

Health Insurance Mathematics –Assignments (2)

1. (10p) Derive the matrix form of Chapman-Kolmogorov equations.
2. (10p) Check the form of $P(z)$, when matrix M has N eigenvalues $\lambda_1 < \lambda_2 < \dots < \lambda_N$.
3. (10p) Find $P_{ij}(z)$ for a 2-state model, under the assumption that $\mu_{12} = \mu_{21} = 0.01$. Use the matrix form of Chapman-Kolmogorov equations.
4. (10p) Find $P_{ij}(z)$ for 3-state model, under the assumption that $\mu_{12} = 0.02$, $\mu_{23} = 0.01$, $\mu_{13} = 0.01$ (other transition intensities are equal to 0). Use the matrix form of Chapman-Kolmogorov equations.
5. (10p) Suppose that the Markov chain $\{S(t)\}$ is time-homogeneous. Find the actuarial values (calculated at time $t=0$) of cash flows that appear in insurance model introduced in Examples 1-3 (it is left to propose cash flows on your own).
6. (10p) Suppose that the Markov chain $\{S(t)\}$ is time-homogeneous. Find the actuarial values (calculated at time $t=0$) of cash flows that appear in insurance model introduced in Example 6 (it is left to propose cash flows on your own).
7. (10p) Suppose that the Markov chain $\{S(t)\}$ is time-homogeneous. Find the actuarial values (calculated at time $t=0$) of cash flows that appear in insurance model introduced in Example 7 (it is left to propose cash flows on your own).
8. (10p) Suppose that the Markov chain $\{S(t)\}$ is time-homogeneous. Find the actuarial values (calculated at time $t=0$) of cash flows that appear in insurance model introduced in Example 8 (it is left to propose cash flows on your own).