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Lecture 10

• Tests for homogenity of variance
• ANOVA remedial measures
• Two-way ANOVA

Homogeneity tests

• Homogeneity of variance 
(homoscedasticity) 

• H0:  σ1
2 = σ2

2 = … = σI
2

• H1:  not all σi
2 are equal

• Several significance tests are 
available

Homogeneity tests (2)

• Text discusses Hartley and Levene

Homogeneity tests (3)

• There is a problem with assumptions
–Anova is robust with respect to 

moderate deviations from normality
–Anova results can be sensitive to the 

homogeneity of variance assumption 
• Some homogeneity tests are sensitive 

to the normality assumption 

Levene’s Test

• Do anova on the absolute values of 
the residuals

Example

• NKNW p 765
• Compare the strengths of 5 types of 

solder flux (A has I=5 levels)
• Response variable is the pull strength, 

force in pounds required to break the 
joint

• There are 8 solder joints per flux (J=8)
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Levene’s Test

flux<-
read.table('ch18ta02.txt', 
col.names=c("strength", 
"flux", "ind"));
flux$flux<-factor(flux$flux);
library(car);
leveneTest(flux$strength, 
flux$flux, center=median);

Output

Levene's Test
Df F value  Pr(>F)  

group  4  2.9358 0.03414 *
35                  

SDs
sd1<-ave(flux$strength,
flux$flux, FUN=sd)

[1] 1.2371396 
[9] 1.2529708 
[17] 2.4866440 
[25] 0.8166034 
[33] 0.7694154 

Remedies

• Delete outliers
• Use weights 
• Transformations
• Nonparametric procedures

Weighted least squares

• We used this with regression
–Obtained a model for how the sd

depended on the explanatory 
variable (plotted absolute value of 
residual vs x)

–Then used weights inversely 
proportional to the  estimated 
variance

Weighted LS (2)

• Here we can compute the variance 
for each level

• Use these as weights in aov or lm
• We will illustrate with the soldering 

example 
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Weighted ANOVA

wt<-1/sd1^2;
obj<-aov(strength~flux, 
weight=wt, flux)
summary.aov(obj)

Output

Df SS MS F value Pr(>F)    
flux 4 324.2 81.05 81.05< 2.2e- 16
Res 35  35.0 1.00 

Transformation Guides

• When σi
2 is proportional to µi, use 

•

• When σi is proportional to µi, use log(y) 
• When σi is proportional to µi

2, use 1/y
• For proportions, use 2arcsin 

1YY ++

Y

Nonparametric approach 

• Based on ranks
• kruskal.test

• Two-way ANOVA
–Data, model, parameter estimates

• Factor effects model
• Anova table with tests for main effects 

and interaction

Data
• For Y ijk we use  

– i to denote the level of the factor A
– j to denote the level of the factor B
–k to denote the k th observation in cell (i,j)

• i = 1, . . . , I  levels of factor A
• j = 1, . . . , J  levels of factor B
• k = 1, . . . , K observations in cell (i,j) 
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Cell means model

• Yijk = µij + ξijk

–where µij is the theoretical mean or 
expected value of all observations 
in cell (i,j) 

– the ξijk are iid N(0, σ2)
–Yijk ~N(µij, σ2), independent

Parameters

• The parameters of the model are
– µij, for i = 1 to I and j = 1 to J 
–σ2

Estimates

• Estimate µij by the mean of the 
observations in cell (i,j), 

• = (ΣkYijk )/K
• For each (i,j) combination, we can get 

an estimate of the variance
• s ij

2 = (Σ(Yijk - )2)/(K-1)
• We need to combine these to get an 

estimate of σ2

ijY
ijY

ijY

Pooled estimate of σ2

• In general we pool the s ij
2, giving 

weights proportional to the df, K ij -1
• The pooled estimate is 
• s2 = (Σ (K ij-1)s ij

2) / (Σ (K ij-1))
• Here, K ij = K, so  
• s2 = (Σs ij

2) / (IJ)

Factor effects model

• For the one-way anova model, we 
wrote µi = µ + αi

• Here we use µij = µ + αi + βj + αβij

Constraints

•Σi αi= 0

Σjβj= 0

• Σi αβij = 0 for all j

•Σj αβij = 0 for all i
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Factor effects model (2)

• µ = (Σij µij)/(IJ)
• µi. = (Σj µij)/J
• µ.j = (Σi µij)/I
• αi = µi. - µ
• βj = µ.j - µ
• αβij is difference between µij and µ + αi + βj

• αβij = µij - (µ + (µi. - µ) + (µ.j - µ))
• = µij – µi. – µ.j + µ

Interpretation

• µij = µ + αi + βj + αβij

• µ is average of means
• αi is an adjustment for level i of A
• βj is an adjustment for level j of B
• αβij is an additional adjustment that 

takes into account both i and j

Estimates for Factor 
effects model

= Y… = (ΣijkYijk )/(IJK)
= Yi.. = (ΣjkYijk )/(JK)
= Y.j. = (ΣikYijk )/(IK)

• =        - = Yi.. - Y…

• =        - = Y.j. - Y…

• =       - - +         =
• Yij. - Yi.. - Y.j. + Y…

µ̂
.ˆ iµ
j.µ̂

iα̂
.ˆ iµ µ̂

jβ̂ j.µ̂ µ̂
ijβα ˆ

ijµ̂ .ˆ iµ j.µ̂ µ̂

SS for ANOVA Table

• SSA = Σijk ( )2 = Σijk (Yi.. - Y…)2

• SSB = Σijk ( )2 = Σijk (Y.j. - Y…)2

• SSAB = Σijk ( )2 = Σijk (Yij.-Yi..-Y.j.+Y…)2

• SSE = Σijk (Yijk - Yij.)2

• SST = Σijk (Yijk - Y…)2

iα̂

jβ̂

ijβα ˆ

df for ANOVA Table

• dfA = I-1
• dfB = J-1
• dfAB = (I-1)(J-1)
• dfE = IJ(K-1)
• dfT = IJK-1 = n-1

MS for ANOVA Table

• MSA = SSA/dfA
• MSB = SSB/dfB
• MSAB = SSAB/dfAB
• MSE = SSE/dfE
• MST = SST/dfT
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Hypotheses for two-way 
ANOVA

• H0A: αi = 0 for all I
• H1A: αi 0 for at least one i
• H0B: βj = 0 for all j
• H1B: βj 0 for at least one j
• H0AB: αβij = 0 for all (i,j)
• H1AB: αβij 0 for at least one (i,j)

≠
≠

≠

F statistics 

• H0A is tested by F A = MSA/MSE; 
df=dfA, dfE

• H0B is tested by F B = MSB/MSE; 
df=dfB, dfE

• H0AB is tested by F AB = 
MSAB/MSE; df=dfAB, dfE

ANOVA Table

Source  df SS       MS                     F   
A           I-1       SSA     MSA    MSA/MSE   
B          J-1       SSB     MSB    MSB/MSE   
AB    (I-1)(J-1) SSAB  MSAB  MSAB/MSE
Error  IJ(K-1)   SSE     MSE                     _ 
Total   IJK-1     SST     MST    

P-values

• P-values are calculated using the 
F(dfNumerator, dfDenominator) 
distributions

• If P      0.05 we conclude that the 
effect being tested is statistically 
significant

≤

Example

• Y is the number of cases of bread sold
• A is the height of the shelf display, I=3 

levels: bottom, middle, top
• B is the width of the shelf display, J=2: 

regular, wide
• K=2 stores for each of the 3x2 

treatment combinations

ANOVA
bread<-read.table('ch19ta07.txt',
col.names=c("cases", "height", 
"width", "store"));
bread$height<-factor(bread$height);
bread$width<-factor(bread$width);
obj<-aov(cases~height*width, bread);
summary(obj)
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Output

Note that there are 6 cells in
This design.

Df Sum Sq Mean Sq F value    Pr(>F)    
height 2 1544 772.0 74.71 5.754e-05 
width  1   12  12.00 1.16 0.3226    
h:wid 2   24  12.00 1.16 0.3747    
Res    6   62  10.33 

Output from lm

Residual standard error: 3.215 
on 6 degrees of freedom

Multiple R-squared: 0.9622 
F- statistic: 30.58 on 5 and 6 DF, 
p-value: 0.0003384 

Results

• The main effect of height is statistically 
significant (F=74.71; df=2,6; P<0.0001)

• The main effect of width is not 
statistically significant (F=1.16; df=1,6; 
P=0.32)

• The interaction between height and 
width is not statistically significant 
(F=1.16; df=2,6; P=0.37)

Interpretation

• The height of the display affects 
sales of bread

• The width of the display has no 
apparent effect 

• The effect of the height of the display 
is similar for both the regular and the 
wide widths

Plot of the means 
Additional analyses

• We will need to do additional 
analyses to explain the height effect 
(factor A)

• There were three levels: bottom, 
middle and top

• We could rerun the data with a one-
way anova and use the methods we 
learned in the previous chapters
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R LM Constraints

• α1 = 0  (1 constraint)
• β1 = 0 (1 constraint)
• αβ1j = 0 for all j (J constraints)
• αβi1 = 0 for all i (I constraints)
• The total is 1+1+I+J-1=I+J+1 (the 

constraint αβ11 is counted twice above

Parameters and 
constraints

• The cell means model has IJ 
parameters for the means

• The factor effects model has 
(1+I+J+IJ) parameters
–An intercept (1)
–Main effect of A (I)
–Main effect of B (J)
– Interaction of A and B (IJ)

Factor effects model

• There are 1+I+J+IJ parameters
• There are 1+I+J constraints
• There are IJ unconstrained 

parameters (or sets of parameters), 
the same number of parameters for 
the means in the cell means model

Solution output
obj2<
lm(cases~height*width, 
bread); summary(obj2);

Est Sd t  Pr(>|t|)    
Int 45.0 2.3 19.8 1.08e-06 
ht2 20.0 3.2  6.2 0.000797 
ht3 -5.0 3.2 -1.5 0.170844    
wd2 -2.0 3.2 -0.6 0.556718    
h2w2 6.0 4.5 1.3 0.235013    
h3w2 6.0 4.5  1.3 0.235013 

Means

height width Mean

1        1     45=45

1        2     43=45-2

2        1     65=45+20

2        2     69=45+20-2+6

3        1     40=45-5

3        2     44=45-5-2+6

Check the normal 
assumption

r<-residuals(obj2);
qqnorm(r);
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The plot

Note, dfE is only 6

ANOVA Table

Source  df SS       MS                     F   
A           I-1       SSA     MSA    MSA/MSE   
B          J-1       SSB     MSB    MSB/MSE   
AB    (I-1)(J-1) SSAB  MSAB  MSAB/MSE
Error  IJ(K-1)   SSE     MSE                     _ 
Total   IJK-1     SST     MST    

Expected Mean Squares

• E(MSE) = σ2

• E(MSA) = σ2 + KJ(Σiαi
2)/(I-1)

• E(MSB) = σ2 + KI(Σjβj
2)/(J-1)

• E(MSAB) = σ2 + K(Σijαβij
2)/((I-1)(J-1))

• Here, αi, βj, and αβij are defined with 
the usual factor effects constraints 

An analytical strategy

• Run the model with main effects and 
the two-way interaction

• Plot the data, the means and look at 
the normal quantile plot

• Check the significance test for the 
interaction

AB interaction ns
• If the AB interaction is not statistically 

significant
–Rerun the analysis without the 

interaction
–For a main effect with more than two 

levels that is significant, use the 
means statement with the tukey
multiple comparison procedure 

Rerun without interaction

obj3<-aov(cases~height+width,
bread);
summary(obj3)
TukeyHSD(obj3)$height
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Anova output
Df SS MS F     Pr(>F)    

ht 2 1544 772.0 71.8 7.749e- 06 
wd 1   12  12.0  1.1 0.3216    
Res 8   86  10.75

MSh and MSw have not changed,
MSE, F’s, and P-values have

Comparison of MSEs

Error   8    86   10.75

Error   6    62   10.33

Model with interaction

Model without interaction

Tukey Output
diff  lwr upr p adj

2-1 23 16.4 29.6 2.36e-05
3-1 -2  -8.6  4.6 6.77e-01
3-2 -25 -31.6 -18.4 1.26e-05

Regression Approach

• Similar to what we did for one-way
• Use I-1 variables for A
• Use J-1 variables for B
• Multiply each of the I-1 for A times each 

of the J-1 for B to get (I-1)(j-1) for AB

Pooling SS

• Data = Model + Residual
• When we remove a term from the 

`model’, we put this variation and the 
associated df into `residual’

• This is called pooling
• A benefit is that we have more df for 

error and a simpler model

Pooling SSE and SSAB

• For model with interaction
• SSAB=24, dfAB=2
• SSE=62, dfE=6
• MSE=10.33

• For the model with main effects only
• SSE=62+24=86, dfE=6+2=8
• MSE=10.75


