Lecture 12

Analysis of Variance

One-Way ANOVA

» The response variable Y is continuous
* The explanatory variable is categorical
—We call it a factor
—The possible values are called levels

 This is a generalization of the two-
sample t-test

Data for one-way ANOVA

* Y, the response variable
* A, the factor
—| is the number of levels

—We sometimes refer to these as
groups or treatments

* Y, is the j ™ observation in the i ™ group

KNNL Example

KNNL p 685
* Y is the number of cases of cereal sold
A is the design of the cereal package

—There are 4 levels for A because
there are 4 different package designs

i =1to 4 levels
* j=1to J, stores with design i (5,5,4,5)
Use J if it does not depend on i

Data for one-way ANOVA

data al,;

infile ‘.../chl6ta0l.txt";
input cases design store;

proc print data=al;

run;

The data

Obs cases design store
11
17
16
14
15
12
10

N=0hWN-=

NO O~ OWN =
DN = =




Notation

» For Y; we use
—i to denote the level of the factor
—jto denote the j ™ observation at

Model

« We assume that the response variable
observations are

—Normally distributed
—With a mean that may depend on the

factor level i
«i=1,...,1 levels of factor A level of th? factor
«j=1,...,J observations for level i —And a variance that does not
of factor A —Independent
Model (2) Parameters
Y =g +E * The parameters of the model are
i~ M ij _
—where y; is the theoretical mean or _:21' Hzr oo B

expected value of all observations
at level i and

—the §; are iid N(0, 0?)
-Y;; ~N(u;, 09, independent
—This is called the cell means model

Question — Does our explanatory
variable influence Y ? i.e.

Does p;depend oni ?
Ho' M= M= ... = 1y
H,: not all p’s are the same

Estimates

Estimate p; by the mean of the
cE)servations atlevel i, Y;

Yi o= (EY)E)

For each level we can get an estimate
of the variance

s2 = (Z(Y;- Y1)

* We need to combine these to get an
estimate of @?

Pooled estimate of 02

If the J, are all the same we would
average the s ;2

—We would not average the s,

* In general we pool the s 2, giving
weights proportional to the df, J ;-1

The pooled estimate is
s?=(Z (IrDs?) /(2 (1)
= (X J-1)s?/(n-)




Run proc glm

proc glm data=al,
class design;
model cases=design;
means design;

run;

Output

The GLM Procedure
Class Level Information

Class Levels Values

design 4
Number of observations

1234

19

Means statement output

Level of
design N Mean Std Dev

Plot the data

symboll v=circle i=none;
proc gplot data=al;

1 5 14.6 2.3 plot cases*design;
2 5 13.4 3.6 run:
3 4 19.5 2.6
4 5 27.2 3.9
The plot Plot the means

proc means data=al;
var cases; by design;
output out=a2 mean=avcases;
proc print data=a2;
symboll v=circle i=join;
proc gplot data=a2;
plot avcases*design;
run;




Output Data Set

Obs design _FREQ_ avcases

Plot of the means

aaaaaaa

1 1 5 14.6

2 2 5 13.4

3 3 4 19.5

4 4 5 27.2

Notation ANOVA Table
* Vi =&Y Source df _SS MS
* Y. =EY)n Model I-1 Ei(Y,-Y)?  SSM/dfM
* nisthe tptal number of Error _n-l__ E(Y;-Y,)> SSE/fE
Obsir‘i]a“o”s Total n-1 E(Y,-Y)? SST/fT

e N= j_ i

Anova output

Source DF SS MS F

P

Model 3 588 196 18.59 <.0001

Error 15 158 10
Total 18 746

F test

F = MSM/MSE

*Hy g == =1

H,: not all of the p;, are equal
* Under H,, F ~ F(I-1, n-I)

* Reject H, when F is large
Report the P-value




More output

R-Square Root MSE
0.788055 3.247563

Factor Effects Model

*Yj=H+o+T;
—the §; are iid N(0, 0?)

Parameters

* The parameters of the model are
— M, 0,0, ..., 0
—0?2

Hypotheses

Ho' My =M= ... = |
H,: not all of the p; are equal

are translated into

Heop=a,=...=0,=0
H,: at least one «;is not0

Confidence intervals for
means

* Y. ~ N(u;, 0%3)

* Clfor pjis Y;. £t's/ /3,

* t" is computed from the t(n-1)
distribution

Proc Means

proc means data=al
mean std stderr clm
maxdec=2;
class design;
var cases;

run;




Output

Confidence Intervals

N
des Obs Mean Std Dev Std Error Lower 95% Upper 95%
1 5 14.60 2.30 1.03 des CL for Mean CL for Mean
2 5 13.40  3.65 1.63 1 11.74 17.46
3 4 19.50 2.65 1.32 g 12-2; ;Zg?
4 5 27.20 3.96 1.77 . .
4 22.28 32.12
PROC GLM MEANS Output
STATEMENT
The GLM Procedure
proc glm data=al,
class design; t Confidence Intervals for cases
model cases=design;
means design/t clm; Alpha 0.05
run; Error Degrees of Freedom 15
Error Mean Square 10.54667
Critical Value of t 2.1314
Cl Output Multiplicity Problem
95% Confidence « We have constructed 4 (in general, 1) 95%
des N Mean Limits confidence intervals
* The overall confidence level is less that
4 5 27.200 24.104 30.296 95%
3 4 19.500 16.039 22.961 « Many different kinds of adjustments have
1 5 14.600 11.504 17.696 been proposed
2 5 13.400 10.304 16.496 » We have seen the Bonferroni (use a/l)




BON option

proc glm data=al,
class design;
model cases=design;
means design/bon clm;
run;

Output

Bonferroni t Confidence
Intervals for cases

Alpha 0.05
Error Degrees of Freedom 15
Error Mean Square 10.54667
Critical Value of t 2.83663

Bonferroni Cls

Simultaneous 95%
des N Mean Confidence Limits

5 27.200 23.080 31.320
4 19.500 14.894 24.106
5 14.600 10.480 18.720
5 13.400 9.280 17.520

N = WH

Differences in means

Distribution of Y ;-Y, is
N(Mi-Hy, (0713)+(0%/3,))
o Clfor p-peis Y=Y, £t's(Y;-Y,)

1 1
where s(Y ;-Y, ) =s( 3 "3 )

t*

« We deal with the multiplicity problem
by adjusting t
« Many different choices are available

LSD

Least Significant Difference (LSD)
* Ignore multiplicity

Use t(n-I)

Also called T in SAS




Bonferroni

« Use the error budget idea

* There are I(I-1)/2 comparisons among

| means

* So, replace a by a/(I(I-1)/2) and use

t(n-I)

Tukey

« Based on the studentized range
distribution (max minus min divided
by the standard deviation)

- t'=q"2

* Details are in KNNL Section 17.5

Scheffe

» Based on the F distribution

e t'= J(I-)F(-a;1-1,N-1)

» Takes care of multiplicity for all
linear combinations of means

Multiple Comparisons

LSD is too liberal

» Scheffe is too conservative

» Bonferroni is ok for small |
Tukey (HSD) is recommended

Example

proc glm data=al,
class design;
model cases=design;
means design/
Isd tukey bon scheffe;
run;

LSD

t Tests (LSD) for cases

NOTE: This test controls the

Type I comparisonwise error rate,
not the experimentwise error rate.

Alpha 0.05
Error Degrees of Freedom 15
Error Mean Square 10.54667

Critical Value of t 2.13145




Tukey

Tukey's Studentized Range (HSD)
Test for cases
NOTE: This test controls the

Type I experimentwise error rate.

Alpha 0.05
Error Degrees of Freedom 15
Error Mean Square 10.54667
Critical Value of Studentized
Range 4.07597

4.07/sqrt(2)= 2.88

Tukey Intervals (CLDIFF
option for equal cell sizes)

Difference

design Between Simultaneous 95%
Comparison Means Confidence Limits
4 -3 7.700 1.421  13.979
4 -1 12.600 6.680 18.520
4 -2 13.800 7.880 19.720
3 - 4 -7.700 -13.979  -1.421
3 -1 4.900 -1.379 11.179
3 -2 6.100 -0.179  12.379
1 - 4 -12.600 -18.520 -6.680
1 -3 -4.900 -11.179 1.379
1 -2 1.200 -4.720 7.120
2 - 4 -13.800 -19.720 -7.880
2 -3 -6.100 -12.379 0.179
2 -1 -1.200 -7.120 4.720

*hk
*k K
*kk
*hk

Output (option lines)

Mean N design
A 27.200 5 4
B 19.500 4 3
B
B 14.600 5 1
B
B 13.400 5 2




