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Lecture 2
Comparing two populations – ttests and

rank tests

• The t distribution
• Matched pairs t procedures
• Sign test and signed Wilcoxon test
• Two sample t-test and Wilcoxon-Mann

Whitney test

The t distribution:

The goal is to estimate or test for unknown 
µ in situation when σ is also unknown (but 
not searched for).

Solution: estimate σ by s and use 
intelligently in formulas.

Challenge: the distribution of the test 
statistics will change.

Sampling – Normal Population, 
Unknown Standard Deviation

• Suppose an SRS X1, …, Xn is selected from a 
normally distributed population with mean µ and 
standard deviation σ.

• Assume that µ and σ are both unknown.

• We know that 

• When σ is unknown, we estimate its value with the 
sample standard deviation s.
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Sampling – Normal Population, 
Unknown Standard Deviation

• The standard deviation of      can be estimated by

• This quantity is called the standard error of the 
sample mean.

• The test statistic (appropriately standardized 
sample mean) will no longer be normally 
distributed when we use the standard error.

• The test statistic will have a new distribution, called 
the t (or Student’s t) distribution.
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The t-test Statistics and Distribution

• Suppose that an SRS of size n is drawn from an 
N(µ, σ) population.  Then the one-sample t-statistic

has the t distribution with n – 1 degrees of freedom.

• There is a different t distribution for each sample 
size.

• The degrees of freedom for the t-statistic “come”
from the sample standard deviation s.

• The density curve of a t distribution with k degrees 
of freedom is symmetric about 0 and bell-shaped.
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The t Distribution

• The higher the degrees of freedom (df) are, the 
narrower the spread of the t distribution.

• As df increase, the t density curve approach the 
N(0, 1) curve more and more closely.

• Generally it is more spread than normal, especially  
if df small.
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One-sample t Confidence Interval

• Suppose a SRS of size n is drawn from population 
having unknown mean µ. A level C confidence 
interval for µ is

Here t* is the value for the t density curve with 
df=n-1. The area between –t* and t* is C.

• The interval is exact for normal population and 
approximately correct for large n in other cases.
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Example

• From running production of corn soy blend we 
take a sample to measure content of vit. C. 
Results are:

26   31   23   22  11  22  14  31.

• Find 95% confidence interval for content of 
vitamin C in this production.

• Give the margin of error.

Solution: One-Sample t Test

• Suppose that an SRS of size n is drawn from a 
population having unknown mean µ.

• To test the hypothesis H0: µ = µ0 based on an SRS 
of size n, compute the one-sample t statistic

• Note the standard error in the denominator.
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One-Sample t Test

• In terms of a random 
variable T with  t(n – 1) 
distribution, the P-value 
for a test of H0: µ = µ0 
against…
Ha: µ > µ0 is   P(T ≥ t)

Ha: µ < µ0 is   P(T ≤ t)

Ha: µ ≠ µ0 is  2P(T ≥ | t |) 

P-values

These P-values are exact if the population 
distribution is normal and are approximately 
correct for large n in other cases.

Example (vit. C continued):

Test whether vit. C conforms to 
specifications.

H0: µ = 40 vs. Ha: µ≠40

Example (vit. C continued):

Test whether vit. C is lower than 
specifications.

H0: µ = 40 vs. Ha: µ <40
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SAS

• data nowy; 
• input vitC @@ ;
• datalines ; 
• 26 31 23 22 11 22 14 31
• ;
• run ;
• proc univariate data=nowy normal;
• qqplot;
• run ;
• proc ttest h0=40 alpha=0.1;
• var vitC;
• run ;

Tests for normality

• Proc Univariate
• Tests for Normality

• Test                  --Statistic--- -----p Value------

• Shapiro-Wilk W     0.918579    Pr < W       0.4184
Kolmogorov-Smirnov D     0.222284    Pr > D     >0.1500 

Cramer-von Mises W-Sq 0.051067 Pr > W-Sq >0.2500
Anderson-Darling      A-Sq 0.322074    Pr > A-Sq >0.2500
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TTest
• The TTEST Procedure

• Statistics

• Lower Upper Lower CL Upper CL
Var N   Mean Mean Mean Std Dev Std Dev Std Dev Std Err

vitC 8   17.683     22.5   27.317  5.0728    7.1913   12.924    2.5425

• T-Tests

• Variable DF    t Value Pr > |t|

• vitC 7      -6.88      0.0002

Matched Pairs t Procedures

• Inference about a parameter of a single 
distribution is less common than comparative 
inference.

• In certain circumstances a comparative study 
makes use of single-sample t procedures.

• In a matched pairs study, subjects are matched in 
pairs; the outcomes are compared within each 
matched pair. Compared=subtracted.

• One typical situation here is “before” and “after”
(quantitative) observations of the same subject.

Matched Pairs t Test

A matched pairs analysis is appropriate when there 
are two measurements or observations per each 
individual and we   examine the change from the 
first to the second.  Typically, the observations are 
“before” and “after” measures in some sense.

– For each individual, subtract the “before”
measure from the “after” measure.

– Analyze the difference using the one-sample 
confidence interval or significance-testing t
procedures (with H0: µ=0).
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Example

• 20 French teachers attend a course to improve 
their skills.

• The teachers take a Modern Language 
Association’s listening test at the beginning of the 
course and at it’s end.

• The maximum possible score on the test is 36.
• The differences in each participant’s “after” and 

“before” scores have sample mean 2.5 and 
sample standard deviation 2.893.

• Is the improvement significant?
• Construct a 95% confidence interval for the 

mean improvement (in the entire population).

Example

• Loss of vitamin C content in storage and
shipment

• Data – content of vit C in 18 bags of soy
blend

• a) in the factory
• b) after 5 months and shipment to Haiti

SAS
• data soy; 
• infile 'c:/users/mbogdan/ECMI/data/ex07_039.txt' DLM='09'x;
• input id factory Haiti;
• run ;
• data soy1;
• set soy;
• diff=factory-Haiti;
• run ;
• proc univariate data=soy1 normal mu0=0;
• var diff;
• qqplot;
• histogram;
• run ;
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Tests for normality

• Tests for Normality

• Test                  --Statistic--- -----p Value------

• Shapiro-Wilk W     0.952279   Pr < W      0.2434
Kolmogorov-Smirnov D     0.146454   Pr > D      0.1404
Cramer-von Mises W-Sq 0.082695  Pr > W-Sq 0.1898
Anderson-Darling      A-Sq 0.482679    Pr > A-Sq 0.2197

Ttest (and nonparametric tests)

• Tests for Location: Mu0=0

• Test             -Statistic- -----p Value------

• Student's t    t        4.958945    Pr > |t|    <.0001

• Sign M       8.5              Pr >= |M|   0.0015

Signed Rank S      152             Pr >= |S|   <.0001

Proc ttest

• proc ttest data=soy;
• paired factory*Haiti;
• run ;

Results
• The TTEST Procedure

• Statistics

• Lower CL           Upper CL  Lower CL            Upper CL
• Difference N      Mean Mean Mean Std Dev Std Dev Std Dev Std Err

factory - Haiti       27    3.1226  5.3333    7.5441     4.401   5.5884  7.6586   1.0755

• T-Tests

• Difference DF    t Value Pr > |t|

• factory - Haiti        26       4.96      <.0001

Robustness of t Procedures

• A statistical inference is called robust if it’s outcome 
is not sensitive to the violation of the assumptions 
made.

• Real populations are never exactly normal. 
• Usefulness of t procedures in practice depends on 

how strongly they are affected by non-normality.  
• If they are not strongly affected, we say that they 

are robust.
• The t procedures are robust against non-normality 

of the population except in the case of outliers or 
strong skewness.

Robustness of t Procedures

• Practical guidelines for inference on a single mean:
– Sample size < 15:  Use t procedures if the data are 

close to normal; otherwise, don’t.
– Sample size ≥ 15:  Use t procedures except in the 

presence of outliers or strong skewness.
– Large sample size (≥ 40):  Use t procedures even for 

clearly skewed distributions (but be careful with
outliers).

– Use normal quantile plot, histogram, stemplot or boxplot 
to investigate these properties of data.

Assumption that data are SRS--always important. 
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Nonparametric tests

• When the distribution is strongly different
from normal

• Sign test
• N+- number of observations for which
• var1 - var2 >  0
• Under H0 (distribution of var1-var2 is

continous and symmetric around 0)
• N+~ 

Sign test (ctd)

• N-- number of observations for which
• var1 - var2 < 0
• Under H0  N-~
• Test statistic

• M=(N+- N-)/2 

Wilcoxon signed test

• Similar to the sign test but more powerful
• Method

– Calculate var1-var2 in pairs

– Assign ranks to absolute values of these
differences (1 for the smallest, N for the 
largest)

– Assign a sign for each rank (+ when

Var1>var2, - when var1<var2)

• W+ : sum of positive ranks
• S= W+ - N(N+1)/4 ,
• Where N – number of observations for 

which var1 ≠ var 2

6630367

5540456

4-454505

9920294

2-227253

1138392

8825331

Signed
Rank

Rank|d|dY2Y1Obs

• Wilcoxon signed test is more powerful
then the sign test. 

• Sign test can be used when the data 
are coded in terms of preferences
rather than numbers (e.g. 
better/worse, yes/no, smaller/larger)
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Comparing Two Independent Samples

• The two-sample z statistics
• The two-sample t procedures:

– significance test

– confidence interval

• Robustness of the two-sample procedures
• Small samples

Two-Sample Problems

• Two-sample problems typically arise from a 
randomized comparative experiment with two 
treatment groups. (Experimental study.)

• Comparing random samples separately 
selected from two populations is also a two-
sample problem.  (Observational study.)

• Unlike matched pairs design, there is no 
matching of the units in the two sample, and 
the two samples may be of different sizes.

Notation for Two-Sample Settings

σ1

σ2

1

2

Population 
standard 
deviation

Population 
mean

Population

1µ
2µ

Notation for Two-Sample Settings

• Suppose an SRS of size n1 is selected from the 1st

population, and another SRS of size n2 is selected 
from the 2nd population.   

s1

s2

n1

n2

1

2

Sample 
standard 
deviation

Sample 
mean

Sample 
size

Population

1x

2x

Obs Gender        Mass            Rate

1      M                 62         1792
2      M               62.9         1666
3      F               36.1         995
4      F               54.6         1425
5      F               48.5         1396
6      F                 42         1418
7      M               47.4         1362
8      F               50.6         1502
9      F                 42         1256

10      M               48.7         1614
11      F               40.3         1189
12      F               33.1         913
13      M               51.9         1460
14      F               42.4         1124
15      F               34.5         1052
16      F               51.1         1347
17      F               41.2         1204
18      M               51.9         1867
19      M               46.9         1439

Example (metabolism rates for men and women):

• data metabolism; 
• infile 'c:/users/mbogdan/ECMI/data/metabolism.txt';
• input id gender $ mass rate;
• run ;
• proc sort data=metabolism out=met2;
• by gender;
• run ;
• PROC BOXPLOT data=met2 ;
• PLOT rate*gender;
• run ;
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The Two-Sample z Statistic

• A natural estimator of the difference µ1 – µ2 is the difference 
between the sample means

• From the rules of adding means and variances: D=

• This expresses the mean and variance of the distribution of 
differences (of sample means) in terms of the parameters of 
the two original populations.

• If the two population distributions are both normal, then the 
distribution of D is also normal.

1 2x x−

1 2

2 2
1 2
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(population) mean of differences:                 

(population) SD of differences of sample standard deviations: 
n n

µ µ
σ σ
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About the distribution of
the Two-Sample z Statistic

• Suppose that      is the mean of an SRS of size n1
drawn from an N(µ1, σ1) population and that       is 
the mean of an independent SRS of size n2 drawn 
from an N(µ2, σ2) population. Then the two-sample 
z statistic

has the standard normal N(0, 1) as its sampling 
distribution.

1x

2

2
2

1

2
1

2121 )()(

nn

xx
z

σσ
µµ

+

−−−=

2x

Inference – Two Populations, Known
Population Standard Deviations

• If µ1 and µ2 are unknown, then a level C confidence 
interval for µ1 – µ2 is 

where P(-z*≤Z≤z*) = C.
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Inference – Two Populations, Known 
Population Standard Deviations

• We want to test H0: µ1 = µ2 against one of the 
following alternative hypotheses:

– Ha: µ1 > µ2

– Ha: µ1 < µ2

– Ha: µ1 ≠ µ2

• The z test statistic when known population SDs:
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2 2
1 2

1 2

x x
z

n n

σ σ
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Inference – Two Populations, Known 
Population Standard Deviations

2*P(Z>| z |)Ha: µ1≠µ2

P(Z<z)Ha: µ1 < µ2

P(Z>z)Ha: µ1 > µ2

P-valueAlternative 
Hypothesis

Facts about distribution– Two Populations, 
Unknown Population Standard Deviations

• Suppose  µ1, µ2, σ1 and σ2 are unknown.

• Two-sample t statistic for difference in means:

• is approximately t distributed with df either 
approximated by software or taken as:

min(n1 – 1, n2 – 1).
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Inference – Two Populations, Unknown 
Population Standard Deviations

• If µ1, µ2, σ1, and σ2 are unknown, then a level C 
confidence interval for µ1 – µ2 is 

where 

So, this is t. Degrees of freedom as before: min(n1 – 1, 
n2 – 1) or from software.
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Example (Metabolism rate. Women vs. men.)

Find difference in mean metabolism rates 
between men and women.

1 1 1

2 2 1

12,   1235.1,   s 188.3

7,   1600,       s 189.2

n x

n x

= = =
= = =

Solution:

Inference – Two Populations, Unknown 
Population Standard Deviations

• Goal: test H0: µ1 = µ2 against one of the following 
alternative hypotheses when σ1, σ2 are unknown:
– Ha:  µ1 > µ2

– Ha: µ1 < µ2

– Ha: µ1 ≠ µ2

• The t test statistic is

• Degrees of freedom as before: min(n1 – 1, n2 – 1) of from 
software.

1 2

2 2
1 2

1 2
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t

s s

n n
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Inference – Two Populations, Unknown 
Population Standard Deviations σ1, σ2

2*P(T ≥ | t |)Ha: µ1 ≠ µ2

P(T ≤ t)Ha: µ1 < µ2

P(T ≥ t)Ha: µ1 > µ2

P-valueAlternative 
Hypothesis
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Example: Do women have different 
metabolism rate than men?

Robustness of Two-Sample t Test

• The two-sample t procedures are even more robust 
than the one-sample t methods. They are robust 
against non-normal population distributions, in 
particular if the population distributions are 
symmetric and the two sample sizes are equal.

• Outliers are always a problem: may need to be 
eliminated. Skewness less important for not-too-
small sample sizes.

• t procedures are rather conservative so your 
calculated P-values may be even larger than in 
reality. This is good (safe).

Degrees of freedom for two-sample t 
procedures

• df as before: min(n1 – 1, n2 – 1) of from software

• The choice of min(n1 – 1, n2 – 1) is conservative.

• Software will usually give smaller P-values.

• In our example with metabolism rates software 
(calculator☺) will give df=12.6  

• Here no difference in final conclusion…

SAS

• proc ttest data=metabolism ci=equal;
• class gender;
• var rate;
• run ;

Wilcoxon-Mann-Whitney test

• Distribution strongly different from normal
(outliers, strong skewness)

• Method

• Aggregate the data from both samples

• Assign rank for each observation (comparing to 
all observations in both groups)

• Compute the sum of ranks in both groups, R1 
and R2

• Test statistics W=min(R1, R2) 

Example
• Number of seeds produced by two varieties of a 

certain plant.
• Data:
• Var 1: 19, 23, 25, 28, 28, 34 (n1 = 6)
• Var 2: 14, 18, 19, 20, 25 (n2 = 5)
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• proc boxplot data=seeds;
• plot seeds*var/ boxstyle=schematic;
• run ; 
• proc npar1way data=seeds wilcoxon;
• class var;
• var seeds;
• exact wilcoxon;
• run ; 1 2
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• Wilcoxon Scores (Rank Sums) for Variable seeds
• Classified by Variable var

• Sum of Expected Std Dev Mean
• var N        Scores Under H0   Under H0     Score
•

• 1         6          47.0          36.0      5.439753  7.833333
• 2         5          19.0          30.0      5.439753  3.800000

• Exact Test

• One-Sided Pr <=  S           0.0238
• Two-Sided Pr >= |S - Mean|   0.0498


