of the quotient configuration space $\mathsf{UCONF}_n(\mathbb{C}) = \mathsf{CONF}_n(\mathbb{C})/\mathsf{SYM}_n$ of n unlabeled points.

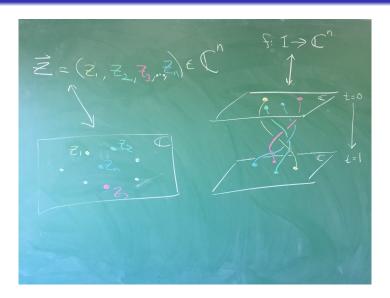
In symbols we have

$$\mathsf{PBRAID}_n = \pi_1(\mathsf{CONF}_n(\mathbb{C}), \vec{z})$$

$$\mathsf{BRAID}_n = \pi_1(\mathsf{UCONF}_n(\mathbb{C}), Z)$$

where \vec{z} is some specified basepoint in $\mathsf{CONF}_n(\mathbb{C})$ and $Z = \mathsf{SET}(\vec{z})$ is the corresponding basepoint in $\mathsf{UCONF}_n(\mathbb{C})$.

The Braid Arrangement



Short exact sequence

Remark (Short exact sequence)

The quotient map SET is a covering map, so the induced map

$$SET_*: PBRAID_n \rightarrow BRAID_n$$

on fundamental groups is injective. Since $\mathsf{CONF}_n(\mathbb{C})$ is a regular cover of $\mathsf{UCONF}_n(\mathbb{C})$, the image of PBRAID_n in BRAID_n is a normal subgroup and the quotient is the group SYM_n of covering transformations. We have a short exact sequence.

$$\mathsf{PBRAID}_n \overset{\mathsf{SET}_*}{\hookrightarrow} \mathsf{BRAID}_n \overset{\mathsf{PERM}}{\twoheadrightarrow} \mathsf{SYM}_n.$$

The second map is called PERM because each braid is sent to the induced permutation of the basepoint, an *n*-element set.

Very few strands

Example (n = 1)

The spaces $UCONF_1(\mathbb{C})$, $CONF_1(\mathbb{C})$ and \mathbb{C} are equal and contractible, and all three groups in the short exact sequence are trivial.

Example (n = 2)

The space $\mathsf{CONF}_2(\mathbb{C})$ is $\mathbb{C}^2 - \mathbb{C}^1$, which retracts to $\mathbb{C}^1 - \mathbb{C}^0$ and then to the unit circle $\mathbb{S}^1 \subset \mathbb{C}$. The quotient space $\mathsf{UCONF}_2(\mathbb{C})$ also deformation retracts to \mathbb{S}^1 and the map from $\mathsf{CONF}_2(\mathbb{C})$ to $\mathsf{UCONF}_2(\mathbb{C})$ corresponds to the map from \mathbb{S}^1 to itself sending z to z^2 . In particular $\mathsf{PBRAID}_2 \cong \mathsf{BRAID}_2 \cong \mathbb{Z}$, the map SET_* multiplies by 2 and the quotient is $\mathbb{Z}/2\mathbb{Z} \cong \mathsf{SYM}_2$.

We assume n > 2 from now on.

Individual Braids

Braids in D

The Plan

Let $\mathbb{D} \subset \mathbb{C}$ be the closed unit disk centered at the origin. Restricting to configurations of points that remain in \mathbb{D} does not change the fundamental group of the configuration space.

Proposition (Braids in \mathbb{D})

The configuration space UCONF_n(\mathbb{C}) deformation retracts to the subspace $UCONF_n(\mathbb{D})$, so for any choice of basepoint Z in the subspace.

$$\pi_1(\mathsf{UCONF}_n(\mathbb{D}), Z) = \pi_1(\mathsf{UCONF}_n(\mathbb{C}), Z) = \mathsf{BRAID}_n.$$

Since the topology of a configuration space only depends on the topology of the original space, we can replace \mathbb{D} with any space P homeomorphic to \mathbb{D} .

Braids in P

Corollary (Braids in P)

A homeomorphism $\mathbb{D} \to P$ induces a homeomorphism $h: \mathsf{UCONF}_n(\mathbb{D}) \to \mathsf{UCONF}_n(P)$. In particular, for any choice of basepoint Z in $\mathsf{UCONF}_n(\mathbb{D})$, there is an induced isomorphism

$$\pi_1(\mathsf{UCONF}_n(\mathbb{D}), Z) \cong \pi_1(\mathsf{UCONF}_n(P), h(Z)) = \mathsf{BRAID}_n.$$

Remark (Points in ∂P)

When $BRAID_n$ is viewed as the mapping class group of a punctured disk, the punctures cannot move into the boundary since this would alter the topological type of the space. When $BRAID_n$ is viewed as the fundamental group of a configuration space of unlabeled points, they can move into the boundary.

The extra flexibility is surprisingly useful.

Standard Basepoints and Disks

Definition (Roots of unity)

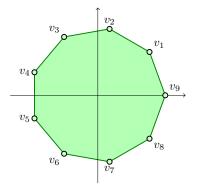
Let $\zeta = e^{2\pi i/n} \in \mathbb{C}$ be a primitive *n*-th root of unity and let v_i be the point ζ^i for all $i \in \mathbb{Z}$. Since $\zeta^n = 1$, the subscript i should be interpreted as an integer representing $i + n\mathbb{Z} \in \mathbb{Z}/n\mathbb{Z}$.

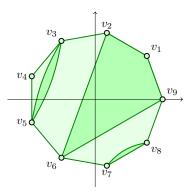
Definition (Standard basepoints and disks)

The standard basepoint for PBRAID_n is $\vec{v} = (v_1, v_2, ..., v_n)$ and the standard basepoint for BRAID_n is $V = \{v_1, v_2, ..., v_n\}$. Let P be the convex hull of the points in $V = \text{SET}(\vec{v})$. Our standing assumption of n > 2 means that P is homeomorphic to the disk \mathbb{D} . We call P the standard disk for BRAID_n.

For us the notation BRAID_n means $\pi_1(UCONF(P), V)$.

Standard Disks and Subdisks





Standard Subdisks

The Plan

Definition (Subsets of vertices)

For each non-empty $A \subset [n]$ of size k, let $V_A = \{v_i \mid i \in A\} \subset V$.

Definition (Subdisks k > 2)

For k > 2, let P_A be the convex hull of the points in V_A and note that P_A is a k-gon homeomorphic to \mathbb{D} . We call this the standard subdisk for $A \subset [n]$.

Definition (Subdisks k = 2)

For k = 2 and $A = \{i, j\}$, we define P_A so that it is a topological disk. Take two copies of the path along the straight line segment e_{ii} connecting v_i and v_i and then bend one or both of these copies so that they become injective paths from v_i to v_i with disjoint interiors which together bound a bigon inside P.

Representatives

The Plan

Definition (Representatives)

Each braid $\alpha \in \mathsf{BRAID}_n$ is a basepoint-preserving homotopy class of a path $f \colon [0,1] \to \mathsf{UCONF}_n(P,V)$ that describes a loop based at the standard basepoint V. We write $\alpha = [f]$ and say that the loop f represents α . Greek letters - α , β , δ - are braids and Roman letters - f, g, h - are their representatives.

Vertical drawings of braids in \mathbb{R}^3 typically have the t=0 start at the top and the t=1 end at the bottom. As a mnemonic, we use superscripts for information about the start of a braid or a path and subscripts for information about its end.

Strands

Let f be a representative of a braid. A strand of f is a path in P.

Definition (Strand that starts at v_i)

The strand that starts at v_i is the path $f^i:[0,1] \to P$ defined by the composition $f^i = PROJ_i \circ \widetilde{f}^{\vec{v}}$.

Definition (Strand that ends at v_i)

The strand that ends at v_i is the path f_i : $[0,1] \rightarrow P$ defined by the composition $f_i = PROJ_i \circ f_{\vec{v}}$.

When the strand of f that starts at v_i and ends at v_i the path f^i is the same as the path f_i . We write f^i , f_i or f_i^i for this path and we call it the (i, \cdot) -strand, the (\cdot, j) -strand or the (i, j)-strand of f.

Drawings

The Plan

A drawing of a braid representative f is the union of the graphs of its strands inside the polygonal prism $[0,1] \times P$.

Definition (Drawings)

To embed this prism into \mathbb{R}^3 the complex plane containing P is identified with either the first two coordinates of \mathbb{R}^3 and the third coordinate indicates the value $t \in [0, 1]$ arranged so that the t = 0 start of f is at the top and the t = 1 end of f is at the bottom.

Definition (Multiplication)

Let α_1 and α_2 be braids with representatives f_1 and f_2 . The product $\alpha_1 \cdot \alpha_2$ is $[f_1, f_2]$ where f_1, f_2 is the concatenation of f_1 and f_2 . In the drawing of f_1 , f_2 the drawing of f_1 is above and the drawing of f_2 is before.

Rotations

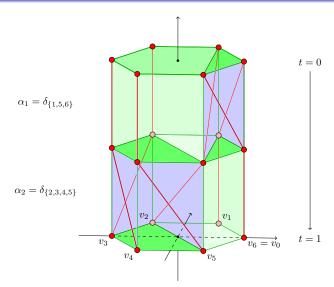
Definition (Rotations of subdisks)

For $A \subset [n]$ of size k = |A| > 1 we define an element $\delta_A \in \mathsf{BRAID}_n$ that rotates the vertices in V_A . It is the braid represented by the path in $\mathsf{UCONF}_n(P)$ that fixes the vertices in $V - V_A$ and where every vertex $v_i \in V_A$ travels in a counter-clockwise direction in ∂P_A to the next vertex of P_A .

Definition (Rotations of edges)

If $A = \{i, j\}$ and $e = e_{ij}$ is the edge connecting v_i and v_j , then we sometimes write δ_e to mean δ_A , the rotation of v_i and v_j around the boundary of the bigon P_A .

The next slide shows that product $\alpha = \alpha_1 \cdot \alpha_2$ where $\alpha = \delta_{\{1,2,3,4,5,6\}}$, $\alpha_1 = \delta_{\{1,5,6\}}$ and $\alpha_2 = \delta_{\{2,3,4,5\}}$. The map PERM sends this product to $(1,2,3,4,5,6) = (1,5,6) \cdot (2,3,4,5)$.



Dual Parabolic Subgroups

For each $A \subset [n]$ of size k, let B = [n] - A and $P^B = P - V_B$.

Lemma (Isomorphic groups)

The inclusion map $P_A \hookrightarrow P^B$ extends to an inclusion map $h: \mathsf{UCONF}_k(P_A) \hookrightarrow \mathsf{UCONF}_k(P^B)$ and it induces an isomorphism $h_*: \pi_1(\mathsf{UCONF}_k(P_A), V_A) \to \pi_1(\mathsf{UCONF}_k(P^B), V_A)$.

For k > 1, P_A is a disk, $\pi_1(\mathsf{UCONF}_k(P_A), V_A)$ is isomorphic to BRAID_k and by the lemma so is $\pi_1(\mathsf{UCONF}_k(P^B), V_A)$.

Definition (Dual Parabolic Subgroups)

For each A of size k, BRAID $_A$ is $g_*(\pi_1(\mathsf{UCONF}_k(P^B), V_A))$ where $g: \mathsf{UCONF}_k(P^B) \hookrightarrow \mathsf{UCONF}_n(P)$ is the map that sends $U \in \mathsf{UCONF}_k(P^B)$ to $g(U) = U \cup V_B \in \mathsf{UCONF}_n(P)$.

Note that $g(V_A) = V$. BRAID_A is a dual parabolic subgroup.

Fixing Vertices

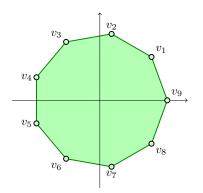
Definition (Fixing Vertices)

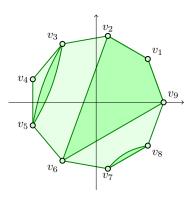
Let $\alpha = [f]$ be a braid in BRAID_n. We say that f fixes $v_i \in V$ if the strand that starts at v_i is a constant path, f fixes $V_B \subset V$ if it fixes each $v_i \in V_B$ and α fixes V_B if it has some representative f that fixes V_B . Let FIX(B) = { $\alpha \in BRAID_n \mid \alpha \text{ fixes } V_B$ }.

Special representatives can be concatenated and inverted while remaining special, so FIX(B) is a subgroup of BRAID_n.

Lemma ($FIX(B) = BRAID_A$)

If A and B are sets that partition [n], then the fixed subgroup Fix(B) is equal to the parabolic subgroup $BRAID_A$.





Dual Parabolic Intersections

It is straight-forward to show that the collection of of irreducible dual parabolic subgroups is closed under intersection and extremely well-behaved.

Proposition (Dual Parabolic Intersections)

For all n > 0 and for every non-empty $B \subset [n]$,

$$\mathsf{FIX}_n(B) = \bigcap_{i \in B} \mathsf{FIX}_n(\{i\})$$

and, as a consequence, for all non-empty $C, D \subset B$,

$$FIX_n(C \cup D) = FIX_n(C) \cap FIX_n(D)$$
.