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High dimensional regression

Ynx1 = Xnxpβpx1 + znx1, z ∼ N(0, σ2I )

Y = (Y1, . . . ,Yn)T - wektor of trait values for n individuals

Xn×p - matrix of regressors
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Ridge regression (1)

When n > p but p is large (say n/2) the variance of LS estimates
may be very large

When p > n the matrix X ′X is singular and the LS estimate of β
does not exist

Ridge regression:

β̂ = argminβ∈RpL(b) ,where L(b) = ||Y − Xb||2 + γ||b||2

∂L(b)

∂b
= −2X ′(Y − Xb) + 2γb = 0

−X ′Y + (X ′X + γI )b = 0 ⇔ b = (X ′X + γI )−1X ′Y
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Ridge regression (1)

β̂ = (X ′X + γI )−1X ′Y , where γ > 0

Ŷ = X β̂ = MY , with M = X (X ′X + γI )−1X ′

Tr [M] = Tr
[
(X ′X + γI )−1X ′X

]

Tr [M] =

p∑
i=1

λi (M), where λ1(M), . . . , λn(M) are eigenvalues of M
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Eigenvalues of M

X ′Xu = λu

(X ′X + γI )u = (λ+ γ)u, (X ′X + γI )−1u =
1

λ+ γ
u

(X ′X + γI )−1X ′Xu =
λ

λ+ γ
u, Tr(M) =

n∑
i=1

λi (X
′X )

λi (X ′X ) + γ

P̂E = RSS + 2σ2
p∑

i=1

λi (X
′X )

λi (X ′X ) + γ
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Ridge regression - orthogonal design

X ′X = I , β̂ =
1

1 + γ
X ′Y =

1

1 + γ
(β + X ′ε)

Z = X ′ε ∼ N(0, σ2I )

E (β̂i − βi )2 = E

(
1

1 + γ
βi − βi +

1

1 + γ
Zi

)2

=
γ2

(1 + γ)2
β2i +

σ2

(1 + γ)2

E ||β̂ − β||2 =
γ2

(1 + γ)2
||β||2 +

pσ2

(1 + γ)2
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Ridge regression - orthogonal design (2)

When rigde is better than LS ?

γ2||β||2 + pσ2

(1 + γ)2
< pσ2

Ridge is always better than LS when ||β||2 < pσ2

Otherwise, when

‖|β||2 < γ + 2

γ
pσ2

γ <
2pσ2

||β||2 − pσ2
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Basis Pursuit

Y = Xβ

Basis Pursuit (Chen and Donoho, 1994): when p > n recover β by
minimizing ||b||1 =

∑n
i=1 |bi | subject to Y = Xb.

BP can recover β if it is identi�able with respect to L1 norm, i.e.

If Xγ = Xβ and γ 6= β then ‖γ‖1 > ‖β‖1.

k = ||β||0 = #{i : βi 6= 0}

Basis Pursuit can recover β if k is small enough.
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Transition curve (Donoho and Tanner, 2005)

Let's assume than p →∞, n/p → δ and k/n→ ε.

If Xij are iid N(0, τ2) then the probability that BP recovers β
converges to 1 if ε < ρ(δ) and to 0 if ε > ρ(δ), where ρ(δ) is the
transition curve.
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Transition curve (2)
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Noisy case - multiple regression

Yn×1 = Xn×pβp×1 + zn×1, z ∼ N(0, σI )

Convex program: Minimize ||b||1 subject to ||Y − Xb||22 ≤ ε

Or alternatively: minb∈Rp ||y − Xb||22 + λ||b||1

BPDN (Chen and Donoho, 1994) or LASSO (Tibshirani, 1996)
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Selection of the tuning parameter for LASSO

General rule: the reduction of λL results in identi�cation of
more elements from the true support (true discoveries) but at
the same time it produces more falsely identi�ed variables
(false discoveries)

The choice of λL is challenging- e.g. crossvalidation typically
leads to many false discoveries

When XTX = I Lasso selects Xj i� |β̂LSj | > λ

Selection λ = σΦ−1(1− α/(2p)) ≈ σ
√
2 log p corresponds to

Bonferroni correction and controls FWER.
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Irrepresentability condition

The sign vector of β is de�ned as
S(β) = (S(β1), . . . ,S(βp)) ∈ {−1, 0, 1}p,
where for x ∈ R, S(x) = 1x>0 − 1x<0

Let I := {i ∈ {1, . . . , p} | βi 6= 0}, and let XI ,XI be matrices
whose columns are respectively (Xi )i∈I and (Xi )i /∈I .

Irrepresentable condition:

‖X ′
I
XI (X

′
IXI )

−1S(βI )‖∞ ≤ 1

When
‖X ′

I
XI (X

′
IXI )

−1S(βI )‖∞ > 1

then probability of the support recovery by LASSO is smaller than
0.5 (Wainwright, 2009).
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Irrepresentability and identi�ability curves

n=100, p=300, elements of X were generated as iid N(0,1)
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Identi�ability condition

De�nition (Identi�ability)

Let X be a n × p matrix. The vector β ∈ Rp is said to be
identi�able with respect to the l1 norm if the following implication
holds

Xγ = Xβ and γ 6= β ⇒ ‖γ‖1 > ‖β‖1. (1)

Theorem (Tardivel, Bogdan, 2019)

For any λ > 0 LASSO can separate well the causal and null

features if and only if vector β is identi�able with respect to l1
norm and mini∈I |βi | is su�ciently large.
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Modi�cations of LASSO

Corollary

Appropriately thresholded LASSO can properly identify the sign of

su�ciently large β if and only if β is identi�able with respect to l1
norm.

Conjecture

Adaptive (reweighted) LASSO can properly identify the sign of

su�ciently large β if and only if β is identi�able with respect to l1
norm.
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Problem with shrinkage

Intuitive explanation:

β̂ = ηλ(βi + X ′i z + vi )

vi = 〈Xi ,
∑
j 6=i

Xj(βj − β̂j)〉

ηλ(t) = sign(t)(|t| − λ)+, applied componentwise

If XTX = I then X ′i z = Zi ∼ N(0, 1), vi = 0 and H0i is rejected if
βi + Zi > λ

When the design is not orthogonal: vi 6= 0 - additional noise,
dependent on λ (level of shrinkage), the level of sparsity and
magnitude of true signals

Malgorzata Bogdan Regularization

Adaptive LASSO

Adaptive LASSO [Zou, JASA 2006], [Candès, Wakin and Boyd, J.
Fourier Anal. Appl. 2008]

βaL = argminb

{
1

2

∥∥y − Xb
∥∥2
2

+ λ

p∑
i=1

wi |b|i

}
, (2)

where wi = 1

β̂i
, and β̂i is some consistent estimator of βi .

Reduces bias and improves model selection properties
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Numerical experiments

1. λ for LASSO selected as to control FWER at the level 0.05 for
k = 5 (theoretical result in (Tardivel and Bogdan, 2019))

2. λAMP for thresholded LASSO and independent gaussian design
selected according to AMP theory for LASSO (see e.g. (Wang,
Weng, Maleki, 2018))

3. For correlated design (o� diagonal covariance 0.9) we used 0.5
λAMP

4. For adaptive LASSO - weights based on LASSO estimator with
λ as in 2 and 3, selection based on LASSO with λ as in 1

5. Threshold selected by using knocko� control variables
(Foygel-Barber and Candès, 2015; Candès, Fan, Janson, Lv, 2016)
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Probability of the sign recovery
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Family Wise Error Rate
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False Discoveries along the lasso path

Su, Bogdan and Candes, (2017), δ = 1, ε = 0.2
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Reason - shrinkage

LASSO solution

β̂ = ηλ(β̂ − X ′(X β̂ − y)) = ηλ(β̂ − X ′X (β̂ − β) + X ′z) ,

where ηλ(t) = sgn(t)(|t| − λ)+, applied componentwise

β̂i = ηλ(βi + Zi + vi ),

where vi = 〈Xi ,
∑
j 6=i

Xj(βj − β̂j)〉 and Zi ∼ N(0, σ2i )
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AMP theory for LASSO, (Bayati and Montanari, 2012)

Xij ∼ N (0, 1/n), zi ∼ N (0, σ2)

β1, . . . , βp : iid, distributed as the random variable Π, such that
EΠ <∞, P(Π 6= 0) = ε ∈ (0, 1).

τ2 = σ2 +
1

δ
E
(
ηατ (Π + τZ )− Π

)2
,

λ =
(
1− 1

δ
P(|Π + τZ | > ατ)

)
ατ.
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AMP theory for LASSO, (Bayati and Montanari, 2012)

Theorem

For any pseudo-Lipschitz function ϕ, the lasso solution β̂ with �xed

λ obeys

1

p

p∑
i=1

ϕ(β̂i , βi ) −→ Eϕ(ηατ (Π + τZ ),Π)

Malgorzata Bogdan Regularization

AMP formulas for FDR and Power

Ŝ - set of variables selected by LASSO

FDP ≡ |Ŝ ∩ H0|
|Ŝ|

FDR = E (FDP)

Bogdan, van den Berg, Su and Candés, 2013

FDR→ 2P(Π = 0)Φ(−α)

P(|Π + τZ | > ατ)
,

Power→ P(|Π + τZ | > ατ |Π 6= 0).
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FDR - illustration
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Power - illustration
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Magnitude of additional noise (1)
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Magnitude of additional noise (2)
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FDP-Power tradeo�

Theorem (Su, Bogdan, Candes, 2017)

Fix δ ∈ (0,∞) and ε ∈ (0, 1). Then the event⋂
λ≥0.01

{
FDP(λ) ≥ q? (TPP(λ))− 0.001

}
(3)

holds with probability tending to one.
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FDR-Power trade-o� (2)
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Magnitude of noise
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Thresholded LASSO (1)
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Thresholded LASSO (2)
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Thresholded LASSO (3)
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False Discoveries in Random Designs

Candès, Fan, Janson and Lv (2017) - model free knocko�s

Consider n i.i.d random vectors (Yi ,X1i , . . . ,Xpi )

Variable Xj is a null variable, if Y⊥Xj | X−j , where X−j denotes the
remaining p − 1 variables excluding Xj
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Model Free Knocko�s

Construct a set of �fake� covariates X̃ = (X̃1, X̃2, · · · , X̃p) which
satisfy:

1 Exchangeability: for any subset S ⊂ {1, . . . , p},

(X , X̃ )swap(S)
d
= (X , X̃ ), (4)

where swap(S) is obtained by swapping the entries Xj and X̃j

for each j ∈ S .

2 Unimportant variables: X̃⊥Y |X , which can be guaranteed if
X̃ is constructed without looking at Y .
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Model Free Knocko�s for Gaussian Designs (1)

If X ∼ N (0,Σ), then a joint distribution of (X , X̃ ) can be:

(X , X̃ ) ∼ N (0,G ), where G =

[
Σ Σ− diag(s)

Σ− diag(s) Σ

]
,

(5)
with any choice of the diagonal matrix diag(s) s.t. G is positive
semide�nite. Possible choice of s:

sj = 2λmin(Σ) ∧ 1, ∀j , (6)
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Model Free Knocko�s for Gaussian Designs (2)

Sample X̃ from its conditional distribution:

X̃ | X d
= N (µc ,Σc),

where

µc = X − XΣ−1diag(s)

Σc = 2diag(s)− diag(s)Σ−1diag(s).
(7)
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Knocko� statistics (1)

W = (W1, . . . ,Wp) , Wj = wj([X , X̃ ],Y )

�ip-sign property:

wj([X , X̃ ]swap(S),Y ) =

{
wj([X , X̃ ],Y ), j /∈ S

−wj([X , X̃ ],Y ), j ∈ S
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Knocko� statistics (2)

Example:
T = (Z , Z̃ ) = t([X , X̃ ],Y )

(Z , Z̃ )swap(S) = t([X , X̃ ]swap(S),Y )

wj = fj(Zj , Z̃j), f (v , u) = −f (u, v)

Lasso Coe�cient Di�erence (LCD) statistic:

Wj = |β̂j(λ)| − |β̂j+p(λ)|
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Knocko� �lter

De�ne a random threshold as

t̂(λ) = min

{
t > 0 :

1 + #{j : Wj(λ) ≤ −t}
#{j : Wj(λ) ≥ t}

≤ q

}
and select

Ŝ(λ) = {j : Wj(λ) ≥ t̂(λ)},

Candès, Fan, Janson and Lv (2017) - The above knocko�
procedure KN(λ, q) controls FDR at the level q.
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Breaking through FDR-Power diagram

Su, Weinstein, Bogdan, Candès (2019)

De�nition

A random variable Π is said to be ε-sparse if EΠ2 <∞ and
P(Π 6= 0) = ε.

Theorem

Assume that ε/2 < εDT(δ/2), where εDT(δ) is a point on the

Donoho-Tanner transition curve. Then for any �xed

0 < λ1 < λ2, 0 < q < 1, and any ν > 0, there exists an ε-sparse
prior Π and n′ such that

P
(

inf
λ1≤λ≤λ2

TPP(λ,Π, q, n, p) > 1− ν
)
≥ 1− ν

if n ≥ n′.
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Extension of AMP theory

We show that the triples (βj , β̂j , β̂p+j) are independent, and each is

distributed as (Π, ηατ (Π + τW ), ηατ (τW̃ )), where W and W̃ are
independent N (0, 1) random variables that are furthermore
independent of Π; and (α, τ) are determined by λ as the solution to

τ2 = σ2 +
1

δ
E [ηατ (Π + τW )− Π]2 +

1

δ
E ηατ (τW )2

λ =

[
1− 1

δ
P(|Π + τW | > ατ)− 1

δ
P(|τW | > ατ)

]
ατ.

(8)
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Main component of the proof

For �xed λ > 0, let t∞ = t∞(q) > 0 be such that

P(ω(ηατ (Π + τW ), τηα(W̃ )) ≤ −t∞)

P(ω(ηατ (Π + τW ), τηα(W̃ )) ≥ t∞)
= q, (9)

where (α, τ) is the solution to (8). Then

1 The quantity t∞(q) exists and is unique for any q ∈ (0, 1).
Furthermore, it has a limit as q → 0 (and, for �xed λ, this
limit depends on Π only).

2 Knocko� random threshold t̂ satis�es t̂ → t∞(q) in
probability.

The asymptotic power is given by

TPP→ P(ω(ηατ (Π + τW ), τηα(W̃ ) ≥ t∞|Π 6= 0)
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How to pick λ

Given that

β̂i ∼ τηα
(

Π

τ
+ Z

)
the �best� ordering of β̂i occurs when τ is minimal.

Bayati and Montanari (2012):

1

p
||β̂ − β||2 → δ(τ2 − σ2)

Thus minimizing τ corresponds to minimizing the prediction error.
Optimal τ can be identi�ed through crossvalidation
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Gain in power over LSM
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Gain in power over LSM
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Other examples of applications of AMP theory

G. Reeves, 2017, neural networks

P.Sur and E.J.Candès, 2018, maximum likelihood estimators in
logistic regression
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