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Multiple regression model when n > p Selection of important variables
T-tests, R
. B
2 P ==,
Yox1 = anpﬂpxl + €nx1, €~ N(070' ln><n) 5(/8/')

, ~ : Y — X3P X' X)Xy where S(Bi) _ 52(X’X)71[/7 i
Brs = argmingere||Y — XB||° = ( ) Problem - typically elements on the diagonal of (X’X)~! become
large as p increases.

If elements of X are iid from N(0,1/1/n) then X’X has a Wishart

distribution and the elements on its diagonal have the expected

62 =2 — Iy — XB’-5||2 _ RSS value equal to 1.

n—p n—p

Bis ~ N(B,0*(X'X)™")

But (X’X)™! has the inverse Wishart distribution and the expected
values of the elements on the diagonal are equal to -—2— and
become very large as p approaches n.
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Inflation of MSE Loss of Power

n=500, k=10, MSE on first 10 coefficients n=500, k=10
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Model selection Training and prediction error

Let’s consider a new sample
Y*=XB+¢€,

. . . . e . where €* is independent on the noise term ¢ in the training sample
Model selection in multiple regression - identification of important o i o .
We use our training sample to build a good predictive model, i.e.

variables ‘ > 29
. the model which minimizes
Error in the training sample RSS = ||Y — Y| never increases o
when we add new variables into the model. Thus, minimization of PE = E||Y* - Y|
RSS is not a good criterion for model selection.
Also, RSS is not a good measure of the prediction error. If u=E(Y)=Xp, then PE = E||u—p|[>+no? = E||u—Y||*+no?

RSS measures the fit within the training sample, i.e. it adjusts to
the specific realization of the noise term ¢ - this is overfitting. PE
measures the fit with respect to the true expected value of Y,
which indeed is an indication of predictive properties (i.e. how well
we can predict new observations with different noise terms).
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Prediction error of linear operators Prediction error in least squares regression

If Y = Myy,Y then
PE = E(RSS) + 252 Tr(M) In least squares estimation

Proof by SURE : M= X(X'X)"1x’
=Y+Y-Y

=

is the matrix of the orthogonal projection on the space spanned by

(Y)=V-v=My_v columns of X and Tr(M) = rank(X).
sr= B If rank(X) = p then the unbiased estimator of the prediction error
is equal to

2 A
llg(Y)II* = RSS PE = RSS +20%p .

div g(Y)=TrM — n N
Minimizing PE coincides with AIC criterion which suggests

. . 2
PE = no? + E(SURE(f)) = no? + E(RSS) + 202 TrM — no? selecting the model for which RSS + 20“p is minimal.
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Akaike Information Criterion Akaike Information Criterion in Linear Regression, o known

€1,... € - iid from N(Y; — X;8,02), B € Rk

X =(Xi,...,Xn) - vector of iid random variables from the model 1 N y—xa|?2
Wi Fx.0), 0 € R WYX po) = (= )
n
L(X,0) = f(X;,0
e 11 - InL(Y|X,Ba):C7nIog(cr)fw
b b 20_2
AIC(My) = In L(X, 0pe) — k
(M) = In L(X, OpmeE) RSS
AIC(My) = C(n,0) = 25 — k
a

Maximizing AIC corresponds to minimizing RSS + 202k
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Akaike Information Criterion in Linear Regression, o Properties of AIC (1)
unknown

In our example AIC identifies the true model among 5 models with
different dimensions, p = 500, k = 10.

A2 RSS diff in aic between a given and a true model

500
1

o RSS n § e
InL(YI|X,5,6) = C—n/2|og(RR5/n)—TR—SS | —
g - =
AIC(My) = C(n) — n/21og(RSS) — k i -
Maximizing AIC corresponds to minimizing nlog(RSS) + 2k °© — ‘ ‘ ‘
50 200 400 480
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Can we use AIC to select variables in large data bases ? Can we use AIC to select important variables in large data
bases 7

Problem 1: Discrete optimization over 2P of possible models - not

doable in polynomial time. bigstep - R library with many different search strategies, optimizing

. . . . . a variety of model selection criteria; p = 500, k = 10.
In practice we often resort to heuristics which with large probability Histogram of the number of selected variables

return models closed to being optimal.

25

Forward selection - we start from the empty model and add
variables one by one. At each step we select the one which leads to
the largest improvement of the criterion. We stop when the
criterion is no longer improved.

20
1

Frequency

Backward elimination - we start from the full model and remove
variables one by one until criterion is no longer improved.

10
1

Step-wise selection: alternating between forward selection and
backward elimination o

More complicated heuristics: genetic algorithms, simulated 8 % 100 110 120
annealing etc. K
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Multiple testing explanation (1)

Assume that X'X =1

B=(X'X)"X'Yy=X'Y, =YX, Bi=YTX;

RSS = (Y = XBY(Y = XB) = Y'Y + B X'XB - 2Y'Xp3

k
RSS=Y'Y —=BB=Y'Y => B}

i=1
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Would BIC help ?

Multiple testing explanation (2)

Thus AIC selects variables which satisfy
1Bil > V20 .

When ; = 0 then 3; ~ N(0, 02).
Thus probability of the type | error

P(X; is selected|; = 0) = 2(1 — ®(v/2)) = 0.16

When p =500 and k = 10 we expect to see on average
490 x 0.16 = 78 false discoveries and the typical size of the
selected model should be around k=88

In our simulations k ~ 100 due to additional disturbance by the
sample correlations between columns of the design matrix and using

the form of AIC with unknown o
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BIC selects the model which minimizes

RSS + o2k log n

Thus BIC selects variables which satisfy

| < Xi, Y >|>+/logno .

The probability of the type | error
P(X; is selected|S; = 0) = 2(1 — ®(+/log n),

which for n =500 is equal to 0.013

Thus we expect to see on average pp * 0.013 = 490 % 0.013 =~ 6.5

false discoveries
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Solution - multiple testing correction Modified BIC

In Risk Inflation Criterion (Foster and George 1994) the penalty
depends on p

RSS 4 0?2k log p

Thus RIC selects variables which satisfy o Motivation: QTL mapping and Genome Wide Association

| < Xi,Y >|>0v2logp . Studies
The probability of the type | error ° Mod.nﬂed versions of BIC - I_Baye5|an background and
. . relationship to multiple testing.
P(X; is selected|8; = 0) = 2(1 — &(\/2logp)) =~ — . @ Simulation studies
( 5= 0) = 2(1 = 0( Zlog ) ~ <=~

o @ Asymptotic Optimality and Consistency
Accuracy of approximation: for p = 500

1 1
2(1 — ®(y/2logp) = 0.000423, —
( ( ) V7 py/log p

Here the expected number of false discoveries is smaller than 1
and decreases with p

= 0.000453
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Locating Quantitative Trait Loci Data for QTL mapping in backcross population and
recombinant inbred lines

Y;, 1 < i < n - trait values
Only two genotypes possible at a given locus

Xij, 1 <i<n, 1<j< m-dummy variables encoding genotypes
at m markers, Xj; € {-1,1}

Location (cM)

Strong correlation between neigboring loci: backcross

d - distance in M, p = el — 2d)

d=0.1M, p=0.82

d=1M, p=0.14

. B Fa Average chromosome length - 1.5 M, usually around 10-15 markers
8 9 10 11 12 13 14 15 18 17 18 19 X

on each chromose

m = 300, n > 200

Chromosome
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Data for GWAS Multiple regression model

Three genotypes possible at a given locus

Usual coding Y. — X X X ; 1
if Zj=aa ’ ;H_j;ﬁj U+(u§€u%v v W
X = if Zi; = Aa ’
Y 2 if Z,-JJ-:AA | - asubset of N={1,....,m}, U - asubset of N x N,
ei ~ N(0,0?)

Weak and non-regular correlation between neigboring loci

Task : estimation of the number of influential genes and
Usually n = k x 100 or k x 1000, m = k x 100,000

interaction effects
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Bayesian Information Criterion (1) Explanation - Bayesian roots of BIC (1)

M; - i-th linear model

ki - number of main effects, g; - number of interactions f(6;) - prior density of 6;, w(M;) - prior probability of M;

ki+qi <n mi(Y) = [L(Y|M;,0;)f(0;)db; - integrated likelihood of the data
0i = (Bo, 1, Bki» M- -»Vq,0) - vector of model parameters given the model M;

Bayesian Information Criterion (Schwarz, 1978) posterior probability of M; : P(M;[Y') oc mi(Y)m(M;)

maximize BIC = log L(Y|M;, ;) — L(ki +qi)logn BIC neglects m(M;) and uses approximation

If mis fixed, n — oo and X’X/n — Q, where Q is a positive
definite matrix, then BIC is consistent - the probability of choosing
the proper model converges to 1.

Surprise 7 : - Broman and Speed (JRSS, 2002) report that BIC
overestimates the number of regressors when applied to QTL

mapping.

log mi(Y) ~ log L(Y|M;,8;) — 1/2(ki + q; + 2) log n + R;,

R; is bounded in n.
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Modified version of BIC, mBIC

Explanation - Bayesian roots of BIC (2)

neglecting m(M;) = assigning the same probability to all models

= the prior on the number of effects is K is B(m, })

E(K) = 3, std(K) = ¥}
distribution concentrated almost entirely on
[m/2—2y/m,m/2 + 2,/m]

for m = 400 the prior distribution on K is almost entirely
concentrated on [160, 240]
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M. Bogdan, J.K. Ghosh,R.W. Doerge, Genetics (2004)
Solution - using an informative prior distribution on the number
of main and interaction effects
Prior distribution on the number of main effects: B(m, p1)
Prior distribution on the number of interactions: B(Ne, p2), where
Ne =m(m—1)/2
E(k)=mpy =c1, E(q) = Nepo =
mBIC: maximize

A 1 m N,
log L(Y|0) — 5 (k + q) log(n) — klog (— — 1) —qlog (— — 1)

2 a @

Standard version of mBIC uses ¢; = ¢ = 2.2 to control the overall
type | error at the level below 10%.
The overall type | error is approximately equally divided between
main and interaction effects.

Ao - PP PP » o ocd o P ao oo 004
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Relationship to multiple testing - only main effects (1)

Orthogonal design: X7 X = nljmi1yx(mi1), (1)
BIC chooses those X;’s for which

nf3?
—5 >logn
o

Under Hoj: =0,  Zj= Y2 ~ N(0,1)

It holds that for large values of n

2
wnlogn’

ap =2P(Z; > +/logn) =
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Relationship to multiple testing (2)

When n and m go to infinity and the number of true signals
remains fixed, the expected number of “false discoveries” is of the

m
rate Jrlogn"

Corollary: BIC is not consistent when Tntogn
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Applications of mBIC for QTL mapping

Relationship to multiple testing (3)

Qn

Bonferroni correction for multiple testing : apm = -

probability of detecting at least one “false positive”: FWER < «a,

2(1— ®(/Gpor)) = &

m
CBon = 2log (—) (14 onm) = (logn+ 2log m)(1 + 0n.m) ,

Qp
where 0, ,, converges to zero when n or m tends to infinity.

cmaic = logn+2log (2 — 1) ~ logn+ 2logm — 2log c
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1. Extending to intercross + a two-step version of mBIC : Baierl,
Bogdan, Frommlet, Futschik Genetics, 2006

2. Robust versions based on M-estimates: Baierl, Futschik,
Bogdan, Biecek CSDA, 2007

3. Rank version: Zak, Baierl, Bogdan, Futschik Genetics, 2007

4. Application for dense markers and interval mapping: Bogdan,
Frommlet, Biecek, Cheng, Ghosh, Doerge, Biometrics, 2008

5. Application for the count data, based on the Zero-Inflated
Generalized Poisson Regression: Earhardt, Bogdan, Czado SAGMB,
2010
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Computer simulations(1)

Setting : n =200, m = 300, entries of X ~ N(0,0 = 0.5),
k ~ Binomial(m, p), with p = & (mp = 10), i ~ N(0,0 = 1.5),

e ~ N(0,1) and Tukey's gross error model:

e ~ Tukey(0.95,100,1) = 0.95 %« N(0,1) + 0.05 x N(0, 10).
Characteristics : Power, FDR = £5, MR = FP + FN,
h=37(8 - 5)?

mean value of the absolute prediction error based on 50 additional
observations, d
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Computer simulations, Bogdan et al. (QREI, 2008) Benjamini-Hochberg procedure, JRSS B, 1995

Table: Results for 1000 replications. If XTX = nl(m+1)><(m+1) then Bj ~ N(ﬂﬁ %)
HO'Z ﬁ =0
noise N(0,1) Tukey(0.95, 100, 1) o )
citerion | BIC [ mBIC | rBIC BIC [ mBIC | rBIC p-values : p; = 2(1 — &(|Z])), where Z; = Y2
FP 13.3 0.073 0.08 12.5 0.08 0.1
FN 1.84 297 3.45 3.05 6.11 4.29 Benjamini and Hochberg procedure:
Power | 0.8155 | 0.7030 | 0.6586 | 0.6087 | 0.3923 | 0.5806 sorted p-values: p1) < p) < ... < P(m)
FDR 0.5889 | 0.0107 | 0.0116 | 0.6487 | 0.0210 | 0.0162 ‘o
MR 15.1480 | 3.0410 | 3.5310 | 16.4440 | 6.1910 | 4.3910 kp = argmax; {p(j) < J—} . 2
h 2.3610 | 0.6025 | 0.8500 | 13.51 4732 | 1.597 m
d 0.9460 | 0.8505 | 0.8687 | 1.714 1503 | 1.298 BH rejects the hypothesis with p-values smaller or equal than P(ke)-
Ele1| ~ 0.8 ,Elea| = 1.16
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Asymptotic optimality under sparsity (1) Asymptotic optimality under sparsity (2)

Bogdan et al. Ann.Statist. 2011,
Frommlet and Bogdan, EJS 2013

5 2 A — )

Bj ~ N(Bj,0%), Hoj: Bj =0, Haj : Bj # 0 Bayes risk, dp - loss for type | error, d4 - loss for type Il error
p - fraction of alternatives among all tests, sparsity: p — 0 as 8~ N(B,02/n), n> Clogm

m — oo Bj ~ (1 — p)do + pFa, where Fx has a positive density at 0.
Abramovich, Benjamini, Donoho and Johnstone, Ann.Statist. 2006 Bayes oracle — Bayes classifier

- asymptotic minimax properties with respect to estimation loss

The rule is Asymptotically Bayes Optimal under Sparsity (ABOS) if
R
Ropt

Bonferroni correction at the FWER « < 1/4/n is ABOS if p ~ #
BH at FDR o < 1/+/n is ABOS if p — 0 and mp — (0, o0]

log®m
m

16 - Bl

, when pp, > lim — 1 (as m — )
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Sim

Simulation results for GWAS 5
Sim

Simulation results for GWAS (Frommlet, Ruhaltinger,
Twarog and Bogdan, 2011, CSDA)

Zak-Szatkowska and Bogdan (CSDA, 2011), Frommlet et al.
(2011), for similar criteria see also Foster and George (Biometrika

2004) and Abramovich et al. (Ann. Statist. 2006) Population reference sample POPRES from dbGaP

In.BH we look for p(j) < ianm @ 309790 SNPs for 649 individuals of European ancestry
this leads to c7 ~ (log n +2log m — 2 log /) @ k = 40 SNPs selected to be causal

P MAF between 0.3 and 0.5,
Z logi = log(k!) pairwise correlation between -0.12 and 0.1
i=1 o Simulation of 1000 replicates from additive model M
Y = XuBm + €, ei ~ (0,1)
@ Simulation scenario:
mBIC2 = 2 Iog(L(Y\@)) — klog(n) — 2k log(m/4) + 2log(k!) B;j equally distributed between 0.27 and 0.66
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St Simulation results for GWAS S

Simulation results for GWAS = =
Sim Sim

Search strategy

1t + + + 4
1. Aggregated forward selection based on BIC === Scenariol .
m— Scenario2 L.
2. Stepwise selection starting with the model constructed in 1. 0.8 T N 7
+ +
3. Threshold for stepwise selection is determined by the model o 06/ " + i
. . . +
selection criterion e N Tor N
e : : 0.4} + + i
4. False positive - correlation with a causal SNP<0.9 N i
- ¥
0.2} I i * ]
0 1 1 1 1
mBIC2 mBIC1 BH Bonf
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St Simulation results for GWAS S

Simulation results for GWAS = .
Sim Sim

Extended BIC, EBIC

1A o RO . .
o meic2 © 9000 g% © 79 J. Chen, Z. Chen, Biometrika (2008)
cm .
0.9 ° o o i
%  BH o * . . . .
sl = sont o 9 * | Standard version - uniform prior on the number of main effects
07 o o +
7t o . i
o © L A m
500 o % . ] EBIC :=2log(L(Y0)) — klog(n) — 2log B
= ost P oo —
/S . N
& o4t oo - * A
. N N —_— m
sl o . . ° i Caution - in EBIC E(K) = 7.
o . . *
0.2 % . |
o O . - + +
0.1r . - % 4+ 4 B
oo *
OF #fRtaet kb % ok ek TR T + i
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Heritability
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St Simulation results for GWAS S

Simulation results for GWAS = =
Sim Sim

Relationship between mBIC, mBIC2 and EBIC Consistency (1)

Chen and Chen, 2008 - fixed true model dimension pg, fixed
ok (EBIC() maximal size of the model to search K
If g — 0 then 7§en(mBlC(k)) — 1 uniformly for Identifiability condition: p = EY,

ke {1 ko) H(s) = X(s)(X(5)TX(s))X(s) T, Anls) = [[(/ — H(s))ul

pen(EBIC(k)) 1

Kmax
If “pex — 0 then S Ere200)

n—o0

lim min (i"T(Z) 15 ¢ sp,dim(s) < K) =0

mBIC2 is asymptotically equivalent to the Bayes rule based on the

uniform prior on {0,. .., kmax }, where km—max — 0. Foygel and Drton, 2012 - random covariates,
There exists positive constants a; < ap such that for all |J] < 2K
the eigenvalues of E[X,X ] are within [al,a2]. The small true
coefficients have bounded decay.
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St Simulation results for GWAS S

Simulation results for GWAS = =
Sim Sim

Consistency (2) Dense markers - Bogdan et al. (Biometrics, 2008)

Feingold, Brown and Siegmund, Genetics, 1993 - backcross

Chen and Luo, 2011, po(n) — oo, K(n) — oo, o = Py, (max e{l,...py LRT; > c)
1 — exp(—2[1 — (V/C)]) — 0.04L/cv (¢o.045> :

Q

. . An(s) ; = 00
lim mln{r.ngso,d/m(s)SK(n)}— ,

n)Inm,

n—oo
where
where K, = kpo(n) for some fixed k > 1, pg(n)In m, = o(n) and v(x) ~ e 0583
|
|:r¢10 —020. Alternatively, FWER resulting from performing p" independent
Szulc, PMS, 2012 - showed consistency of mBIC and mBIC2 under test is
slightly stronger assumptions o= Py, < max  LRT; > C) ~1 [1 3 2( o(/()) )}
Open problem - asympotic optimality under non-orthogonal designs i€{L,p}

The effective number of tests can be calculated as

ff _ |og(1 — Oz)/ Iog (2¢(\E) - 1)
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Simulation results for GWAS Si 3
Sim Sim

Admixtures, Szulc, B,Frommlet, Tang (2017) Ancestry state

Picture from Rosset, Tzur, Behar, Wasser and Karl Skorecki, )
Nature Reviews Nephrology 7, 313-326 (June 2011) Locus-specific ancestry can be accurately estimated based on the
genotype data from standard genotyping platforms and distribution

of haplotypes in ancestral population (see e.g. methods based on

L[ 1 1 Wy L Hidden Markov models in Tang et al. (2006, Am. J. Hum. Gen.)

”" |—J'[_| | | [_n_ "” ”” —ﬁ_ |—‘|_| or Price et al. (2009, PLOS Genet.)).
=" i o Strong correlation structure - reduced correction for multiple testing
I [ o
pmae S Il 0 if A;=bb

BRI SATTI e e

Disease gene location-
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St Simulation results for GWAS S

Simulation results for GWAS = .
Sim Sim

When is ancestry information useful 7 (1) When is ancestry information useful 7 (2)

qj - average jth locus specific ancestry in the considered population

Cov(X;, Z)) = 2q;(1 — q;)(pis — p;
Assumption - the trait is determined by the genotype at “causal" (%5, 2)) 9i(1 = 4)(Pie = Piv)

loci X, j € {1,...,k}. If gj = 0.5 then
Notation: pjs(a) - frequency of a allele at jth locus in the PiB — Pjb
lation b p(Xj, Zj) = :
population V(g + pip)(2 — (pjg + Pjv))
If pjb(a) =0 and ij(a) =1 then ZJ = )(1
If pjp(a) = pjg(a) then p(Z;, X;) =0 If the maximal correlation between X; and the genotypes of

neigboring markers is comparable or smaller than p(Xj, Z;) then the
admixture mapping will typically have a larger power than the
association mapping.

Corollary : Admixture mapping can detect only those “causal" loci,
for which the allelic distribution differs between admixing
population.
Admixture mapping can help to detect genes in the regions of a low
linkage disequilibrium and such that their allelic frequencies differ
between parental populations.
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St Simulation results for GWAS S

Simulation results for GWAS = =
Sim Sim

False Associations Statistical models for single marker tests:

Yi = Bo+ BaQ: + B Xy + €, € ~ N(0,0?)

b - expected value of the trait in the population b Y= fo+ BoQi + B;Z; + e, € ~ N(0,0?)

Tang, Siegmund, Johnson, Romieu, London: (2010, Genet. Epidemiol.) -
Combine ancestry and genotype information in a new two degrees of
freedom "TDT" test.

In the context of regression one could consider a joint test for:

If 1p > pp, e.g. due to the polygenic effects, pjs(a) > pja(a)

p(Y,X;) >0 Ho : Bxj = Bz =0

Spourious association between X and Y

Solution - conditioning on Q - genomewide ancestry for i-th Yi= B0+ BeQi+ BxXi + Bz Zs + € e ~ N(0,07)

individual
In many cases one of these variables would be sufficient to detect a gene.
Two degrees of freedom - unnecessary inflation of critical values - loss of
power.
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Simulation results for GWAS =
Sim

Sim

Simulation results for GWAS 5
Sim

Ancestry dummy variables - adjustment for correlation,

Yi:50+50Qi+25xszj+252jzu+5i, (3)

jel jeJ
I,J - subsets of N = {1,...,m}, ¢; ~ N(0,0?)

Zak-Szatkowska, Bogdan (CSDA, 2011), Frommlet et al. (CSDA,
2012), for similar criteria see also Foster and George (Biometrika
2004) and Abramovich et al. (Ann. Statist. 2006)

mBIC2 := nlog RSS + klog(n) + 2k log(m/4) — 2 log(k!)

Derived by the analogy to BH
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Sim

Simulation results for GWAS o
Sim

Bogdan et al. (Biometrics, 2008)

Hybrid isolation model: p = Corr(Z;, Zj+1|Q = q) = exp(—tA),
where t is the time from the admixing event and A is the distance
between loci (in Morgans).

Yi=p+5Qi+8iZj .

Feingold, Brown and Siegmund, Genetics, 1993 - Modelling the
distribution of the t-test statistics by the Gaussian process

Pr, (maxiLRT; > ¢) & 1—exp(—2[1-®(y/c)])—0.02mt Ay/cv <\/0.02tA

where
(1) = /O(O(/2) = 05)
(t/2)®(t/2) + ¢(t/2)

Sim

Simulation results for GWAS 3
Sim

Effective number of tests (2)

Effective number of tests (1)

eff

Alternatively, FWER resulting from performing m*" independent

test is
meff

a = Py, ( max _LRT; > C) %1—[1—2(1—¢(\[(C)))}

ie{1,...,meff}

The effective number of tests can be calculated as

m®" =log(1 — a)/log (2¢(\/c) — 1)

log p - the average of the logarithms of the correlations between
ancestry dummy variables at neigboring markers

tA = —logp
mesr may be also calculated based on the simulations/permutations
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Table: Effective number of tests for 22 chromosomes.

Chr | Lot L m Mefr
1 | 278.09 | 0.0075 | 37173 | 397
2 | 263.45 | 0.0066 | 39958 | 376
3 | 22462 | 0.0067 | 33385 | 314
4 | 213.19 | 0.0073 | 29290 | 295
5 |203.98 | 0.0067 | 30587 | 281
6 | 193.02 | 0.0060 | 32204 | 266
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Model selection for admixtures: Search strategy

1. Aggregated forward selection based on BIC
mBIC2:nlog RSS + kj(log n+ 2log(m/4)) — 2log(k;! (4) 2. Stepwise selection starting with the model constructed in 1.

)
I eff _ Y
+ killog n + 2log(m™"/4)) — 2log(k!) ,(5) 3. Threshold for stepwise selection is determined by mBI/C?2.

Matgorzata Bogdan SLOPE Matgorzata Bogdan SLOPE

Sim
Sim

Sim

Simulation results for GWAS Sim Simulation results for GWAS

Simulation Study (1) Scenario 1

Table: SNPs selected for Scenario 1
Hybrid isolation admixture model. Basic populations - African SNPsTame | AF | MAF 1B

Americans, Europeans 0310645 | 0000 | 0418 | 0.990

482 298 SNPs from Illumina 650K microarray (X chromosome is Mo o04es | 0.000 | 04se | 0060

excluded), 1000 individuals, m*" = 4722

Q ~ Beta(7’3)' E(Q) =0.7 ch22700033 | 0.000 | 0.485 | 0.947
9 ch01_ 32763 0.803 0.430 0.872

1
2
3
4 —
5 | ch02 30189 | 0.000 | 0432 | 0943
6
7
8
10 | ch0a”05127 | 0.765 | 0.461 | 0.993
T ~15% Beta(274) +5, E( T) =10 11 | ehos 25838

ch17_04306 0.000 0.495 0.942
ch19 06378 0.000 0.466 0.991

0.743 0.428 0.895

12 ch1l 12611 0.719 0.491 0.807

""Recombination" points are generated according to 13 | ch12 03421 | 0808 | 0419 | 0977

. . . . . . . 14 ch14™ 06999 0.821 0.414 0.996

d ~ Exp(A = T) distribution. At recombination points ancestry is 15 | chis_ 03850 | 0785 | 0401 | 0932

. - 16 h16 04525 0.720 0.426 0.868

randomly generated as a Bernoulli variable, P(A)=Q. Block 7 | cho1 o810 | 0715 | 0.497 | 0363
18 h08_ 15190 0.583 0.400 0.3

genotypes are randomly sampled from the HapMap data for the 1o | Choa—20031 | o.caa | oase | 037

. . 20 | ch10_08265 | 0.646 | 0.492 | 0.377

given population. 21 | ch11720057 | 0.718 | 0.447 | 0.358

22 ch18:01031 0.650 0.431 0.382
23 ch19_ 01377 0.656 0.499 0.376
24 ch03 02703 0.654 0.497 0.460
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Scenario 2
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Simulation Study (3)

Table: SNPs selected for Scenario 2

SNP’s no. | SNP’s name AF MAF LD
1 ch01 00531 0.674 0.483 0.347
2 ch01_ 10810 | 0.715 | 0.497 | 0.364
3 ch04” 22846 | 0.745 | 0.500 | 0.505
4 ch08_ 12075 | 0.812 | 0.407 | 0.624
5 ch02” 16712 | 0.755 | 0.409 | 0.650
6
7
8
9

ch11720899 | 0.779 | 0.428 | 0.682
ch03_ 26157 0.769 0.425 0.691
ch05 16192 0.741 0.433 0.899
ch15~ 03850 | 0.785 | 0.401 | 0.931

10 ch07_ 05936 0.824 0.404 0.954
11 ch12:03421 0.808 0.419 0.977
12 chl4 06999 0.821 0.415 0.996
13 ch13_05394 0.458 0.410 0.396
14 ch20_12128 0.450 0.401 0.429
15 ch19:00410 0.467 0.411 0.499
16 ch21 02904 0.453 0.419 0.599
17 ch18” 01592 0.447 0.421 0.698
18 ch16~ 06363 0.446 0.451 0.904
19 ch22” 03194 0.458 0.486 0.912
20 ch17_ 11568 0.458 0.459 0.996
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Statistical model:

k
Y,'ZO.SZXJ'+EJ- ,
j=1

where €; ~ N(0,1).
LD - maximal correlation with 50 neigboring SNPs on each side
AF - difference in allelic frequencies between ancestral populations

"Causal" SNPs are removed from the data set used to locate them.
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Simulation study (3)

100 simulation runs
Average power - percentage of detected causal genes

Average empirical FDR - proposition of false discoveries among all
discoveries

What is the true/false positive 7
We used the 0.5 correlation cutoff for [X,causal X] or [Z, causal Z].

Multiple testing procedures - concept of scan statistics (Siegmund,
Biometrika 2010). Detected SNP + its 0.5 correlation neigborhood
are classified as a one (true or false) discovery.
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Table: Familywise Error Rate, 1000 simulations (no differences between
mBIC and mBIC2).

Matrix X | Matrix X+Z
0.016 0.037
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BMIX - Shriner et al (PLOS Comput. Biol., 2011)

Table: Summary results: TP, FP and FDR

Simulation results for GWAS
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1 BN 075 [OS5T(ZH05E)T
L2 1l [ 060 T] 1l L6 \
[ 6 Tl 1 0.55 044 048 (Z:0.34)
(11 1[ o7 [oss OSSN
(12 ] 1 Ml 0.32 (Z:0.32)
[ 1] 1 1] \
[16 ]] ] 025 [[[ 042 [OEEN 0.62 (Z:0.16) |
[(17 SN0 025 [N 071 [[[ 034 (023 049 (Z:012) |
(18 [mowen 1 [ 045 ] [036 | \
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ﬁ

Bonf || B-H [[BMIX mBIC2

X Z X YA X+Z X Z X+Z
Scenariol

TP 8.04 468 | 1195 8.26 6.65 1541 9.43 20.81

FP 0.21 023 | 231 1.01 0.29 2.18 0.51 0.69

FDR || 0.03 0.16 | 0.05 0.11 0.04 0.12 0.05 0.03
Scenario2

TP 556 6.30 | 7.32 9.90 9.74 9.82 8.54 1514

FP 0.52 044 | 272 1.83 0.69 1.98 0.68 0.63

FDR || 0.08 0.07 | 0.27 0.16 0.07 0.17 0.07 0.04
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z

1
(2 [[[0737] 1 1]
T3 J[[100 000 [ 100 000 [[[ 100 000 _ 1.00 (Z0.00) ]
(4 [[ 050 [NOWONN 052 [HOIOONN[IHO00NNNOI00NNT0:07 (Z:0:00) 1]
5 J[[100 000 | 100 000 [[[ 100 000 1,00 (Z0.00) ]
(6 [[034 [NONMGNN o.66 OO IEO0NNNON0NNNO0EoNZI0m0N
[ 7 [[065 ] ] 1]
(3 02 [NOWONN o065 000NN INSO0NNO00RNo0NZ0n0
(o [[Nogeny 052 | 059 [NOSSII[] 072 [O0ZNN002N(Zi0i63
(10 [[[067 ~ 056 ]] 1] [ 066 ]
(11 [[fe2i 0207 063 054 [[[NENONN 062 [OOSR
(12 ] 1 1l
(13 062 ] [] 1]
(e [Wosms 030 [ o042 068 [[NONGENNOOTNINOGZNZI0S)N
(15 [[[023 JNOMONN 058 048 [[[NOMANN 073 [NOSSNZ0nn
(16 [[ 052 [osSH Ios2NuNomsi |

17 0.29 0.55 0.59
(18 ] 1 1]
[ 19 [[WO:OONNNOIO0NN [NOT00MNT0:037 ||
(20 ] [ 0.56 ] 1] [ 069 |
(21 ] [] [ 051 ] [ 055 ]
(22 [JNOW00NN 023 [JNOWO0NN 061 [[JNOMONN 083 085 (Z:0.85) |
23 0.37 0.75 0.66 0.71 (Z: 0.71)
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Multiple regression vs Single marker tests

N

p

. Cov(Y~5gQ.X)

VarX

Y =Bo+BeQ+ Xk, BiXi+e

COV( Y — ﬁQ Q, Xl) = ﬁl VarXi + Zf-;z ﬁ,’ COV()(l7 X,') + COV()(l7 6)

Assume that for i > 1, Cov(Xy, X;) ~ N(0,02)

ES K, BiCov(X1,X;) =0

Var(321, BiCov( X1, Xi)) = S5, 202
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Power vs noncentrality parameter

(Noncentrality parameter)*’>
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