

STAT 512 Midterm Exam July 7 2006

Name:

Show all your work (you can use this page).

All questions are for 5 points (100 total).

Good luck !

1. Formulate the simple linear regression model. Clearly state all the assumptions.

$$Y_i = \beta_0 + \beta_1 X_i + \xi_i, \quad 1 \leq i \leq n, \quad \xi_i \text{ 's independent } N(0, \sigma^2)$$

2. You use your data to estimate parameters of the simple linear regression model. Your estimators based on $n=120$ observations are $b_0 = 2$, $b_1 = 0.04$, $s(b_1)=0.01$, $MSE=0.4$. You also computed the average of the response variable $\bar{Y}=3$.

a) Test if $\beta_1 = 0$ (Compute the test statistic, give the number of degrees of freedom, corresponding critical value and conclusion).

$$t = b_1 / s(b_1) = 4, \quad df = 118, \quad t^* = 1.98$$

$t > t^*$, reject H_0 , at the significance level $\alpha=0.05$ we have enough evidence to conclude that Y is associated with X

b) Predict the value of Y for $X=20$.

$$\hat{Y} = 2 + 0.04 \cdot 20 = 2.8$$

c) Calculate \bar{X} (Hint – see the formula for b_1).

$$\bar{X} = \frac{\bar{Y} - b_0}{b_1} = \frac{3 - 2}{0.04} = 25$$

d) Calculate $SSX = \sum (X_i - \bar{X})^2$ (Hint – see the formula for $s^2(b_1)$).

$$SSX = \frac{s^2}{s^2[b_1]} = \frac{0.4}{0.0001} = 4000$$

e) Estimate the variance of the error of the prediction you made in point b)

$$s^2[pred] = 0.04 \left(1 + \frac{1}{120} + \frac{25}{4000} \right) = 0.4058$$

f) Construct the corresponding 95% prediction interval.

$$2.8 \pm 1.98\sqrt{0.4058} \approx [1.53, 4.07]$$

3. Here is the table of type I sums of squares for three explanatory variables used for the multiple regression model.

variable	Type I Sum of Squares
X1	250
X2	30
X3	20

SSE for the full model is equal to 550 and $df_E=30$.

a) How many cases do you have in your data file ?

34

b) Give the estimate of the standard deviation of the error term.

$$s = \sqrt{\frac{550}{30}} \approx 4.28$$

c) Test the hypothesis that the response variable is not associated with any of the explanatory variables.

$$F = \frac{300/3}{550/30} \approx 5.45$$

$$F^*(3,30) = 2.92$$

$$F > F^*$$

Reject H_0 . At the significance level $\alpha=0.05$ we have enough evidence to conclude that at least one explanatory variable is associated with Y.

d) Give the value of R^2 for the full model.

$$R^2 = 300/850 \approx 0.35$$

e) Compute the sample correlation coefficient between Y and X1.

$$r = \pm \sqrt{250/850} = \pm 0.54$$

3. We study the relation between selling price (Y) and assessed valuation of one-family residential dwellings (X). We also consider an additional explanatory variable – lot location (Z). Z is coded as 1 for dwellings located on corner lots and 0 in other case.

We build a regression model taking into account the possible interaction between X and Z ($\text{int}=X \cdot Z$). Below you can find the SAS output from this analysis.

```

Dependent Variable: y

Analysis of Variance

Sum of      Mean
Source   DF   Squares   Square   F Value   Pr > F
Model      3   4237.05022   1412.35007   93.21   <.0001
Error     60   909.10463   15.15174
Corrected Total   63   5146.15484

Root MSE      3.89252  R-Square   0.8233
Dependent Mean   79.02344  Adj R-Sq   0.8145
Coeff Var      4.92578

Parameter Estimates

Parameter   Standard
Variable   DF   Estimate   Error   t Value   Pr > |t|
Intercept   1   -126.90517   14.72247   -8.62   <.0001
x           1     2.77590   0.19628   14.14   <.0001
z           1     76.02153   30.13136   2.52   0.0143
int         1    -1.10748   0.40554   -2.73   0.0083

```

a) Give the result of the overall ANOVA test for significance of any of the explanatory variables.

$F=93.21$, $p\text{-value}<0.0001$, reject H_0 , we have enough evidence to conclude that at least one explanatory variable is associated with Y.

b) Give the estimate of the standard deviation of the error term.

$S=3.8925$

c) Is there a significant difference between the slopes of dependence of Y on X for dwellings located on corner and non corner lots ?

test for the coefficient by int, $p\text{-value}=0.0083$, reject H_0 , we have enough evidence to conclude that the slopes of dependence of Y on X are different for dwellings located on corner and non corner lots.

d) Give the estimated equation describing the dependence of Y on X for dwellings located on corner lots.

$$\hat{Y} = -50.9 + 1.67X$$

4. You try to relate the job proficiency score (Y) to the results of four tests (X1, X2, X3, X4). Below you have the results of the ANOVA table for this analysis as well the table with type I and type II sums of squares.

Analysis of Variance

Source	DF	Sum of Squares		Mean Square	F Value	Pr > F
Model	4	8718.02248	2179.50562	129.74	<.0001	
Error	20	335.97752	16.79888			
Corrected Total	24	9054.00000				

Variable	Type I SS	Type II SS
x2	1 2236.47088	12.21949
x1	1 1966.34919	759.83030
x3	1 4254.45924	1064.15000
x4	1 260.74317	260.74317

a) Test for significance of X2 in the full model .

$$F = \frac{12.2}{16.8} \approx 0.73$$

$$F^*(1, 20) = 4.35$$

$$F < F^*$$

Do not reject H_0 , X2 is not a significant predictor in a full model.

b) Test for significance of X2 in the simple regression model.

$$F = \frac{2236.5}{(9054 - 2236.5) / 23} \approx 7.54$$

$$F^*(1, 23) = 4.26$$

$$F > F^*$$

reject H_0 , we have enough evidence to conclude that Y is associated with X2

c) Which multiple regression model is "the best" according to the model selection criteria.

Dependent Variable: y

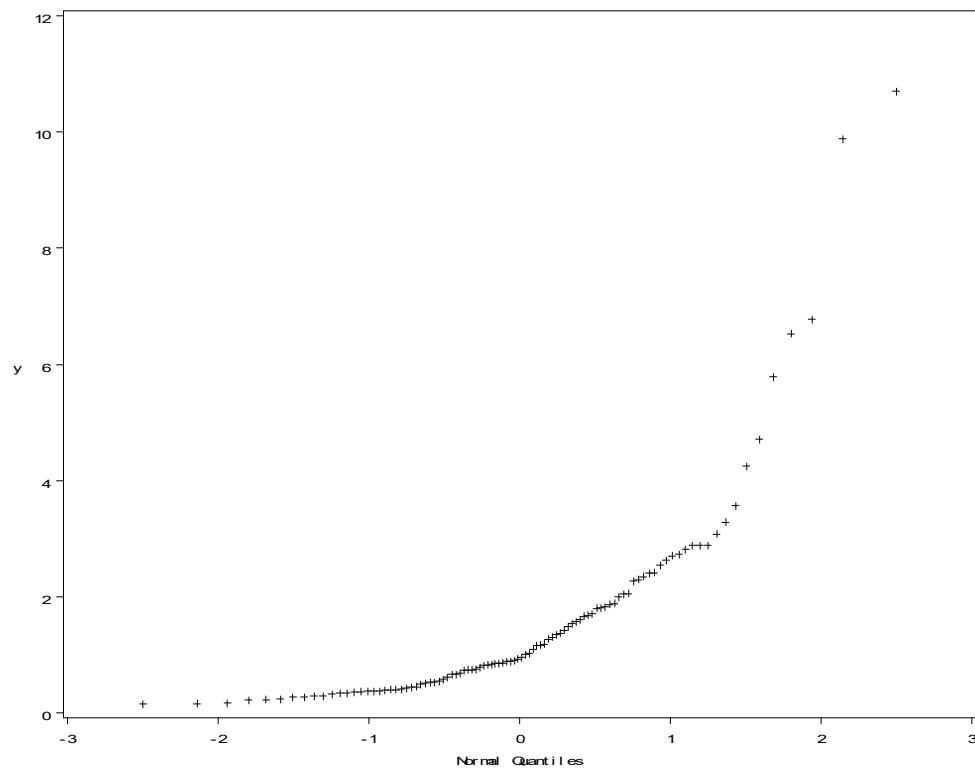
R-Square Selection Method

Number in

Model	R-Square	C(p)	AIC	SBC	Variables in Model
1	0.8047	84.2465	110.4685	112.90629	x3
1	0.7558	110.5974	116.0546	118.49234	x4
1	0.2646	375.3447	143.6180	146.05576	x1
1	0.2470	384.8325	144.2094	146.64717	x2
<hr/>					
2	0.9330	17.1130	85.7272	89.38384	x1 x3
2	0.8773	47.1540	100.8605	104.51716	x3 x4
2	0.8153	80.5653	111.0812	114.73788	x1 x4
2	0.8061	85.5196	112.2953	115.95191	x2 x3
2	0.7833	97.7978	115.0720	118.72864	x2 x4
2	0.4642	269.7800	137.7025	141.35916	x1 x2
<hr/>					
3	0.9615	3.7274	73.8473	78.72282	x1 x3 x4
3	0.9341	18.5215	87.3143	92.18984	x1 x2 x3
3	0.8790	48.2310	102.5093	107.38479	x2 x3 x4
3	0.8454	66.3465	108.6361	113.51157	x1 x2 x4
<hr/>					
4	0.9629	5.0000	74.9542	81.04859	x1 x2 x3 x4

Model with x1,x3 and x4 – the ``smallest'' (in terms of the number of regressors) model for which $C(p) \approx p$, it also has a minimal AIC and SBC

5) What can you say about the distribution of the data demonstrated on the attached qqplot ?



The distribution is strongly skewed – long tail on the right, short tail on the left.