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Abstract

We consider the problem of variable selection in high-dimensional settings with
missing observations among the covariates. To address this relatively understudied
problem, we propose a new synergistic procedure—adaptive Bayesian SLOPE with
missing values—which effectively combines SLOPE (sorted l1 regularization) with
the Spike-and-Slab LASSO (SSL) and is accompanied by an efficient Stochastic Ap-
proximation of Expected Maximization (SAEM) algorithm to handle missing data.
Similarly as in SSL, the regression coefficients are regarded as arising from a hierar-
chical model consisting of two groups: the spike for the inactive and the slab for the
active. However, instead of assigning independent spike and slab Laplace priors for
each covariate, here we deploy a joint SLOPE “spike and slab” prior which takes into
account the ordering of coefficient magnitudes in order to control for false discoveries.
We position our approach within a Bayesian framework which allows for simultaneous
variable selection and parameter estimation while handling missing data. Through
extensive simulations, we demonstrate satisfactory performance in terms of power,
false discovery rate (FDR) and estimation bias under a wide range of scenarios in-
cluding complete data and existence of missingness. Finally, we analyze a real dataset
consisting of patients from Paris hospitals who underwent severe trauma, where we
show competitive performance in predicting platelet levels. Our methodology has
been implemented in C++ and wrapped into open source R programs for public use.
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1 Introduction

The problem of variable selection is ubiquitous in contemporary data applications. In

molecular genetics, for instance, a vast number of predictors is available but only a few are

deemed relevant for explaining biological phenomena. In high-dimensional data, variable

selection can be plagued by the presence of missing values. For example, genetic data

obtained from microarray experiments often contain missing values due to several reasons:

insufficient resolution, image corruption, manufacturing errors, etc. This work develops

a unified framework that tackles variable selection in such challenging scenarios. Our

contributions are twofold: (1) proposal of a new penalized likelihood procedure (called

adaptive Bayesian SLOPE) and (2) development of a variant of an EM algorithm for subset

selection which can simultaneously handle missing covariate values. Below, we position our

methodological contributions within the context of existing literature on high-dimensional

variable selection and missing values.

The LASSO (Tibshirani, 1996), now a default penalized likelihood method, proved it-

self successful at simultaneously estimating parameters and covariate sets. Its theoretical

guarantees include model selection consistency which, however, requires very stringent “ir-

representability” conditions on sparsity and the correlation structure between explanatory

variables (see e.g., Zhao and Yu (2006); van de Geer and Bühlmann (2009); Wainwright

(2009); Tardivel and Bogdan (2018)). To obtain good model selection properties, the

penalty parameter λ needs to be sufficiently large to discard irrelevant predictors. How-

ever, large λ leads to underestimation of important regression coefficients and interference

of their effects with even slightly correlated variables. As a result, false discoveries occur

early along the LASSO path (see Su et al. (2017)) and often prevent this method from

identifying the true model. To remedy these problems, adaptive LASSO (Zou, 2006) uses

a weighted `1 penalty with weights depending on some initial estimates of regression coeffi-

cients, leading to a smaller shrinkage of large effects. In this way, adaptive LASSO reduces

estimation bias and can be consistent for variable selection even when irrepresentability

is not satisfied (see e.g. Fan et al. (2014); Tardivel and Bogdan (2018); Rejchel and Bog-

dan (2019)). However, performance properties of adaptive LASSO still rely heavily on the

weight function and tuning parameters, whose optimal choices depend on unknown aspects
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of the estimation problem such as signal magnitude or sparsity. More recently, Ročková

and George (2018) developed the Spike-and-Slab LASSO (SSL) procedure which bridges

the default penalized likelihood approach (the LASSO) and the default Bayesian variable

selection approach (spike-and-slab). In SSL, the penalty function arises from a fully Bayes

spike-and-slab formulation and, as such, exerts self-adaptation properties with less hyper-

parameter tuning required. In addition, SSL alleviates over-shrinkage of important signals

by providing enough prior support for large effects. Theoretical results and simulations

reported in Ročková and George (2018) and Ročková (2018) show that SSL attains near

rate-minimax convergence (for the posterior mode as well as the entire posterior) and per-

forms very well even when the columns in the design matrix are strongly correlated. In this

article, we build on the Spike-and-Slab LASSO framework by incorporating aspects of the

Sorted L-One Penalized Estimator (SLOPE) method of Bogdan et al. (2015). The main

motivation behind SLOPE was False Discovery Rate (FDR) control, one of the central

goals of methodological developments in multiple regression (see e.g. Barber et al. (2015);

Candès et al. (2018)). Compared to methods aiming at perfect signal recovery, control-

ling for FDR is more liberal as it allows for some small number of mistakes. As a result,

this leads to substantial gains in power and in prediction improvements when the signal is

weak. As shown in Bogdan et al. (2015), SLOPE controls for FDR when the design matrix

is orthogonal. Moreover, Su and Candès (2016) and Bellec et al. (2018) showed that, con-

trary to the LASSO, SLOPE allows one to achieve the exact minimax convergence rate for

regression coefficients in sparse high dimensional regression. However, similarly as with the

LASSO, it is challenging to attain good prediction and, at the same time, good variable

selection with SLOPE in finite samples. Large amounts of shrinkage, needed to keep FDR

small, result in large estimation bias of important regression coefficients and thereby poor

estimation. One practical remedy, suggested by Bogdan et al. (2015); Brzyski et al. (2019),

is proceeding in two steps: i) using SLOPE to detect relevant predictors; ii) applying stan-

dard least-squares with selected predictors for estimation. This two-step approach allows

one to diminish the bias of SLOPE. However, there still remains the problem of the loss of

FDR control, which typically occurs when the columns of the design matrix are correlated.

This loss of FDR control results from over-shrinkage of large regression coefficients, whose
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unexplained effect is often compensated by even slightly correlated “false” explanatory

variables (see Su et al. (2017) for the theoretical analysis of the similar phenomenon for

the LASSO). Combining SLOPE with SSL, we hope to address these issues be designing

the Adaptive Bayesian version of SLOPE.

The second objective of our work has been to develop a variable selection framework

for missing data among covariates. The most common practice of dealing with missing

data is the list-wise deletion (complete case analysis), which confines the analysis to the

observations with no missing attributes. This approach leads to estimation bias, unless the

missing data are generated completely randomly, and to a huge information loss. Moreover,

this approach is no longer feasible in a large-scale context, where even a small proportion

of missing values for each explanatory variable could lead to elimination of the majority of

observations. As Zhu et al. (2019) says: “One of the ironies of working with Big Data is

that missing data play an ever more significant role, and often present serious difficulties for

analysis.” There is no shortage of literature on missing values management, e.g. see Little

and Rubin (2019) and the platform R-miss-tastic1 (Mayer et al., 2019) for an overview

of the state of the art. However, there are only a few methods for selecting a model where

the data contain missing values. For example, in generalized linear models, Claeskens and

Consentino (2008); Ibrahim et al. (2008); Jiang et al. (2019) adapted likelihood-based in-

formation criteria designed for complete data such as AIC. However, their methods cannot

process large data where the dimension p is larger than (or comparable to) the sample

size n. To handle high-dimensional incomplete data in linear models, Loh and Wainwright

(2012) formulated a LASSO variant by modifying the covariance matrix estimation for the

case of missing values, and solved the resulting non-convex problem with an algorithm

based on the projected gradient descent. However, this method assumes that the l1 norm

of the vector of true regression coefficients is bounded by a constant which depends on

the sparsity level rarely known in practice. In another related work, Zhao et al. (2017)

suggested a pseudo-likelihood method with a LASSO penalty, which can be used to select

variables, but does not estimate the parameters. Other extensions based on LASSO include

a convex conditioned LASSO of Datta et al. (2017), with asymptotic sign-consistency, but

1https://rmisstastic.netlify.com
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capable of handling only data missing completely at random. More recently, Descloux et al.

(2020) focused on sign recovery by reframing missingness as a sparse corruption problem

and then solving it with a LASSO-Zero method robust to missing not at random (MNAR)

assumption (Little and Rubin, 2019). A simple alternative to perform variable selection

with missing values could be to (1) first impute missing data and then (2) proceed with

selection. To mitigate underestimation of variance stemming from single imputation (see

e.g., Little and Rubin (2019)), results can be aggregated from multiple imputations (MI).

However, different imputed datasets can return different models (different sets of variables)

and the Rubin’s rules (see Rubin (2009)) only serve for aggregating estimators of the same

regression coefficients. An interesting solution is proposed in Liu et al. (2016) where pe-

nalized regression is combined with MI to give a probability of selection for each variable,

followed by cross validation to find a cutoff for final selection. However, aggregating dif-

ferent models from the resulting multiple imputed data sets becomes complex when the

number of variables in the data set is very large.

Despite these recent advances, model selection with missing values remains largely under-

developed. Interesting theoretical guarantees are often obtained only under restrictive

assumptions. Methodology for specific purposes, such as FDR control considered here, has

not been explored yet with missing values.

1.1 Our Contributions

Our contributions bridge two seemingly unrelated areas: (1) penalized likelihood regres-

sion methodology and (2) missing data treatments. Our first contribution is the proposal

of an adaptive Bayesian version of SLOPE (ABSLOPE) which builds on the Spike-and-

Slab LASSO framework by incorporating aspects of the Sorted L-One Penalized Estimator

(SLOPE). By embedding SLOPE within a Bayesian spike-and-slab framework, our prior is

constructed so that the “spike” component effectively reduces to regular SLOPE for very

small regression coefficients. Together with a bias-reducing slab for large signals, this al-

lows for FDR control under a wide range of possible scenarios, as will be seen from our

extensive simulation study. In addition, the “slab” component of our mixture prior pre-

serves the averaging property of SLOPE for similar regression coefficients (see Figueiredo

and Nowak (2016) for discussion of the SLOPE averaging effect). This leads to very good
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prediction properties when regressors are substantially correlated. The computation with

our mixture SLOPE prior is based on an algorithm with an Expectation Maximization

(EM) spirit (Lavielle, 2014). While ABSLOPE is a standalone contribution, the nature of

the computation (i.e. the EM algorithm) suggests a compelling possibility that it could be

elegantly extended to missing data problems.

To address the missing covariates problem, we propose a stochastic approximation EM

algorithm (Lavielle, 2014) to estimate the parameters of our model and, at the same time,

deal with missing values. Missing data and hyper-parameters of the mixture SLOPE prior

are iteratively updated inside the algorithm, automating the tuning of the prior. Addi-

tionally, we propose a computationally efficient approximation algorithm, SLOBE, where

instead of generating from the respective conditional distributions, parameters are updated

based on the approximation to their conditional expectation.

Our aim is to develop a complete and efficient methodology for selection of variables with

high dimensional data and with incomplete data. The methodology has been implemented

in R (R Core Team, 2018) programs ABSLOPE and SLOBE. The codes that reproduce

all our experiments are available from GitHub (Jiang et al., 2021a).

This manuscript is organized as follows: Section 2 introduces notation and assump-

tions about our ABSLOPE model. Section 3 describes the stochastic approximation EM

algorithm (and its simplified variant) for processing missing data. Section 4 evaluates the

methodology with a comprehensive simulation study focusing on power, FDR and esti-

mation bias while distinguishing the complete case and the incomplete case. In Section

5, we apply our approach to a medical dataset of trauma patients to develop a model

that predicts the rate of platelets using (incomplete) medical information collected by the

ambulance. Finally, Section 6 concludes our work with a discussion.

2 Model and Assumptions

Let y � �yi,1 B i B n� be a vector of n responses and X � �Xij,1 B i B n,1 B j B p� a design

matrix of dimension n�p standardized so that each column has mean 0 and a unit l2 norm,

i.e. Pn
i�1Xij � 0 and Pn

i�1X
2
ij � 1 for 1 B j B p. We consider the problem of estimating β
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based on realizations y from the linear regression model:

y �Xβ � ε, (1)

where β � �βj,1 B j B p� is the vector of regression coefficients of length p, for which we

assume a sparse structure, and ε is a vector of length n of independent Gaussian errors

with mean 0 and variance σ2, i.e. ε � N �0, σ2In�.
2.1 SLOPE

SLOPE (Bogdan et al., 2015) estimates coefficients by minimizing a regularized residual

sum of squares using a sorted l1 norm penalty which generalizes the LASSO by penalizing

larger coefficients more stringently:

β̂SLOPE � arg min
β>Rp

�1

2
Yy �XβY2

� σ
p

Q
j�1

λj SβS�j�¡ , (2)

where the penalty coefficients λ1 C λ2 C � C λp C 0 and the absolute values of elements in

β are sorted in a decreasing order SβS�1� C SβS�2� C � C SβS�p�. The sorted l1 penalty can also

be written as:

pen�λ� � σ p

Q
j�1

λj SβS�j� � σ p

Q
j�1

λr�β,j�Sβj S ,
where r�β, j� > �1,2,�, p� is the rank of βj among elements in β in a descending order. To

solve the convex but non-smooth optimization problem (2), a proximal gradient algorithm

can be used as detailed in Bogdan et al. (2015). Unlike in SSL, the SLOPE formulation

operates under the following premise: the higher the rank (i.e. the stronger the signal),

the larger the penalty. This behavior is quite similar to the Benjamini-Hochberg procedure

(BH) (Benjamini and Hochberg, 1995), which compares more significant p-values with more

stringent thresholds. In this way, SLOPE can be seen as building a bridge between the

LASSO and the False Discovery Rate (FDR) control for multiple testing. In the context

of multiple regression we define FDR of an estimator β̂ � �β̂1, . . . , β̂p� as

FDR � E� V

max�1,R�� ,
where

R � #�j � β̂j x 0� and V � #�j � β̂j x 0 , βj � 0� .
8



SLOPE (Bogdan et al., 2015) uses the sequence of parameters λBH � �λBH,1, . . . , λBH,p� with

λBH,j � Φ�1 �1 � j �
q

2p
� , (3)

where Φ��� denotes the cdf of N �0,1�, controls the FDR at level q.

2.2 Adaptive Bayesian SLOPE

As with any other penalized likelihood estimator, SLOPE can be seen as a posterior mode

under the following prior (Sepehri, 2016):

p�β S σ2;λ� � C�λ,σ2� p

M
j�1

exp�� 1

σ
λr�β,j�Sβj S� ,

where C�λ,σ2� is a normalizing constant.

This prior depends on just one sequence of tuning parameters λ, which regulates both

model selection and shrinkage. Simulation results reported in Bogdan et al. (2015) show

that the selection of λ leading to FDR control also leads to over-excessive shrinkage and

large estimation bias. To solve this problem we follow the idea of the Spike-and-Slab LASSO

(SSL) (Ročková and George, 2018). SSL avoids over-shrinkage of large effects with a two-

point Laplace mixture prior, where large coefficients can escape shrinkage by migrating

towards the slab portion of the prior. The mixture prior formally writes as

p�β S γ� � p

M
j�1

�γjφ1�βj� � �1 � γj�φ0�βj�� , (4)

where φ1�βj� � 0.5λ1e�λ1Sβj S serves as a slab distribution for modeling large effects, φ0�βj� �
0.5λ0e�λ0Sβj S with λ0 AA λ1 is a spike distribution for modeling negligibly small effects,

and γj > �0,1� is the indicator of the true signal. The spike component is assigned a

large penalty λ0 (small variance) to weed out noise, while the slab component has a small

penalty λ1 (large variance) to provide enough support for large signals. The Spike-and-

Slab LASSO procedure is based on maximum a posteriori estimation (MAP) which relies

on fast weighted LASSO calculations with weights automatically adjusted throughout the

algorithm. Namely, separately for each variable, we have a penalty which depends on the

(conditional) posterior probability that this variable is an important predictor. The SSL

prior also automatically learns the level of sparsity through an empirical-Bayes plug-in

inside the algorithm. The optimal choice of the spike penalty λ0 relates to the prior mixing
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weight θ and should reflect the inherent sparsity of the signal (Ročková, 2018). The SSL

procedure does not rely on a single value λ0 but, similarly as the LASSO, creates a solution

path indexed by increasing values of λ0. Typically, the path stabilizes when λ0 increases and

one can report a solution from this stable region. Since the SLOPE procedure was shown

to be adaptive to the level of sparsity, we will replace the spike portion of the SSL prior

with the Bayesian SLOPE prior to achieve more automatic sparsity adaptation (hoping for

a reasonable FDR control).

In our adaptive Bayesian SLOPE (ABSLOPE), we thereby consider a different hier-

archical Bayesian model with the spike prior based on the sequence of SLOPE decaying

parameters to provide FDR control and to stabilize estimation of large signals by addi-

tional shrinkage of regression parameters towards one another (see Brzyski et al. (2019) for

some discussion of the SLOPE shrinkage). ABSLOPE borrows strength across covariates

(by tying them together through the spike distribution) and, similarly as SSL, allows for

estimation of latent inclusion parameters and the level of sparsity (i.e. number of nonzero β

coefficients). The procedure requires only three interpretable input parameters: FDR level

q and the hyperparameters a and b of the Beta prior for the sparsity level θ � Beta�a, b�.
The ABSLOPE prior on the regression vector β is formally defined as:

p�β S γ, c, σ2;λ�� cP
p
j�1 1�γj�1� p

M
j�1

exp��wj Sβj S 1
σ
λr�Wβ,j�  . (5)

This formulation may seem a bit complicated at first sight and so we carefully explain its

components below:

1. Each βj x 0 is regarded as signal and noise otherwise.

2. As is customary with spike-and-slab priors, each covariate xj is equipped with a

binary inclusion indicator γj > �0,1� which indicates whether βj is is substantially

different from the noise level. The vector γ � �γ1,�, γp� then indexes 2p possible

model configurations. Conditionally on a mixing (prior inclusion) weight θ > �0,1�,
we define the model distribution as an independent Bernoulli product:

p�γ S θ� � p

M
j�1

θγj�1 � θ�1�γj ,

where θ � P�γj � 1; θ� is formally defined as the expected fraction of large βj, i.e.,

θ indicates the level of sparsity. We assume that θ is either fixed or arose from a
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beta distribution Beta�a, b�, where the values of a and b can be selected by the user,

according to an initial guess of the signal sparsity.

3. The parameter c > �0,1� is the ratio of average signal magnitudes between the null

components and the non-null components. We assume a non-informative prior c �

U�0,1�.
4. We define a diagonal weighting matrix W � diag�w1,w2,�,wp� consisting of elements

wj � cγj � �1 � γj� � ¢̈̈̈̈¦̈̈̈̈¤
c, γj � 1

1, γj � 0
.

5. For the case when the noise variance σ is unknown, we can assume an uninformative

prior p�σ2�� 1
σ2 .

To motivate the prior (5), it is useful to note (detailed derivations is provided in Ap-

pendix A.1) that simple rescaling of coefficients drawn from (2.2) yields the desired spike-

and-slab variant.

Proposition 1. Assume that entries in a random vector z � �z1, z2,�, zp�� have a SLOPE

prior, i.e.

p�z S σ2;λ�� p

M
j�1

exp�� 1

σ
λr�z,j�Szj S  .

Then β �W �1z � � z1w1
,�,

zp
wp
� follows a prior given by (5).

As a result, when W is known (i.e. we know the signal and noise variables from γj >�0,1�) and when the data are fully observed, the MAP for β under the ABSLOPE prior

(5) can be obtained as a solution to SLOPE (2) with a weighted design matrix X̃ �XW �1.

Let us now clarify the value of introducing the weighting matrix W . It turns out that when

γj � 0 we have wj � 1, i.e., noise variables are treated with the regular SLOPE penalty. This

penalty shrinks larger estimates more than the smaller ones, according to their expected

values in the ordered sequence of estimates of noise regression coefficients. Since these

expected values increase with p, our spike prior leads to the multiple testing adjustment,

similar as in case of the Benjamini and Hochberg (1995) correction for multiple testing.
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Figure 1: Heat-maps of the SLOPE prior (obtained with θ � 0�, SSL prior and ABSLOPE

prior in two dimensions.

On the other hand, when γj � 1 we have wj � c @ 1 and the variables are treated as true

signals and thereby not shrunk as much. This is achieved by multiplying the respective

elements of the vector of tuning parameters by c and, additionally, by moving these variables

towards the end of sequence. This implies that, under ABSLOPE, the large effects βj will

be assigned a penalty cλr�Wβ,j� that is substantially smaller than λr�β,j� obtained under

the regular SLOPE. As a result, this adaptive version is poised to yield more accurate

estimation due to the smaller shrinkage of large regression coefficients.

Figure 1 depicts heatmaps of the SLOPE, SSL and ABSLOPE priors for two coefficients.

We can see how SSL puts a bit more mass on coordinate axes, supporting more the larger

values (less shrinkage). The ABSLOPE prior is seen to retain the clustering property

of SLOPE (putting a prior mass on the diagonal lines) but is more star shaped, again

supporting larger values.

2.3 Assumptions of missing values

We suppose that the missingness occurs only in the covariates X but not in the response y.

For each individual i, we denote Xi,obs the observed elements of Xi � �Xi1,Xi2,�,Xip� and

Xi,mis the missing ones. We also decompose the matrix of covariates as X � �Xobs,Xmis�,
keeping in mind that the missing elements may differ from one individual to another. For

each individual i, we define the missing data indicator vector ri � �rij,1 B j B p�, with rij � 1

if Xij is missing and rij � 0 otherwise. The matrix r � �ri,1 B i B n� then defines the missing

data pattern. The missing data mechanism is characterized by the conditional distribution
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of r given X and y, with a parameter φ, i.e., p�riSXi, yi, φ�. In the literature on missing

data (Little and Rubin, 2019), three mechanisms (Rubin, 1976) are available to describe

the distribution of the missingness and code the different reasons for the missingness: i)

Missing completely at random (MCAR): the absence is not related to any variable in the

study; ii) Missing at random (MAR): the missing data depends only on the observed

variables; iii) Missing not at random (MNAR): the absence depends on the value itself.

Throughout this paper, we assume the MAR mechanism which implies that the missing

values mechanism can therefore be ignored when maximizing the likelihood (Little and

Rubin, 2019). A reminder of these concepts is given in the Appendix A.2.

We adopt a probabilistic framework by assuming that Xi � �Xi1, . . . ,Xip� is normally

distributed:

Xi �
i.i.d.
Np�µ,Σ�, i � 1,�, n .

As assumed at the beginning of Section 2, the covariates should be standardized. Here

we have to consider how to scale X with existence of missing data. When the missing

values are MCAR, the scaling can be performed as a pre-processing step before performing

the analysis. Indeed, the observed values represent a random sample from the population,

so that the standard deviations estimated using observed data only are unbiased estimates

of the population standard deviations. However, they are more variable. When the missing

data are MAR, standard deviations estimated using observed data can be severely biased.

Indeed, consider a case where two variables are highly correlated and missing values occur

in one variable when the values of the other variable are larger than a constant, then the

estimated standard deviation will be biased downward. Consequently, its estimation need

to be included in the analysis. We detail in the Appendix A.3, how we update mean and

standard deviation at each iteration of algorithm presented in Section 3.

2.4 Overview of Modeling

Figure 2 shows our ABSLOPE graphical model with variables, parameters and their rela-

tions. We aim at estimating β and σ2, treating parameters µ and Σ as nuisance.
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θ γ

c
β

σ2

X

Figure 2: ABSLOPE graphical model. Arrows indicate dependencies. White circles are for

latent variables, gray ones for observed variables and squares for parameters.

3 Parameter Estimation and Model Selection

In this section, we develop an ABSLOPE method based on the stochastic approximation

EM algorithm. As this algorithm entails proper sampling which can be quite time consum-

ing, we also provide a simplified heuristic version called SLOBE, where the stochastic step

is replaced with deterministic approximations of parameter expected values. This faster

variant allows us to consider models of larger dimensions and, according to our simulation

study, performs very similarly to the stochastic version.

3.1 Maximizing the Observed Penalized Likelihood

According to the model defined in Section 2 and presented in Figure 2, the penalized

complete-data log-likelihood can be written as:

`comp � log p�y,X, γ, c; β, θ, σ2� � pen�β�
� log �p�X S µ,Σ�p�y SX; β,σ2�p�γ S θ�p�c�� � pen�β�
� �

1

2
log�2πSΣS� � 1

2
�X � µ�TΣ�1�X � µ� � n log�σ� � 1

2σ2
Yy �XβY2

�

p

Q
j�1

1�γj � 1� log θ �
p

Q
j�1

1�γj � 0� log�1 � θ� � 1

σ

p

Q
j�1

wj Sβj Sλr�Wβ,j�.

(6)

Similarly as the EMVS variable selection procedure of Ročková and George (2014), we

focus on obtaining the MAP point estimates and do not aspire at fully Bayesian inference

which would entail calculating the entire posterior distribution. Due to the presence of
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latent variables Xmis, γ and c, we estimate β by maximizing the observed log-likelihood

which integrates over the latent variables: `obs �

t
`comp dXmis dcdγ. We use the EM

algorithm (Dempster et al., 1977) to estimate β, and in the meantime, obtain simulated γ to

distinguish the true signals from the noise, i.e. to select variables. Given the initialization,

each iteration t updates βt to βt�1 with the following two steps:

� E step: The expectation of the complete-data log likelihood with respect to the

conditional distribution of latent variables is computed, i.e.,

Qt
� E�`comp� wrt p�Xmis, γ, c, θ S y,Xobs, β

t, σt, µt,Σt� .
Since this is not tractable, we derive a stochastic approximation EM (SAEM) algo-

rithm (Lavielle, 2014) by replacing the E step by a simulation step and a stochastic

approximation step.

– Simulation: draw one sample �X t
mis, γ

t, ct, θt� from

p�Xmis, γ, c, θ S y,Xobs, β
t�1, σt�1, µt�1,Σt�1� ; (7)

– Stochastic approximation: update function Q with

Qt
� Qt�1

� ηt �`compU
Xt

mis,γ
t,ct,θt

�Qt�1� , (8)

where ηt is the step-size.

The step-size �ηt� is chosen as a decreasing sequence as described in Delyon et al.

(1999) which ensures almost sure convergence of SAEM to a maximum of the observed

likelihood in their continuously differentiable case.

� M step: �βt�1, σt�1, µt�1,Σt�1� � arg maxQt�1.

Note that Σt�1 is estimated as above only when p @@ n. Otherwise we consider a

shrinkage estimation as discussed in Remark 1. Indeed, we regard �µ,Σ� as auxiliary

parameters, which are needed only to update the missing values.

Despite the apparent complexity of the algorithm, it turns out that the likelihood (6) can

be decomposed into several terms: one term for the linear regression part, one term for the
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covariates distribution and terms for the latent variables γ and c, as illustrated in Figure

2. Consequently, one iteration can be divided into tractable sub-problems, as detailed in

the following subsections.

3.2 Simulation Step: Sampling the Latent Variables

To perform the simulation step (7), we use the Gibbs sampler. To simplify notation, we

hide the superscript and note that all conditional distributions are computed given the

quantities from the previous iteration. We perform the following sampling procedure:¢̈̈̈̈̈̈̈
¨̈¦̈̈̈̈̈̈
¨̈̈¤

γ � Bin� θc exp��c 1
σ
Sβj Sλr�Wβ,j��

�1�θ� exp�� 1
σ
Sβj Sλr�Wβ,j���θc exp��c 1

σ
Sβj Sλr�Wβ,j��� ;

θ � Beta �a �Pp
j�1 1�γj � 1�, b �Pp

j�1 1�γj � 0�� , with Beta�a, b� a prior for θ ;

c � Gamma �1 �Pp
j�1 1�γj � 1�, 1

σ Pp
j�1Sβj Sλr�Wβ,j�1�γj � 1�� truncated to �0,1�.

(9)

The detailed calculation and interpretation can be found in Appendix A.4. In addition, to

simulate the missing values Xmis, we perform a decomposition:

Xmis � p�Xmis S γ, c, y,Xobs, β, σ, θ, µ,Σ�
� p�Xmis S y,Xobs, β, σ, µ,Σ�
� p�y SXobs,Xmis, β, σ�p�Xmis SXobs, µ,Σ� .

(10)

Here, we observe that the target distribution (10) is a normal distribution since the two

terms after factorization are both normal. In the following proposition, we give the explicit

form of the target distribution as a solution to a system of linear equations.

Proposition 2. For a single observation x � �xmis, xobs� we denote with xobs and xmis

observed and missing covariates, respectively. Let M be the set containing indexes for

missing covariates and O for the observed ones. Assume that p�xobs, xmis; Σ, µ� � N �µ,Σ�
and let y � xβ � ε where ε � N�0, σ2�. For all the indexes of the missing covariates i >M,

we denote:

mi �

p

Q
q�1

µjsiq, ui � Q
k>O

xkobssik, r � y � xobsβobs, τi �
»
sii � β2

i ~σ2 ,

with sij elements of Σ�1 and βobs the observed elements of β.

Let µ̃ � �µ̃i�i>M be the solution of the following system of linear equations:

rβi~σ2
�mi � ui
τi

� Q
j>M,jxi

βiβj~σ2
� sij

τiτj
µ̃j � µ̃i , for all i >M , (11)

16



and let B be a matrix with elements:

Bij �

¢̈̈̈̈¦̈̈̈̈¤
βiβj~σ2

�sij
τiτj

, if i x j

1, if i � j
,

then for z � �zi�i>M where zi � τiximis we have:

z S xobs, y; Σ, µ, β, σ2
� N�µ̃,B�1� .

As a result, we can simulate missing covariates from:

xmis S xobs, y; Σ, µ, β, σ2
� N�µ̃^ τ,B�1

^ �ττT �� ,
where τ � �τi�i>M ^ is used for Hadamard division. The proof is provided in Appendix A.5.

3.3 Stochastic Approximation and Maximization Steps

After the simulation step, we obtain one sample for each latent variable: X t
mis, γ

t, ct, and

thus W t with diagonal elements wtj � 1 � �1 � ct�γtj. Now we have several parameters

to estimate, but each parameter only concerns some of the terms in the complete-data

likelihood. This helps us simplify calculations. The maximization step is nevertheless

quite difficult because the complete model does not belong to a regular exponential family

(if so we could update the sufficient statistics and maximize more easily).

As the implementation of SAEM is quite challenging in the general step-size case, we

start with the simpler case of fixed step-size ηt � 1. It is important to note that this

causes larger variance compared to setting the step-size as a decreasing sequence Delyon

et al. (1999) and there is no guarantee of convergence to the actual mode, only to its

neighborhood.

3.3.1 Step-size ηt � 1

When ηt � 1, estimation boils down to maximizing the complete-data likelihood completed

by sampling the latent variables from their conditional distribution given the observed

values .

1. Update β.

βt � arg max
β

Qt
1�β� �� � 1

2�σt�1�2 Yy �X tβY2
�

1

σt�1

p

Q
j�1

wtj Sβj Sλr�W tβ,j� ,
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where X t � �Xobs,X t
mis�. This estimate corresponds to the solution of SLOPE, given

the value of W , Xmis and σ. In our implementation of ABSLOPE we solve the

SLOPE optimization problem using the Alternative Direction Method of Multipliers

of Boyd et al. (2011), which turns out to be much quicker than the proximal gradient

algorithm of Bogdan et al. (2015) when the regressors are strongly correlated or when

they are on different scales, as in our reweighting scheme.

2. When σ is unknown it may be updated according to the formula

σt � arg max
σ

Qt
2�σ� �� �n log�σ� � 1

2σ2
Yy �X tβtY2

�
1

σ

p

Q
j�1

wtj Sβtj Sλr�W tβt,j� .

Given by the derivative, the solution to estimate σ is:

σt �
1

2n

<@@@@@>
p

Q
j�1

λr�W tβt,j�wtj Sβtj S �
¿ÁÁÁÀ� p

Q
j�1

λr�W tβt,j�wtj Sβtj S�2

� 4nRSS

=AAAAA? , (12)

where the RSS (residual sum of squares) is Yy �X tβtY2.

If we omit the penalization term, (12) amounts to σt �
¼

RSS
n , which is the classical

formula for MLE of σ when β is also estimated by MLE. In this case this estimator

would be biased downwards. Interestingly, our posterior mode estimator of
º
nσ

is larger than the corresponding RSS, which, according to our simulation results

often leads to a less biased estimator when most of the true effects are detected by

ABSLOPE.

3. Update µ,Σ:

µt,Σt
� arg max

µ,Σ
�

1

2
log�2πSΣS� � 1

2
�X t

� µ��Σ�1�X t
� µ� .

When p @@ n, the solution is given by the empirical mean and the empirical covariance

matrix:

µt � X̄ t
�

1

n

n

Q
i�1

X t
i and Σt

�
1

n

n

Q
i�1

�X t
i � X̄

t��X t
i � X̄

t�� .
In high dimensional setting, estimation of Σt by the empirical covariance matrix is

replaced by shrinkage estimation, as discussed in Remark 1.
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Remark 1. To tackle the problem of estimation and inversion of the covariance matrix

in high dimensions, one can resort to shrinkage estimation as detailed in Ledoit and Wolf

(2004). With the assumption that the ratio n
p is bounded, they propose an optimal lin-

ear shrinkage estimator as a linear combination of identity matrix Ip and the empirical

covariance matrix S, i.e.:

Σ̂ � ρ1Ip � ρ2S, where ρ1, ρ2 � arg min
ρ1,ρ2

EYΣ̂ �ΣY2 .

The method boils down to shrinking empirical eigenvalues towards their mean. The pa-

rameters ρ1 and ρ2 are chosen with asymptotically (as n and p go to infinity) uniformly

minimum quadratic risk in its class.

3.3.2 General Step-size

With a general step-size (say ηt �
1
t ), for a model parameter ψ we set

ψt�1
� ψt � ηt �ψ̂tMLE � ψ

t� , (13)

where ψ̂tMLE is the MLE estimator of the complete-data likelihood completed by drawing

the latent variables from their conditional distributions given the observed information.

This exactly corresponds to the estimate in Subsection 3.3.1 when ηt � 1. In other words,

we apply stochastic approximations on the model parameters, instead of directly operating

on the likelihood in (8). When the likelihood (6) is a linear function of the parameters, the

stochastic approximation step in equation (8) corresponds exactly to our proposal (13). In

other situations, it gives good results from an empirical point of view.

3.4 SLOBE: Quick Version of ABSLOPE

The implementation of SAEM, as described in Subsection 3.2 and 3.3, can still be costly

in terms of computation time, even if the terms of the likelihood decompose well and we

use the approximation (13). We therefore propose a simplified version of the algorithm,

called SLOBE, which instead of drawing samples �X t
mis, γ

t, ct, θt� from their conditional

distribution (7) in the simulation step, approximates them by their conditional expectation,

i.e., �X t
mis, γ

t, ct, θt�� E�Xmis, γ, c S y,Xobs, β
t�1, σt�1, µt�1,Σt�1� ;
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To simplify notation, we hide the superscript, but note that all the conditional expectations

are computed given the quantities from the previous iteration.

1. Approximate γj by:

π �� E�γj � 1 S γ�j, c, β, σ, θ,W � � p�γj � 1 S γ�j, c, β, σ, θ,W �
(9)
�

θc exp ��c 1
σ Sβj Sλr�Wβ,j���1 � θ� exp �� 1

σ Sβj Sλr�Wβ,j�� � θc exp ��c 1
σ Sβj Sλr�Wβ,j�� . (14)

2. Approximate θ by:

E�θ S γ, y,Xobs,Xmis, β, σ, c, µ,Σ,W � � E�θ S γ, β, σ,W � (9)
�

a �Pp
j�1 1�γj � 1�
a � b � p

, (15)

where a and b are fixed parameters in the prior of θ.

3. Approximate c by:

E�c S γ, y,Xobs,Xmis, β, σ, θ, µ,Σ,W � (22)
�
R 1

0 x
a� exp��b�x�dx

R 1

0 x
a��1 exp��b�x�dx , (16)

where a� � 1 �Pp
j�1 1�γj � 1�, b� � 1

σ Pp
j�1Sβj Sλr�Wβ,j�1�γj � 1�.

4. In the case with missing values, for the ith observation Xi, approximate Xi,mis by:

E�Xi,mis S γ, c, y,Xi,obs, β, σ, θ, µ,Σ� � E�Xi,mis S y,Xi,obs, β, σ, µ,Σ� ,
which is provided by Proposition 2.

Then, in step M, we maximize the likelihood of the complete data, as in Subsection 3.3.1.

The impact of replacing the simulation step with a conditional expectation is that we ignore

the variability of latent variable sampling, which in high dimensional settings helps reduce

noise of the algorithm, and which also leads to accelerations as shown in our simulation

study in the supplementary materials (Jiang et al., 2021b). We provide a summary of

ABSLOPE and SLOBE methods in Appendix A.6.

3.5 Details of implementation of ABSLOPE and SLOBE

Standardization In our simulation studies and the real life application of ABSLOPE

we decided to not penalize the intercept term, which is estimated by the average value of

the response variable in the training sample. The remaining parameters of our regression

model are then estimated by running ABSLOPE using the centered values of the response

variable and the centered and standardized design matrix X, as assumed in Section 2.

20



Initialization Appendix A.7 provides the default initialization and prior parameters we

have taken for the following simulation studies. The algorithm is not sensitive to the choice

of values a and b (14), but initial values for β may have a stronger impact, particularly when

β has many small non-zero elements. Based on extensive simulation studies we recommend

to start from the cross-validated LASSO estimates, based on preliminary imputation by

PCA implemented in missMDA package(Josse and Husson, 2016), or by the Multivariate

Imputation by Chained Equations from the mice package (van Buuren and Groothuis-

Oudshoorn, 2011).

Step-size For ABSLOPE we set ηt � 1 for the first t0 � 20 iterations to approach the

neighborhood of the MAP estimator, then, choose a positive decreasing sequence ηt �
1

t�t0

to approximate the MAP, with the stochastic approach formula (13).

4 Simulation study

4.1 Simulation setting

To illustrate the performance of our methodology, we perform simulations by generating

data sets as follows:

Y A design matrix Xn�p is generated from a multivariate normal distribution N �0,Σ� , with

all diagonal elements of the covariance matrix equal to 1~n.

Y The response variable is generated from the model

Y �Xβ � ε,

where ε � N�0, In� and the nonzero elements of β are of the form c
º

2 log p. This signal

strength is inspired by an observation that for the orthogonal design matrix X �X � I the

maximal least square estimator over the false predictors is close to
º

2 log p. Thus, when

c A 3 then signal is strong when compared to the background noise, while values of c close

to 1 correspond to signals which are barely distinguishable from the noise.

Y Missing values are entered into the design matrix using a MCAR or MAR mechanism.

For the former, we randomly generate a percentage of missing cells; for the later, we follow

the multivariate imputation procedure proposed by Schouten et al. (2018).
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4.2 Convergence of SAEM and comparison of ABSLOPE and

SLOBE algorithms

We first illustrate the convergence of SAEM and compare the performance of ABSLOPE

and SLOBE algorithms. We set the size of design matrix as n � p � 100, with 10% of

missing values. We simulated k � 10 true predictors, with values β15 � β25 � β35 � β65 �

β75 � β85 � β95 � 3
º

2 log p and β45 � 1.5
º

2 log p, β55 � 5
º

2 log p.

ß45 ß55 ß56
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Figure 3: Convergence plots for three coefficients with ABSLOPE and SLOBE (colored

solid curves). Black dash lines represent the true value for each β. Estimates obtained

with three different sets of simulated data are represented by three different colors.

The solid lines in Figure 3 represent the path of the SAEM solutions for three simu-

lated data sets. These graphs are representative of all the observed results. There are large

fluctuations during the first t0 �20 iterations, then after introducing the stochastic approx-

imation at the 20th iteration, convergence is achieved gradually. We can also observe that

a weak effect β45 was missed in one of our simulation runs.

The dashed lines in Figure 3 represent the final results of the SLOBE algorithm, which

converged after 33, 35 and 68 iterations, respectively. We can see that ABSLOPE and

SLOBE yield very similar results. The most significant differences occur for β̂45 in sim-
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ulation 2, where ABSLOPE is slightly more accurate, and for β̂55 in simulation 3, where

SLOBE is slightly more accurate.

In addition, we also represent the convergence curves for σ with ABSLOPE in supple-

mentary materials Jiang et al. (2021b) in order to compare the estimate of σ by ABSLOPE

to the biased MLE estimator without prior knowledge, i.e., σ̂MLE �

¼
RSS
n . These results

show that that the estimates of σ with both methods are biased downward, but since

ABSLOPE has an additional correction term (12), it leads to a less biased estimator.

4.3 Behavior of ABSLOPE with missing values

We then evaluate ABSLOPE in different parametrization settings to see how the signal

strength, sparsity and other parameters influence its performance.

Criterion We apply ABSLOPE on a synthetic data set and obtain a sequence of esti-

mated indicator vectors γ̂. A variable i is identified as an important predictor if the average

of sampled γ̂i in the last 20 iterations exceeds 0.5. For the final estimation of β, we keep only

the selected terms in the estimated β from the last iteration. We compare the selected model

to the true one. The total number of true discoveries is TP � #�j � Sβj S A 0 and Sβ̂j S A 0�
and the total number of false discoveries is FN � #�j � Sβj S A 0 and β̂j � 0�.

To evaluate the performance, we consider the following quantities:

Y Power � TP
TP�FN ;

Y FDR �
FP

max�FP�TP,1� ;

Y MSE of β (Relative mean squared error) � Yβ̂�βY2
YβY2 ;

Y MSP: Relative squared prediction error � YXβ̂�XβY2
YXβY2 .

For each set of parameters, we repeat the procedure 200 times: i) data generation ii) es-

timation and model selection with ABSLOPE iii) evaluation with the criteria presented

above and we compute the means over the 200 simulations. The simulations were imple-

mented with parallel computing. We consider n � p � 100 and vary:

Y sparsity: number of true signal k � 3, 6, 10, 12, 15,

Y signal strength: weak 1.3
º

2 log p or strong 3
º

2 log p;

Y percentage of missingness 0.05, 0.1, 0.15, generated randomly, i.e., MCAR;

Y correlation between each pair of covariates ρ � 0, 0.5

Then we applied the Algorithm 1 on each synthetic dataset.
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Results 1: no correlation, 10% missingness - vary signal strength According to

Figure 4, We observe that in our simulation example FDR is controlled below the expected
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Figure 4: Estimated FDR (a), power (b), relative mean squared estimation error (c) and

relative mean squared prediction error (d), as functions of the number of nonzero regression

coefficients. Results for n � p � 100, percentage of missingness 10% and Σ orthogonal (no

correlation).

level 0.1. The power slightly decreases and the estimation error slightly increases with

increased number of important predictors. When the signal is very weak (signal strength
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=1.3
º

2 log p), the power is below 0.2. This is partially related to the confounding between

different model parameters, difficult to resolve when the signal is very weak.

Results 2: with correlation (ρ � 0.5, strong signal, varied percentage of missing

values). The results in Figure 5 show that: The power decreases and the FDR and the
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Figure 5: Estimated FDR(a), power(b), relative mean squared error (c) and relative mean

squared prediction error (d), as functions of the number of nonzero regression coefficients.

Results for n � p � 100, with correlation ρ � 0.5 and strong signal 3
º

2 log p.

estimation error increase when the percentage of missing data increases. However, we
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can observe that FDR is only slightly above the nominal level. Interestingly, in case of

correlated predictors the prediction error is much smaller than the estimation error and

decreases when the number of important predictors increases.

In addition, we present the results varying the correlations and testing the robustness to

the normal assumption for covariates in the supplementary materials (Jiang et al., 2021b).

The power, FDR and estimation and prediction errors obtained with the proposed AB-

SLOPE based on the Gaussian assumptions are robust to moderate deviations from the

assumed probabilistic model.

4.4 Empirical comparison of SLOBE with other regularization

methods for n � p � 500.

In this section we present the results of the simulation study comparing different model

selection methods in a high-dimensional setup n � p � 500.

Estimation Procedures. We consider the following estimation procedures

� Efficient SLOBE implementation of Adaptive Bayesian SLOPE based on the BH

sequence λBH (3) with the nominal FDR level q � 0.1.

� Adaptive Bayesian LASSO (ABLAS) - a new version of the Spike and Slab LASSO,

with the spike prior fixed using the multiple testing principles. ABLAS is obatined by

running SLOBE algorithm with the constant Bonferroni sequence λ1 � . . . � λp � λBH,1

with q � 0.1. Similarly as in SLOBE, ABLAS slab prior is estimated based on the

data.

� Cross-validated LASSO (LCV), as implemented in glmnet R package (Friedman et al.,

2010), with λ selected by minimizing the cross-validated prediction error (option

s=’lambda.min’ in cv.glmnet).

� SLOPE two stage procedure. In the first stage SLOPE is used for the model selection

and in the second stage the regression coefficients are estimated using the least squares

method within the selected model. We use SLOPE R package (Larsson et al., 2020)

and the heuristic gaussian sequence of the tuning parameters recommended in Bogdan
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et al. (2015) for FDR control when the predictors are independent. We use the

nominal FDR level q � 0.1.

� SSL: Spike and Slab LASSO as implemented in SSLASSO R package (Ročková and

George, 2018).

� Adaptive LASSO (ALAS) with weights determined by the cross-validated LASSO,

wj �
σ

SβLCVj S and with the Bonferoni adjusted λ � σλBH,1.

SLOPE, SLOBE, ABLAS and ALAS procedures use the tuning parameters adjusted

to control the number of false discoveries, which depend on the standard deviation of the

error term σ. In this section we use a consistent approach to deal with the unknown σ

case, which relies on replacing σ with

σ̂ �

¿ÁÁÀSSY �XβLCV SS2
n � SSβLCV SS0 , (17)

where SSβLCV SS0 is the size of the support of βLCV . In our simulations this estimator turned

out to be very accurate and the respective versions of ABSLOPE and SSL usually had

better properties than the versions using build-in routines for the estimation of σ (see the

supplementary materials, Jiang et al. (2021b)).

When performing these large scale simulations we observed the dependency of SLOBE

and ABLAS convergence statistics on the signal strength and sparsity. In case of strong and

sparse signals the convergence is usually obtained in less than 10 iterations, while in case of

dense and weak signals the algorithm needs more iterations to converge and sometimes has

a tendency to oscillate between different modes of the multivariate posterior distribution.

If such a situation occurs we stop the SLOBE or ABLAS algorithm after 100 iterations.

Simulation setting. In all the simulations in this section n � p � 500. The rows

of the design matrix are generated as independent random vectors from a multivariate

normal distribution N �0, 1
nΣ�. We consider two scenarios, one with independent regressors,

where the correlation matrix Σ � I, and the one with correlated regressors, where Σ is the

compound symmetry matrix with Σi,j � 0.5 for i x j. We generate the response variable

using the multiple regression model (1) with ε � N�0, I� (i.e. σ � 1). The number k of

nonzero regression coefficients in the vector β takes values from the set k > �5,10,20,40,60�.
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We consider weak signals with β1 � . . . � βk � 1.3
º

2 log p, and moderately strong signals

with β1 � . . . � βk � 2
º

2 log p.

Summary Statistics. Similarly as in Section 4.3 we report FDR, Power, MSE and

MSP, which are obtained from averaging the results of 200 simulation runs.

4.4.1 Complete data

In this section we report the results of the analysis of the complete data, i.e., of the data

without missing values. In this situation the estimator of σ (17) turned out to be very

precise and we have not observed significant deviations in performance of the methods

using this estimator and the true σ value. Therefore we report only the results for the

unknown σ case, which are illustrated in Figures 6 and 7.

Summarizing results reported in Figures 6 and 7 we can observe that SLOPE based

on the heuristic sequence of tuning parameters controls FDR when the predictors are

independent and k @ 40 and then its FDR slightly increases above the nominal level. When

the signals are weak this FDR control comes at the price of the loss of power for larger

values of k. When predictors are strongly correlated SLOPE does not longer control FDR,

which varies between 0.8 and 0.6 for sparse and denser models.

Instead, SLOBE based on the BH sequence of tuning parameters allows for FDR control

at the nominal level when the signal is strong or dense enough, so that its composition can

be learned from the data. When the signals are large, SLOBE controls FDR both for the

independent and correlated setups, has a high power and superior estimation and prediction

properties. When the signals are weak and sparse, so there is very little information to

learn the signal composition, FDR of SLOBE exceeds the nominal level. This effect is

stronger when predictors are strongly correlated. When the number of nonzero elements in

β increases such that the estimation of the signal sparsity and its magnitude becomes more

feasible then FDR of SLOBE seems to converge to the nominal level even for weak signals

and correlated predictors. These observations suggest possible theoretical developments

concerning the asymptotic FDR control by SLOBE.

Comparing Adaptive Bayes LASSO (ABLAS) to SLOBE we can observe a somewhat

unexpected phenomenon. For independent predictors FDR of ABLAS systematically in-

creases with k and for k A 60 it actually exceeds FDR of SLOBE. For correlated predictors
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Figure 6: Different performance measures as the function of the number of true nonzero

regression coefficients. Complete data with independent predictors and strong (left panel)

and weak (right panel) signals.
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Figure 7: Different performance measures as the function of the number of true nonzero

regression coefficients. Complete data with correlated predictors and strong (left panel)

and weak (right panel) signals.
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ABLAS has FDR which is systematically larger than FDR of SLOBE. This is a bit sur-

prising, since the SLOBE decaying sequence of tuning parameters is ”smaller” than the

ABLAS constant sequence. We believe that this is due to a fact that some of the estimates

of the zero elements of the β vector are larger than it is suggested by the more concen-

trated ABLAS spike prior and are more easily classified as signals. Interestingly, the related

overestimation of the sparsity parameter θ leads to the smaller bias of nonzero regression

coefficients and to the superior estimation and prediction properties of ABLAS when the

signals are weak.

Comparing different versions of adaptive LASSO we can observe that SSL systematically

has the smallest FDR and is competitive for large signals. Instead, it looses a lot of power

and estimation and prediction accuracy when signals are weak or moderately large. We

believe that this is due to the default selection of a small λ1 value, which suggests that

the true signals are large. Thus, moderately large or weak signals are attracted by the

spike component of the prior. Comparing ABLAS to ALAS we can see that ABLAS

systematically has a smaller FDR. When the signals are strong or weak and dense ABLAS

is also better with respect to prediction and estimation properties.

Least squares estimators within a SLOPE model are competitive when predictors are

independent and the signal is sparse (k @ 20) but loose accuracy when k increases. Interest-

ingly, for correlated predictors these estimators perform very similarly to the cross-validated

LASSO estimators, being worse than other methods for the strong signals but having su-

perior properties when the signal is weak. This however comes at the price of large FDR

(A 0.6).

4.4.2 With 10 % of Missing Data

In this section we report the results of the analysis of the data with 10% of observations

missing completely at random. We impute the missing data using the Principal Com-

ponents Analysis model from the missMDA R package (Josse and Husson, 2016). This

imputed data set is used for the estimation by Lasso CV, SLOPE, SSL and ALAS proce-

dures and is the starting point of SLOBE and ABLAS algorithms.

We observed that in case of missing data and independent predictors all methods are

sensitive to the inaccuracy of σ estimation. Therefore in Figures 8 and 9 we compare the
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results for the cases when σ is known and estimated. In case of strongly correlated data the

difference between the ”known” and ”estimated” σ cases was hardly visible, so we report

the results only for the ”estimated” case in Figure 10.

Figures 8-10 illustrate that the presence of missing values had a relatively small influence

on the performance of the compared methods. In case of SLOBE we can observe that FDR

is controlled roughly at the same level as when the data are complete, i.e., it is below the

nominal level when the signal is strong and converges to the nominal level when the number

of weak signals increases. Here the deterioration of properties is mainly represented by some

slight loss of power and the respective slight loss of estimation and prediction properties

as compared to the complete data case. In case of ABLAS and ALAS we see a different

pattern. Both these procedures have larger FDR than in the complete data case, which

in most cases substantially exceeds FDR of SLOBE and the nominal level. Instead, the

loss of power is smaller than in case of SLOBE and both ABLAS and ALAS do not loose

much in terms of estimation and prediction properties when compared to the complete data

case. Here we can observe that ABLAS has a systematically smaller FDR than ALAS and

better estimation and prediction properties when predictors are independent, while ALAS

has better estimation and prediction properties for correlated regressors.

Interestingly, all methods seem to be most sensitive to the inacuracy of σ estimation

when the predictors are independent and the signal is strong. This is specifically true

about SSL which looses a lot of power and estimation and prediction accuracy when σ is

estimated.

5 Application to Traumabase dataset

5.1 Details on the dataset and preprocessing

Our work is motivated by an ongoing collaboration with the TraumaBase group2 at APHP

(Public Assistance - Hospitals of Paris), which is dedicated to the management of severely

traumatized patients. Major trauma is defined as any injury that endangers life or func-

tional integrity of a person. The WHO has recently shown that major trauma in its various

forms, including traffic accidents, interpersonal violence, self-harm, and falls, remains a

2http://www.traumabase.eu/
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Figure 8: Different performance measures as the function of the number of true nonzero

regression coefficients for 10% of data missing completely at random, independent regressors

and strong signals. Left and right panel provide the results for σ known and estimated,

correspondingly.
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Figure 9: Different performance measures as the function of the number of true nonzero

regression coefficients for 10% of data missing completely at random, independent regressors

and weak signals. Left and right panel provide the results for σ known and estimated,

correspondingly.
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Figure 10: Different performance measures as the function of the number of true nonzero

regression coefficients for 10% of data missing completely at random and correlated regres-

sors, with σ estimated. Left and right panel provide the results for strong and weak signals,

correspondingly.
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public health challenge and a major source of mortality and handicap around the world

(Hay et al., 2017). Effective and timely management of trauma is critical to improving

outcomes. Delays and/or errors in treatment have a direct impact on survival, especially

for the two main causes of death in major trauma: hemorrhage and traumatic brain injury.

Using patients’ records measured in the prehospital stage or on arrival to the hospital, we

aim to establish prediction models in order to prepare an appropriate response upon arrival

at the trauma center, e.g., massive transfusion protocol and/or immediate haemostatic pro-

cedures. Such models intend to give support to clinicians and professionals. Due to the

highly stressful multi-player environment, evidence suggests that patient management –

even in mature trauma systems – often exceeds acceptable time frames (Hamada et al.,

2014). In addition, discrepancies may be observed between diagnoses made by emergency

doctors in the ambulance and those made when the patient arrives at the trauma center

Hamada et al. (2015). These discrepancies can result in poor outcomes such as inadequate

hemorrhage control or delayed transfusion.

To improve decision-making and patient care, six trauma centers within the Ile de

France region (Paris area) in France have collaborated to collect detailed high-quality clin-

ical data from accident scenes to the hospital. These centers have joined TraumaBase

progressively between January 2011 and June 2015. The database integrates algorithms

for consistency and coherence and data monitoring is performed by a central administrator.

Sociodemographic, clinical, biological and therapeutic data (from the prehospital phase to

the discharge) are systematically recorded for all trauma patients, and all patients trans-

ported in the trauma rooms of the participating centers are included in the registry. The

resulting database now has data from 7495 trauma cases with more than 250 variables, col-

lected from January 2011 to March 2016, with age ranged from 12 to 96, and is continually

updated. The granularity of collected data makes this dataset unique in Europe. However,

the data is highly heterogeneous, as it comes from multiple sources and, furthermore, is

plagued with missing values, which makes modeling challenging.

In our analysis, we have focused on one specific challenge: developing a statistical model

with missing covariates in order to predict the level of platelet upon arrival at the hospital.

This model can aid creating an innovative response to the public health challenge of major
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trauma. The platelet is a cellular agent responsible for clot formation. It is essential

to control its levels to prevent blood loss as quickly as possible in order to reduce early

mortality in severely traumatized patients. It is difficult to obtain the level of platelet in real

time on arrival at hospital and, if available, its levels would determine how the patients

are treated. Accurate prediction of this metric is thereby crucial for making important

treatment decisions in real time.

We focus on patients after an accident who were sent directly to the hospital (not sent

to Emergency Care Unit). After this pre-selection, 6384 patients remained in the data

set. Based on clinical experience, in order to predict the level of platelet on arrival at the

hospital, 15 influential quantitative measurements were included as pre-selected variables.

Detailed descriptions of these measurements are shown in the supplementary materials

(Jiang et al., 2021b). These variables were included here because they were all available to

the pre-hospital team, and therefore could be used in real situations.

Figure 11 shows the percentage of missingness per variable, varying from 0 to 60%. If we

were to perform the complete case analysis (i.e., ignoring all the observations with missing

values) only less than one third of the observations (1648 patients) would still remain in

the dataset. This loss of data demonstrates the importance of appropriately handling the

missing values.

5.2 Model selection results

As is customary in supervised learning, we divide the dataset into training and test sets.

To obtain high quality test sets we at first used the whole available information to create

the imputed data set with the Multivariate Imputation by Chained Equations (MICE, van

Buuren and Groothuis-Oudshoorn (2011)). Then we randomly selected 70% of observa-

tions with missing values for the training set, while the test set contains the remaining

30% of observations from the imputed data set. Since the current implementation of ABS-

LOPE/SLOBE imputations can handle only quantitative explanatory variables we replaced

the missing values for the binary explanatory variable RBC with the values from the im-

puted data set. We apply SLOBE and ABLAS compare them with the following methods:

Y MICE imputation followed by SLOPE;

Y MICE imputation followed by cross-validated Lasso;
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Figure 11: Percentage of missing values in each pre-selected variable from TraumaBase.

Y MICE imputation followed by ALAS;

Y MICE imputation followed by SSL;

Y MICE imputation followed by a random forest (RF) (Liaw and Wiener, 2002). This ap-

proach is assessed only for its prediction properties as it does not explicitly select variables.

In the SLOPE type methods, we set the penalization coefficient λ as BH sequence

which controls the FDR at level 0.1. Since we consider our design matrix being centered

and without an intercept, we also center the vector of responses and apply the procedure

on ỹ � y � ȳ, where ȳ is the mean of y. We repeat the procedure of data splitting (into

training and test sets) 10 times and Table 1 shows that, over 10 replications, how many

times each variable is selected.

Here we can observe that SLOBE and ABLAS consistently select 7 explanatory vari-

ables. The signs of the corresponding regression coefficients are negative for age, shock

index, vascular filling, blood transfusion and lactate are negative, which is in agreement

with the expectations of the TraumaBase medical team. However, the estimated positive

effects of delta Hemocue and the heart rate on the platelet were not entirely in agreement

with their opinion.
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Table 1: Number of times that each variable is selected over 10 replications. Bold numbers

indicate which variables are included in the models selected by SLOBE and ABLAS.

Variable SLOBE ABLAS SLOPE LASSO ALAS SSL

Age 10 10 10 10 10 10

SI 10 10 5 10 10 10

MBP 0 0 10 5 1 10

Delta.hemo 10 10 10 10 10 10

Time.amb 1 0 4 10 3 8

Lactate 10 10 10 10 10 10

Temp 1 0 10 8 3 9

HR 10 10 10 10 10 10

VE 10 10 10 10 10 10

RBC 10 10 10 10 10 10

SI.amb 0 0 4 8 2 5

MBP.amb 0 0 1 6 1 1

HR.max 4 1 10 10 4 10

SBP.min 3 2 10 9 7 10

DBP.min 2 0 9 6 1 4

5.3 Prediction performance

We compare the prediction properties of different methods by calculating the relative mean

square prediction error: err � Yŷ�yY2
YyY2 , where the explanatory variables in the test set were

imputed with mice using the whole available information.

As we can observe, the predictive properties of different methods do not differ much.

As expected, Random Forest has the highest prediction accuracy, but the gain is rather

small compared to the complexity of the RF prediction model. RF predictions require all

15 measurements used to fit the model, which could be difficult to maintain in a stressful

ambulance environment. Among the other methods, SLOBE and ABLAS provide the

smallest median prediction error and the smallest median number of selected variables.
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Figure 12: Empirical distribution of prediction errors of different methods over 10 replica-

tions for the TraumaBase data and of the number of variables selected by different methods.

Thus, the models proposed by our methods provide relatively good prediction with fewer

variables to be collected in a stressful trauma environment. Finally, we also performed

SLOBE on the whole standardized data set and obtained the model

100Platelets � �8.71Age � 10.52SI � 9.16Delta.hemo � 14.7Lactate � 14.2HR � 6.54VE �

11RBC � 0.076HR.max � 0.076SBP.min � 0.006DBP.min.

The standardized coefficients by the three last variables are very small, which confirms

the cross-validation results pointing at the first seven variables as the most important

predictors.

6 Discussion

ABSLOPE penalizes noise coefficients more stringently to control for FDR while leaving

larger effects relatively unbiased through an adaptive weighting matrix. In addition, casting

our method within a Bayesian framework allows one to assign a probabilistic structure

over models and estimate the pattern of sparsity. We develop an SAEM algorithm which

handles missing values and which treats model indicators as missing data. According to

the simulation study, ABSLOPE is competitive with other methods in terms of power,

FDR and prediction error. For future research, we will consider the problem of high-
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dimensional model selection with missing values for categorical or mixed data and other

missing mechanisms such as MNAR.

Supplementary Materials

R programs ABSLOPE and SLOBE containing the implementation of the proposed

methodology, codes to reproduce the experiments and some supplementary simulation re-

sults are provided in Jiang et al. (2021a).
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A Appendix

A.1 Deviation of prior (5) started from SLOPE prior

We assume a random variable z � �z1, z2,�, zp� has a SLOPE prior:

p�z S σ2;λ�� p

M
j�1

exp�� 1

σ
λr�z,j�Szj S  ,

and then define β �W �1z � � z1w1
,�,

zp
wp
�, or equally, zj � βjwj where the diagonal elements

in the weight matrix are wj � cγj � �1 � γj� � ¢̈̈̈̈¦̈̈̈̈¤
c, γj � 1

1, γj � 0
, j � 1,2,�, p. Then according

to the transformation of variables, we have the prior distribution for β:

p�β SW,σ2;λ�� Vdet� dz
dβ

�Vpz�Wβ SW,σ2;λ�
�

p

M
j�1

wj
p

M
j�1

exp�� 1

σ
λr�Wβ,j�Swjβj S 

� cP
p
j�1 1�γj�1� p

M
j�1

exp��wj Sβj S 1
σ
λr�Wβ,j�  ,

which corresponds to our proposed prior (5).

A.2 Missing mechanism

Missing completely at random (MCAR) means that there is no relationship between the

missingness of the data and any values, observed or missing. In other words, for a single

observation Xi, we have:

p�ri S y,Xi, φ� � p�ri S φ�
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Missing at Random (MAR), means that the probability to have missing values may depend

on the observed data, but not on the missing data. We must carefully define what this

means in our case by decomposing the data Xi into a subset X
�mis�
i of data that “can

be missing”, and a subset X
�obs�
i of data that “cannot be missing”, i.e. that are always

observed. Then, the observed data Xi,obs necessarily includes the data that can be observed

X
�obs�
i , while the data that can be missing X

�mis�
i includes the missing data Xi,mis. Thus,

MAR assumption implies that, for all individual i,

p�ri S yi,Xi;φ� � p�ri S yi,X�obs�
i ;φ�

� p�ri S yi,Xi,obs;φ� (18)

MAR assumption implies that, the observed likelihood can be maximize and the dis-

tribution of r can be ignored Little and Rubin (2019). Assume that θ is the parameter to

estimate. Indeed:

L�θ, φ; y,Xobs, r� � p�y,Xobs, r; θ, φ� � n

M
i�1

p�yi,Xi,obs, ri; θ, φ�
�

n

M
i�1
S p�yi,Xi, ri; θ, φ�dXi,mis

�

n

M
i�1
S p�yi,Xi; θ�p�ri S yi,Xi;φ�dXi,mis,

then according to the assumption MAR (18), we have:

L�θ, φ; y,Xobs, r� � n

M
i�1
S p�yi,Xi; θ�p�ri S yi,Xi,obs;φ�dXi,mis

�

n

M
i�1

p�ri S yi,Xi,obs;φ� � n

M
i�1
S p�yi,Xi; θ�dXi,mis

� p�r S y,Xobs;φ� � p�y,Xobs; θ�
Therefore, to estimate θ, we aim at maximizing L�θ; y,Xobs� � p�y,Xobs; θ�. So the missing

mechanism can be ignored in the case of MAR.

A.3 Standardization for MAR

We update mean and standard deviation at each iteration of algorithm.

1. Initialization: In the initialization step, we first substitute missing values Xmis with

the mean of non-missing entries in each column, and obtain a imputed matrix X̃0 �
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�Xobs,X0
mis�, where X0

mis contains imputed values. We denote the mean and standard

deviation of each column of X0, by the vectors m0 and s0 respectively. Then we

centered and scaled the imputed X0, s.t., for each observation i:

X̂0
i � �X0

i �m
0�^ �ºns0�,

where the ^ is used for Hadamard division.

2. During tth iteration of the algorithm, we obtain a new imputed datasetX t � �Xobs,X t
mis�,

where X t
mis contains imputed values in tth iteration. Then we first reverse scaling us-

ing:

X̃ t
� �ºnst�1� XX t

�mt�1,

where the X is used for Hadamard product. The vectors mt and st are then updated

as the means and standard deviations of X̃ t. Finally we perform scaling on X̃ t to

obtain a scaled matrix:

X̂ t
i � �X̃ t

�mt�^ �ºnst�.
The final estimates of regression coefficients are then rescaled to match the original values

of the response and explanatory variables.

A.4 Details of the simulation step: sampling the latent variables

To perform the simulation step (7), we use a Gibbs sampler. To simplify notation, we

hide the superscript, and note that all conditional distributions are computed given the

quantities from the previous iteration.

1. Simulate γ. According to the dependency between variables presented in Figure 2,

simulating the element γj boils down to:

γj � p�γj S γ�j, c, y,Xobs,Xmis, β, σ, θ, µ,Σ�
� p�γj S γ�j, c, β, σ, θ� ,

where γ�j � �γ1,�, γj�1, γj�1,�, γp�; i.e., sampling from a Binomial distribution with
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probability:

P�γj � 1 S γ�j, c, β, σ, θ� � P�γj � 1 S θ�p�β S γj � 1, γ�j, c, σ�
Pγj>�0,1�P�γj S θ�p�β S γj, γ�j, c, σ�

�

<@@@@>1 �
�1 � θ� exp �� 1

σ Sβj Sλr�W 0β,j�� � �c�P�j 1�γ�j�1�L�j exp ��w0
�j Sβ�j S 1σλr�W 0β,�j��

θc exp ��c 1
σ Sβj Sλr�W 1β,j�� � �c�P�j 1�γ�j�1�L�j exp ��w1

�j Sβ�j S 1
σtλr�W 1β,�j��

=AAAA?
�1

�

<@@@@>1 �
�1 � θ� exp �� 1

σ Sβj Sλr�W 0β,j��
θc exp ��c 1

σ Sβj Sλr�W 1β,j�� �

L�j exp ��w0
�j Sβ�j S 1σλr�W 0β,�j��

L�j exp ��w1
�j Sβ�j S 1σλr�W 1β,�j��

=AAAA?
�1

,

(19)

where the weighting matrix W 1 and W 0 have the same diagonal elements w1
�j �

w0
�j � 1 � �1 � c�γ�j, except for the position j: w1

j � c while w0
j � 1. Sampling

from (19) requires to store in memory ordered list which needs to be updated for

every index j, such an approach could be computationally exhaustive. So we use

an approximation, which does not perturb solution significantly, by replacing both

W 1 and W 0 by the estimate of weighting matrix from previous iteration, noted by

W . With the approximation, we partially retrieve the information of γj from the last

iteration, so the difference between the estimates from last and the current iteration

will be reduced. Consequently, (19) is drawn from:

P�γj � 1 S γ�j, c, β, σ, θ,W � � <@@@@>1 �
�1 � θ� exp �� 1

σ Sβj Sλr�Wβ,j��
θc exp ��c 1

σ Sβj Sλr�Wβ,j��
=AAAA?
�1

�

θc exp ��c 1
σ Sβj Sλr�Wβ,j���1 � θ� exp �� 1

σ Sβj Sλr�Wβ,j�� � θc exp ��c 1
σ Sβj Sλr�Wβ,j�� ,

(20)

which can be interpreted as the posterior probability of binary signal indicator for

jth variable, given the prior guess P�γj � 1 S θ� � θ and the conditional likelihood of

the vector β given γj � 1 and γj � 0, see (5).

2. Simulate θ. The update of θ boils down to generate from:

θ � p�θ S γ, c, y,Xobs,Xmis, β, σ, µ,Σ,W �
� p�θ S γ, β, σ,W �� p�θ�p�γ S θ� ,

where p�γ S θ� is a Bernoulli distribution. In addition, if we also assume a prior for

θ as a Beta distribution Beta�a, b� with a and b known, to offer additional initial
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information for the sparsity of signal, then the posterior is:

Beta�a � p

Q
j�1

1�γj � 1�, b � p

Q
j�1

1�γj � 0�� , (21)

from which we can generate the latent variable θ. The target distribution (21) also

takes the prior knowledge of the sparsity into consideration, for example:

� If a �
n

100 and b � n
10 , the prior mean on sparsity is 0.091, which has the same

effect as a single observation;

� If a � 2
p and b � 1 � 2

p , the prior mean on sparsity is 2
p , which assumes a sparse

structure a priori.

3. Simulate c. We also consider the weighting matrix W from the previous iteration.

c � p�c S γ, y,Xobs,Xmis, β, σ, θ, µ,Σ,W �
� p�c S γ, β, σ,W �� p�c�p�β S c, γ, σ,W �
� p�c� cPpj�1 1�γj�1� exp�� c

σ

p

Q
j�1

Sβj Sλr�Wβ,j�1�γj � 1�� ,
where p�c� is the prior distribution of c. If the prior is chosen as c � U�0,1� then we

just need to sample from a Gamma distribution truncated to [0,1]:

Gamma�1 �
p

Q
j�1

1�γj � 1�, 1

σ

p

Q
j�1

Sβj Sλr�Wβ,j�1�γj � 1�� . (22)

If the signal is strong enough, i.e., βj is relative large compared to level of noise σ

when γj � 1, we will observe that the most typical values from the above Gamma

distribution fall in the interval �0, 1�. As a result, the simulation will be closer to the

original Gamma distribution without truncation. However, if the signal strength go

down, then the distribution will be more truncated and skewed towards 1, where c

exactly corresponds the inverse of average signal magnitude.

A.5 Proof of conditional distribution of missing data

Proof of Proposition 2 is provided as follows.

Proof. For a single observation x � �xmis, xobs� where xobs, and xmis denotes observed and

missing covariates respectively. Assume that p�xobs, xmis; Σ, µ� � N �µ,Σ� and let y � xβ �ε
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where ε � N�0, σ2�. Then we have the following conditional distribution of the missing

covariate with index i:

p�ximis S xobs, y, σ, β,Σ, µ, x
�i
mis�� p�xiobs, x

i
mis S Σ, µ�p�y S xiobs, x

i
mis, β, σ� ,

where x�imis � �xjmis, j x i� . Denote M the set containing indexes for the missing covariates

and O for the observed ones. We then explicitly give the formula, with sij elements of Σ�1:

p�ximis S xobs, y, σ, β,Σ, µ, x
�i
mis�� exp �� 1

2σ2
�y � xβ�2

�
1

2
�x � µ��Σ�1�x � µ��

� exp�� 1

2σ2
�y � xobsβobs � x

i
misβi � Q

j>M,jxi

xjmisβj�2

�
1

2
�sii�ximis � µi�2

� 2ximis Q
j>M,jxi

�xjmis � µj�sij � 2ximis Q
k>O

�xkobs � µk�sik�	 .
After rearranging terms, with notations:

mi ��

p

Q
q�1

µqsiq, ui �� Q
k>O

xkobssik, r �� y � xobsβobs, τi ��

¾
sii �

β2
i

σ2
,

we get:

p�ximis S xobs, y, σ, β,Σ, µ, x
�i
mis�

� exp��1

2
��ximis�2 �sii � β2

i

σ2
� � 2ximis �rβiσ2

�mi � ui� � 2ximis Q
j>M,jxi

�βiβj
σ2

� sij�xjmis	¡
� exp��1

2
�ximisτi �

rβi~σ2
�mi � ui
τi

� Q
j>M,jxi

βiβj~σ2
� sij

τiτj
xjmisτj	2¡ .

(23)

By the other hand, we can conclude from equations (4.9) (4.10) in Besag (1974), that,

for z � �zi�i>M where zi � τiximis we have:

p�zi S xobs, y, σ, β,Σ, µ, x
�i
mis�� exp

<@@@@>�1

2
�zi � µ̃i � Q

j>M,jxi

Bij �zj � µ̃j��2=AAAA? , (24)

and

z S xobs, y; Σ, µ, β, σ2
� N�µ̃,B�1� .

Combine equations (23) and (24), we obtain the solution:

rβi~σ2
�mi � ui
τi

� Q
j>M,jxi

βiβj~σ2
� sij

τiτj
µ̃j � µ̃i , for all i >M ,
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and

Bij �

¢̈̈̈̈¦̈̈̈̈¤
βiβj~σ2

�sij
τiτj

, if i x j

1, if i � j
, for all i, j >M .

A.6 Summary of algorithms

We propose the ABSLOPE model and solve the problem of the maximization of the

penalized likelihood using the SAEM algorithm, described in Algorithm 1. We also give

the SLOBE algorithm in Algorithm 2 which is an approximated and accelerated version.

A.7 Initialization of ABSLOPE

Here we suggest the following starting values:

� β0 is obtained from cross-validated LASSO as implemented in glmnet R package

(Friedman et al., 2010). We recommend using λ which minimizes the cross-validation

estimate of prediction error (option s�’lambda.min’ in cv.glmnet).

� X0
mis are imputed by PCA (imputePCA) (Josse and Husson, 2016), MICE (van Bu-

uren and Groothuis-Oudshoorn, 2011) or imputed by the mean of column (impute-

Mean);

� µ0 and Σ0 are estimated with the empirical estimators obtained from the imputed

initial data;

� σ0 is given by the standard deviation:
Yy�X0

misβ
0Y»

n�SSβ0SS0 , where SSβ0SS0 is the number of nonzero

elements in β0;

� c0 � min��Ppj�1 β0
j

SSβ0SS0�1��1

σ0λr�β0,1�,1¡;

� θ0 �
SSβ0SS0�a
p�b where a and b are known parameters of the prior Beta distribution on θ.

Here we choose i) a � 0.01n and b � 0.01n; ii) a � 2
p and b � 1 � 2

p ;iii) a � 1 and b � p.

Our estimation results are not sensitive to the choice of hyperparameters a and b.
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Algorithm 1 Solving ABSLOPE with SAEM.

Input: Initialization β0, σ0, c0, θ0, X0
mis, µ

0, Σ0; Choose maximum iteration number

Maxit A 20;

for t � 1,2,�,Maxit do

(Simulation step)

1. Generate γt from (20);

2. Generate θt from Beta distribution (21);

3. Generate ct from truncated Gamma distribution (22);

4. Generate X t
mis from Gaussian distribution (11);

(Stochastic Approximation step)

1. Calculate �βtMLE, σtMLE, µtMLE, Σt
MLE�, which are the MLE for complete-data

likelihood integrating sampled missing values, as detailed in Subsection 3.3.1;

2. With step-size ηt �

¢̈̈̈̈¦̈̈̈̈¤
1, if t B 20

1
t�20 , if t A 20

, update

βt�1
� βt � ηt �βtMLE � β

t� .
Update σ, µ and Σ similarly;

if Yβt�1
� βtY2 @ tol then

Stop;

end if

end for

Output: Probability of selecting variables γ̂ � 1
20 Pt

t��t�19 γ
t� (the average of the last 20

iterations), with threshold of 0.5 for the selection; and estimate with β̂ � βt � γ̂.
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Algorithm 2 SLOBE: a quick version of ABSLOPE.

Input: Initialization β0, σ0, c0, θ0, X0
mis, µ

0, Σ0;

for t � 1,2,�,Maxit do

(Imputation by expectation)

1. for j � 1,2,�, p do γtj � E�γj � 1 S γ�j, c, β, σ, θ,W �, according to (14);

2. θt � E�θ S γ, β, σ,W �, according to (15);

3. ct � E�c S γ, y,Xobs,Xmis, β, σ, θ, µ,Σ,W �, according to (16);

4. for i � 1,2,�, n do X t
i,mis � E�Xi,mis S y,Xi,obs, β, σ, µ,Σ�, according to Propo-

sition 2;

(Maximization of integrated likelihood)

� �βt�1, σt�1, µt�1, Σt�1� � �βtMLE, σtMLE, µtMLE, Σt
MLE�, which are the MLE for

complete-data likelihood integrating the imputed missing values by expectation.

if Yβt�1
� βtY2 @ tol then

Stop;

end if

end for

Output: Estimates β̂ � βt and indexes for model selection �j � β̂j x 0�.
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