

Lecture 12

Analysis of Variance

One-Way ANOVA

- The response variable Y is continuous
- The explanatory variable is categorical
 - We call it a factor
 - The possible values are called levels
- This is a generalization of the two-sample t-test

Data for one-way ANOVA

- Y , the response variable
- A , the factor
 - I is the number of levels
 - We sometimes refer to these as groups or treatments
- Y_{ij} is the j^{th} observation in the i^{th} group

KNNL Example

- KNNL p 685
- Y is the number of cases of cereal sold
- A is the design of the cereal package
 - There are 4 levels for A because there are 4 different package designs
- $i = 1$ to 4 levels
- $j = 1$ to J_i stores with design i (5,5,4,5)
- Use J if it does not depend on i

Data for one-way ANOVA

```
data a1;
infile '.../ch16ta01.txt';
  input cases design store;
proc print data=a1;
run;
```

The data

Obs	cases	design	store
1	11	1	1
2	17	1	2
3	16	1	3
4	14	1	4
5	15	1	5
6	12	2	1
7	10	2	2

Notation

- For Y_{ij} we use
 - i to denote the level of the factor
 - j to denote the j^{th} observation at factor level i
- $i = 1, \dots, I$ levels of factor A
- $j = 1, \dots, J_i$ observations for level i of factor A

Model

- We assume that the response variable observations are
 - Normally distributed
 - With a mean that may depend on the level of the factor
 - And a variance that does not
 - Independent

Model (2)

- $Y_{ij} = \mu_i + \xi_{ij}$
 - where μ_i is the theoretical mean or expected value of all observations at level i and
 - the ξ_{ij} are iid $N(0, \sigma^2)$
 - $Y_{ij} \sim N(\mu_i, \sigma^2)$, independent
 - This is called the cell means model

Parameters

- The parameters of the model are
 - $\mu_1, \mu_2, \dots, \mu_I$
 - σ^2

Question – Does our explanatory variable influence Y ? i.e.
Does μ_i depend on i ?

$H_0: \mu_1 = \mu_2 = \dots = \mu_I$
 $H_a: \text{not all } \mu\text{'s are the same}$

Estimates

- Estimate μ_i by the mean of the observations at level i , \bar{Y}_i
- $\bar{Y}_i = (\sum Y_{ij})/(J_i)$
- For each level we can get an estimate of the variance
- $s_i^2 = (\sum (Y_{ij} - \bar{Y}_i)^2)/(J_i - 1)$
- We need to combine these to get an estimate of σ^2

Pooled estimate of σ^2

- If the J_i are all the same we would average the s_i^2
 - We would *not* average the s_i
- In general we pool the s_i^2 , giving weights proportional to the df, $J_i - 1$
- The pooled estimate is
 - $s^2 = (\sum (J_i - 1)s_i^2) / (\sum (J_i - 1))$
 - $= (\sum (J_i - 1)s_i^2)/(n - I)$

Run proc glm

```
proc glm data=a1;
  class design;
  model cases=design;
  means design;
run;
```

Output

The GLM Procedure
Class Level Information

Class	Levels	Values
design	4	1 2 3 4
Number of observations	19	

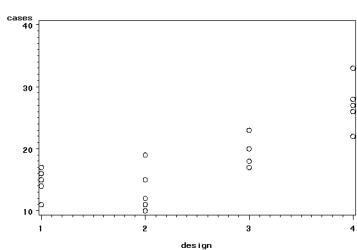
Means statement output

Level of				
	design	N	Mean	Std Dev
1	5	14.6	2.3	
2	5	13.4	3.6	
3	4	19.5	2.6	
4	5	27.2	3.9	

Plot the data

```
symbol1 v=circle i=none;
proc gplot data=a1;
  plot cases*design;
run;
```

The plot



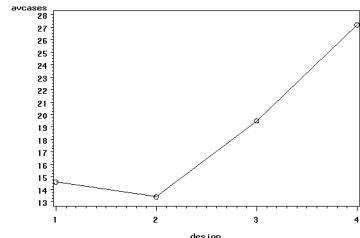
Plot the means

```
proc means data=a1;
  var cases; by design;
  output out=a2 mean=avcases;
proc print data=a2;
symbol1 v=circle i=join;
proc gplot data=a2;
  plot avcases*design;
run;
```

Output Data Set

Obs	design	_FREQ_	avcases
1	1	5	14.6
2	2	5	13.4
3	3	4	19.5
4	4	5	27.2

Plot of the means



Notation

- $Y_{i.} = (\sum_j Y_{ij}) / J_i$
- $Y_{..} = (\sum_{ij} Y_{ij}) / n$
- n is the total number of observations
- $n = \sum_i J_i$

ANOVA Table

Source	df	SS	MS
Model	I-1	$\sum_{ij} (Y_{ij} - Y_{i.})^2$	SSM/dfM
Error	n-I	$\sum_{ij} (Y_{ij} - Y_{..})^2$	SSE/dfE
Total	n-1	$\sum_{ij} (Y_{ij} - Y_{..})^2$	SST/dfT

Anova output

Source	DF	SS	MS	F	P
Model	3	588	196	18.59	<.0001
Error	15	158	10		
Total	18	746			

F test

- $F = MSM/MSE$
- $H_0: \mu_1 = \mu_2 = \dots = \mu_I$
- $H_1: \text{not all of the } \mu_i \text{ are equal}$
- Under H_0 , $F \sim F(I-1, n-I)$
- Reject H_0 when F is large
- Report the P-value

More output

R-Square Root MSE
0.788055 3.247563

Factor Effects Model

- $Y_{ij} = \mu + \alpha_i + \xi_{ij}$
– the ξ_{ij} are iid $N(0, \sigma^2)$

Parameters

- The parameters of the model are
 - $\mu, \alpha_1, \alpha_2, \dots, \alpha_l$
 - σ^2

Hypotheses

- $H_0: \mu_1 = \mu_2 = \dots = \mu_l$
- $H_1: \text{not all of the } \mu_i \text{ are equal}$

are translated into

- $H_0: \alpha_1 = \alpha_2 = \dots = \alpha_l = 0$
- $H_1: \text{at least one } \alpha_i \text{ is not 0}$

Confidence intervals for means

- $Y_{i\cdot} \sim N(\mu_i, \sigma^2/J_i)$
- CI for μ_i is $Y_{i\cdot} \pm t^* s/\sqrt{J_i}$
- t^* is computed from the $t(n-l)$ distribution

Proc Means

```
proc means data=a1
  mean std stderr clm
  maxdec=2;
  class design;
  var cases;
run;
```

Output

		N	des	Obs	Mean	Std Dev	Std Error
1	5	14.60	1	5	2.30	1.03	
2	5	13.40	2	5	3.65	1.63	
3	4	19.50	3	4	2.65	1.32	
4	5	27.20	4	5	3.96	1.77	

Confidence Intervals

		Lower 95%	Upper 95%
des	CL for Mean	CL for Mean	CL for Mean
1	11.74	17.46	
2	8.87	17.93	
3	15.29	23.71	
4	22.28	32.12	

PROC GLM MEANS STATEMENT

```
proc glm data=a1;
  class design;
  model cases=design;
  means design/t clm;
run;
```

Output

The GLM Procedure

t Confidence Intervals for cases

Alpha	0.05
Error Degrees of Freedom	15
Error Mean Square	10.54667
Critical Value of t	2.1314

CI Output

		95% Confidence		
des	N	Mean	Limits	
4	5	27.200	24.104	30.296
3	4	19.500	16.039	22.961
1	5	14.600	11.504	17.696
2	5	13.400	10.304	16.496

Multiplicity Problem

- We have constructed 4 (in general, I) 95% confidence intervals
- The overall confidence level is less than 95%
- Many different kinds of adjustments have been proposed
- We have seen the Bonferroni (use α/I)

BON option

```
proc glm data=a1;
  class design;
  model cases=design;
  means design/bon clm;
run;
```

Output

Bonferroni t Confidence
Intervals for cases

Alpha 0.05
Error Degrees of Freedom 15
Error Mean Square 10.54667
Critical Value of t 2.83663

Bonferroni CIs

Simultaneous 95%
des N Mean Confidence Limits

4	5	27.200	23.080	31.320
3	4	19.500	14.894	24.106
1	5	14.600	10.480	18.720
2	5	13.400	9.280	17.520

Differences in means

- Distribution of $Y_{i\cdot} - Y_{k\cdot}$ is $N(\mu_i - \mu_k, (\sigma^2/J_i) + (\sigma^2/J_k))$
- CI for $\mu_i - \mu_k$ is $Y_{i\cdot} - Y_{k\cdot} \pm t^* s(Y_{i\cdot} - Y_{k\cdot})$
- where $s(Y_{i\cdot} - Y_{k\cdot}) = s(\sqrt{\frac{1}{J_i} + \frac{1}{J_k}})$

t^*

- We deal with the multiplicity problem by adjusting t^*
- Many different choices are available

LSD

- Least Significant Difference (LSD)
- Ignore multiplicity
- Use $t(n-l)$
- Also called T in SAS

Bonferroni

- Use the error budget idea
- There are $I(I-1)/2$ comparisons among I means
- So, replace α by $\alpha/(I(I-1)/2)$ and use $t(n-I)$

Tukey

- Based on the studentized range distribution (max minus min divided by the standard deviation)
- $t^* = q^*/\sqrt{2}$
- Details are in KNNL Section 17.5

Scheffe

- Based on the F distribution
- $t^* = \sqrt{(I-1)F(1-\alpha; I-1, N-I)}$
- Takes care of multiplicity for all linear combinations of means

Multiple Comparisons

- LSD is too liberal
- Scheffe is too conservative
- Bonferroni is ok for small I
- Tukey (HSD) is recommended

Example

```
proc glm data=a1;
  class design;
  model cases=design;
  means design/
    lsd tukey bon scheffe;
run;
```

LSD

t Tests (LSD) for cases
NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.
Alpha 0.05
Error Degrees of Freedom 15
Error Mean Square 10.54667
Critical Value of t 2.13145

Tukey

Tukey's Studentized Range (HSD)
 Test for cases
 NOTE: This test controls the
 Type I experimentwise error rate.
 Alpha 0.05
 Error Degrees of Freedom 15
 Error Mean Square 10.54667
 Critical Value of Studentized
 Range 4.07597
 $4.07/\sqrt{2} = 2.88$

Tukey Intervals (CLDIFF option for equal cell sizes)

design Comparison	Difference		
	Between Means	Simultaneous 95% Confidence Limits	
4 - 3	7.700	1.421	13.979 ***
4 - 1	12.600	6.680	18.520 ***
4 - 2	13.800	7.880	19.720 ***
3 - 4	-7.700	-13.979	-1.421 ***
3 - 1	4.900	-1.379	11.179
3 - 2	6.100	-0.179	12.379
1 - 4	-12.600	-18.520	-6.680 ***
1 - 3	-4.900	-11.179	1.379
1 - 2	1.200	-4.720	7.120
2 - 4	-13.800	-19.720	-7.880 ***
2 - 3	-6.100	-12.379	0.179
2 - 1	-1.200	-7.120	4.720

Output (option lines)

	Mean	N	design
A	27.200	5	4
B	19.500	4	3
B	14.600	5	1
B	13.400	5	2