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High dimensional regression Ridge regression (1)

When n > p but p is large (say n/2) the variance of LS estimates
may be very large

When p > n the matrix X'X is singular and the LS estimate of 8
does not exist

Yot = XoxpBpct + Zox1s 2 ~ N(07a2l) Ridge regression:

Y =(Y1,...,Ya)" - wektor of trait values for n individuals B = argmingcreL(b) ,where L(b) = ||Y — Xb||*> +~||b||?

Xnxp - Matrix of regressors

aL(b)

=-2X"(Y - X 2vb =
35 ( b) +2vb =0

XY+ (X'X+9)b=0 < b= (XX+~)"XY
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Ridge regression (1) Eigenvalues of M

B=X'X+~)1X'Y, where v >0

X' Xu = \u
v o YA : _ ! —1y/
Y = X3 =MY, with M=X(X'X+~1)"X (X'X 4 1)u = (A + )0, (X'X+'yl)71u _ 1 u
A+
A NX'X)
= ! —1x! X'X + 411X Xu = M) =y 2
Tr[M] Tr[(XX+7/) XX] ( +1) u /\+’YU7 r(M) < (X' X))+~
P
~ Ai(X'X)
PE =RSS +20°) —o
P S5+ ;N(X'X)'i"Y
Tr[M] = Z Ai(M), where A\1(M),..., A\s(M) are eigenvalues of M
i=1
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Ridge regression - orthogonal design Ridge regression - orthogonal design (2)
XX =1, f= > X'y=_1_ (B+X'e)
14y 1+ When rigde is better than LS ?

VIBIP +po®
@ =7
2
EQBi— )P =E ( 1 Bi— Bi + 1 Z,-) Ridge is always better than LS when ||8]|?> < po?
1+ 1+ Otherwise, when )
118112 < T-=2po?

_ 42 o 52
QT+ (1490 2po?
Y < s
2 2 1B = po?
A v 2 pa
ENB — BIP = -, lII +
I I (1+V)2H | a7
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Basis Pursuit Transition curve (Donoho and Tanner, 2005)

Y = X8

Basis Pursuit (Chen and Donoho, 1994): when p > n recover § by
minimizing ||b||1 = Y./ | bi| subject to Y = Xb. Let's assume than p — oo, n/p — ¢ and k/n — e.

BP can recover 3 if it is identifiable with respect to Ly norm, i.e. If X; are iid N(0,72) then the probability that BP recovers 3

converges to 1 if € < p(d) and to 0 if € > p(d), where p(0) is the
If Xy =XBandy#5 then |[v]1> Al transit:gon curve. /) o) /o)

k=1|Bllo =#{i: Bi # 0}

Basis Pursuit can recover S if k is small enough.
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Transition curve (2) Noisy case - multiple regression

i Yox1 = Xn><p/8p><1 + Zpx1, Z~ N(ngl)

08

Combinatorial Search!

p=k/n w Convex program: Minimize ||b||1 subject to ||Y — Xb||3 < €
4 Or alternatively: minpcro||ly — Xb||3 + Al|b||1
& F solves £
i BPDN (Chen and Donoho, 1994) or LASSO (Tibshirani, 1996)
é=nlp
; Victoria Stodden Depariment of Stalisics, Stanford Universty
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Selection of the tuning parameter for LASSO Irrepresentability condition

The sign vector of /3 is defined as

5(5) = (S(ﬁl)v . 75(6P)) € {—170,1}’3,

@ General rule: the reduction of A\, results in identification of where for x € R, S(x) = 1,50 — 1x<o
more elements from the true support (true discoveries) but at Let | :={i € {1,...,p} | Bi # 0}, and let X;, X; be matrices
the same time it produces more falsely identified variables whose columns are respectively (X;)je; and (X;)ig;.

(false discoveries) Irrepresentable condition:

@ The choice of \; is challenging- e.g. crossvalidation typically

leads to many false discoveries XX (XIX1) 7 S (Bl < 1
o When X7 X = [ Lasso selects X; iff |BJ-LS| > A
o Selection A = 0®~1(1 — «/(2p)) ~ o+/2log p corresponds to When

Bonferroni correction and controls FWER. HXTIXI(XI/X,)%S(BI)”OO -1

then probability of the support recovery by LASSO is smaller than
0.5 (Wainwright, 2009).
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Irrepresentability and identifiability curves Identifiability condition

n=100, p=300, elements of X were generated as iid N(0,1)
Definition (ldentifiability)

identifiability and irrepresentability curves Let X be a n x p matrix. The vector 5 € RP is said to be
o identifiable with respect to the /1 norm if the following implication
o | — identifiability holds
o == irrepresentabili
s o] P ¥ Xy=Xpand v # B = |7l > |81 (1)
é o ‘ v
- z | \ Theorem (Tardivel, Bogdan, 2019)
° \ e For any A > 0 LASSO can separate well the causal and null
T T T T T T T . . . . . -
o 10 2 . 40 . 60 features if and only if vector 3 is identifiable with respect to h
K sparsity norm and min;c|B3;| is sufficiently large.
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Modifications of LASSO Problem with shrinkage

Intuitive explanation:

B i+ X+ )
Appropriately thresholded LASSO can properly identify the sign of
sufficiently large B if and only if B is identifiable with respect to h vi = (X, ij(ﬁj - BJ)>
norm. J#i

) = sEn(e)[e] = e appled componentuie
Adaptive (reweighted) LASSO can properly identify the sign of If XTX =1 then X/z = Z; ~ N(0,1), v; = 0 and Ho; is rejected if
sufficiently large B if and only if B is identifiable with respect to h Bi+Zi> A
norm. When the design is not orthogonal: v; # 0 - additional noise,

dependent on A (level of shrinkage), the level of sparsity and
magnitude of true signals
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Adaptive LASSO Numerical experiments

1. ) for LASSO selected as to control FWER at the level 0.05 for

Adaptive LASSO [Zou, JASA 2006], [Candés, Wakin and Boyd, J. k = 5 (theoretical result in (Tardivel and Bogdan, 2019))

Fourier Anal. Appl. 2008] 2. Aamp for thresholded LASSO and independent gaussian design
selected according to AMP theory for LASSO (see e.g. (Wang,
. 1 P Weng, Maleki, 2018))
Par = argminy {QHY - Xng + AZ W"|b|'} ’ (2) 3. For correlated design (off diagonal covariance 0.9) we used 0.5
. = Aamp
where w; = % and f3; is some consistent estimator of j;. 4. For adaptive LASSO - weights based on LASSO estimator with
Reduces bias and improves model selection properties A as in 2 and 3, selection based on LASSO with A asin 1

5. Threshold selected by using knockoff control variables
(Foygel-Barber and Candés, 2015; Candés, Fan, Janson, Lv, 2016)

Malgorzata Bogdan Regularization Malgorzata Bogdan Regularization



Probability of the sign recovery Family Wise Error Rate

independent, k=5 independent, k=20 corelated, k=5 independent, k=5 independent, k=20 corelated, k=5

FWER
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False Discoveries along the lasso path Reason - shrinkage

Su, Bogdan and Candes, (2017), 6 =1, e =0.2

5 7] LASSO solution
Orthogonal
+ Gaussian B (B X’(XB )) (B X’X(B ﬁ) +X' )

7o} = —_ — — —_ — .

g PN o ) ¥)) =m 7),
2 \s\\\\:‘\\ where 1, (t) = sgn(t)(|t| — A)+, applied componentwise
Lo \\ N ~

,\ N Bi =m(Bi + Zi + v;),
8
© \
(X (8 — B o 2
s | where v; —(X,,;XJ(/BJ Bj)) and Z; ~ N(0,07)
S T T T T T 7
0.0 0.2 0.4 0.6 0.8 1.0
PP
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AMP theory for LASSO, (Bayati and Montanari, 2012) AMP theory for LASSO, (Bayati and Montanari, 2012)

Xij ~N(0,1/n), z ~N(0,02)
B1,...,Bp 1 iid, distributed as the random variable I1,such that

EN< oo, P(M#0)=¢€€(0,1). For any pseudo-Lipschitz function o, the lasso solution 3 with fixed
A\ obeys
1 2
72=02+5E<nm(n+72)*ﬂ> ’ 1 L A
. EZW,-,@-) — E@(nar(N+72),0)
A= (1 - sB(N+7z| > m)>m. i=1
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AMP formulas for FDR and Power FDR - illustration
&
S - set of variables selected by LASSO S] o orthogonal design|
* Gaussian design
~ o
(\! —
Fop = 157l s,
g )
—
FDR = E(FDP) L S
a)
v g
Bogdan, van den Berg, Su and Candés, 2013 o
2P(N = 0)®(—a) 8
FDR -~ = ]
_>IP’(\|'I+TZ|>aT) ' °
Power — P(|N + 7Z| > ar|M #0). S
T T T T T T T
0 50 100 150 200 250 300

k
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Power - illustration
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Regularization

Magnitude of additional noise (2)

tau

12 14 16 18 20 22

1.0

delta=1,epsilon=0.2
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Regularization

Magnitude of additional noise (1)

delta=1,M=5

tau
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1
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FDP-Power tradeoff

T T
0.15 0.20

epsilon

Regularization

Theorem (Su, Bogdan, Candes, 2017)

T
0.25

Fix 0 € (0,00) and € € (0,1). Then the event

N {FDP(A) > ¢* (TPP(\)) — 0.001}

A>0.01

holds with probability tending to one.

T
0.30
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FDR-Power trade-off (2) ise
delta=1,epsilon=0.1,M=5
Ky @ |
N —
. ~
g - —
g 2 ©
[T —
° 3
g I
° = |
o -
. < |
g - —
“ |
—
!
= T T T T T
0 2 4 6 8
lambda
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Thresholded

SSO (1) Thresholded

20
1

o
=

10
1

estimates of regression coefficients
0
1

absolute values of Lasso estimates
0
1

o | o |
T ! Asm
— A=3
— A
8 B S | oracle thr
T T T T T T ' T T T T T
0 100 200 300 400 500 8 6 4 2 0
step on the lasso path A
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Thresholded LASSO (3) False Discoveries in Random Designs

g ] Lasso path
Ch — Candes, Fan, Janson and Lv (2017) - model free knockoffs
3 Consider n i.i.d random vectors (Y, X1j, ..., Xpi)
& o Variable X; is a null variable, if Y LX; | X_;, where X_; denotes the

remaining p — 1 variables excluding X;

K
Y

0.2 0.4 0.6 0.8 1.0
PP
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Model Free Knockoffs Model Free Knockoffs for Gaussian Designs (1)

Construct a set of “fake” covariates X = ()N(l,;(g, e 7)~(p) which

. If X ~ N(0,X), then a joint distribution of (X, X) can be:
satisfy:

@ Exchangeability: for any subset S C {1,...,p}, (X, %) ~ N(0,G), where G — ): Y — diag(s) 7
y J ; Y — diag(s) >
(va)swap(S) = (X7X)7 (4) (5)
~ with any choice of the diagonal matrix diag(s) s.t. G is positive
where swap(S) is obtained by swapping the entries X; and X; semidefinite. Possible choice of s:
for each j € S.
Qo gnimportant variables: X 1 Y| X, which can be guaranteed if 5= 2Amin(F) AL, V), (6)

X is constructed without looking at Y.
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Model Free Knockoffs for Gaussian Designs (2) Knockoff statistics (1)

Sample X from its conditional distribution:
. d W:(W17~-~7WP)7 VVJ:WJ([va]/Y)
X ‘ X :N(/I‘Cvzc)v

where flip-sign property:

e = X — XX Ldiag(s) (X R [ wi(X.XLY), ¢S
¥ . = 2diag(s) — diag(s)X diag(s). (7) (X Xlswap(s): Y) = { -wi([X,X].Y), jeS§

Malgorzata Bogdan Regularization Malgorzata Bogdan Regularization

Knockoff statistics (2) Knockoff filter

Example:

T=(Z,2)=t(X,X],Y)
Define a random threshold as

L+ #0 W) < —t}
2w =g o "}

. - tA)=min<t>0:
(Z, Z)swap(S) = t([va]swap(S)v Y) ( ) {

and select

W= (2. 2). F(v.u) = —F(uv) SO = U W) 2 EN)

Candes, Fan, Janson and Lv (2017) - The above knockoff

Lasso Coefficient Difference (LCD) statistic:
procedure KN(X, q) controls FDR at the level g.

W = 1Bi(N)] = 1B14p(N)|
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Breaking through FDR-Power diagram

Su, Weinstein, Bogdan, Candés (2019)

A random variable [ is said to be e-sparse if E? < co and
P(M #0) =e.

Assume that €/2 < epr(5/2), where exr(8) is a point on the
Donoho-Tanner transition curve. Then for any fixed

0< M\ <X,0<qg<1,andanyv >0, there exists an e-sparse
prior N and n’ such that

P( inf TPP(\TI 1-v)>1-
(Alg”lgxz (AN, q,n,p) > V)_ v

ifn>n'.
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Extension of AMP theory

We show that the triples (ﬁj,@ﬁpﬂ-) are independent, and each is
distributed as (I, 9o (M + TW),nM(TW)), where W and W are
independent A/(0, 1) random variables that are furthermore
independent of N; and («, 7) are determined by ) as the solution to

1 1
P =024 EE[UM(H +7TW) — I'I]2 + gE’f}a-,—(TW)z

1 1 (8)
A=|1- S]P)(“_l +7W| > ar) - E]P’(|7'W| > ar)| ar.
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Main component of the proof How to pick A

For fixed A > 0, let t*° = t>°(q) > 0 be such that

P(w(nar (M + TW),%(@) < —t®)
P(w(ner(M+ 7W), 710(W)) > t>°)

=gq, (9)

where (a, 7) is the solution to (8). Then
@ The quantity t°°(q) exists and is unique for any g € (0,1).
Furthermore, it has a limit as ¢ — 0 (and, for fixed ), this
limit depends on I only).
@ Knockoff random threshold { satisfies £ — t>°(q) in
probability.
The asymptotic power is given by

TPP = P(w(nar (M + 7 W), 700(W) = 7|1 7 0)

Malgorzata Bogdan Regularization

Given that

A Mn
ﬁiNTna (7"'2)
-

the "best” ordering of B,- occurs when 7 is minimal.
Bayati and Montanari (2012):

%I\B—ﬁ\l2—>5(72—02)

Thus minimizing 7 corresponds to minimizing the prediction error.
Optimal 7 can be identified through crossvalidation
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Gain in power over LSM Gain in power over LSM

3=1,6=0.1, M=5
3=1,6=0.05, M=5
o |
; S
o | i
© i
1 @ |
: S
o | i
S
~
— ~ o
[} - .
g ° : ]
a I 7
o | ER
o . i —— theoretical power
— theoretical power : X empirical power
o X empirical power ! — Ism power
= —— Ism power 0 |
=
<
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T T T T T <
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Other examples of applications of AMP theory

G. Reeves, 2017, neural networks

P.Sur and E.J.Candés, 2018, maximum likelihood estimators in
logistic regression
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