

Lecture 3

- Inference for a Single Proportion:
 - ✓ test of significance for a single proportion
 - ✓ Chi-square test of goodness-of-fit
 - ✓ Ch-square test for independence

Recall: Population Proportion

- Let p be the proportion of “successes” in a population. A random sample of size n is selected, and X is the count of successes in the sample.
- Suppose n is small relative to the population size, so that X can be regarded as a binomial random variable with

$$\mu = np \quad \text{and} \quad \sigma = \sqrt{np(1-p)}$$

Recall: Population Proportion

- We use the sample proportion $\hat{p} = X/n$ as an estimator of the population proportion p .
- \hat{p} is an unbiased estimator of p , with mean and SD:
$$p \quad \text{and} \quad \sqrt{\frac{p(1-p)}{n}}$$
- When n is large, \hat{p} is approximately normal. Thus
$$z = \frac{\hat{p} - p}{\sqrt{p(1-p)/n}}$$
is approximately standard normal.

Classical Confidence Interval for a Population Proportion

- The standard error of \hat{p} is
$$SE(\hat{p}) = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$
- An approximate level C confidence interval for p :
$$\hat{p} \pm z^* SE(\hat{p}) = \hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$
where $P(Z \geq z^*) = (1 - C)/2$.

Example:

A news program constructs a call-in poll about a proposed city ban on handguns. 2372 people call in to the show. Of these, 1921 oppose the ban.

Construct a 95% confidence interval for the population proportion of people who oppose the ban.

What are the possible problems with the study design?

Solution:

- **Note:** Since p is a proportion, if you ever get an upper value of > 1 or lower < 0 , replace by 1 and 0 (respectively).

SAS

- **data** fraction;
- **input** ban \$ count;
- **cards**;
- **yes** 451
- **no** 1921
- **;**
- **run**;
- **proc freq** order=freq;
- **weight** count;
- **tables** ban/ binomial alpha=0.01;
- **run**;

```

The FREQ Procedure

Cumulative Cumulative
ban Frequency Percent Frequency Percent
no      1921    80.99    1921    80.99
yes     451     19.01   2372   100.00

Binomial Proportion for ban = no

Proportion      0.8099
ASE            0.0081
99% Lower Conf Limit  0.7891
99% Upper Conf Limit  0.8306

Exact Conf Limits
99% Lower Conf Limit  0.7883
99% Upper Conf Limit  0.8302

```

Testing for a single population proportion

- When **n** is **large**, \hat{p} is approximately normal, so

$$z = \frac{\hat{p} - p}{\sqrt{p(1-p)/n}}$$

is approximately standard normal.

We may test $H_0: p = p_0$ against one of these:

- $H_a: p > p_0$
- $H_a: p < p_0$
- $H_a: p \neq p_0$

Large-sample Significance Test for a Population Proportion

- The null hypothesis – $H_0: p = p_0$
- The test statistic is

$$z = \frac{\hat{p} - p_0}{\sqrt{p_0(1-p_0)/n}}$$

Alternative Hypothesis	P-value
$H_a: p > p_0$	$P(Z \geq z)$
$H_a: p < p_0$	$P(Z \leq z)$
$H_a: p \neq p_0$	$2P(Z \geq z)$

Large-sample Significance Test for a Population Proportion

- How big does the sample size need to be?
- The general rule of thumb to use here, as before for approximation of binomial distribution by normal distribution, is

$$np_0 \geq 10, \quad n(1-p_0) \geq 10$$

Example:

- A claim is made that only 34% of all college students have part-time jobs. You are a little skeptical of this result and decide to conduct an experiment to show that more students work. You get a sample of 100 college students and find that 47 of these students have part-time jobs.
- Conduct a hypothesis test with $\alpha = 0.05$ to determine whether more than 34% of college students have part-time jobs.

Solution

SAS

- **data** work;
- **input** work \$ count;
- cards;
- yes 47
- no 53
- ;
- **run**;
- **proc freq**;
- **weight** count;
- **tables** work/ binomial (p=0.34 level='yes');
- **run**;

Binomial Proportion
for work = yes

Proportion	0.4700
ASE	0.0499
95% Lower Conf Limit	0.3722
95% Upper Conf Limit	0.5678

Exact Conf Limits
95% Lower Conf Limit 0.3694
95% Upper Conf Limit 0.5724

Test of H_0 : Proportion = 0.34

ASE under H0	0.0474
Z	2.7443
One-sided Pr > Z	0.0030
Two-sided Pr > Z	0.0061

- Does proportion of people with higher education (Master or above) in American population exceeds 10 % ?
- We will use the data set individuals.dat

SAS

- **data** individuals;
- **infile**
'c:/users/mbogdan/ECMI/data/individuals.dat';
- **input** id age edu gen income class;
- **proc freq**;
- **tables** edu/ binomial (p=0.10 level=6);
- **run**;

Binomial Proportion for edu = 6

Proportion 0.1002
 ASE 0.0013
 95% Lower Conf Limit 0.0977
 95% Upper Conf Limit 0.1027

Exact Conf Limits
95% Lower Conf Limit 0.0977
95% Upper Conf Limit 0.1027

Test of H_0 : Proportion = 0.1

ASE under H0	0.0013
Z	0.1565
One-sided Pr > Z	0.4378
Two-sided Pr > Z	0.8756

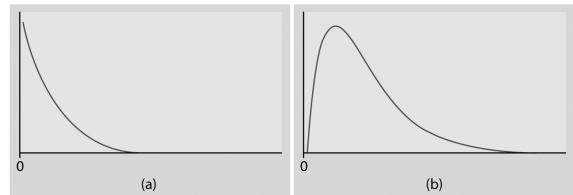
Chi-square test for goodness of fit

- categorical data; a random sample of size n
- have hypothesised values for the population proportions π for each category;
- these are specified in or implied by the problem
- an approximate test which works when sample size is large

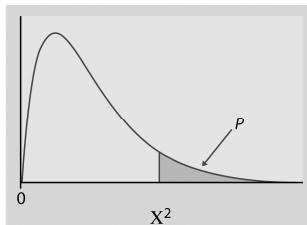
Simplest case: two categories

- Example:
- There are two homozygous lines of Drosophila, one with red eyes, and one with purple eyes. It has been suggested that there is a single gene responsible for this phenotype, with the red eye trait dominant over the purple eye trait. If that is true we expect a cross of these two lines to produce F2 progeny in the ratio 3 red : 1 purple. We want to test the hypothesis that red is (autosomal) dominant. To do this we perform the cross of red-eyed and purple-eyed flies with several parents from the two lines and obtain **43** flies in the F2 generation, with **29 red-eyed flies** and **14 purple-eyed flies**.

Categories:


- Red eyes; hypothesised proportion $\pi = 3/(3+1) = 0.75$
- "expected" number: $E1 = (43)(0.75) = 32.25$
- Purple eyes; hypothesised proportion $1 - \pi = 1/(3+1) = 0.25$
- "expected" number: $E2 = (43)(0.25) = 10.75$
- Is the red-eye trait dominant over purple?

- Let π be the probability that an F2 fly has red eyes
- $H_0: \pi = 0.75$; the F2 progeny are in a 3:1 ratio of red to purple-eyed flies
- $H_A: \pi \neq 0.75$; the F2 progeny are not in a 3:1 ratio


Chi-square goodness of fit test

- $X^2 = \sum(\text{observed} - \text{expected})^2 / \text{expected} = \sum(O-E)^2/E$
- Under H_0 X^2 has a chi-square distribution with $df = \# \text{categories} - 1 = 1$.
- Test at level $\alpha = 0.05$; Critical value = 3.84

Chi-square distributions with $df=2$ and 4:

- **P-value** for chi-square test is: $P(\chi^2 \geq X^2)$
- This is always the right tail of the distribution.

- **P-value** for chi-square test is: $P(\chi^2 \geq X^2)$
- This is always the right tail of the distribution.

TABLE F χ^2 distribution critical values

Tail probability p												
df	.25	.20	.15	.10	.05	.025	.01	.005	.0025	.001	.0005	
1	1.32	1.64	2.07	2.71	3.84	5.02	5.41	6.63	7.88	9.14	10.83	12.12
2	2.77	3.22	3.79	4.61	5.99	7.38	7.82	9.21	10.60	11.98	13.82	15.20
3	4.11	4.64	5.32	6.25	7.81	9.35	9.84	11.34	12.84	14.32	16.27	17.73
4	5.49	6.07	6.77	7.44	9.04	10.71	11.20	12.71	14.20	15.69	16.42	18.47
5	6.63	7.29	8.12	8.94	11.07	12.83	13.39	15.09	16.75	18.11	19.51	21.11
6	7.84	8.56	9.45	10.64	12.59	14.45	15.03	16.81	18.55	20.25	22.46	24.10
7	9.04	9.80	10.75	12.02	14.07	16.01	16.62	18.48	20.28	22.06	24.32	26.07
8	10.23	11.03	12.03	13.33	15.57	17.70	18.30	20.12	21.93	23.77	26.16	27.87
9	11.42	12.23	13.30	14.60	16.92	19.08	19.73	21.80	23.67	25.54	27.94	29.70
10	12.55	13.44	14.53	15.99	18.31	20.48	21.16	23.21	25.19	27.11	29.59	31.42
11	13.70	14.63	15.77	17.28	19.66	21.92	22.62	24.72	26.76	28.73	31.26	33.14
12	14.85	15.81	17.02	18.53	20.91	23.20	23.92	26.12	28.16	30.12	32.97	34.86
13	15.98	16.98	18.20	19.80	22.36	24.74	25.47	27.69	29.82	31.88	34.74	36.61
14	17.12	18.15	19.45	21.06	23.66	26.12	26.87	29.14	31.32	33.43	36.32	38.11
15	18.25	19.31	20.64	22.31	25.06	27.49	28.20	30.56	32.80	34.95	37.70	39.72
16	19.39	20.46	21.80	23.53	26.33	28.80	29.53	31.88	34.13	36.30	39.05	41.00
17	20.49	21.61	23.09	24.77	27.59	30.19	31.90	33.41	35.72	37.95	40.79	42.88
18	21.60	22.76	24.16	25.95	28.87	31.53	32.35	34.81	37.11	39.42	42.31	44.43
19	22.72	23.90	25.33	27.20	30.14	32.82	33.69	36.19	38.58	40.86	43.82	45.97
20	23.84	25.04	26.50	28.37	31.32	34.02	34.89	37.39	39.78	42.06	45.03	47.09
21	24.93	26.17	27.66	29.62	32.67	35.46	36.34	38.93	41.40	43.78	46.80	49.01
22	26.04	27.30	28.82	30.81	33.92	36.78	37.66	40.29	42.80	45.20	48.27	50.28
23	27.14	28.43	29.98	32.00	35.17	38.08	38.97	41.64	44.18	46.62	49.73	52.00
24	28.24	29.53	31.08	33.13	36.38	40.17	41.05	43.74	46.31	48.84	51.96	54.05
25	29.34	30.63	32.28	34.38	37.65	41.55	42.47	45.18	47.79	50.34	53.42	55.45
26	30.43	31.79	33.44	35.53	38.89	41.92	42.86	45.64	48.29	50.83	54.05	56.41
27	31.53	32.91	34.57	36.74	40.11	43.19	44.14	46.94	49.64	52.22	55.44	57.86
28	32.63	34.04	35.71	37.88	41.32	44.40	45.35	48.16	50.86	53.44	56.66	59.05
29	33.71	35.14	36.85	39.09	42.56	45.72	46.69	49.53	52.24	54.97	58.30	60.73
30	34.80	36.25	37.99	40.26	43.77	46.99	47.90	50.89	53.67	56.33	59.70	62.16
40	45.62	47.25	49.24	51.81	55.70	59.34	60.44	63.60	66.77	69.73	73.40	76.26
50	56.42	58.16	60.25	62.81	66.70	70.49	71.60	74.77	77.94	80.86	83.66	86.46
60	66.98	69.07	71.34	74.08	78.05	83.30	84.58	87.88	91.95	95.45	98.11	102.74
80	88.13	90.41	93.11	96.53	101.9	106.6	108.1	112.3	116.3	120.1	124.8	128.3
100	109.1	111.7	114.7	118.5	124.3	129.6	131.1	135.8	140.2	144.3	149.4	153.2

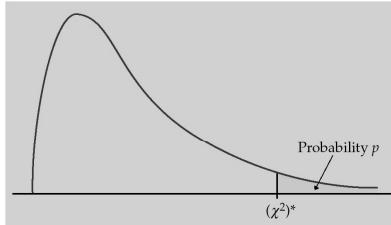


Table entry for p is the critical value (χ^2)* with probability p lying to its right.

Solution

SAS

- **data** flies;
- input eyes \$ count;
- cards;
- purple 14
- red 29
- ;
- **run**;
- **proc freq**;
- weight count;
- tables eyes/ chisq testp=(**0.25 0.75**);
- **run**;

eyes	Frequency	Cumulative		Cumulative	
		Percent	Percent	Frequency	Percent
purple	14	32.56	25.00	14	32.56
red	29	67.44	75.00	43	100.00
Chi-Square Test for Specified Proportions					
Chi-Square 1.3101					
DF 1					
Pr > ChiSq 0.2524					

- **proc freq;**
- weight count;
- tables eyes/ binomial (p=0.25);
- **run;**
- Test of H0: Proportion = 0.25
- ASE under H0 0.0660
- Z 1.1446
- One-sided Pr > Z 0.1262
- Two-sided Pr > |Z| 0.2524

More than 2 Categories

- Example:
- In the sweet pea, the allele for purple flower colour (P) is dominant to the allele for red flowers (p), and the allele for long pollen grains (L) is dominant to the allele for round pollen grains (l). We have P1 parents homozygous for the dominant alleles (PPLL) and P2 parents homozygous for the recessive alleles (ppll). The F1 generation are all PpLl and have purple flowers and long pollen grains. The F1's are crossed to give an F2 generation. It is thought that the genes controlling these two traits are 20 cM apart. If that were true then the F2 offspring proportions should follow the ratio 66:9:9:16

- 66% purple/long : PPLL or PpLL or PPLl or PpLl,
- 9% purple/round : PPlI or PpIi,
- 9% red/long = ppLL or ppLl,
- 16% red/round = ppII
- 381 F2 offspring are collected, and we observe
- 284 purple/long
- 21 purple/round
- 21 red/long
- 55 red/round
- Are these genes 20 cM apart?

- Let $\pi_1, \pi_2, \pi_3, \pi_4$ be the probabilities of purple/long, purple/round, red/long, red/round offspring, respectively, resulting from this F2.
- H0: $\pi_1=0.66, \pi_2 = 0.09, \pi_3=0.09, \pi_4=0.16$; the category probabilities are those predicted by a 20cM genetic distance
- HA: the category probabilities are different from those predicted by a 20cM genetic distance
- Use a chi-square goodness-of-fit test with
- df = #categories - 1 = 4 - 1 = 3
- $\chi^2 = \sum (O-E)^2/E$ has a χ^2_3 distribution under H0.

Solution

- Test at level $\alpha = 0.05$; critical value for χ^2_3 is 7.81. Will reject H0 if $\chi^2 > 7.81$

```

• data peas;
• input colour $ shape $ count;
• cards;
• purple long 284
• purple round 21
• red long 21
• red round 55
• ;
• run;

• data peas; set peas;
• if ((colour eq 'purple")*(shape eq 'long')) then cs='pl';
• if ((colour eq 'purple")*(shape eq 'round')) then cs='pr';
• if ((colour eq 'red")*(shape eq 'long')) then cs='rl';
• if ((colour eq 'red")*(shape eq 'round')) then cs='rr';
• run;

• proc freq data=peas;
• weight count;
• tables cs/ chisq testp=(0.66 0.09 0.09 0.16);
• run;

```

The FREQ Procedure						
		Test	Cumulative	Cumulative		
•	cs	Frequency	Percent	Percent	Frequency	Percent
•	pl	284	74.54	66.00	284	74.54
•	pr	21	5.51	9.00	305	80.05
•	rl	21	5.51	9.00	326	85.56
•	rr	55	14.44	16.00	381	100.00
•	Chi-Square Test for Specified Proportions					
•		Chi-Square	15.0953			
•		DF	3			
•		Pr > ChiSq	0.0017			

Test of independence Example:

- Do men and women participate in sport for the same reasons?
- 67 males and 67 females examined. Results:
 - HSC-HM female 14
 - HSC-HM male 31
 - HSC-LM female 7
 - HSC-LM male 18
 - LSC-HM female 21
 - LSC-HM male 5
 - LSC-LM female 25
 - LSC-LM male 13

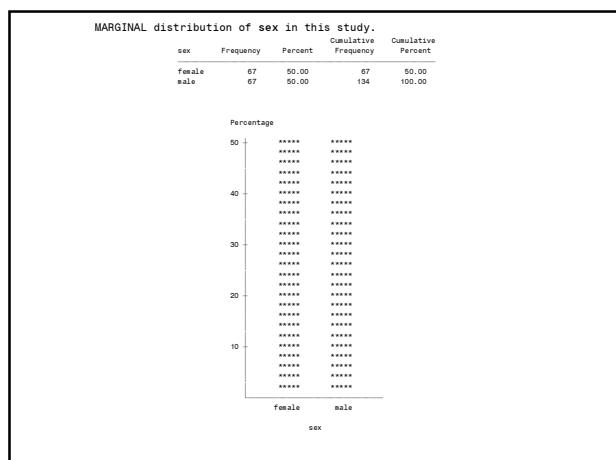
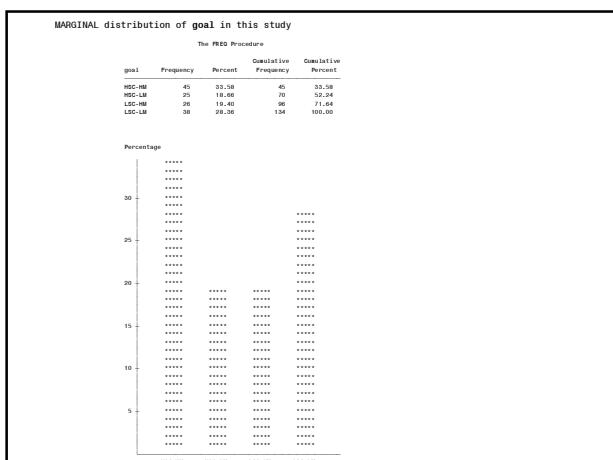
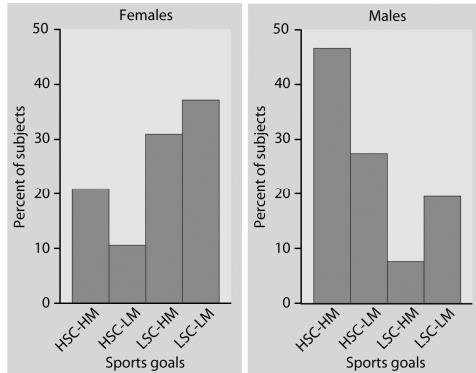


Legend: HSC (LSC)-high (low) **social comparison**; HM (LM)-high (low) **mastery**

Table of goal by sex						
goal	sex	Frequency	Percent			
	female			male		Total
HSC-HM		14		31		
			10.45			
HSC-LM		7		18		
			5.22			
LSC-HM		21		5		
			15.67			
LSC-LM		25		13		
			18.66			
Total						134

Complete "Percent"—i.e. give the JOINT distribution of "goal" and "sex". "goal"—column variable (often response), "sex"—row variable (often explanatory)

goal	sex	Frequency	Expected	Percent	Row Pct	Col Pct	Total
		female	male				
HSC-HM		14	31			45	
			10.45			23.13	33.58
HSC-LM		7	18			18	
			5.22			13.43	
LSC-HM		21	5			5	
			15.67			3.73	
LSC-LM		25	13			13	
			18.66			9.70	
Total							134
							100.00


Find the MARGINAL distribution of **goal**.
Find the MARGINAL distribution of **sex**.

goal		sex		Total
Frequency	Percent	female	male	
HSC-HM	14	31	45	
	10.45	23.13	33.58	
	31.11	68.89		
	20.90	46.27		
HSC-LM	7	18	25	
	5.22	13.43	18.66	
	28.00	72.00		
	10.45	26.87		
LSC-HM	21	5	26	
	15.67	3.73	19.40	
	80.77	19.23		
	31.34	7.46		
LSC-LM	25	13	38	
	18.66	9.70	28.36	
	65.79	34.21		
	37.31	19.40		
Total	67	67	134	100.00

Find the distribution of goals among females—i.e. conditional distribution for “sex”=female.
Do the same for men.
Question: what percent of women have LSC-HM attitude?

Conditional distributions for males and females.

The final result:

goal		sex		Total
Frequency	Percent	Row Pct	Col Pct	
HSC-HM	14	31	45	
	10.45	23.13	33.58	
	31.11	68.89		
	20.90	46.27		
HSC-LM	7	18	25	
	5.22	13.43	18.66	
	28.00	72.00		
	10.45	26.87		
LSC-HM	21	5	26	
	15.67	3.73	19.40	
	80.77	19.23		
	31.34	7.46		
LSC-LM	25	13	38	
	18.66	9.70	28.36	
	65.79	34.21		
	37.31	19.40		
Total	67	67	134	100.00

TWO-WAY table with marginal and conditional distributions.

proc freq
see SAS file: 9-1.sas

```
proc freq data=sport;
  tables goal*sex;
  weight count;
run;
```

Simpson's paradox:

- An association or comparison that holds for all of several groups can reverse direction when the data are combined to form a single group.
- This can be due to a lurking variable.

Example :

- Here are the numbers of flights on time and delayed for 2 airlines at 5 airports. Overall on-time %s for each airline are often reported in the news. Lurking variables can make such reports misleading.

	Alaska Airlines		America West			
	On time	Delayed	Total	On Time	Delayed	Total
L.A.	497	62	559	694	117	811
Phoenix	221	12	233	4840	415	5255
San Diego	212	20	232	383	65	448
San Francisco	503	102	605	320	129	449
Seattle	1841	305	2146	201	61	262
Total		501	3775		787	7225

a) Find the % of delayed flights for Alaska Airlines at each of the 5 airports, and then do the same for America West. (Note: these are not joint probabilities.)

	Alaska Airlines	America West
L.A.		
Phoenix		
San Diego		
San Francisco		
Seattle		

b) What % of all Alaska Airlines flights were delayed? What % of all America West flights were delayed? These are the numbers usually reported.

c) America West does worse at every one of the 5 airports, yet does better overall. That sounds impossible. Explain carefully, referring to the data, how this can happen.

Perils of aggregation

- This example was essentially a Three-Way Table with variables: airline, timing, airport.
- Such tables are often reported as several two-way tables. Think a book, rather than a page.
- Adding entries from such elementary tables ("pages") to get the overall summary (for the "book") is aggregation and leads to ignoring the third variable (here: airport).
- This may lead to false general conclusions.

Inference for Two-Way tables

Hypothesis testing with 2-way tables

- H_0 : there is no association between the row and column variables (they are independent)
- H_a : there is an association between the row and column variables
- To test the hypotheses, compare observed cell counts with **expected** cell counts.
- **Expected**=calculated under the assumption that the null hypothesis is true.

$$\text{expected count} = \frac{\text{row total} \times \text{column total}}{n}$$

Here n = total # of observations for the table.

goal	sex		
Frequency	Expected	Percent	Row Pct
		Col Pct	
	female	male	Total
HSC-HM	14 22.5 10.45 31.11 20.90	31 25.13 68.89 68.89 46.27	45 33.58 68.89 68.89 46.27
HSC-LM	7 5.22 26.00 10.45	18 13.43 72.00 26.87	25 18.66 72.00 26.87
LSC-HM	21 15.67 80.77 31.34	5 3.73 19.23 7.46	26 19.40 19.23 7.46
LSC-LM	25 16.66 65.79 37.31	13 9.70 34.21 19.40	38 28.36 28.36 19.40
Total	67 50.00	67 50.00	134 100.00

Calculate EXPECTED counts.

proc freq
see SAS file: [9-1.sas](#)

```
proc freq data=sport;
tables goal*sex / expected ;
weight count;
run;
```

Test statistic: Chi Square Test Statistic

$$X^2 = \sum \frac{(\text{observed count} - \text{expected count})^2}{\text{expected count}}$$

χ^2 distribution

- The X^2 test statistic has an approximately chi-square distribution.
- To use the chi-square table, you need the degrees of freedom:
 $(r-1)(c-1) = (\#rows-1)(\#columns-1)$.
- Our example has $(4-1)(2-1) = 3$ df.

Finale: Do men and women participate in sport for the same reasons?

		Female		Total
		Female	Male	
		Row Pct	Col Pct	
HSC-HM		14 22.5 31.11 20.90	31 22.5 68.89 46.27	45 33.58
NSC-LM		7 12.5 5.22 28.00 10.45	18 12.5 13.43 72.00 25.87	25 18.05
LSC-HM		21 13 15.77 31.34	5 13 3.70 7.46	26 19.40
LSC-LM		25 18.66 4.66 37.31	13 9.70 34.85 19.40	38 28.36
Total		67 50.00	67 50.00	134 100.00

Solution:

- Recall: $X^2 = \sum \frac{(\text{observed count} - \text{expected count})^2}{\text{expected count}}$

proc freq
see SAS file: 9-1.sas

```
proc freq data=sport;
  tables goal*sex / expected chisq;
  weight count;
run;
```

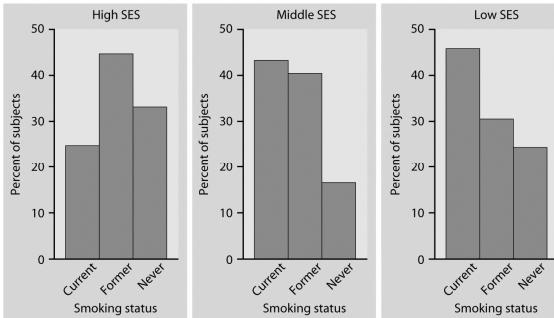
The FREQ Procedure (output):

Statistics for Table of goal by sex

Statistic	DF	Value	Prob
Chi-Square	3	24.8978	<.0001
Likelihood Ratio Chi-Square	3	26.0362	<.0001
Mantel-Haenszel Chi-Square	1	16.2249	<.0001
Phi Coefficient		0.4311	
Contingency Coefficient		0.3958	
Cramer's V		0.4311	

Sample Size = 134

Rules for using the test:


- The chi-square test becomes more accurate as the cell counts increase and for tables larger than 2x2.
- For tables larger than 2x2: use the chi-square test whenever:
 - the average of the expected counts is 5 or more
 - the smallest expected count is 1 or more
 - <20% of cells have expected counts of less than 5.
- For 2x2 tables: use chi-square test whenever all 4 expected cell counts are 5 or more

If the asymptotic assumptions are not met use the exact chisq statement in proc freq.

Example:

- 356 volunteers classified according socioeconomic status (SES) and smoking habits.
- Is smoking associated with SES?

smoking	SES				
Frequency		high	low	middle	Total
Percent					
current	51	43	22		116
	14.33	36.50	16.94		32.58
	43.97	37.07	18.57		42.31
	24.17	46.24			
former	92	28	21		141
	25.84	7.87	5.90		39.61
	65.25	19.86	14.89		40.38
	43.60	30.11			
never	68	22	9		99
	19.10	6.18	2.53		27.81
	68.69	22.22	9.09		
	32.23	23.66	17.31		
Total	211	93	52		356
	59.27	26.12	14.61		100.00

Smoking is associated to SES:

smoking	SES	Statistic			DF	Value	Prob	
		Chi-Square	4	18.5097	0.0010			
		Likelihood Ratio Chi-Square	4	18.6635	0.0009			
		Mantel-Haenszel Chi-Square	1	12.2003				
		Phi Coefficient		0.2280				
		Contingency Coefficient		0.2223				
		Cramer's V		0.1612				
		Sample Size = 356						
Frequency	Expected	Percent	Row Pct	Col Pct	high	low	middle	Total
current	51	43	22		116			
	68.70	36.50	16.94		32.58			
	14.33	12.08	16.18					
	43.97	37.07	18.57					
	24.17	46.24						
former	92	28	21		141			
	83.57	36.634	20.596		39.61			
	25.84	7.87	5.90					
	65.25	19.86	14.89					
	43.60	30.11	40.38					
never	68	22	9		99			
	56.60	25.862	14.461		27.81			
	19.10	8.23	2.53					
	68.69	22.22	9.09					
	32.23	23.66	17.31					
Total	211	93	52		356			
	59.27	26.12	14.61		100.00			

Example (Aspirin study):

- 21,996 male American physicians.
- Half of these took aspirin.
- After 3 years, 139 of those who took aspirin and 239 of those who took placebo had had heart attacks.
- Determine whether there is an association of aspirin with heart attacks.

fate	treatment			
Frequency	Expected	Percent	Row Pct	Col Pct
	aspirin	placebo		Total
heart_at	139	239		378
	189	189		1.72
	0.63	1.09		
	36.77	63.23		
	1.26	2.17		
no_heart	10859	10759		21618
	10809	10809		98.28
	49.37	48.91		
	50.23	49.77		
	98.74	97.83		
Total	10998	10998		21996
	50.00	50.00		100.00

Statistics for Table of fate by treatment

Statistic	DF	Value	Prob
Chi-Square	1	26.9176	<.0001
Likelihood Ratio Chi-Square	1	27.2352	<.0001
Continuity Adj. Chi-Square	1	26.3819	<.0001
Mantel-Haenszel Chi-Square	1	26.9164	<.0001
Phi Coefficient		-0.0350	
Contingency Coefficient		0.0350	
Cramer's V		-0.0350	

Fisher's Exact Test

Cell (1,1) Frequency (F)	139
Left-sided Pr <= P	1.203E-07
Right-sided Pr >= P	1.0000
Table Probability (P)	5.228E-08
Two-sided Pr <= P	2.407E-07

Sample Size = 21996

Conclusion: Aspirin reduces chance of heart attack (P<.0001).