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Multiple regression model when n > p

Yn×1 = Xn×pβp×1 + εn×1, ε ∼ N(0, σ2In×n)

,
β̂LS = argminβ∈Rp ||Y − Xβ||2 = (X ′X )−1X ′Y

β̂LS ∼ N(β, σ2(X ′X )−1)

σ̂2 = s2 =
||Y − X β̂LS ||2

n − p
=

RSS

n − p
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Selection of important variables

T-tests,

Ti =
β̂i

s(β̂i )
,

where s(β̂i ) = s2(X ′X )−1[i , i ]

Problem - typically elements on the diagonal of (X ′X )−1 become
large as p increases.

If elements of X are iid from N(0, 1/
√
n) then X ′X has a Wishart

distribution and the elements on its diagonal have the expected
value equal to 1.

But (X ′X )−1 has the inverse Wishart distribution and the expected
values of the elements on the diagonal are equal to n

n−p−1 and
become very large as p approaches n.
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In�ation of MSE
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Loss of Power
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Model selection

Model selection in multiple regression - identi�cation of important
variables

Error in the training sample RSS = ||Y − Ŷ ||2 never increases
when we add new variables into the model. Thus, minimization of
RSS is not a good criterion for model selection.

Also, RSS is not a good measure of the prediction error.
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Training and prediction error

Let's consider a new sample

Y ∗ = Xβ + ε∗ ,

where ε∗ is independent on the noise term ε in the training sample

We use our training sample to build a good predictive model, i.e.
the model which minimizes

PE = E ||Y ∗ − Ŷ ||2

If µ = E (Y ) = Xβ, then PE = E ||µ−µ̂||2+nσ2 = E ||µ−Ŷ ||2+nσ2

RSS measures the �t within the training sample, i.e. it adjusts to
the speci�c realization of the noise term ε - this is over�tting. PE
measures the �t with respect to the true expected value of Y ,
which indeed is an indication of predictive properties (i.e. how well
we can predict new observations with di�erent noise terms).
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Prediction error of linear operators

If Ŷ = Mn×nY then

PE = E (RSS) + 2σ2Tr(M)

Proof by SURE :
µ̂ = Ŷ + Y − Y

g(Y ) = Ŷ − Y = MY − Y

||g(Y )||2 = RSS

div g(Y ) = TrM − n

PE = nσ2 + E (SURE (µ̂)) = nσ2 + E (RSS) + 2σ2TrM − nσ2
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Prediction error in least squares regression

In least squares estimation

M = X (X ′X )−1X ′

is the matrix of the orthogonal projection on the space spanned by
columns of X and Tr(M) = rank(X ).

If rank(X ) = p then the unbiased estimator of the prediction error
is equal to

P̂E = RSS + 2σ2p .

Minimizing P̂E coincides with AIC criterion which suggests
selecting the model for which RSS + 2σ2p is minimal.
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Akaike Information Criterion

X = (X1, . . . ,Xn) - vector of iid random variables from the model
Mk : f (x , θ), θ ∈ Rk

L(X , θ) =
n∏

i=1

f (Xi , θ)

AIC (Mk ) = ln L(X , θ̂MLE )− k
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Akaike Information Criterion in Linear Regression, σ known

ε1, . . . , εn - iid from N(Yi − Xiβ, σ
2), β ∈ Rk

L(Y |X , β, σ) =

(
1√
2πσ

)n

e
−||Y−Xβ||2

2σ2

ln L(Y |X , β, σ) = C − n log(σ)− ||Y − Xβ||2

2σ2

AIC (Mk ) = C (n, σ)− RSS

2σ2
− k

Maximizing AIC corresponds to minimizing RSS + 2σ2k
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Akaike Information Criterion in Linear Regression, σ
unknown

σ̂2MLE =
RSS

n

ln L(Y |X , β̂, σ̂) = C − n/2 log(RRS/n)− RSS

2
n

RSS

AIC (Mk ) = C (n)− n/2 log(RSS)− k

Maximizing AIC corresponds to minimizing n log(RSS) + 2k
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Properties of AIC (1)

In our example AIC identi�es the true model among 5 models with
di�erent dimensions, p = 500, k = 10.
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Can we use AIC to select variables in large data bases ?

Problem 1: Discrete optimization over 2p of possible models - not
doable in polynomial time.

In practice we often resort to heuristics which with large probability
return models closed to being optimal.

Forward selection - we start from the empty model and add
variables one by one. At each step we select the one which leads to
the largest improvement of the criterion. We stop when the
criterion is no longer improved.

Backward elimination - we start from the full model and remove
variables one by one until criterion is no longer improved.

Step-wise selection: alternating between forward selection and
backward elimination

More complicated heuristics: genetic algorithms, simulated
annealing etc.
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Can we use AIC to select important variables in large data
bases ?

bigstep - R library with many di�erent search strategies, optimizing
a variety of model selection criteria; p = 500, k = 10.

Histogram of the number of selected variables
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Multiple testing explanation (1)

Assume that X ′X = I

β̂ = (X ′X )−1X ′Y = X ′Y , β̂′ = Y ′X , β̂i = Y TXi

RSS = (Y − X β̂)′(Y − Xβ) = Y ′Y + β̂′X ′X β̂ − 2Y ′Xβ

RSS = Y ′Y − β̂′β̂ = Y ′Y −
k∑

i=1

β̂2i
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Multiple testing explanation (2)

Thus AIC selects variables which satisfy

|β̂i | ≥
√
2σ .

When βi = 0 then β̂i ∼ N(0, σ2).

Thus probability of the type I error

P(Xi is selected|βi = 0) = 2(1− Φ(
√
2)) = 0.16

When p = 500 and k = 10 we expect to see on average
490× 0.16 = 78 false discoveries and the typical size of the
selected model should be around k=88

In our simulations k ≈ 100 due to additional disturbance by the
sample correlations between columns of the design matrix and using
the form of AIC with unknown σ
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Would BIC help ?

BIC selects the model which minimizes

RSS + σ2k log n

Thus BIC selects variables which satisfy

| < Xi ,Y > | ≥
√

log nσ .

The probability of the type I error

P(Xi is selected|βi = 0) = 2(1− Φ(
√

log n),

which for n = 500 is equal to 0.013

Thus we expect to see on average p0 ∗ 0.013 = 490 ∗ 0.013 ≈ 6.5
false discoveries
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False Discoveries by BIC
False Discoveries by BIC

FD

F
re

qu
en

cy

2 4 6 8 10 12 14 16

0
5

10
15

20
25

30
35

Maªgorzata Bogdan SLOPE



Simulation results for GWAS

Solution - multiple testing correction

In Risk In�ation Criterion (Foster and George 1994) the penalty
depends on p

RSS + σ22k log p

Thus RIC selects variables which satisfy

| < Xi ,Y > | ≥ σ
√
2 log p .

The probability of the type I error

P(Xi is selected|βi = 0) = 2(1− Φ(
√
2 log p)) ≈ 1√

π

1
p
√

log p
.

Accuracy of approximation: for p = 500

2(1− Φ(
√
2 log p) = 0.000423,

1√
π

1
p
√

log p
= 0.000453

Here the expected number of false discoveries is smaller than 1
and decreases with p
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Modi�ed BIC

Motivation: QTL mapping and Genome Wide Association
Studies

Modi�ed versions of BIC - Bayesian background and
relationship to multiple testing.

Simulation studies

Asymptotic Optimality and Consistency
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Locating Quantitative Trait Loci
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Data for QTL mapping in backcross population and
recombinant inbred lines

Yi , 1 ≤ i ≤ n - trait values

Only two genotypes possible at a given locus

Xij , 1 ≤ i ≤ n, 1 ≤ j ≤ m - dummy variables encoding genotypes
at m markers, Xij ∈ {−1, 1}
Strong correlation between neigboring loci: backcross
d - distance in M , ρ = e( − 2d)
d = 0.1M, ρ = 0.82
d = 1M, ρ = 0.14
Average chromosome length - 1.5 M, usually around 10-15 markers
on each chromose
m ≈ 300, n > 200
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Data for GWAS

Three genotypes possible at a given locus
Usual coding

Xij =


0 if Zij = aa
1 if Zij = Aa
2 if Zij = AA

Weak and non-regular correlation between neigboring loci
Usually n ≈ k × 100 or k × 1000, m ≈ k × 100, 000
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Multiple regression model

Yi = µ+
∑
j∈I

βjXij +
∑

(u,v)∈U

γuvXiuXiv + εi , (1)

I - a subset of N = {1, . . . ,m}, U - a subset of N × N,

εi ∼ N(0, σ2)

Task : estimation of the number of in�uential genes and
interaction e�ects
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Bayesian Information Criterion (1)

Mi - i-th linear model

ki - number of main e�ects, qi - number of interactions

ki + qi < n

θi = (β0, β1, . . . , βki
, γ1, . . . , γqi , σ) - vector of model parameters

Bayesian Information Criterion (Schwarz, 1978)
maximize BIC = log L(Y |Mi , θ̂i )− 1

2
(ki + qi ) log n

If m is �xed, n→∞ and X ′X/n→ Q, where Q is a positive
de�nite matrix, then BIC is consistent - the probability of choosing
the proper model converges to 1.
Surprise ? : - Broman and Speed (JRSS, 2002) report that BIC
overestimates the number of regressors when applied to QTL
mapping.
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Explanation - Bayesian roots of BIC (1)

f (θi ) - prior density of θi , π(Mi ) - prior probability of Mi

mi (Y ) =
∫
L(Y |Mi , θi )f (θi )dθi - integrated likelihood of the data

given the model Mi

posterior probability of Mi : P(Mi |Y ) ∝ mi (Y )π(Mi )

BIC neglects π(Mi ) and uses approximation

logmi (Y ) ≈ log L(Y |Mi , θ̂i )− 1/2(ki + qi + 2) log n + Ri ,

Ri is bounded in n.

Maªgorzata Bogdan SLOPE



Simulation results for GWAS

Explanation - Bayesian roots of BIC (2)

neglecting π(Mi ) ≡ assigning the same probability to all models

≡ the prior on the number of e�ects is K is B(m, 1
2

)

E (K ) = m
2
, std(K ) =

√
m
2

distribution concentrated almost entirely on
[m/2− 2

√
m,m/2 + 2

√
m]

for m = 400 the prior distribution on K is almost entirely
concentrated on [160, 240]
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Modi�ed version of BIC, mBIC

M. Bogdan, J.K. Ghosh,R.W. Doerge, Genetics (2004)

Solution - using an informative prior distribution on the number
of main and interaction e�ects

Prior distribution on the number of main e�ects: B(m, p1)

Prior distribution on the number of interactions: B(Ne , p2), where
Ne = m(m − 1)/2

E (k) = mp1 = c1, E (q) = Nep2 = c2

mBIC: maximize

log L(Y |θ̂)− 1
2

(k + q) log(n)− k log

(
m

c1
− 1
)
− q log

(
Ne

c2
− 1
)

Standard version of mBIC uses c1 = c2 = 2.2 to control the overall
type I error at the level below 10%.

The overall type I error is approximately equally divided between
main and interaction e�ects.

A similar logm penalty appears in RIC of Foster and George (1994)
Maªgorzata Bogdan SLOPE
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Relationship to multiple testing - only main e�ects (1)

Orthogonal design: XTX = nI(m+1)×(m+1), (1)

BIC chooses those Xj 's for which

nβ̂2j
σ2

> log n

Under H0j : βj = 0, Zj =
√

nβ̂j

σ ∼ N(0, 1)

It holds that for large values of n

αn = 2P(Zj >
√

log n) ≈

√
2

πn log n
.
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Relationship to multiple testing (2)

When n and m go to in�nity and the number of true signals
remains �xed, the expected number of �false discoveries� is of the
rate m√

n log n
.

Corollary: BIC is not consistent when m√
n log n

→∞
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.
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Relationship to multiple testing (3)

Bonferroni correction for multiple testing : αn,m = αn
m

probability of detecting at least one �false positive�: FWER ≤ αn

2(1− Φ(
√
cBon)) = αn

m

cBon = 2 log

(
m

αn

)
(1 + on,m) = (log n + 2 logm)(1 + on,m) ,

where on,m converges to zero when n or m tends to in�nity.

cmBIC = log n + 2 log
(

m
c − 1

)
≈ log n + 2 logm − 2 log c
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Applications of mBIC for QTL mapping

1. Extending to intercross + a two-step version of mBIC : Baierl,
Bogdan, Frommlet, Futschik Genetics, 2006

2. Robust versions based on M-estimates: Baierl, Futschik,
Bogdan, Biecek CSDA, 2007

3. Rank version: �ak, Baierl, Bogdan, Futschik Genetics, 2007

4. Application for dense markers and interval mapping: Bogdan,
Frommlet, Biecek, Cheng, Ghosh, Doerge, Biometrics, 2008

5. Application for the count data, based on the Zero-In�ated
Generalized Poisson Regression: Earhardt, Bogdan, Czado SAGMB,

2010
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Computer simulations(1)

Setting : n = 200, m = 300, entries of X ∼ N(0, σ = 0.5),

k ∼ Binomial(m, p), with p = 1
30

(mp = 10), βi ∼ N(0, σ = 1.5),

ε ∼ N(0, 1) and Tukey's gross error model:
ε ∼ Tukey(0.95, 100, 1) = 0.95 ∗ N(0, 1) + 0.05 ∗ N(0, 10).

Characteristics : Power, FDR = FP
AP , MR = FP + FN,

l2 =
∑m

j=1(βj − β̂j )
2

mean value of the absolute prediction error based on 50 additional
observations, d
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Computer simulations, Bogdan et al. (QREI, 2008)

Table: Results for 1000 replications.

noise N(0,1) Tukey(0.95, 100, 1)
citerion BIC mBIC rBIC BIC mBIC rBIC
FP 13.3 0.073 0.08 12.5 0.08 0.1
FN 1.84 2.97 3.45 3.95 6.11 4.29

Power 0.8155 0.7030 0.6586 0.6087 0.3923 0.5806
FDR 0.5889 0.0107 0.0116 0.6487 0.0210 0.0162
MR 15.1480 3.0410 3.5310 16.4440 6.1910 4.3910
l2 2.3610 0.6025 0.8500 13.51 4.732 1.597
d 0.9460 0.8505 0.8687 1.714 1.503 1.298

E |ε1| ≈ 0.8 ,E |ε2| ≈ 1.16
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Benjamini-Hochberg procedure, JRSS B, 1995

If XTX = nI(m+1)×(m+1) then β̂j ∼ N(βj ,
σ2

n )

H0j : βj = 0

p-values : pj = 2(1− Φ(|Zj |)), where Zj =
√

nβ̂j

σ

Benjamini and Hochberg procedure:
sorted p-values: p(1) ≤ p(2) ≤ . . . ≤ p(m)

kF = argmaxj

{
p(j) ≤

jα

m

}
. (2)

BH rejects the hypothesis with p-values smaller or equal than p(kF ).
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Asymptotic optimality under sparsity (1)

β̂j ∼ N(βj , σ
2), H0j : βj = 0, HAi : βj 6= 0

p - fraction of alternatives among all tests, sparsity: p → 0 as
m→∞
Abramovich, Benjamini, Donoho and Johnstone, Ann.Statist. 2006
- asymptotic minimax properties with respect to estimation loss
||β̂ − β||, when pm ≥ log5m

m

Maªgorzata Bogdan SLOPE

Simulation results for GWAS

Asymptotic optimality under sparsity (2)

Bogdan et al. Ann.Statist. 2011,
Frommlet and Bogdan, EJS 2013

Bayes risk, δ0 - loss for type I error, δA - loss for type II error

β̂ ∼ N(β, σ2/n), n ≥ C logm

βj ∼ (1− p)δ0 + pFA, where FA has a positive density at 0.

Bayes oracle → Bayes classi�er

The rule is Asymptotically Bayes Optimal under Sparsity (ABOS) if
lim R

Ropt
→ 1 (as m→∞)

Bonferroni correction at the FWER α ∝ 1/
√
n is ABOS if p ≈ 1

m

BH at FDR α ∝ 1/
√
n is ABOS if p → 0 and mp → (0,∞]
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mBIC2

�ak-Szatkowska and Bogdan (CSDA, 2011), Frommlet et al.
(2011), for similar criteria see also Foster and George (Biometrika
2004) and Abramovich et al. (Ann. Statist. 2006)

In BH we look for p(i) < iαn,m

this leads to c2i ≈ (log n + 2 logm − 2 log i)

k∑
i=1

log i = log(k!)

mBIC2 := 2 log(L(Y |θ̂))− k log(n)− 2k log(m/4) + 2 log(k!)
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Sim

Simulation results for GWAS (Frommlet, Ruhaltinger,
Twarog and Bogdan, 2011, CSDA)

Population reference sample POPRES from dbGaP

309790 SNPs for 649 individuals of European ancestry

k = 40 SNPs selected to be causal
MAF between 0.3 and 0.5,
pairwise correlation between -0.12 and 0.1

Simulation of 1000 replicates from additive model M
Y = XMβM + ε, εi ∼ (0, 1)

Simulation scenario:
βj equally distributed between 0.27 and 0.66
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Sim
Sim

Search strategy

1. Aggregated forward selection based on BIC

2. Stepwise selection starting with the model constructed in 1.

3. Threshold for stepwise selection is determined by the model
selection criterion

4. False positive - correlation with a causal SNP<0.9
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Sim
Sim

Power
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Extended BIC, EBIC

J. Chen, Z. Chen, Biometrika (2008)

Standard version - uniform prior on the number of main e�ects

EBIC := 2 log(L(Y |θ̂))− k log(n)− 2 log

(
m

k

)
.

Caution - in EBIC E (K ) = m
2
.
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Relationship between mBIC, mBIC2 and EBIC

If log kmax

log m → 0 then pen(EBIC(k))
pen(mBIC(k)) → 1 uniformly for

k ∈ {1, . . . , kmax}

If kmax
m → 0 then pen(EBIC(k))

pen(mBIC2(k)) → 1

mBIC2 is asymptotically equivalent to the Bayes rule based on the
uniform prior on {0, . . . , kmax}, where kmax

m → 0.
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Consistency (1)

Chen and Chen, 2008 - �xed true model dimension p0, �xed
maximal size of the model to search K

Identi�ability condition: µ = EY ,
H(s) = X (s)(X (s)TX (s))−1X (s)T , ∆n(s) = ||(I − H(s))µ||2,

lim
n→∞

min

(
∆n(s)

log n
: s 6⊂ s0, dim(s) ≤ K

)
=∞

Foygel and Drton, 2012 - random covariates,
There exists positive constants a1 < a2 such that for all |J| ≤ 2K
the eigenvalues of E [XJX

T
J ] are within [a1, a2]. The small true

coe�cients have bounded decay.
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Sim
Sim

Consistency (2)

Chen and Luo, 2011, p0(n)→∞, K (n)→∞,

lim
n→∞

min

{
∆n(s)

p0(n) lnmn
: s 6⊂ s0, dim(s) ≤ K (n)

}
=∞ ,

where Kn = kp0(n) for some �xed k > 1, p0(n) lnmn = o(n) and
ln p0
lnmn

→ δ ≥ 0.

Szulc, PMS, 2012 - showed consistency of mBIC and mBIC2 under
slightly stronger assumptions

Open problem - asympotic optimality under non-orthogonal designs
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Dense markers - Bogdan et al. (Biometrics, 2008)

Feingold, Brown and Siegmund, Genetics, 1993 - backcross

α = PH0

(
maxj∈{1,...,p}LRTj > c

)
≈ 1− exp(−2[1− Φ(

√
c)])− 0.04L

√
cν
(√

0.04δ
)

,

where
ν(x) ≈ e−0.583x .

Alternatively, FWER resulting from performing peff independent
test is

α = PH0

(
max

i∈{1,...,peff }
LRTj > c

)
≈ 1−

[
1− 2

(
1− Φ(

√
(c))

)]peff

.

The e�ective number of tests can be calculated as

peff = log(1− α)/ log
(
2Φ(
√
c)− 1

)
.
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Sim

Admixtures, Szulc, B,Frommlet, Tang (2017)

Picture from Rosset, Tzur, Behar, Wasser and Karl Skorecki,
Nature Reviews Nephrology 7, 313-326 (June 2011)
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Sim

Ancestry state

Locus-speci�c ancestry can be accurately estimated based on the
genotype data from standard genotyping platforms and distribution
of haplotypes in ancestral population (see e.g. methods based on
Hidden Markov models in Tang et al. (2006, Am. J. Hum. Gen.)
or Price et al. (2009, PLOS Genet.)).

Strong correlation structure - reduced correction for multiple testing

Coding :

Zij =


0 if Aij = bb
1 if Aij = bB
2 if Zij = BB

Admixture mapping - looking for association between the ancestry
and the trait
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Sim
Sim

When is ancestry information useful ? (1)

Assumption - the trait is determined by the genotype at �causal"
loci Xj , j ∈ {1, . . . , k}.
Notation: pjb(a) - frequency of a allele at jth locus in the
population b

If pjb(a) = 0 and pjB(a) = 1 then Zj = Xj

If pjb(a) = pjB(a) then ρ(Zj ,Xj ) = 0

Corollary : Admixture mapping can detect only those �causal" loci,
for which the allelic distribution di�ers between admixing
population.

Maªgorzata Bogdan SLOPE

Simulation results for GWAS
Sim
Sim

When is ancestry information useful ? (2)

qj - average jth locus speci�c ancestry in the considered population

Cov(Xj ,Zj ) = 2qj (1− qj )(pjB − pjb)

If qj = 0.5 then

ρ(Xj ,Zj ) =
pjB − pjb√

(pjB + pjb)(2− (pjB + pjb))
.

If the maximal correlation between Xj and the genotypes of
neigboring markers is comparable or smaller than ρ(Xj ,Zj ) then the
admixture mapping will typically have a larger power than the
association mapping.

Admixture mapping can help to detect genes in the regions of a low
linkage disequilibrium and such that their allelic frequencies di�er
between parental populations.
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False Associations

µb - expected value of the trait in the population b

If µb > µB , e.g. due to the polygenic e�ects, pjb(a) > pjB(a)

ρ(Y ,Xj ) > 0

Spourious association between X and Y

Solution - conditioning on Q - genomewide ancestry for i-th
individual
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Statistical models for single marker tests:

Yi = β0 + βQQi + βjXij + εi , εi ∼ N(0, σ2)

Yi = β0 + βQQi + βjZij + εi , εi ∼ N(0, σ2)

Tang, Siegmund, Johnson, Romieu, London: (2010, Genet. Epidemiol.) -
Combine ancestry and genotype information in a new two degrees of
freedom "TDT" test.
In the context of regression one could consider a joint test for:

H0 : βXj = βZj = 0

Yi = β0 + βQQi + βXjXij + βZjZij + εi , εi ∼ N(0, σ2) .

In many cases one of these variables would be su�cient to detect a gene.
Two degrees of freedom - unnecessary in�ation of critical values - loss of
power.
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mBIC2

Yi = β0 + βQQi +
∑
j∈I

βXjXij +
∑
j∈J

βZjZij + εi , (3)

I , J - subsets of N = {1, . . . ,m}, εi ∼ N(0, σ2)

�ak-Szatkowska, Bogdan (CSDA, 2011), Frommlet et al. (CSDA,
2012), for similar criteria see also Foster and George (Biometrika
2004) and Abramovich et al. (Ann. Statist. 2006)

mBIC2 := n logRSS + k log(n) + 2k log(m/4)− 2 log(k!)

Derived by the analogy to BH
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Ancestry dummy variables - adjustment for correlation,
Bogdan et al. (Biometrics, 2008)

Hybrid isolation model: ρ = Corr(Zj ,Zj+1|Q = q) = exp(−t∆),
where t is the time from the admixing event and ∆ is the distance
between loci (in Morgans).

Yi = µ+ β0Qi + βjZij .

Feingold, Brown and Siegmund, Genetics, 1993 - Modelling the
distribution of the t-test statistics by the Gaussian process

PH0 (maxjLRTj > c) ≈ 1−exp(−2[1−Φ(
√
c)])−0.02mt∆

√
cν
(√

0.02t∆c
)

,

where

ν(t) ≈ (2/t)(Φ(t/2)− 0.5)

(t/2)Φ(t/2) + φ(t/2)
.
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E�ective number of tests (1)

Alternatively, FWER resulting from performing meff independent
test is

α = PH0

(
max

i∈{1,...,meff }
LRTj > c

)
≈ 1−

[
1− 2

(
1− Φ(

√
(c))

)]meff

.

The e�ective number of tests can be calculated as

meff = log(1− α)/ log
(
2Φ(
√
c)− 1

)
.

log ρ - the average of the logarithms of the correlations between
ancestry dummy variables at neigboring markers

t∆ := −log ρ

meff may be also calculated based on the simulations/permutations
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E�ective number of tests (2)

Table: E�ective number of tests for 22 chromosomes.

Chr Ltot L̄ m meff

1 278.09 0.0075 37173 397
2 263.45 0.0066 39958 376
3 224.62 0.0067 33385 314
4 213.19 0.0073 29290 295
5 203.98 0.0067 30587 281
6 193.02 0.0060 32204 266
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Model selection for admixtures:

mBIC2:n logRSS + kj(log n + 2 log(m/4))− 2 log(kj!) (4)

+ k̃j(log n + 2 log(meff /4))− 2 log(k̃j!) ,(5)
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Search strategy

1. Aggregated forward selection based on BIC

2. Stepwise selection starting with the model constructed in 1.

3. Threshold for stepwise selection is determined by mBIC2.
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Simulation Study (1)

Hybrid isolation admixture model. Basic populations - African
Americans, Europeans

482 298 SNPs from Illumina 650K microarray (X chromosome is
excluded), 1000 individuals, meff = 4722

Q ∼ Beta(7, 3), E (Q) = 0.7

T ∼ 15 ∗ Beta(2, 4) + 5, E (T ) = 10

"Recombination" points are generated according to
d ∼ Exp(λ = T ) distribution. At recombination points ancestry is
randomly generated as a Bernoulli variable, P(A)=Q. Block
genotypes are randomly sampled from the HapMap data for the
given population.
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Scenario 1

Table: SNPs selected for Scenario 1

SNP's name AF MAF LD
1 ch01_27796 0.000 0.455 0.994
2 ch03_10846 0.000 0.418 0.990
3 ch05_07371 0.000 0.414 0.991
4 ch10_00444 0.000 0.488 0.990
5 ch02_39189 0.000 0.432 0.943
6 ch17_04306 0.000 0.495 0.942
7 ch19_06378 0.000 0.466 0.991
8 ch22_00033 0.000 0.485 0.947
9 ch01_32763 0.803 0.430 0.872
10 ch04_05127 0.765 0.461 0.993
11 ch06_25838 0.743 0.428 0.895
12 ch11_12611 0.719 0.491 0.807
13 ch12_03421 0.808 0.419 0.977
14 ch14_06999 0.821 0.414 0.996
15 ch15_03859 0.785 0.401 0.932
16 ch16_04525 0.720 0.426 0.868
17 ch01_19810 0.715 0.497 0.363
18 ch08_15190 0.583 0.400 0.377
19 ch02_22034 0.634 0.456 0.379
20 ch10_08265 0.646 0.492 0.377
21 ch11_20057 0.718 0.447 0.358
22 ch18_01031 0.650 0.431 0.382
23 ch19_01377 0.656 0.499 0.376
24 ch03_02703 0.654 0.497 0.460
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Scenario 2

Table: SNPs selected for Scenario 2

SNP's no. SNP's name AF MAF LD
1 ch01_00531 0.674 0.483 0.347
2 ch01_19810 0.715 0.497 0.364
3 ch04_22846 0.745 0.500 0.505
4 ch08_12075 0.812 0.407 0.624
5 ch02_16712 0.755 0.409 0.650
6 ch11_20899 0.779 0.428 0.682
7 ch03_26157 0.769 0.425 0.691
8 ch05_16192 0.741 0.433 0.899
9 ch15_03859 0.785 0.401 0.931
10 ch07_05936 0.824 0.404 0.954
11 ch12_03421 0.808 0.419 0.977
12 ch14_06999 0.821 0.415 0.996
13 ch13_05394 0.458 0.410 0.396
14 ch20_12128 0.450 0.401 0.429
15 ch19_00410 0.467 0.411 0.499
16 ch21_02904 0.453 0.419 0.599
17 ch18_01592 0.447 0.421 0.698
18 ch16_06363 0.446 0.451 0.904
19 ch22_03194 0.458 0.486 0.912
20 ch17_11568 0.458 0.459 0.996
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Simulation Study (3)

Statistical model:

Yi = 0.5
k∑

j=1

Xj + εj ,

where εj ∼ N(0, 1).

LD - maximal correlation with 50 neigboring SNPs on each side

AF - di�erence in allelic frequencies between ancestral populations

"Causal" SNPs are removed from the data set used to locate them.
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Simulation study (3)

100 simulation runs

Average power - percentage of detected causal genes

Average empirical FDR - proposition of false discoveries among all
discoveries

What is the true/false positive ?

We used the 0.5 correlation cuto� for [X,causal X] or [Z, causal Z].

Multiple testing procedures - concept of scan statistics (Siegmund,
Biometrika 2010). Detected SNP + its 0.5 correlation neigborhood
are classi�ed as a one (true or false) discovery.
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FWER

Table: Familywise Error Rate, 1000 simulations (no di�erences between
mBIC and mBIC2).

Matrix X Matrix X+Z
0.016 0.037
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Results

BMIX - Shriner et al (PLOS Comput. Biol., 2011)

Table: Summary results: TP, FP and FDR

Bonf B-H BMIX mBIC2
X Z X Z X+Z X Z X+Z

Scenario1
TP 8.04 4.68 11.95 8.26 6.65 15.41 9.43 20.81
FP 0.21 0.23 2.31 1.01 0.29 2.18 0.51 0.69
FDR 0.03 0.16 0.05 0.11 0.04 0.12 0.05 0.03

Scenario2
TP 5.56 6.30 7.32 9.90 9.74 9.82 8.54 15.14
FP 0.52 0.44 2.72 1.83 0.69 1.98 0.68 0.63
FDR 0.08 0.07 0.27 0.16 0.07 0.17 0.07 0.04
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Bonf BH mBIC2
X Z X Z X Z X+Z

1 0.99 0.00 1.00 0.00 1.00 0.00 1.00 (Z: 0.00)

2 0.73 0.00 0.94 0.00 0.99 0.00 1.00 (Z: 0.00)

3 1.00 0.00 1.00 0.00 1.00 0.00 1.00 (Z: 0.00)

4 0.50 0.00 0.82 0.00 1.00 0.00 0.97 (Z: 0.00)

5 1.00 0.00 1.00 0.00 1.00 0.00 1.00 (Z: 0.00)

6 0.34 0.00 0.66 0.00 1.00 0.00 0.99 (Z: 0.00)

7 0.65 0.00 0.88 0.00 1.00 0.00 1.00 (Z: 0.00)

8 0.29 0.00 0.68 0.00 1.00 0.00 1.00 (Z: 0.00)

9 0.18 0.52 0.59 0.85 0.72 0.92 0.92 (Z: 0.63)

10 0.67 0.56 0.95 0.85 1.00 0.66 0.99 (Z: 0.03)

11 0.21 0.20 0.63 0.54 1.00 0.62 0.99 (Z: 0.21)

12 0.00 0.00 0.02 0.10 0.87 0.09 0.76 (Z: 0.23)

13 0.62 0.79 0.86 0.95 1.00 0.88 1.00 (Z: 0.14)

14 0.11 0.30 0.42 0.68 0.96 0.91 0.92 (Z: 0.15)

15 0.23 0.10 0.58 0.48 0.87 0.73 0.94 (Z: 0.21)

16 0.52 0.85 0.92 0.98 1.00 0.99 1.00 (Z: 0.03)

17 0.00 0.29 0.00 0.55 0.00 0.59 0.89 (Z: 0.89)

18 0.00 0.00 0.00 0.04 0.00 0.07 0.17 (Z: 0.17)

19 0.00 0.00 0.00 0.03 0.00 0.34 0.54 (Z: 0.54)

20 0.00 0.56 0.00 0.89 0.00 0.69 0.85 (Z: 0.85)

21 0.00 0.21 0.00 0.51 0.00 0.55 0.95 (Z: 0.95)

22 0.00 0.23 0.00 0.61 0.00 0.83 0.85 (Z: 0.85)

23 0.00 0.37 0.00 0.75 0.00 0.66 0.71 (Z: 0.71)

24 0.00 0.00 0.00 0.00 0.00 0.02 0.24 (Z: 0.24)Maªgorzata Bogdan SLOPE
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Bonf BH mBIC2
X Z X Z X Z X+Z

1 0.00 0.53 0.00 0.85 0.00 0.75 0.95 (Z: 0.95)

2 0.00 0.60 0.00 0.87 0.00 0.78 0.89 (Z: 0.89)

3 0.00 0.05 0.00 0.23 0.00 0.45 0.88 (Z: 0.88)

4 0.06 0.96 0.15 1.00 0.40 0.95 0.98 (Z: 0.98)

5 0.02 0.80 0.07 0.97 0.63 0.89 0.95 (Z: 0.91)

6 0.00 0.15 0.03 0.55 0.07 0.44 0.48 (Z: 0.34)

7 0.00 0.30 0.08 0.73 0.23 0.64 0.86 (Z: 0.72)

8 0.08 0.08 0.27 0.24 0.81 0.21 0.78 (Z: 0.06)

9 0.58 0.16 0.79 0.34 0.98 0.16 0.99 (Z: 0.00)

10 0.53 0.62 0.8 0.92 0.97 0.44 0.98 (Z: 0.29)

11 0.79 0.84 0.95 0.99 1.00 0.96 0.99 (Z: 0.09)

12 1.00 1.00 1.00 1.00 1.00 1.00 0.99 (Z: 0.02)

13 0.00 0.00 0.00 0.00 0.00 0.00 0.01 (Z: 0.01)

14 0.00 0.01 0.00 0.09 0.00 0.12 0.32 (Z: 0.32)

15 0.00 0.01 0.00 0.04 0.00 0.06 0.02 (Z: 0.02)

16 0.03 0.05 0.15 0.25 0.42 0.11 0.62 (Z: 0.16)

17 0.00 0.25 0.01 0.71 0.34 0.23 0.49 (Z: 0.12)

18 0.78 0.06 0.93 0.45 1.00 0.36 0.96 (Z: 0.00)

19 0.85 0.00 0.98 0.01 1.00 0.00 1.00 (Z: 0.00)

20 0.54 0.00 0.85 0.00 0.96 0.00 1.00 (Z: 0.00)
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Multiple regression vs Single marker tests

β̂ ≈ Cov(Y−βQ Q,X )
VarX

Y = β0 + βQQ +
∑k

i=1 βiXi + ε

Cov(Y − βQQ,X1) = β1VarX1 +
∑k

i=2 βiCov(X1,Xi ) + Cov(X1, ε)

Assume that for i > 1, Cov(X1,Xi ) ∼ N(0, σ2c )

E
∑k

i=2 βiCov(X1,Xi ) = 0

Var(
∑k

i=2 βiCov(X1,Xi )) ≈
∑k

i=2 β
2
i σ

2
c
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Power vs noncentrality parameter
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