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Lecture 5

• Estimation of subpopulation means

• confidence band for regression line

• prediction intervals

• Analysis of variance table

• General linear hypothesis test

• R2

Estimation of E(Yh)

• E(Yh) = µh = β0 + β1Xh, the mean value 

of  Y for the subpopulation with X=Xh

• we will estimate E(Yh) by 

• = b0 + b1Xh 

^
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Theory for Estimation of 

E(Yh)

• is normal with mean µh

• (it is an unbiased estimator)

• and variance σ2(      )=                                      
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Theory for Estimation of 

E(Yh) (2)

• The normality is a consequence of 

the fact that        = b0 + b1Xh  is a linear 
combination of Yi’s
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Application of the Theory
• we estimate σ2(      ) by

• s2(      )=

• it follows that t=                           ~ t(n-2)

• details for confidence intervals and 
significance tests  are consequences
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95% Confidence Interval 

for E(Yh) 

• ± tc s(        ) 

• where tc = t(.975, n-2)

• and s(      ) = 
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data a1; 

infile ‘../data/ch01ta01.dat';

input size hours;

data a2; size=65; output;

size=100; output;

data a3; set a1 a2; 

proc print data=a3; 

proc reg data=a3; 

model hours=size/clm;

run; 

Dep Var Predicted 
Obs size          hours       Value 
26         65           .    294.4290         
27        100           .    419.3861        

Std Error
Mean Predict        95% CL Mean

9.9176    273.9129    314.9451 
14.2723    389.8615    448.9106           

Notes 

• significance tests can be constructed 

using this theory 

• but they are rarely used in practice

Confidence band for 

regression line

• ± Ws(       ) 

• where W2=2F(1-α; 2, n-2) 

• This gives intervals for all Xh

• Boundary values define a hyperbola
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Confidence band for 

regression line
• Theory comes from the joint 

confidence region for (β0, β1 ) which 
is an ellipse 

• We can find  alpha for tc that gives 
the same results

• We find W2 and then find alpha for 

tc that will give W = tc

data a1; n=25; alpha=.10; 

dfn=2; dfd=n-2; 

w2=2*finv(1-alpha,dfn,dfd);

w=sqrt(w2);  

alphat=2*(1-probt(w,dfd));

tc=tinv(1-alphat/2,dfd); 

output;

proc print data=a1;

run;
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Obs n    alpha dfn dfd w2         

1      25     0.1        2      23    5.09858  

w           alphat tc

2.25800    0.033740    2.25800

data a2;                        

infile‘../data/ch01ta01.dat

';                              

input size hours;           

symbol1 v=circle i=rlclm97;

proc gplot data=a2;           

plot hours*size;        

run;

Prediction of Yh(new)

• Yh = β0 + β1Xh + ξξξξhhhh
• Var(Yh - )=Var Yh + Var = σ2+Var 

• S2(pred)=

(Yh - )/s(pred) ~ t(n-2) 
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Prediction of Yh

• Procedure can be modified for the 

mean of m observations at X=Xh

data a1; 

infile ‘../data/ch01ta01.dat';

input size hours;

data a2; size=65; output;

size=100; output;

data a3; set a1 a2; 

proc print data=a3; 

proc reg data=a3; 

model hours=size/cli;

run; 
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DepDepDepDep VarVarVarVar Predicted Predicted Predicted Predicted 
ObsObsObsObs size          hours       Value size          hours       Value size          hours       Value size          hours       Value 
27        100           .    419.3861        27        100           .    419.3861        27        100           .    419.3861        27        100           .    419.3861        

Std ErrorStd ErrorStd ErrorStd Error
Mean Predict        Mean Predict        Mean Predict        Mean Predict        95% CL Predict95% CL Predict95% CL Predict95% CL Predict

14.2723      314.1604    524.611714.2723      314.1604    524.611714.2723      314.1604    524.611714.2723      314.1604    524.6117

Notes

• The standard error (Std Error Mean Std Error Mean Std Error Mean Std Error Mean 
Predict)Predict)Predict)Predict)given in this output is the 

standard error of        ,  s2(      ), not 

s2(pred) 

• The prediction interval is wider than 

the confidence interval
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95% Confidence Interval for 

E(Yh) and 95% Prediction 

Interval for Yh

• ± tc s(       ) 

• ± tc s(pred)

• where tc = t(.975, n-2)
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data a1;                        

infile 

‘../data/ch01ta01.dat';                                  

input size hours;     

symbol1 v=circle i=rlclm95; 

proc gplot data=a1;           

plot hours*size; run; 

symbol1 v=circle i=rlcli95; 

proc gplot data=a1;           

plot hours*size; run;quit;
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Analysis of Variance 

(ANOVA)

• A way to organize arithmetic

• (Total) variation in Y can be 
expressed as Σ(Yi – )2

• Partition this variation into two 
sources

– Model (regression)

– Error (residual)

Y

ANOVA (Total) 

• SST = Σ(Yi – )2 

• dfT = n-1

• MST = SST/dfT

Y

ANOVA (Total) (2)

• MST is the usual estimate of the variance 

of Y if there are no explanatory variables

• SAS uses the term  Corrected Total 

for this source

• Uncorrected is ΣYi
2

• The correction means that we subtract  
before squaring: Σ(Yi – )2 

Y

Y

ANOVA (Model) 

• SSM = Σ(      - )2 

• dfM = 1 (for the slope)

• MSM = SSM/dfM

Y
i

Ŷ

ANOVA (Error) 

• SSE = Σ(Yi – )2 

• dfE = n-2

• MSE = SSE/dfE

• MSE is an estimate of the variance of Y 
taking into account (or conditioning on) 

the explanatory variable(s))

i
Ŷ

ANOVA Table

Source  df SS                                    MS

Model     1     Σ(     - )2 SSM/dfM

Error     n-2   Σ(Yi – )2 SSE/dfE

Total     n-1    Σ(Yi – )2                  SST/dfT

i
Ŷ

i
Ŷ

Y

Y
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ANOVA Table (2)

Source  df SS      MS     F                      P    

Model     1     SSM  MSM  MSM/MSE     .nn

Error     n-2   SSE   MSE

Total     n-1

Expected Mean Squares

• MSM, MSE are random variables

• E(MSM) = σ2 + β1
2Σ(Xi – )2

• E(MSE) = σ2

• When H0 is true, β1 = 0, E(MSM) = 

E(MSE) 

X

F test 

• F=MSM/MSE ~ F(dfM, dfE) = F(1, n-2)

• When H0 is false,  β1 0 and MSM 
tends to be larger than MSE

• We reject H0 when F is large:

• F      F(1-α, dfM, dfE) = F(.95, 1, n-2) 

• In practice we use P values

≠

≥

F test (2)

• When H0 is false,  F has a noncentral

F distribution

• This can be used to calculate power

• Recall t = b1/s(b1) tests H0 

• It can be shown that t2 = F

• So the two approaches give the same 

P values

data a1; 

infile

‘h:/STAT512/ch01ta01.txt';

input size hours;

proc reg data=a1; 

model hours=size; 

run;

Sum of   Mean
Source  DF  Squares Square
Model    1   252378 252378
Error   23    54825   2383
C Total 24   307203

F Value   Pr > F
105.88    <.0001
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Par    St
Var DF   Est Err   t    Pr>|t|

Int 1 62.36 26.17  2.38  0.0259
size 1  3.57  0.34 10.29  <.0001

General linear test

• A different view of the same problem

• We want to compare two models

– Yi  =  ββββ0 0 0 0 + + + + ββββ1111XXXXi + + + + ξξξξi (full model)

– Yi  =  ββββ0 0 0 0 + + + + ξξξξi (reduced model)

• Compare using SSEs: SSE(F), SSE(R)

• F=((SSE(R) - SSE(F))/(dfE(R) - dfE(F)))/ 
MSE(F)

Simple Linear Regression

• SSE(R)= Σ(Yi-b0)
2= Σ(Yi- )2=SST

• SSE(F)=SSE

• dfE(R)=n-1,   dfE(F)=n-2,  

• dfE(R )-dfE(F )=1

• F=(SST-SSE)/MSE=SSM/MSE

Y

R2 , r2

• r is the usual (Pearson) correlation

• It is a number between –1 and +1 and 

measures the strength of the linear 

relation between two variables

• r2 = SSM/SST = 1 – SSE/SST

• Explained and unexplained variation

R2 , r2

• We use R2 when the number of 

explanatory variables is arbitrary 

(simple and multiple regression)

• R2 is often multiplied by 100 and 
thereby expressed as a percent 

Sum of   Mean
Source  DF  Squares Square
Model    1   252378 252378
Error   23    54825   2383
C Total 24   307203

F Value   Pr > F
105.88    <.0001
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R-Square     0.8215 (SAS)
= SSM/SST
= 252378/307203

Adj R-Sq     0.8138 (SAS)
=1-MSE/MST 
=1-2383/(307203/24)


