

Lecture 11

- Interaction models and qualitative predictor
- Redundant variables
- Model selection
- Partial regression plots

Interaction Models

- With several explanatory variables, we need to consider the possibility that the effect of one variable depends on the value of another variable
- Special cases
 - One binary variable and one continuous variable
 - Two continuous variables

One binary variable and one continuous variable

- X_1 has values 0 and 1 corresponding to two different groups
- X_2 is a continuous variable
- $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \xi$
- For $X_1 = 0$, $Y = \beta_0 + \beta_2 X_2 + \xi$
- For $X_1 = 1$, $Y = (\beta_0 + \beta_1) + (\beta_2 + \beta_3) X_2 + \xi$

One binary and one continuous (2)

- For $X_1 = 0$, $Y = \beta_0 + \beta_2 X_2 + \xi$
- For $X_1 = 1$, $Y = (\beta_0 + \beta_1) + (\beta_2 + \beta_3) X_2 + \xi$
- $H_0: \beta_1 = \beta_3 = 0$ tests the hypothesis that the lines are the same
- $H_0: \beta_1 = 0$ tests equal intercepts
- $H_0: \beta_3 = 0$ tests equal slopes

Example

- Y is number of months for an insurance company to adopt an innovation
- X_1 is the size of the firm (a continuous variable)
- X_2 is the type of firm (a qualitative or categorical variable)

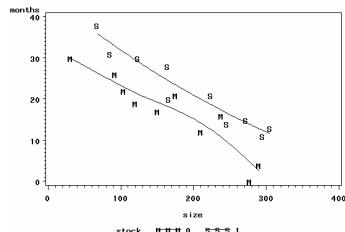
A question

- X_2 (the type of firm) has the value 0 for a mutual fund and 1 for a stock fund
- We ask whether or not stock firms adopt the innovation slower or faster than mutual firms
- We ask the question across all firms, regardless of size

Plot the data

```
symbol1 v=M i=sm70 c=green;
symbol2 v=S i=sm70 c=blue;
proc sort data=a1;
  by stock size;
proc gplot data=a1;
  plot months*size=stock;
run;
```

Two symbols



Interaction effects

- Interaction expresses the idea that the effect of one explanatory variable on the response depends on another explanatory variable
- In our example, this would mean that the slope of the line depends on the type of firm

Are both lines the same ?

- Are intercepts and slopes the same ? (test statement)

```
Data a1; set a1;
sizestoc=size*stock;
proc reg data=a1;
  model months=
    size stock sizestoc;
  test stock, sizestoc;
run;
```

Output (Overall ANOVA)

F Value Pr > F
45.49 <.0001

R-Square 0.8951

Output (test statement) Are both lines the same ?

*Test 1 Results for
Dependent Variable
months*

Source	DF	MS	F	P>F
Num	2	158.13	14.34	0.0003
Den	16	11.02		

Output (3) How are they different ?

Variable	t Value	Pr > t
Intercept	13.86	<.0001
size	-7.78	<.0001
stock	2.23	0.0408
sizestoc	-0.02	0.9821

Two parallel lines

```
proc reg data=a1;
  model months=size stock;
run;
```

Output

Source	DF	F	Pr > F
Model	2	72.50	<.0001
Error	17		
Total	19		

Output (2)

Root MSE	3.22113
R-Square	0.8951
Dependent Mean	19.40000
Adj R-Sq	0.8827
Coeff Var	16.60377

Output (3)

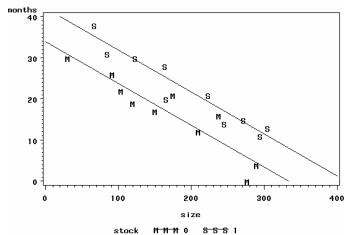
Var	DF	Par	St	Est	Err	t	P
Int	1	33.87	1.8	18.68	<.0001		
size	1	-0.10	0.0	-11.44	<.0001		
stock	1	8.05	1.4	5.52	<.0001		

Int for stock firms is
 $33.87 + 8.05 = 41.92$

Plot the two lines

```
symbol1 v=M i=rl c=green;
symbol2 v=S i=rl c=blue;
proc gplot data=a1;
  plot months*size=stock;
run;
```

The plot



Two continuous variables

- $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \xi$
- $Y = \beta_0 + (\beta_1 + \beta_3 X_2) X_1 + \beta_2 X_2 + \xi$
- $Y = \beta_0 + \beta_1 X_1 + (\beta_2 + \beta_3 X_1) X_2 + \xi$

Constrained regression

- We may want to put a linear constraint on the regression coefficients, e.g. $\beta_1 = 1$, or $\beta_1 = \beta_2$
- We can do this by redefining our explanatory variables (data step)
- Or we can use the RESTRICT statement in proc reg (e.g. restrict size=0; or restrict size=5*stock;)

Redundant variables

- data a1;
- infile 'u:/www/STAT512/data/example1.txt'; input x1 x2 x3;
- proc corr data=a1;
- var x1 x2 x3;
- run;
- data a2; set a1; y1=x1+normal(0);
- run;
- proc reg data=a2;
- model1: model y1=x1;
- model2: model y1=x1 x2;
- model3: model y1=x1 x2 x3;
- run;

- x1 x2 x3
- 4 2 -1
- 4 2 1
- 4 3 -1
- 4 3 1
- 6 2 -1
- 6 2 1
- 6 3 -1
- 6 3 1

- x1 x2 x3
- x1 1.00000 0.00000 0.00000
- 1.00000 1.00000 1.00000
- x2 0.00000 1.00000 0.00000
- 1.00000 1.00000 1.00000
- x3 0.00000 0.00000 1.00000
- 1.00000 1.00000 1.00000

Var	slope	std	t	p-value
x1	1.28612	0.50195	2.56	0.0428
x1	1.28612	0.52685	2.44	0.0586
x2	-0.70382	1.05371	-0.67	0.5338
x1	1.28612	0.58875	2.18	0.0943
x2	-0.70382	1.17751	-0.60	0.5822
x3	-0.03677	0.58875	-0.06	0.9532

Conclusion

- Redundant variables increase the error and decrease the power of detection of important coefficients.

Variable Selection

- We want to choose a model that includes a subset of the available explanatory variables
- Two separate problems
 - How many explanatory variables should we use (subset size)
 - Given the subset size, which variables should we choose

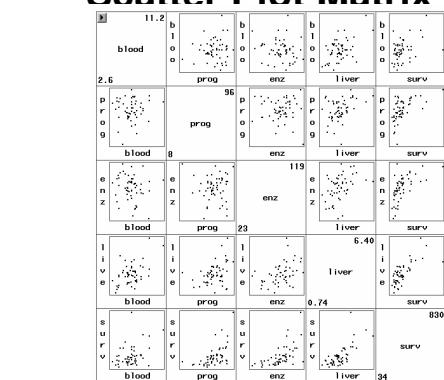
Example

- Y is survival time
- X's are
 - Blood clotting score
 - Prognostic index
 - Enzyme function test
 - Liver function test

Example (2)

- n = 54 patients
- Diagnostics suggest that Y should be transformed with a log
- Start with the usual plots and descriptive statistics

Scatter Plot Matrix



The two problems in variable selection

- To determine an appropriate subset size you may use e.g. C_p , SBC or AIC
- For comparing models with the same number of variables, we use R^2

C_p

- The basic idea is to compare subset models with the full model
- A subset model is good if there is not substantial bias in the predicted values (relative to the full model)
- Mean squared error - $E(\hat{Y}_i - \mu_i)^2 = B_i$
- C_p is an estimator of $\sum_{i=1}^n B_i / \sigma^2$

C_p

$$C_p = \frac{SSE_p}{MSE(F)} - (n - 2p)$$

Use of C_p

- p is the number of regression coefficients including the intercept (this is consistent with the notation we have been using)
- A model is good according to this criterion if C_p is close to or smaller than p
- Pick the smallest model for which
- C_p is close to p or the one for which C_p is the smallest

SBC and AIC

Chose the model for which $\log(\text{likelihood}) - \text{penalty for the dimension}$ is maximal

$$\text{AIC} - \text{minimize } n \log\left(\frac{SSE_p}{n}\right) + 2p$$

$$\text{SBC} - \text{minimize } n \log\left(\frac{SSE_p}{n}\right) + p \log(n)$$

Ordering models of the same subset size

- use R^2
- This approach can lead us to consider several models (subsets) that give us approximately the same predicted values
- We may need to apply knowledge of the subject matter to make a final selection

Proc reg

```
proc reg data=a1;
  model lsurv=
    blood prog enz liver/
    selection=rsquare cp aic
    sbc b best=3;
  run;
```

- Number in
- Model R-Square C(p) AIC SBC

• 1	0.4276	66.4889	-103.8269	-99.84889
• 1	0.4215	67.7148	-103.2615	-99.28357
• 1	0.2208	108.5558	-87.1781	-83.20011
• -----				
• 2	0.6633	20.5197	-130.4833	-124.51634
• 2	0.5995	33.5041	-121.1126	-115.14561
• 2	0.5486	43.8517	-114.6583	-108.69138
• -----				
• 3	0.7573	3.3905	-146.1609	-138.20494
• 3	0.7178	11.4237	-138.0232	-130.06723
• 3	0.6121	32.9320	-120.8442	-112.88823
• -----				
• 4	0.7592	5.0000	-144.5895	-134.64461

- Model R-Square Intercept blood prog enz liver

• 1	0.4276	5.26426	.	.	0.01512	.
• 1	0.4215	5.61218	.	.	.	0.29819
• 1	0.2208	5.56613	.	0.01367	.	.
• -----						
• 2	0.6633	4.35058	.	0.01412	0.01539	.
• 2	0.5995	5.02818	.	.	0.01073	0.20945
• 2	0.5486	4.54623	0.10792	.	.	0.01634
• -----						
• 3	0.7573	3.76618	0.09546	0.01334	0.01645	.
• 3	0.7178	4.40582	.	0.01101	0.01261	0.12977
• 3	0.6121	4.78168	0.04482	.	0.01220	0.16360
• -----						
• 4	0.7592	3.85195	0.08368	0.01266	0.01563	0.03216

- **data a1;**
- **infile 'u:/www/STAT512/data/ch07ta01.txt';**
- **input x1 x2 x3 y;**
- **run;**
- **proc reg data=a1;**
- **model y=**
- **x1 x2 x3/**
- **selection=rsquare cp aic**
- **sbc b;**
- **run;**

- Model R-Square C(p) AIC SBC

• 1	0.7710	2.4420	38.7080	40.69942
• 1	0.7111	7.2703	43.3590	45.35045
• 1	0.0203	62.9128	67.7823	69.77373
• -----				
• 2	0.7862	3.2242	39.3417	42.32891
• 2	0.7781	3.8773	40.0860	43.07321
• 2	0.7757	4.0657	40.2957	43.28293
• -----				
• 3	0.8014	4.0000	39.8672	43.85009

- Model R-Square Intercept x1 x2 x3

• 1	0.7710	-23.63449	.	0.85655	.
• 1	0.7111	-1.49610	0.85719	.	.
• 1	0.0203	14.68678	.	.	0.19943
• -----					
• 2	0.7862	6.79163	1.00058	.	-0.43144
• 2	0.7781	-19.17425	0.22235	0.65942	.
• 2	0.7757	-25.99695	.	0.85088	0.09603
• -----					
• 3	0.8014	117.08469	4.33409	-2.85685	-2.18606

Variable Selection

- Additional proc reg model statement options useful in variable selection
 - INCLUDE=n forces the first n explanatory variables into all models
 - BEST=n limits the output to the best n models of each subset size
 - MAXSTEP=n limits the number of steps in forward, backward and stepwise methods.

- START=n for Cp option limits output to models that include at least n explanatory variables,
- For stepwise it begins the search process with first n explanatory variables specified in the model statement

Other approaches

- Maximize adjusted R^2 (ADJRSQ)
- PRESS (prediction SS)
 - For each case i
 - Delete the case and predict Y using a model based on the other $n-1$ cases
 - Look at the SS for observed minus predicted

Other approaches (2)

- Step type procedures
 - Forward selection (Step up)
 - Backward elimination (Step down)
 - Stepwise (forward selection with a backward glance)

Backward elimination

```
• data a1;
• infile 'u:/www/STAT512/data/ch07ta01.txt';
• input x1 x2 x3 y;
• run;
• proc reg data=a1;
• model y=x1 x2 x3/selection=b;
• run;
```

- Backward Elimination: Step 0
- All Variables Entered: R-Square = 0.8014 and C(p) = 4.0000
- Var coef std err t p-value
- Intercept 117.08469 99.782 1.38 0.2578
- x1 4.33409 3.015 2.07 0.1699
- x2 -2.85685 2.582 1.22 0.2849
- x3 -2.18606 1.595 1.88 0.1896

- Backward Elimination: Step 1
- Variable x2 Removed: R-Square = 0.7862 and C(p) = 3.2242
- Intercept 6.79163 4.48829 2.29 0.1486
- x1 1.00058 0.12823 60.89 <.0001
- x3 -0.43144 0.17662 5.97 0.0258
- All variables left in the model are significant at the 0.1000 level.
- Summary of Backward Elimination
- Var rem. R^2 C(p) F p-value
- x2 0.7862 3.2242 1.22 0.2849

Forward selection

- **proc reg** data=a1;
- model y=x1 x2 x3/selection=f;
- **run**;

- Forward Selection: Step 1
- Variable x2 Entered: R-Square = 0.7710 and C(p) = 2.4420
- Var coef std t p
- Intercept -23.63449 5.65741 17.45 0.0006
- x2 0.85655 0.11002 60.62 <.0001
- Forward Selection: Step 2
- Variable x1 Entered: R-Square = 0.7781 and C(p) = 3.8773
- Intercept -19.17425 8.36064 5.26 0.0348
- x1 0.22235 0.30344 0.54 0.4737
- x2 0.65942 0.29119 5.13 0.0369

- Forward Selection: Step 3
- Variable x3 Entered: R-Square = 0.8014 and C(p) = 4.0000
- Var coef std err t p
- Intercept 117.08469 99.78240 1.38 0.2578
- x1 4.33409 3.01551 2.07 0.1699
- x2 -2.85685 2.58202 1.22 0.2849
- x3 -2.18606 1.59550 1.88 0.1896

- All variables have been entered into the model.
- Summary of Forward Selection

Step	var	R^2	c(p)	F	p
1	x2	0.7710	2.4420	60.62	<.0001
2	x1	0.7781	3.8773	0.54	0.4737
3	x3	0.8014	4.0000	1.88	0.1896

Stepwise selection

- **proc reg** data=a1;
- model y=x1 x2 x3/selection=stepwise;
- **run**;
- **quit**;

- Stepwise Selection: Step 1
- Variable x2 Entered: R-Square = 0.7710 and C(p) = 2.4420
- Var coef std err t p
- Intercept -23.63449 5.65741 17.45 0.0006
- x2 0.85655 0.11002 60.62 <.0001

- All variables left in the model are significant at the 0.1500 level.
- No other variable met the 0.1500 significance level for entry into the model.
- Summary of Stepwise Selection

step	var	ent	R^2	C(p)	F	p
1	x2		0.7710	2.4420	60.62	<.0001

SAS Defaults

- **SLstay** (significance level to remove a variable from a model) = 0.1 for backward elimination, 0.15 for stepwise selection
- **SLenter** (significance level to add a new variable into a model) = 0.5 for forward selection, 0.15 for stepwise selection

Partial regression plots

- Also called added variable plots or adjusted variable plots
- One plot for each X_i

Partial regression plots (2)

- Consider X_1
 - Use the other X's to predict Y
 - Use the other X's to predict X_1
 - Plot the residuals from the first regression vs the residuals from the second regression

Partial regression plots (3)

- These plots show the strength of relationship between Y and X_i in the full model. They can also detect
 - Nonlinear relationships
 - Heterogeneous variances
 - Outliers

Example

- Y is amount of life insurance
- X_1 is average annual income
- X_2 is a risk aversion score
- n = 18 managers

Create a data set

```
data a1;
infile 'h:/STAT512/ch10ta01.txt';
input income risk insur;
```

The partial option with proc reg

```
proc reg data=a1;
  model insur=income risk
    /partial;
run;
```

Output

Source	DF	F Value	Pr > F
Model	2	542.33	<.0001
Error	15		
C Total	17		

Output (2)

Root MSE 12.66267
R-Square 0.9864

Output (3)

Var	Par	St	
	Est	Err	t Pr > t
Int	-205	11	-18.06 <.0001
income	6.2	.20	30.80 <.0001
risk	4.7	1.3	3.44 0.0037

Output 4

- The partial option on the model statement in proc reg generates graphs in the output window
- These are ok for some purposes but we prefer to use proc gplot with a smooth
- To generate these plots we do it the hard way

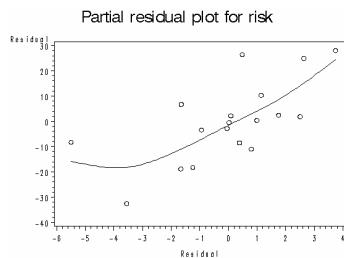
Partial regression plots – the hard way

```
Title1 'Partial residual  
plot for risk';  
proc reg data=a1;  
model insur risk = income;  
output out=a2 r=resins resris;
```

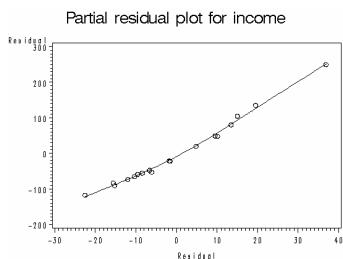
Partial regression plots – the hard way (2)

```
symbol1 v=circle i=sm70s;  
proc gplot data=a2;  
plot resins*resris;  
run;
```

The plot for risk



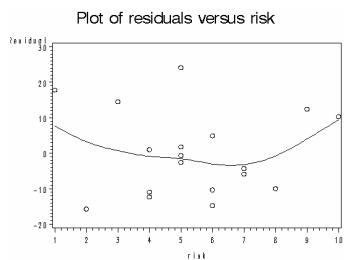
Similar code for income



Plot the residuals vs risk

```
proc reg data=a1;  
model insur= risk income;  
output out=a2 r=resins;  
symbol1 v=circle i=sm70;  
Title1 'Plot of residuals  
versus risk';  
proc sort data=a2; by risk;  
proc gplot data=a2;  
plot resins*risk;  
run;
```

The graph



Plot the residuals vs income

```
Title1 'Plot of residuals  
versus income';  
proc sort data=a2; by income;  
proc gplot data=a2;  
plot resins*income;  
run;
```

Plot the residuals vs income

