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Stat 512 Class 8

Other topics in regression analysis

Joint Estimation of β0 and β1 
• Confidence intervals are used for a 

single parameter, confidence regions 
for a two or more parameters

• The region for (β0, β1) defines a set of 
lines

• Since β0 and β1 are (jointly) normal, 
the natural confidence region is an 
ellipse 

• We can also use rectangles

Bonferroni

• We want the probability that both

intervals are correct to be (at least) .95

• Basic idea is an error budget (α =.05)

• Spend half on β0 (.025) and half on β1

(.025)

• We use α =.025 for the β0 CI (97.5% CI) 

• and α =.025 for the β1 CI (97.5% CI)

Bonferroni (2)

• So we use 

• b1 ± tcs(b1)

• b0 ± tcs(b0)

• where  tc = t(.9875, n-2)

• .9875 = 1 – (.05)/(2*2)

Bonferroni (3)

• Note we start with a 5% error budget 

and we have two intervals so we give

• 2.5% to each

• Each interval has two ends so we 

again divide by 2

• So, .9875 = 1 – (.05)/(2*2)

Bonferroni Inequality

• Let the two intervals be I1 and I2
• We will use cor if the interval 

contains the true parameter 

value, inc if not   
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Bonferroni Inequality (2)

• P(both cor)=1-P(at least one inc)

• P(at least one inc)

• = P(I1 inc)+ P(I2 inc)-P(both inc) 

• P(I1 inc)+ P(I2 inc)

• So P(both cor) 

• 1-(P(I1 inc)+ P(I2 inc))

≤

≥

Bonferroni Inequality (3)

• P(both cor)      1-(P(I1 inc)+ P(I2 inc))

• So if we use .05/2 for each interval,

• 1-(P(I1 inc)+ P(I2 inc)) = 1 – .05 =.95

• So P(both cor) is at least .95

• We will use this idea when we do 

multiple comparisons in anova

≥

<.025
.025

.025
.025

Mean Response CIs
• Simultaneous estimation for all Xh, 

use Working-Hotelling

• ± Ws(      ) 

• where W2=2F(1-α; 2, n-2) 

• For simultaneous estimation for a few 
(g) Xh, use Bonferroni

• ± Bs(       ) 

• where B=t(1-α/(2g), n-2)

h
µ̂

h
µ̂

h
µ̂

h
µ̂

data a1; alpha= 0.05;n=50;

W2=2*finv(1-alpha,2,n-2);

W=sqrt(W2);

do g=1 to 15 by 1;

B=tinv(1-alpha/2/g,n-2);

output;

end;

proc print data=a1; run;

Obs alpha   n     g W2         W          B

1     0.05    50     1    6.38145    2.52615    2.01063

2     0.05    50     2    6.38145    2.52615    2.31390

3     0.05    50     3    6.38145    2.52615    2.48078

4     0.05    50     4    6.38145    2.52615    2.59532
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Obs alpha  n     g W2         W          B

1     0.05    20     1    7.10911    2.66629    2.10092

2     0.05    20     2    7.10911    2.66629    2.44501

3     0.05    20     3    7.10911    2.66629    2.63914

4     0.05    20     4    7.10911    2.66629    2.77453

Simultaneous PIs

• Simultaneous prediction for a few (g) Xh, 

• use Bonferroni

• ± Bs(pred)

• where B=t(1-α/(2g), n-2)

h
µ̂

Regression through the 

Origin

• Yi = β1Xi + ξξξξi

• NOINT option in PROC REG

• Generally not a good idea

• Problems with R2 and other statistics

Measurement Error

• For Y, this is usually not a problem

• For X, we can get biased estimators 
of our regression parameters

Choice of X Values (Levels)

• Look at the formulas for the 

variances of the estimators of 
interest

• Usually we find Σ(Xi – )2 in a 
denominator

• So we want to spread out the values 

of X

X

The Model in Scalar Form

• Yi  =  ββββ0 0 0 0 + + + + ββββ1111XXXXi + + + + ξξξξi

• ξξξξi are independent normally 

distributed random errors with mean 
0 and variance σσσσ2
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The Model in Matrix Form
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The Model in Matrix Form 

(2)
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Simple Linear Regression 

in Matrix Form

Y =  Xββββ + + + + ξξξξ

Y      =   X        ββββ +  +  +  +  ξξξξ
nx1    nx2 2x1    nx1
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Distributional Assumptions 

in Matrix Form

• ξ ~ N(0, σ2I)

• I is an nxn identity matrix

• Ones in the diagonal elements specify that 
the variance of each ξi is 1 times σ2

• Zeros in the off-diagonal elements specify 
that the covariance between different ξξξξi is 
zero

• This implies that the correlations are zero

Normal Equations in Matrix 
form

• X′′′′Y = (X′′′′X)β

• Solving for β gives the least squares 

solution b = (b0, b1)′′′′

• b = (X′′′′X)–1(X′′′′Y)

• The same approach works for multiple 

regression
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Fitted Values
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Estimated Covariance 

Matrix of b 

• We have linear combinations of the 

elements of Y

• These are normal if Y is normal

• Approximately normal in general 

A Useful 

MultivariateTheorem

• U ~ N(µ, Σ), a multivariate normal vector

• V =  c + DU, a linear transformation of U

• c is a vector, D is a matrix

• V ~ N(c+Dµ, DΣD′′′′)

Application to b

• b = (X′′′′X)–1(X′′′′Y) = ((X′′′′X)–1X′′′′)(Y) 

• Y ~ N(Xβ, σ2I)

• So b ~ N( (X′′′′X)–1X′′′′(Xβ),                         

σ2 ((X′′′′X)–1X′′′′) I ((X′′′′X)–1X′′′′)′′′′

• b ~ N(β, σ2 (X′′′′X)–1)


