

Theoretical Foundations of the Analysis of Large Data Sets

Laboratory 2

Needle in Haystack

1. Let $L(X) = \frac{1}{p} \sum_{i=1}^p \exp(X_i \mu - \mu^2/2)$ be the statistic of the Neyman-Pearson test for the "needle in haystack" problem, and $\tilde{L}(X) = \frac{1}{p} \sum_{i=1}^p (\exp(X_i \mu - \mu^2/2) 1_{\{X_i < \sqrt{2 \log p}\}})$ be its truncated version. For each of the settings $\mu = (1 + \epsilon) \sqrt{2 \log p}$ with $\epsilon \in \{-0.3, -0.2, -0.1\}$ and $p \in \{5000, 50000, 500000\}$

- a) Estimate $P_{H_0}(L(X) \neq \tilde{L}(X))$.
- b) Calculate the sample mean and the sample variance of $L(X)$ and $\tilde{L}(X)$ (use at least 500 replicates).
- c) Based on at least 500 replicates calculate the maximum of $L(X)$ and $\tilde{L}(X)$.
- d) Report 0.95 quantile of $L(X)$ and $\tilde{L}(X)$.

How do these quantities change with p ? - comment referring to the theory learned in class.
How does $L(X)$ compare to $\tilde{L}(X)$?

2. For $p = 5000$ and $p = 50000$ estimate the critical values of the optimal Neyman-Pearson test for the "needle in haystack" problem against alternatives:

- a) $\mu^{(p)} = 1.2\sqrt{2 \log p}$
- b) $\mu^{(p)} = 0.8\sqrt{2 \log p}$

Use the significance level $\alpha = 0.05$. Comment on the results referring to the theory given in class.

3. For $p = 5000$ and $p = 50000$ and $\alpha = 0.05$ compare the power of the above Neyman-Pearson test with the power of the Bonferroni test when

- a) $\mu_1 = 1.2\sqrt{2 \log p}, \mu_2 = \dots = \mu_p = 0$
- b) $\mu_1 = 0.8\sqrt{2 \log p}, \mu_2 = \dots = \mu_p = 0$.

Comment on the results referring to the theory given in class.

Next two problems are for additional points.

4. For $p = 5000$ and $p = 50000$ implement the optimal Neyman-Pearson test against the alternative such that

- a) $\|\mu\|^2 = (2 * p)^{2/5}$
- b) $\|\mu\|^2 = (2 * p)^{3/5}$

and estimate its critical values. Use the significance level $\alpha = 0.05$. Comment on the results referring to the theory given in class.

5. For $p = 5000$ and $p = 50000$ and $\alpha = 0.05$ compare the power of the above Neyman-Pearson test with the power of the chi-square test when μ is uniformly distributed on the sphere such that

- a) $\|\mu\|^2 = (2 * p)^{2/5}$
- b) $\|\mu\|^2 = (2 * p)^{3/5}$

Use the significance level $\alpha = 0.05$.

Comment on the results referring to the theory given in class.