Lecture 5

+ Estimation of subpopulation means
» confidence band for regression line
+ prediction intervals

+ Analysis of variance table

« General linear hypothesis test

- R2

Estimation of E(Y,)

* E(Y,) = B, =By + B X, the mean value
of Y for the subpopulation with X=X,

+ we will estimate E(Y,) by
* H), = b+ b,Xy,

Theory for Estimation of
E(Yh)

A, is normal with mean p,,
+ (it is an unbiased estimator)
« and variance o?( /I, )=

e

Theory for Estimation of
E(Yh) (2)
+ The normality is a consequence of

the fact that [, = b, + b,X, is a linear
combination of Y;’s

Application of the Theory

+ we estimate 0?( l&h) by

- s(fly)= S{l_’_(Xh—XY }

n Z(Xi_?)z
0, —E(Y,

« it follows that t= M ~t(n-2)
S(ﬂ/‘l)

« details for confidence intervals and
significance tests are consequences

95% Confidence Interval
for E(Y},)

¢ Iah ttc S( lah )
» where t, = t(.975, n-2)

» and S(ﬂh) = ’Sz(:ﬁh)




data al;
infile ‘../data/chOltall.dat’';
input size hours;

data a2; size=65; output;

size=100; output;

data a3; set al a2;

proc print data=a3;

proc reg data=a3;
model hours=size/clm;

run;

Dep Var Predicted

Obs size hours Value
26 65 . 294.4290
27 100 . 419.3861
Std Error

Mean Predict 95% CL Mean

9.9176 273.9129 314.9451
14.2723 389.8615 448.9106

Notes

+ significance tests can be constructed
using this theory

+ but they are rarely used in practice

Confidence band for
regression line

M, £ Ws(4,)

where W2=2F(1-a; 2, n-2)

» This gives intervals for all X,

+ Boundary values define a hyperbola

Confidence band for

regression line

+ Theory comes from the joint
confidence region for (B, B, ) which
is an ellipse

»  We can find alpha for t_ that gives
the same results

«  We find W2 and then find alpha for
t. that will give W =t

data al; n=25; alpha=.10;
dfn=2; dfd=n-2;
w2=2*finv (l-alpha,dfn,6dfd);
w=sqrt (w2) ;
alphat=2* (1-probt (w,dfd));
te=tinv(l-alphat/2,d£fd);
output;

proc print data=al;

run;




Obs n alpha dfn dfd w2
1 25 0.1 2 23 5.09858

w alphat tc
2.25800 0.033740 2.25800

data a2;
infile'../data/chOlta0l.dat

L
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input size hours;
symboll v=circle i=rlclm97;

proc gplot data=a2;
plot hours*size;
run;
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Prediction of Y,,...,

* Yh=Bo+ BiXp + &,
* Var(Y,- [i,)=Var Y, + Var i = o2+Var [,

« S(pred)= 2| 14+—+ ( h__)

(Yn- A2, )s(pred) ~ t(n-2)

Prediction of Y,

* Procedure can be modified for the
mean of m observations at X=X,

data al;
infile ‘../data/chOltall.dat’';
input size hours;

data a2; size=65; output;

size=100; output;

data a3; set al a2;

proc print data=a3;

proc reg data=a3;
model hours=size/cli;

run;




Notes
) Dep Var Predicted
‘2’35 suemo hour? 419Y§§:;$ » The standard error (Std Error Mean
Predict)given in this output is the
Std Error standard error of /1, , s?( /1, ), not
Mean Predict 95% CL Predict s?(pred)
14.2723 814.1604  524.6117 « The prediction interval is wider than
the confidence interval
95% Confidence Interval for data al;
o, inti infile
E(Y,) and 95% Prediction . Jdata/chOlta0l.dat ' ;
Interval fOI‘ Yh input size hours;
symboll v=circle i=rlclm95;
c Ay xtos( ) proc gplot data=al;

plot hours*size; run;
symboll v=circle i=rlcli?95;
proc gplot data=al;

plot hours*size; run;quit;

* /1, £t s(pred)
» where t, = t(.975, n-2)
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Analysis of Variance
(ANOVA)

+ A way to organize arithmetic

+ (Total) variation in Y can be
expressed as Z(Y; - y )?

« Partition this variation into two
sources

—Model (regression)
—Error (residual)

ANOVA (Total)

. SST=X(Y,- Y )2
« dfT = n-1
- MST = SST/dfT

ANOVA (Total) (2)

« MST is the usual estimate of the variance
of Y if there are no explanatory variables

* SAS uses the term Corrected Total
for this source

* Uncorrected is Z£Y?

« The correction means that we subtract I_/
before squaring: (Y, - Y )?

ANOVA (Model)

.SSM=x%(Y -Y )
« dfM =1 (for the slope)
+ MSM = SSM/dfM

ANOVA (Error)

SSE=3(Y,- ¥ )2
. dfE = n-2
MSE = SSE/dfE

* MSE is an estimate of the variance of Y
taking into account (or conditioning on)
the explanatory variable(s))

ANOVA Table
Source df SS _ MS
Model 1 (Y -Y )2 SSM/dfM
Error n-2 3(Y, -V )2 SSE/dfE
Total n-1 X(Y,— Y )2 SST/dfT




ANOVA Table (2)

Source df SS MS F P
Model 1 SSM MSM MSM/MSE .nn
Error n-2 SSE MSE

Total n-1

Expected Mean Squares

MSM, MSE are random variables
E(MSM) = 02 + B,2X(X, - X )?
E(MSE) = o2

When H, is true, B, = 0, E(MSM) =
E(MSE)

F test

F=MSM/MSE ~ F(dfM, dfE) = F(1, n-2)

« When H, is false, B, # 0 and MSM
tends to be larger than MSE

We reject Hywhen F is large:
F 2 F(1-a, dfM, dfE) = F(.95, 1, n-2)
* In practice we use P values

F test (2)

When H, is false, F has a noncentral
F distribution

This can be used to calculate power
Recall t = b,/s(b,) tests H,
It can be shown that 2= F

So the two approaches give the same
P values

data al;
infile
‘h:/STAT512/ch01tall.txt"’';
input size hours;
proc reg data=al;
model hours=size;
run;

Sum of Mean
Source DF Squares Square
Model 1 252378 252378
Error 23 54825 2383
C Total 24 307203

F Value Pr > F
105.88 <.0001




Par St

Var DF Est Err t Pr>|t]|

Int 1 62.36 26.17 2.38 0.0259
size 1 3.57 0.34 10.29 <.0001

General linear test

A different view of the same problem
We want to compare two models

=Y = By + BX; + & (fullmodel)

-Y; = By + E; (reduced model)
Compare using SSEs: SSE(F), SSE(R)
F=((SSE(R) - SSE(F))/(dfE(R) - dfE(F)))/
MSE(F)

Simple Linear Regression

- SSE(R)= X(Y;-by)?= Z(Y,- Y )?=SST
SSE(F)=SSE

dfE(R)=n-1, dfE(F)=n-2,

dfE(R )-dfE(F )=1
F=(SST-SSE)/MSE=SSM/MSE

Rz, r2

r is the usual (Pearson) correlation

It is a number between —1 and +1 and
measures the strength of the linear
relation between two variables

r2 = SSM/SST = 1 — SSE/SST

Explained and unexplained variation

R2,r2

- We use R? when the number of
explanatory variables is arbitrary
(simple and multiple regression)

- R?is often multiplied by 100 and
thereby expressed as a percent

Sum of Mean
Source DF Squares Square
Model 1 252378 252378
Error 23 54825 2383

C Total 24 307203
F Value Pr > F
105.88 <.0001




R-Square 0.8215 (SAS)
= SSM/SST
252378/307203

Adj R-Sq 0.8138 (SAS)
=1-MSE/MST
=1-2383/(307203/24)




