

Statistical packages (SAS)

Web Page: <http://im.pwr.wroc.pl/~mbogdan>

- Instructor : Małgorzata Bogdan
- **Office :** 205 C-11
- **Office hours:** Wed 13:30-14:30, Fr 13:30-15:30
- or by appointment.
- **phone:** 320-2008
- **Email:** Malgorzata.Bogdan@pwr.wroc.pl

Grades

- lab reports (50%)
- test 1 (25%) April 04
- test 2 (25%) May 23

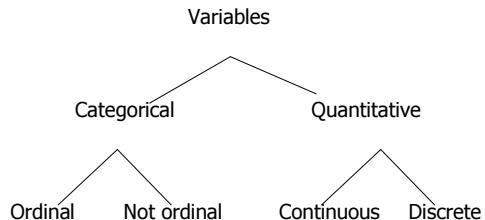
Grades

- $90 - 100 = 5$
- $80 - 89 = 4.5$
- $70 - 79 = 4.0$
- $55 - 69 = 3.5$
- $30 - 54 = 3$
- Submission of all lab reports is the necessary condition for a positive grade.

References

- Introduction to the Practise of Statistics by
- D.S.Moore, G.P.McCabe
- Applied Linear Statistical Models, (5th ed.), by Kutner, Nachtsheim, Neter and Li

Lecture 1



- Displaying data with graphs
- Descriptive statistics
- Basics of testing

Individuals and variables

- Individuals – objects described by a set of data (people, animals, things)
- Variable – characteristic of an individual

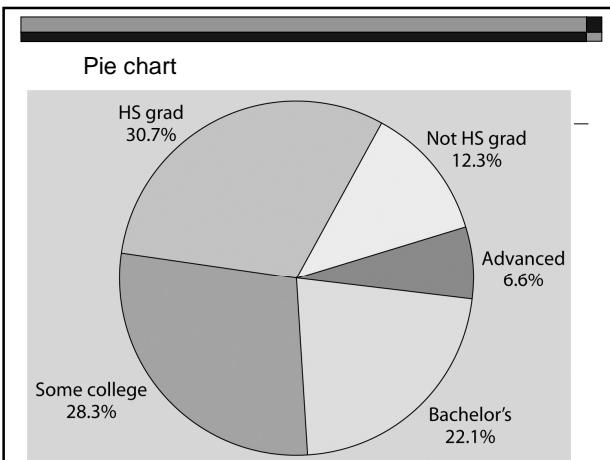
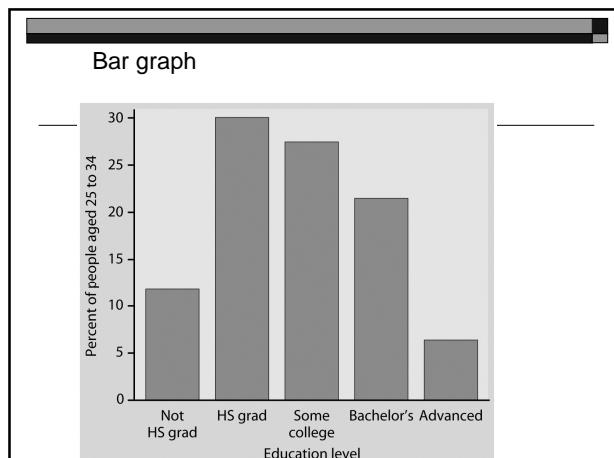
Types of Variables

Types of variables

- Categorical – outcomes fall in to categories
 - Ordinal: choices on a survey ; never, rarely, occasionally, often, always
 - Not ordinal:
 - round & yellow, round & green, wrinkled & yellow, wrinkled & green
 - gender, race, job type

- Quantitative – outcome is a number
 - Continuous : height, weight, concentration
 - Discrete : number of flowers on a plant, number of round & yellow peas

Information on employees of CyberStat



	A	B	C	D	E	F
1	Name	Job Type	Age	Gender	Race	Salary
2	Cedillo, Jose	Technical	27	Male	White	52,300
3	Chambers, Tonia	Management	42	Female	Black	112,800
4	Childers, Amanda	Clerical	39	Female	White	27,500
5	Chen, Huabang	Technical	51	Male	Asian	83,600
6						

Exploratory data analysis - graphs

- We begin by examining each variable by itself.
- Categorical variables
- Distribution – gives the count or the percent of individuals in each category.

Education

Education	Count (in millions)	Percent
Less than high school	4.7	12.3
High school graduate	11.8	30.7
Some college	10.9	28.3
Bachelor's degree	8.5	22.1
Advanced degree	2.5	6.6

Quantitative variable - Stemplot

Stem – all but the final digit
 Leaf – the final digit

Example 1
 Numbers of home runs that Babe Ruth hit in each of his 15 years with the New York Yankees:
 54 59 35 41 46 25 47 60 54 46 49 46 41 34 22

Examining distributions

- Describe the pattern – shape, center and spread.
- Shape –
 - How many modes ?
 - Symmetric or skewed in one direction.
- Center – midpoint
- Spread –range between the smallest and the largest values.
- Look for outliers – individual values that do not match the overall pattern.

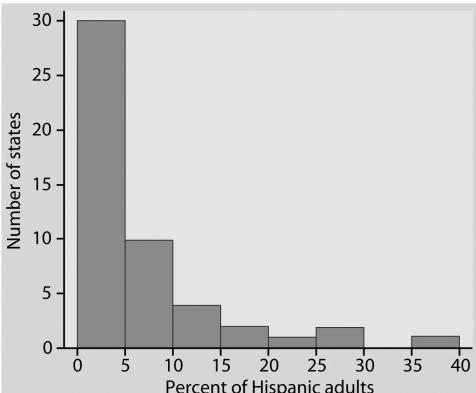

Histograms

TABLE 1.2 Percent of Hispanics in the adult population, by state (2000)

State	Percent	State	Percent	State	Percent
Alabama	1.5	Louisiana	2.4	Ohio	1.6
Alaska	3.6	Maine	0.6	Oklahoma	4.3
Arizona	21.3	Maryland	4.0	Oregon	6.5
Arkansas	2.8	Massachusetts	5.6	Pennsylvania	2.6
California	28.1	Michigan	2.7	Rhode Island	7.0
Colorado	14.9	Minnesota	2.4	South Carolina	2.2
Connecticut	8.0	Mississippi	1.3	South Dakota	1.2
Delaware	4.0	Missouri	1.8	Tennessee	2.0
Florida	16.1	Montana	1.6	Texas	28.6
Georgia	5.0	Nebraska	4.5	Utah	8.1
Hawaii	5.7	Nevada	16.7	Vermont	0.8
Idaho	6.4	New Hampshire	1.4	Virginia	4.2
Illinois	10.7	New Jersey	12.3	Washington	6.0
Indiana	3.1	New Mexico	38.7	West Virginia	0.6
Iowa	2.3	New York	13.8	Wisconsin	2.9
Kansas	5.8	North Carolina	4.3		
Kentucky	1.3	North Dakota	1.0		

Frequency Table

Class	Count	Percent	Class	Count	Percent
0.1-5.0	30	60	20.1-25	1	2
5.1-10.0	10	20	25.1-30	2	4
10.1-15	4	8	30.1-35	0	0
15.1-20	2	4	35.1-40	1	2

Describing distributions with numbers

- Mean
- Median
- Quartiles
- Boxplots
- Standard deviation

SAS programs: Program 1

```
data popstruct;
input state $ percent;
cards;
AL 1.5
AK 3.6
AZ 21.3
.....
WY 5.5 ;
run;
```

Program 2

- data** popstruct;
- infile** 'c:\mbogdan\ECMI\data\ta01_002.txt' **DLM='09x**;
- input** state \$ percent;
- run**;

- proc print** data=popstruct;
- run**;

```
□ data deaths;  
□ input cause $ numdeath;  
□ cards;  
□ accident 13602  
□ homicide 4989  
□ suicide 3885  
□ cancer 1724  
□ heartdis 1048  
□ congenit 430  
□ respirat 208  
□ AIDS 197;  
□ run;
```

Program 3

```
□ proc gchart data=deaths;  
□ vbar cause / freq=numdeath;  
□ run;  
□ proc gchart data=deaths;  
□ pie cause / freq=numdeath;  
□ run;
```

Program 4

```
□ data reading;  
□ infile 'c:\mbogdan\ECMI\data\ex01_026.txt';  
□ input drp;  
□ run;  
□ proc univariate data=reading plot;  
□ var drp;  
□ run;
```

```
□ proc gchart data=reading;  
□ vbar drp/type=pct midpoints=14 to 54 by 4;  
□ run;  
□ proc univariate data=reading;  
□ histogram drp/ midpoints=14 to 54 by 4;  
□ run;
```

Tests of Significance

- The scheme of reasoning
- Stating hypotheses
- Test statistics
- P-values
- Statistical significance
- Test for population mean
- Two-sided test and confidence intervals

Tests of Significance-Hypothesis Testing

This common type of inference is used to assess the evidence provided by the data in favor of or against some claim (hypothesis) about the population...

...rather than to estimate unknown population parameter, for which we would use confidence intervals.

Examples for hypothesis testing:

1. Does the mean content of a drug equal to 198mg based on SRS of n=100 observations contradict the manufacturer's claim that it is 200mg with standard deviation 5mg?
2. Are less than 15% of all CCD sensors produced by a particular manufacturer defective?

Example 1: Manufacturer claims mean content 200mg with SD of 5mg (active ingredient per pill). We study 100 pills; get average 201.65mg. Is it consistent with the claim?

Example 1 cont.. What about the sample mean equal to 199mg or 200.5mg?
Are the outcomes *likely* or *significant*?

Stating Hypotheses

- The hypothesis is a statement about the **parameters in a population** or model. Not about the data at hand.
- The results of a test are expressed in terms of a **probability** that measures how well the **data and the hypothesis agree**.
- In hypothesis testing, we need to state two hypotheses:
 - The **null hypothesis** H_0
 - The **alternative hypothesis** H_a

Null hypothesis:

- The null hypothesis is the claim which is initially favored or believed to be true. Often **default** or uninteresting **situation** of "no effect" or "no difference".

We usually need to determine if there is a strong enough evidence **against it**.

- The test of significance is designed to assess this strength of the evidence against the null hypothesis.

Alternative hypothesis:

- The alternative hypothesis is the claim that we "hope" or "suspect" is true instead of H_0 .
- We often begin with the alternative hypothesis H_a and then set up H_0 as the statement that the hoped-for effect is not present.

Example 1 ctnd. (interpretation):

$$H_0: \mu = 200$$

In words: Mean content is 200mg a pill.

$$H_a: \mu \neq 200$$

In words: Mean content is not 200mg.

A so-called **two-sided** alternative H_a .

(Looking for a departure each direction.)

Example 1 ctnd (other possible settings):

- $H_0: \mu = 200$ vs. $H_a: \mu < 200$

Suspect the content too low. **One-sided H_a** .

- $H_0: \mu = 200$ vs. $H_a: \mu > 200$

Suspect the content too high. **One-sided H_a** .

- $H_0: \mu \leq 200$ vs. $H_a: \mu > 200$

Virtually same as the previous. **One-sided H_a** .

Note: decide on the setting **before** you see the data based on general knowledge or **other** measurements.

Example 1. Interpretation ctnd. Test statistics:

- If the mean content is 200mg and $SD=5\text{mg}$, then

$$\frac{\bar{X} - 200}{0.5}$$

has (approx.) standard normal distribution.

Example 1. Interpretation ctnd. P-value.

- If H_0 is true, what is the probability of having the average of 100 contents as far off from 200 as 201.65?
- 199?
- 200.5?

P-value...

is the **probability**, computed assuming that H_0 is true, that the **test statistics** would take **as extreme or more extreme values** as the one actually observed.

This is the **P-value of the test** (or of the data, given the testing procedure). **If it is small**, it serves as **an evidence against H_0** .

Need to know the distribution of the test statistics under H_0 to calculate P-value.

Statistical Significance:

- We need a **cut-off point** (decisive value) that we can compare our P-value to and draw a conclusion or make a decision.
- This cut-off point is the significance level. It is announced in advance and serves as a standard on how much evidence against H_0 we need to reject H_0 . Usually denoted α .
- Typical values of α : **0.05, 0.01**.
- If not stated otherwise, take $\alpha=0.05$.

Statistical Significance

- When **P-value $\leq \alpha$** , we say that the data are statistically significant at level α i.e. we have significant evidence against the null hypothesis.

Note:

- data with a P-value of 0.02 are statistically significant at level 0.05, but not at level 0.01.

The conclusion/decision:

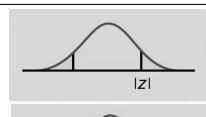
- If the **P-value is smaller than a fixed significance level α** then we **reject the null hypothesis** (in favor of the alternative).
- Otherwise we don't have enough evidence to reject the null.
- Note: Report P-value with your conclusion.

Example 1ctnd. Statement of the conclusion:
(Give it in the natural language! Include P-value.)

z Test for a Population Mean General Setting:

- X_1, \dots, X_n : SRS from (approximately) $N(\mu, \sigma)$
- σ is given, μ is the unknown parameter of interest
- the null hypothesis is
 $H_0: \mu = \mu_0$
- the alternative hypothesis could be:
 $H_a: \mu \neq \mu_0$ (two-sided)
 $H_a: \mu > \mu_0$ (one-sided)
 $H_a: \mu < \mu_0$ (one-sided)

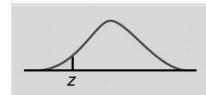
Test statistics for population mean when data are $N(\mu, \sigma)$ and σ is known:


$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

Notes:

- Also called z-test.
- If H_0 is true, this z has standard normal distribution--we expect small values of z.

z Test for a Population Mean P-value


against...
 $H_a: \mu \neq \mu_0$ is $2P(Z \geq |z|) = P(|Z| \geq |z|)$

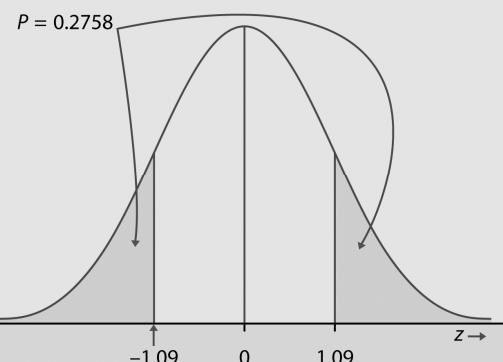
$H_a: \mu > \mu_0$ is $P(Z \geq z)$

$H_a: \mu < \mu_0$ is $P(Z \leq z)$

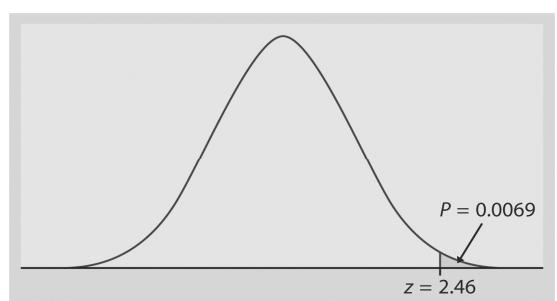
z Test for a Population Mean Decision

Reject H_0 when the P-value is smaller than significance level α .

Do not reject otherwise.


This rule is valid in other settings, too.

One-sided vs. two-sided

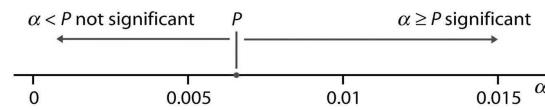

- If, based on previous data or experience we expect “**increase**”, “**more**”, “**better**” etc (“**decrease**”, “**less**”, “**worse**”, resp.), then we can use one sided test.
- Otherwise, by default, we use two-sided. Key words: “**different**”, “**departures**”, “**changed**”...

Example 2: A group of 72 male executives in age group 35-44 has mean systolic blood pressure 126.07. Is this career group's mean pressure **different** than that of the general population of males in this age group, which is $N(128, 15)$?

(α not given?? Take 0.05.)

Example 3: A new billing system will be cost effective only if the mean monthly account is **more** than \$170. Accounts have $SD = \$65$. A survey of 400 monthly accounts gave a mean of \$178. Will the new system be cost-effective?

Two-sided test and confidence intervals


Example 1 (revisited): Find 95% confidence intervals when sample mean is 201.65mg (199mg, 200.5mg). Recall SD=5, n=100.

Note that the hypothesized $\mu=200$ mg is outside the first two and inside the third.

Two-sided test and confidence intervals

A level α **two-sided** significance test rejects H_0 : $\mu=\mu_0$ exactly when μ_0 falls outside a level $1-\alpha$ confidence interval for μ .

P-value is the smallest level α at which the data are significant

Critical value

z^* such that the area (under the normal curve) to the right of it is a specified tail probability p is called **critical value** of (right) one-sided test (based on the normal distribution).

TABLE A Standard normal probabilities (continued)										
<i>z</i>	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	5000	5040	5080	5120	5160	5199	5239	5279	5319	5359
0.1	5398	5438	5478	5517	5557	5596	5636	5675	5714	5753
0.2	5796	5836	5875	5910	5949	5988	6024	6064	6103	6143
0.3	6179	6217	6255	6293	6331	6368	6406	6443	6480	6517
0.4	6554	6591	6628	6664	6700	6736	6772	6808	6844	6879
0.5	6927	6960	6995	7029	7054	7088	7123	7157	7199	7234
0.6	7297	7324	7357	7389	7422	7454	7486	7517	7549	7579
0.7	7580	7611	7642	7673	7704	7734	7764	7794	7823	7852
0.8	7881	7910	7939	7967	7995	8023	8051	8078	8106	8133
0.9	8183	8210	8238	8265	8292	8318	8344	8370	8396	8421
1.0	8413	8438	8461	8485	8508	8531	8554	8577	8599	8621
1.1	8643	8665	8686	8708	8729	8749	8770	8790	8810	8830
1.2	8849	8869	8888	8907	8925	8944	8962	8980	8997	9015
1.3	9032	9049	9066	9082	9100	9117	9134	9151	9167	9183
1.4	9192	9207	9222	9236	9251	9265	9279	9292	9306	9319
1.5	9332	9345	9357	9370	9382	9394	9406	9418	9429	9441
1.6	9452	9464	9476	9488	9500	9512	9524	9536	9547	9559
1.7	9554	9564	9573	9582	9591	9599	9606	9616	9625	9633
1.8	9641	9649	9656	9664	9671	9678	9686	9693	9699	9706
1.9	9713	9717	9720	9723	9726	9729	9732	9736	9739	9743
2.0	9773	9778	9783	9788	9793	9798	9803	9808	9813	9818
2.1	9821	9826	9830	9834	9838	9842	9846	9850	9854	9857
2.2	9861	9864	9868	9871	9875	9878	9881	9884	9887	9890
2.3	9901	9904	9907	9910	9913	9916	9919	9922	9925	9927
2.4	9918	9920	9922	9925	9927	9929	9931	9932	9934	9936
2.5	9938	9940	9941	9943	9945	9948	9949	9951	9952	9953
2.6	9953	9955	9956	9957	9959	9960	9961	9962	9963	9964
2.7	9963	9965	9966	9968	9969	9970	9971	9972	9973	9974
2.8	9974	9975	9976	9977	9977	9978	9979	9979	9980	9981
2.9	9981	9982	9982	9983	9984	9984	9985	9985	9986	9986
3.0	9986	9987	9987	9988	9988	9989	9989	9989	9989	9989
3.1	9990	9991	9991	9991	9992	9992	9992	9993	9993	9993
3.2	9993	9993	9994	9994	9994	9994	9994	9995	9995	9995
3.3	9995	9995	9995	9996	9996	9996	9996	9996	9996	9997
3.4	9997	9997	9997	9997	9997	9997	9997	9997	9997	9998

Examples: Find critical values for $H_a: \mu > \mu_0$ when

$p=0.05, p=0.02, p=0.01$.

What are the P-values of $z=1.5, z=2, z=2.5$?