

Theoretical Foundations of the Analysis of Large Data Sets

Estimation of the vector of expected values

Due 17.01.2018

1. Simulate 500 realizations of the random vector $X = (X_1, \dots, X_p) \sim N(\mu, I)$ where $p = 500$

- a) $\mu = 0$,
- b) μ is obtained by a simulation (just once) from $N(0, 5I)$,
- c) μ_1, \dots, μ_p are obtained as iid from $N(20, 5)$ (just once).

For each of these cases compare the mean square error of the maximum likelihood estimate X , classical James-Stein estimate $\hat{\mu}_{JS} = \left(1 - \frac{p-2}{\|X\|^2}\right)X$ and the Empirical Bayes estimate $\hat{\mu}_i^{EB} = \bar{X} + \left(1 - \frac{p-3}{S}\right)(X_i - \bar{X})$, where $S = \sum_{i=1}^p (X_i - \bar{X})^2$.

2. Simulate 500 realizations of the random vector $X = (X_1, \dots, X_p) \sim N(\mu, \Sigma)$ where $p = 500$, $\Sigma_{i,i} = 1$, for $i \neq j$ $\Sigma_{i,j} = 0.4$ and the vector μ is as in Problem 1 on list 5.

Compare the mean square error of the maximum likelihood estimate X with the extension of James-Stein estimate by Mary Ellen Bock (1975)

$$\mu_{MEB} = \left(1 - \frac{\tilde{p}-2}{X^T \Sigma^{-1} X}\right) X, \text{ where } \tilde{p} = \frac{Tr(\Sigma)}{\lambda_{max}(\Sigma)}.$$

3. Simulate 500 realizations of the random vector $X = (X_1, \dots, X_p) \sim N(\mu, I)$ where $p = 500$ and the vector μ is equal to

- a) $\mu_1 = \dots = \mu_5 = 3.5, \mu_6 = \dots = \mu_{500} = 0$
- b) $\mu_1 = \dots = \mu_{30} = 2.5, \mu_{31} = \dots = \mu_{500} = 0$
- c) $\mu_1 = \dots = \mu_{100} = 1.8, \mu_{101} = \dots = \mu_{500} = 0$
- d) $\mu_1 = \dots = \mu_{500} = 0.4$
- e) $\mu_i = 3.5 * i^{-1/2}$
- f) $\mu_i = 3.5 * i^{-1}$

For each of these examples compare the mean square error of the

- a) maximum likelihood estimator
- b) James-Stein estimator
- c) hard-thresholding rule based on the Bonferroni correction with the nominal FWER equal to 0.1 (i.e. MLE when Bonferroni rejects H_{0i} , 0 otherwise)
- d) hard-thresholding rule based on the BH procedure with the nominal FDR equal to 0.1.

Malgorzata Bogdan