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Lecture 11

• Interaction models  and qualitative 

predictor 

• Redundant variables

• Model selection 

• Partial regression plots

Interaction Models

• With several explanatory variables, we 
need to consider the possibility that the 

effect of one variable depends on the 
value of another variable

• Special cases

– One binary variable and one continuous 

variable

– Two continuous variables

One binary variable and 
one continuous variable

• X1 has values 0 and 1 corresponding to 
two different groups

• X2 is a continuous variable

• Y =  β0 + β1X1 + β2X2 + β3X1X2  + ξ

• For X1 = 0, Y =  β0 + β2X2 + ξ

• For X1 = 1, Y =  (β0 + β1)+ (β2 + β3) X2 + ξ

One binary and one 
continuous (2)

• For X1 = 0, Y =  β0 + β2X2 + ξ

• For X1 = 1, Y =  (β0 + β1)+ (β2 + β3) X2 + ξ

• H0: β1 = β3 = 0 tests the hypothesis that the 

lines are the same

• H0: β1 = 0 tests equal intercepts

• H0: β3 = 0 tests equal slopes

Example

• Y is number of months for an insurance 

company to adopt an innovation

• X1 is the size of the firm (a continuous 
variable)

• X2 is the type of firm (a qualitative or 

categorical variable)

A question

• X2 (the type of firm) has the value 0 
for a mutual fund and 1 for a stock 
fund

• We ask whether or not stock firms 
adopt the innovation slower or faster 
than mutual firms

• We ask the question across all firms, 
regardless of size 
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Plot the data

symbol1 v=M i=sm70 c=green;

symbol2 v=S i=sm70 c=blue;

proc sort data=a1; 

by stock size;

proc gplot data=a1;

plot months*size=stock;

run;

Two symbols

Interaction effects

• Interaction expresses the idea that 

the effect of one explanatory variable 
on the response depends on another 

explanatory variable

• In our example, this would mean that 

the slope of the line depends on the 
type of firm

Are both lines the same ?

• Are intercepts and slopes the same ? (test 
statement)

Data a1; set a1;

sizestoc=size*stock;
proc reg data=a1;

model months=
size stock sizestoc;
test stock, sizestoc;

run;

Output (Overall ANOVA)

F Value   Pr > FF Value   Pr > FF Value   Pr > FF Value   Pr > F
45.49   <.000145.49   <.000145.49   <.000145.49   <.0001

RRRR----Square   0.8951Square   0.8951Square   0.8951Square   0.8951

Test 1 Results for

Dependent Variable

months 

Source  DF    MS      F     P>F

Num      2  158.13 14.34 0.0003

Den     16   11.02

Output (test statement) 

Are both lines the same ?
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Output (3)
How are they different ?

Variable  t Value    Pr > |t|Variable  t Value    Pr > |t|Variable  t Value    Pr > |t|Variable  t Value    Pr > |t|

Intercept   13.86      <.0001Intercept   13.86      <.0001Intercept   13.86      <.0001Intercept   13.86      <.0001
size        size        size        size        ----7.78      <.00017.78      <.00017.78      <.00017.78      <.0001
stock        2.23      0.0408stock        2.23      0.0408stock        2.23      0.0408stock        2.23      0.0408
sizestocsizestocsizestocsizestoc ----0.02      0.98210.02      0.98210.02      0.98210.02      0.9821

Two parallel lines

proc reg data=a1;

model months=size stock;

run;

Output

Source  DF        F   Pr > FSource  DF        F   Pr > FSource  DF        F   Pr > FSource  DF        F   Pr > F

Model    2    72.50   <.0001Model    2    72.50   <.0001Model    2    72.50   <.0001Model    2    72.50   <.0001
Error   17     Error   17     Error   17     Error   17     
Total   19    Total   19    Total   19    Total   19    

Output (2)

Root MSE         3.22113    Root MSE         3.22113    Root MSE         3.22113    Root MSE         3.22113    
RRRR----Square          0.8951Square          0.8951Square          0.8951Square          0.8951
Dependent Mean  19.40000    Dependent Mean  19.40000    Dependent Mean  19.40000    Dependent Mean  19.40000    
AdjAdjAdjAdj RRRR----Sq          0.8827Sq          0.8827Sq          0.8827Sq          0.8827
CoeffCoeffCoeffCoeff VarVarVarVar 16.6037716.6037716.6037716.60377

Output (3)

Par   StPar   StPar   StPar   St
VarVarVarVar DF  DF  DF  DF  EstEstEstEst Err      t     PErr      t     PErr      t     PErr      t     P
IntIntIntInt 1 33.87 1.8  18.68 <.00011 33.87 1.8  18.68 <.00011 33.87 1.8  18.68 <.00011 33.87 1.8  18.68 <.0001
size  1 size  1 size  1 size  1 ----0.10 0.0 0.10 0.0 0.10 0.0 0.10 0.0 ----11.44 <.000111.44 <.000111.44 <.000111.44 <.0001
stock 1  8.05 1.4   5.52 <.0001stock 1  8.05 1.4   5.52 <.0001stock 1  8.05 1.4   5.52 <.0001stock 1  8.05 1.4   5.52 <.0001

Int for stock firms is 

33.87+8.05 = 41.92

Plot the two lines

symbol1 v=M i=rl c=green;

symbol2 v=S i=rl c=blue;

proc gplot data=a1;

plot months*size=stock;

run;
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The plot
Two continuous variables

• Y =  β0 + β1X1 + β2X2 + β3X1X2  + ξ

• Y =  β0 + (β1 + β3X2)X1 + β2X2 + ξ

• Y =  β0 + β1X1 + (β2 + β3X1) X2 + ξ

Constrained regression

• We may want to put a linear 
constraint on the regression 
coefficients, e.g. β1 = 1, or β1 = β2

• We can do this by redefining our 
explanatory variables (data step)

• Or we can use the RESTRICT 
statement in proc reg (e.g. restrict 
size=0; or restrict size=5*stock;)

Redundant variables
• data a1;

• infile 'u:/.www/STAT512/data/example1.txt'; input x1 
x2 x3;

• proc corr data=a1;

• var x1 x2 x3;

• run;

• data a2; set a1; y1=x1+normal(0);

• run;

• proc reg data=a2;

• model1: model y1=x1;

• model2: model y1=x1 x2;

• model3: model y1=x1 x2 x3;

• run;

• x1 x2 x3

• 4  2  -1 

• 4  2   1 

• 4  3  -1 

• 4  3   1 

• 6  2  -1 

• 6  2   1 

• 6  3  -1 

• 6  3   1 

• x1            x2            x3

• x1       1.00000       0.00000       0.00000

• 1.0000        1.0000

• x2       0.00000       1.00000       0.00000

• 1.0000                             1.0000

• x3       0.00000       0.00000 1.00000

• 1.0000        1.0000
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• Var slope             std           t    p-value

• x1     1.28612    0.50195     2.56  0.0428

• x1     1.28612    0.52685     2.44  0.0586

• x2    -0.70382    1.05371    -0.67  0.5338

• x1     1.28612     0.58875    2.18   0.0943

• x2    -0.70382     1.17751   -0.60   0.5822

• x3    -0.03677     0.58875   -0.06   0.9532

Conclusion

• Redundant variables increase the 

error and decrease the power of 
detection of important coefficients.

Variable Selection

• We want to choose a model that 
includes a subset of the available 
explanatory variables

• Two separate problems

– How many explanatory variables 
should we use (subset size)

– Given the subset size, which 
variables should we choose

Example

• Y is survival time

• X’s are 

– Blood clotting score

– Prognostic index

– Enzyme function test

– Liver function test 

Example (2)

• n = 54 patients

• Diagnostics suggest that Y should be  
transformed with a log

• Start with the usual plots and 
descriptive statistics

Scatter Plot Matrix
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The two problems in 
variable selection

• To determine an appropriate subset 

size you may use e.g. Cp, SBC or AIC

• For comparing models with the same 

number of variables, we use R2

Cp

• The basic idea is to compare subset 

models with the full model 

• A subset model is good if there is not 

substantial bias in the predicted 
values (relative to the full model)

• Mean squared error -

• Cp is an estimator of 
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Use of Cp

• p is the number of regression coefficients 

including the intercept (this is consistent 
with the notation we have been using)

• A model is good according to this 
criterion if Cp is close to or smaller then p

• Pick the smallest model for which 

• Cp is close to p or the one for which Cp is
the smallest 

SBC and AIC

Chose the model for which

log(likelihood) - penalty for the 

dimension is maximal

AIC – minimize 

• SBC – minimize 
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Ordering models of the 
same subset size

• use R2  

• This approach can lead us to 
consider several models (subsets) 
that give us approximately the same 
predicted values

• We may need to apply knowledge of 
the subject matter to make a final 
selection 
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Proc reg

proc reg data=a1;

model lsurv=

blood prog enz liver/

selection=rsquare cp aic

sbc b best=3;

run;

• Number in

• Model      R-Square    C(p)           AIC            SBC

• 1       0.4276     66.4889     -103.8269      -99.84889

• 1       0.4215     67.7148     -103.2615      -99.28357

• 1       0.2208    108.5558      -87.1781      -83.20011

• --------------------------------------------------------------

• 2       0.6633     20.5197     -130.4833     -124.51634

• 2       0.5995     33.5041     -121.1126     -115.14561

• 2       0.5486     43.8517     -114.6583     -108.69138

• --------------------------------------------------------------

• 3       0.7573      3.3905     -146.1609     -138.20494

• 3       0.7178     11.4237     -138.0232     -130.06723

• 3       0.6121     32.9320     -120.8442     -112.88823

• --------------------------------------------------------------

• 4       0.7592      5.0000     -144.5895     -134.64461

• Model      R-Square   Intercept       blood     prog enz liver

• 1       0.4276        5.26426              .             .        0.01512              .
• 1       0.4215        5.61218              .             .              .        0.29819

• 1       0.2208        5.56613              .        0.01367              .              .
• ------------------------------------------------------------------------------------------------

• 2       0.6633        4.35058              .        0.01412        0.01539              .

• 2       0.5995        5.02818              .             .        0.01073        0.20945
• 2       0.5486        4.54623        0.10792             .        0.01634              .

• ------------------------------------------------------------------------------------------------

• 3       0.7573        3.76618     0.09546   0.01334     0.01645              .
• 3       0.7178        4.40582           .         0.01101 0.01261        0.12977

• 3       0.6121        4.78168     0.04482            .   0.01220        0.16360
• ------------------------------------------------------------------------------------------------

• 4       0.7592        3.85195     0.08368   0.01266     0.01563        0.03216

• data a1; 

• infile 'u:/.www/STAT512/data/ch07ta01.txt';

• input x1 x2 x3 y;

• run;

• proc reg data=a1;

• model y=

• x1 x2 x3/

• selection=rsquare cp aic

• sbc b;

• run;

• Model      R-Square        C(p)           AIC            SBC

• 1       0.7710      2.4420       38.7080       40.69942

• 1       0.7111      7.2703       43.3590       45.35045

• 1       0.0203     62.9128       67.7823       69.77373

• --------------------------------------------------------------

• 2       0.7862      3.2242       39.3417       42.32891

• 2       0.7781      3.8773       40.0860       43.07321

• 2       0.7757      4.0657       40.2957       43.28293

• --------------------------------------------------------------

• 3       0.8014      4.0000       39.8672       43.85009

• Model      R-Square      Intercept        x1             x2             x3

• 1       0.7710      -23.63449              .        0.85655              .

• 1       0.7111       -1.49610        0.85719              .              .

• 1       0.0203       14.68678              .                 .        0.19943

• -----------------------------------------------------------------------------

• 2       0.7862        6.79163        1.00058              .  -0.43144

• 2       0.7781      -19.17425       0.22235    0.65942              .

• 2       0.7757      -25.99695              .         0.85088      0.09603

• ------------------------------------------------------------------------------

• 3       0.8014      117.08469    4.33409  -2.85685       -2.18606
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Variable Selection 
• Additional proc reg model statement 

options useful in variable selection

– INCLUDE=n forces the first n

explanatory variables into all models

– BEST=n limits the output to the best n 

models of each subset size

– MAXSTEP=n limits the number of 
steps in forward, backward and 

stepwise methods.

– START=n for Cp option limits 
output to models that include at 
least n explanatory variables,

– For stepwise it begins the search 
process with first n explanatory 
variables specified in the model 
statement

Other approaches

• Maximize adjusted R2 (ADJRSQ)

• PRESS (prediction SS)

– For each case i

– Delete the case and predict Y using 
a model based on the other n-1 
cases   

– Look at the SS for observed minus 
predicted

Other approaches (2)

• Step type procedures

– Forward selection (Step up)

– Backward elimination (Step down)

– Stepwise (forward selection with a 
backward glance)

Backward elimination

• data a1;

• infile 'u:/.www/STAT512/data/ch07ta01.txt';

• input x1 x2 x3 y;

• run;

• proc reg data=a1;

• model y=x1 x2 x3/selection=b;

• run;

• Backward Elimination: Step 0

• All Variables Entered: R-Square = 0.8014 and 
C(p) = 4.0000

• Var coef std err      t       p-value  

• Intercept  117.08469     99.782     1.38  0.2578

• x1             4.33409      3.015     2.07  0.1699

• x2            -2.85685      2.582     1.22  0.2849

• x3            -2.18606      1.595     1.88  0.1896
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• Backward Elimination: Step 1

• Variable x2 Removed: R-Square = 0.7862 and 
C(p) = 3.2242

• Intercept      6.79163      4.48829    2.29  0.1486

• x1             1.00058      0.12823  60.89  <.0001

• x3            -0.43144      0.17662    5.97  0.0258

• All variables left in the model are significant at 
the 0.1000 level.

• Summary of Backward Elimination

• Var rem.      R^2          C(p)            F     p-value

• x2            0.7862      3.2242       1.22    0.2849

Forward selection

• proc reg data=a1;

• model y=x1 x2 x3/selection=f;

• run;

• Forward Selection: Step 1

• Variable x2 Entered: R-Square = 0.7710 and C(p) = 

2.4420

• Var coef std       t         p

• Intercept    -23.63449      5.65741 17.45  0.0006

• x2               0.85655      0.11002 60.62  <.0001

• Forward Selection: Step 2

• Variable x1 Entered: R-Square = 0.7781 and C(p) = 
3.8773

• Intercept    -19.17425      8.36064   5.26  0.0348

• x1             0.22235      0.30344   0.54  0.4737

• x2             0.65942      0.29119   5.13  0.0369

• Forward Selection: Step 3

• Variable x3 Entered: R-Square = 0.8014 and 
C(p) = 4.0000

• Var coef std err   t          p 

• Intercept    117.08469     99.78240 1.38  0.2578

• x1             4.33409      3.01551 2.07  0.1699

• x2            -2.85685      2.58202 1.22  0.2849

• x3            -2.18606      1.59550 1.88  0.1896

• All variables have been entered into the model.

• Summary of Forward Selection

Step var R^2             c(p)           F             p

• 1     x2     0.7710      2.4420      60.62    <.0001

• 2     x1     0.7781      3.8773       0.54    0.4737

• 3     x3     0.8014      4.0000       1.88    0.1896

Stepwise selection

• proc reg data=a1;

• model y=x1 x2 x3/selection=stepwise;

• run;

• quit;
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• Stepwise Selection: Step 1

• Variable x2 Entered: R-Square = 0.7710 and 
C(p) = 2.4420

• Var coef std err    t           p

• Intercept    -23.63449     5.65741 17.45  0.0006

• x2             0.85655     0.11002 60.62  <.0001

• All variables left in the model are significant at 
the 0.1500 level.

• No other variable met the 0.1500 significance 

level for entry into the model.

• Summary of Stepwise Selection

step var ent R^2           C(p)    F             p      

• 1     x2           0.7710    2.4420  60.62    <.0001

SAS Defaults

• SLstay (significance level to remove 

a variable from a model) = 0.1 for 
backward elimination, 0.15 for 

stepwise selection

• SLenter(significance level to add a 

new variable into a model) = 0.5 for 
forward selection, 0.15 for stepwise 

selection 

Partial regression plots

• Also called added variable plots or 

adjusted variable plots

• One plot for each Xi

Partial regression plots (2)

• Consider X1

– Use the other X’s to predict Y 

– Use the other X’s to predict X1

– Plot the residuals from the first 

regression vs the residuals from the 
second regression

Partial regression plots (3)

• These plots show the strength of 
relatioship between Y and Xi in the full 
model. They can also detect

– Nonlinear relationships 

– Heterogeneous variances

– Outliers
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Example

• Y is amount of life insurance

• X1 is average annual income 

• X2 is a risk aversion score

• n = 18 managers  

Create a data set

data a1;

infile ‘h:/STAT512/ch10ta01.txt';

input income risk insur;

The partial option with 
proc reg

proc reg data=a1; 

model insur=income risk

/partial;

run;

Output

Source   DF   F Value   Pr > F

Model     2    542.33   <.0001
Error    15 
C Total  17

Output (2)

Root MSE   12.66267  
R-Square     0.9864

Output (3)

Par  St
Var Est Err     t Pr > |t|

Int -205  11 -18.06 <.0001
income 6.2 .20  30.80 <.0001
risk   4.7 1.3   3.44 0.0037
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Output 4

• The partial option on the model 
statement in proc reg generates 
graphs in the output window

• These are ok for some purposes but 
we prefer to use proc gplot with a 
smooth 

• To generate these plots we do it the 
hard way

Partial regression plots –
the hard way

Title1 'Partial residual 

plot for risk';

proc reg data=a1; 

model insur risk = income;

output out=a2 r=resins resris;

Partial regression plots –
the hard way (2)

symbol1 v=circle i=sm70s;

proc gplot data=a2;

plot resins*resris;

run;

The plot for risk

Similar code for income
Plot the residuals vs risk
proc reg data=a1; 

model insur= risk income;

output out=a2 r=resins;

symbol1 v=circle i=sm70;

Title1 'Plot of residuals 

versus risk';

proc sort data=a2; by risk;

proc gplot data=a2;

plot resins*risk;

run;
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The graph
Plot the residuals vs

income

Title1 'Plot of residuals 

versus income';

proc sort data=a2; by income;

proc gplot data=a2;

plot resins*income;

run;

Plot the residuals vs
income


