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Lecture 12

Analysis of Variance

One-Way ANOVA

• The response variable Y is continuous
• The explanatory variable is categorical

–We call it a factor
–The possible values are called levels

• This is a generalization of the two-
sample t-test

Data for one-way ANOVA

• Y, the response variable
• A, the factor

– I  is the number of levels 
–We sometimes refer to these as 

groups or treatments
• Yij is the j th observation in the i th group

KNNL Example
• KNNL p 685
• Y is the number of cases of cereal sold
• A is the design of the cereal package

–There are 4 levels for A because 
there are 4 different package designs

• i =1 to 4 levels
• j =1 to J i stores with design i (5,5,4,5)
• Use J if it does not depend on i 

Data for one-way ANOVA

data a1; 
infile ‘…/ch16ta01.txt';

input cases design store;
proc print data=a1; 
run;

The data
Obs cases  design  store

1      11      1        1

2      17      1        2

3      16      1        3

4      14      1        4

5      15      1        5

6      12      2        1

7      10      2        2
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Notation

• For Y ij we use  
– i to denote the level of the factor
– j to denote the j th observation at 

factor level i
• i = 1, . . . , I  levels of factor A
• j = 1, . . . , J i observations for level i 

of factor A 

Model

• We assume that the response variable 
observations are
–Normally distributed
–With a mean that may depend on the 

level of the factor
–And a variance that does not
– Independent

Model (2)

• Yij = µi + ξij

–where µi is the theoretical mean or 
expected value of all observations 
at level i and 

– the ξij are iid N(0, σ2)
–Yij ~N(µi, σ2), independent
–This is called the cell means model

Parameters
• The parameters of the model are

– µ1, µ2, … , µI

–σ2

Question – Does our explanatory 
variable influence Y ?  i.e.

Does µi depend on i ?
H0: µ1= µ2= … = µI

Ha: not all µ’s are the same

Estimates

• Estimate µi by the mean of the 
observations at level i, 

• = (ΣYij)/(J i)
• For each level we can get an estimate 

of the variance
• s i

2 = (Σ(Yij- )2)/(J i-1)
• We need to combine these to get an 

estimate of σ2

iY
iY

iY

Pooled estimate of σ2

• If the J i are all the same we would 
average the s i

2

–We would not average the s i

• In general we pool the s i
2, giving 

weights proportional to the df, J i -1
• The pooled estimate is 
• s2 = (Σ (Ji-1)s i

2) / (Σ (J i-1)) 
• = (Σ (J i-1)s i

2)/(n-I) 
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Run proc glm

proc glm data=a1; 
class design; 
model cases=design;
means design;

run;

Output

The GLM Procedure

Class Level Information

Class       Levels    Values

design           4    1 2 3 4

Number of observations    19

Means statement output

Level of

design N   Mean  Std Dev

1      5   14.6      2.3

2      5   13.4      3.6

3      4   19.5      2.6

4      5   27.2      3.9

Plot the data

symbol1 v=circle i=none;
proc gplot data=a1; 

plot cases*design;
run;

The plot Plot the means
proc means data=a1; 

var cases; by design;
output out=a2 mean=avcases;

proc print data=a2;
symbol1 v=circle i=join;
proc gplot data=a2; 

plot avcases*design;
run;
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Output Data Set

Obs design _FREQ_ avcases
1    1      5      14.6
2    2      5      13.4
3    3      4      19.5
4    4      5      27.2

Plot of the means

Notation

• Yi. = (Σj Yij)/ J i

• Y.. = (Σij Yij )/ n
• n is the total number of 

observations
• n = Σj Ji

ANOVA Table

Source  df SS                           MS
Model    I-1     Σij(Yi.-Y..)2 SSM/dfM
Error     n-I     Σij(Yij –Yi.)2 SSE/dfE
Total     n-1    Σij(Yij – Y..)2          SST/dfT

Anova output

Source DF  SS  MS     F      P

Model  3  588 196 18.59 <.0001

Error 15  158  10

Total 18  746

F test

• F = MSM/MSE 
• H0: µ1 = µ2 = … = µI

• H1: not all of the µi are equal 
• Under H 0, F ~ F(I-1, n-I)
• Reject H 0 when F is large
• Report the P-value
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More output

R-Square Root MSE    

0.788055 3.247563 

Factor Effects Model

• Yij = µ + αi + ξij

– the ξij are iid N(0, σ2)

Parameters

• The parameters of the model are
– µ, α1, α2, … , αI

–σ2

Hypotheses

• H0: µ1 = µ2 = … = µI

• H1: not all of the µi are equal 

are translated into

• H0: α1 = α2 = … = αI = 0
• H1: at least one αi is not 0

Confidence intervals for 
means 

• Yi. ~  N(µi, σ2/J i)
• CI for µi is Y i. ± t *s/
• t* is computed from the t(n-I) 

distribution

iJ

Proc Means

proc means data=a1 
mean std stderr clm
maxdec=2; 
class design;
var cases;

run;
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Output

N                        

des Obs Mean Std Dev  Std Error

1    5  14.60    2.30     1.03 

2    5  13.40    3.65     1.63

3    4  19.50    2.65     1.32

4    5  27.20    3.96     1.77

Confidence Intervals

Lower 95%     Upper 95%

des CL for Mean   CL for Mean

1         11.74         17.46

2          8.87         17.93

3         15.29         23.71

4         22.28         32.12

PROC GLM MEANS 
STATEMENT

proc glm data=a1; 
class design; 
model cases=design;
means design/t clm; 

run;

Output

The GLM Procedure

t Confidence Intervals for cases

Alpha                      0.05

Error Degrees of Freedom     15

Error Mean Square      10.54667

Critical Value of t      2.1314

CI Output

95% Confidence

des N    Mean    Limits

4   5  27.200 24.104 30.296

3   4  19.500 16.039 22.961

1   5  14.600 11.504 17.696

2   5  13.400 10.304 16.496

Multiplicity Problem

• We have constructed 4 (in general, I) 95% 
confidence intervals

• The overall confidence level is less that 
95%

• Many different kinds of adjustments have 
been proposed

• We have seen the Bonferroni (use α/I)
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BON option

proc glm data=a1; 
class design; 
model cases=design;
means design/bon clm; 

run;

Output

Bonferroni t Confidence 

Intervals for cases

Alpha                    0.05

Error Degrees of Freedom   15

Error Mean Square    10.54667

Critical Value of t   2.83663

Bonferroni CIs

Simultaneous 95%

des N  Mean Confidence Limits

4   5 27.200   23.080 31.320

3   4 19.500   14.894 24.106

1   5 14.600   10.480 18.720

2   5 13.400    9.280 17.520

Differences in means 

• Distribution of Y i.-Yk. is
• N(µi-µk, (σ2/J i)+(σ2/Jk))
• CI for µi-µk is Y i.-Yk. ± t *s(Y i.-Yk.)

• where s(Y i.-Yk.) =s(               )
ki J

1

J

1 +

t*

• We deal with the multiplicity problem 
by adjusting t* 

• Many different choices are available

LSD

• Least Significant Difference (LSD)
• Ignore multiplicity
• Use t(n-I)
• Also called T in SAS
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Bonferroni

• Use the error budget idea 
• There are l(I-1)/2 comparisons among 

I means
• So, replace α by α/(I(I-1)/2) and use 

t(n-I)

Tukey

• Based on the studentized range 
distribution (max minus min divided 
by the standard deviation)

• t* = q*/
• Details are in KNNL Section 17.5 

2

Scheffe

• Based on the F distribution

• t* = 
• Takes care of multiplicity for all 

linear combinations of means

I)-N 1,-I ; -1)F(1-(I α

Multiple Comparisons

• LSD is too liberal 
• Scheffe is too conservative
• Bonferroni is ok for small I
• Tukey (HSD) is recommended

Example

proc glm data=a1; 
class design; 
model cases=design;
means design/

lsd tukey bon scheffe; 
run;

LSD
t Tests (LSD) for cases

NOTE: This test controls the 

Type I comparisonwise error rate,

not the experimentwise error rate.

Alpha                        0.05

Error Degrees of Freedom       15

Error Mean Square        10.54667

Critical Value of t       2.13145
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Tukey
Tukey's Studentized Range (HSD) 

Test for cases

NOTE: This test controls the 

Type I experimentwise error rate.

Alpha                      0.05

Error Degrees of Freedom     15

Error Mean Square      10.54667

Critical Value of Studentized

Range  4.07597

4.07/sqrt(2)= 2.88

Tukey Intervals (CLDIFF 
option for equal cell sizes)

Difference

design          Between     Simultaneous 95%

Comparison          Means    Confidence Limits

4    - 3            7.700       1.421   13.979  ***

4    - 1           12.600       6.680   18.520  ***

4    - 2           13.800       7.880   19.720  ***

3    - 4           -7.700     -13.979   -1.421  ***

3    - 1            4.900      -1.379   11.179

3    - 2            6.100      -0.179   12.379

1    - 4          -12.600     -18.520   -6.680  ***

1    - 3           -4.900     -11.179    1.379

1    - 2            1.200      -4.720    7.120

2    - 4          -13.800     -19.720   -7.880  ***

2    - 3           -6.100     -12.379    0.179

2    - 1           -1.200      -7.120    4.720

Output (option lines)

Mean      N  design

A        27.200      5    4

B        19.500      4    3

B

B        14.600      5    1

B

B        13.400      5    2


