

Lecture 13

Diagnostics

Diagnostics overview

- We will take the diagnostics and remedial measures that we learned for regression and adapt them to the ANOVA setting
- Many things are essentially the same
- Some things require modification

Residuals

- Predicted values are cell means, $\hat{Y}_{ij} = Y_{i\cdot}$
- Residuals are the differences between the observed values and the cell means $Y_{ij} - \hat{Y}_{ij}$

Basic plots

- Plot the data vs the factor levels (the values of the explanatory variables)
- Plot the residuals vs the factor levels
- Construct a normal quantile plot of the residuals

KNNL Example

- KNNL p 734
- Compare 4 brands of rust inhibitor (A has $I=4$ levels)
- Response variable is a measure of the effectiveness of the inhibitor
- There are 10 units per brand ($J=10$)

Data

```
data a1;
infile '../data/ch17ta02.txt';
  input eff brand;
run;
```

Recode the factor

```
data a1; set a1;
  if brand eq 1 then abrand='A';
  if brand eq 2 then abrand='B';
  if brand eq 3 then abrand='C';
  if brand eq 4 then abrand='D';
run;
```

Residuals to A2

```
proc glm data=a1;
  class abrand;
  model eff=abrand;
  output out=a2 r=resid;
run;
```

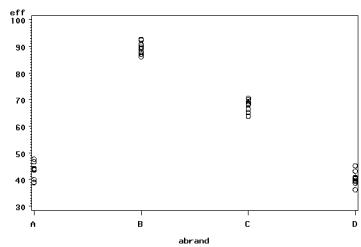
Plots

- Data versus the factor
- Residuals versus the factor
- Normal quantile plot fo the residuals

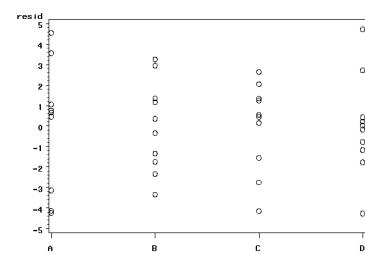
Plots vs the factor

```
symbol1 v=circle i=none;
proc gplot data=a2;
plot (eff resid)*abrand;
run;
```

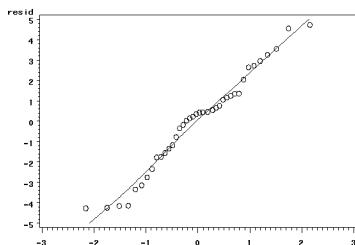
Data vs the factor



Residuals vs the factor



The plot



Homogeneity tests (1)

- Homogeneity of variance (homoscedasticity)
- $H_0: \sigma_1^2 = \sigma_2^2 = \dots = \sigma_l^2$
- $H_1: \text{not all } \sigma_i^2 \text{ are equal}$
- Several significance tests are available

Homogeneity tests (2)

- SAS has several including Bartlett's (essentially the likelihood ratio test) and several versions of Levene

Homogeneity tests (3)

- There is a problem with assumptions
 - Anova is robust with respect to moderate deviations from normality
 - Anova results can be sensitive to the homogeneity of variance assumption
- Some homogeneity tests are sensitive to the normality assumption

Levene's Test

- Do anova on the squared residuals
- Modified Levene's test uses absolute values of the residuals
- Modified Levene is recommended

KNNL Example

- KNNL p 783
- Compare the strengths of 5 types of solder flux (A has $I=5$ levels)
- Response variable is the pull strength, force in pounds required to break the joint
- There are 8 solder joints per flux ($J=8$)

Levene's Test

```
proc glm data=a1;
  class type;
  model strength=type;
  means type/
    hovtest=levene(type=abs);
run;
```

Output

```
Levene's Test
ANOVA of Absolute Deviations

Source DF  F Value      Pr > F
type     4      3.07      0.0288
Error    35
```

Means and SDs

Level		strength		
type	N	Mean	Std Dev	
1	8	15.42	1.23	
2	8	18.52	1.25	
3	8	15.00	2.48	
4	8	9.74	0.81	
5	8	12.34	0.76	

Remedies

- Delete outliers
- Use weights
- Transformations
- Nonparametric procedures

Weighted least squares

- Here we can compute the variance for each level
- Use these as weights in PROC GLM
- We will illustrate with the soldering example from KNNL (p 783)

Obtain the variances and weights

```
proc means data=a1;
  var strength;
  by type;
  output out=a2 var=s2;
data a2; set a2; wt=1/s2;
```

NOTE. Data set a2 has 5 cases

Merge and then use the weights in PROC GLM

```
data a3; merge a1 a2;  
  by type;  
proc glm data=a3;  
  class type;  
  model strength=type;  
  weight wt;  
run;
```

Output

Source	DF	F Value	Pr > F
Model	4	81.05	<.0001
Error	35		
Total	39		

Transformation Guides

- When σ_i^2 is proportional to μ_i , use \sqrt{Y}
- When σ_i is proportional to μ_i , use $\log(y)$
- When σ_i is proportional to μ_i^2 , use $1/y$
- For proportions, use $2\arcsin \sqrt{Y}$
- ($\arcsin(y)$ in a SAS data step)

Nonparametric approach

- Based on ranks
- SAS procedure NPAR1WAY