Class 9

- Data, model and inference for
multiple regression

Data for Multiple
Regression

* Y, is the response variable
* Xits Xigs .-« » Xy @re p-1explanatory
variables for cases i= 1ton

Multiple Regression Model

* Yi= Bo+ By Xy + BoXip+... 4 Bp-1xip-1 +§

* Y, is the value of the response
variable for the " case

* By is the intercept

* Bys By --- 5 Bp.q are the regression
coefficients for the explanatory
variables

Multiple Regression
Model (2)

« X, is the value of the k" explanatory
variable for the " case

« & are independent normally distributed
random errors with mean 0 and
variance o2

Many interesting special
cases

Yi= Bo+ ByXi+ BX2+...4 Bp-1xip-1+ (2

Xs can be indicator or dummy variables
with 0 and 1 (or any other two distinct
numbers) as possible values

Interactions
Yi= Bo+ BiXiy+ B Xip+B X1 Xio#+ §;

Multiple Regression
Parameters

* B, the intercept

* B1s By --- » Bp.s the regression
coefficients for the explanatory
variables

« 02 the variance of the error term




Model in Matrix Form

Y = X pg+ ¢
nx1 nxp pxl nxl
£~ N(0,0°D)
Y ~ N(XB,0°1)

Least Squares

Least Squares Solution
b=(XX)"'X'Y
Fitted (predicted) values
Y =Xb=XX'X)'X'Y
=HY

Y=X/+¢
min(Y — Xb)'(Y — Xb)
X'Xb=X'Y
Residuals
e=Y-Y
=Y -HY
=I-H)Y

I-H issymetric and idempotenti.e.
I-H)I-H)=I-H)

Covariance Matrix of

residuals
» Cov(e)=02(I-H)(I-H)’= o?(I-H)
* So,
* Var(e)= 0%(1-h;)
* hy= Xi(X'X)'X;
* X =(1,Xi15-5Xip-1))
» Residuals are usually correlated
+ Cov(e;,e)= - oh;

Estimation of o
) e'e
s =
n—p
_ (Y -Xb)(Y-Xb)
n—p
_ SSE

—— = MSE
dfe

s =+/s> = Root MSE




Distribution of b

« b= (X’X)'X’Y

« Y~N(XB, o2l)

* E(b)=((X’X)"X")XB=p

- Cov(b)=02 (X’X)'X’) (X’X)"'X’)’
= 02 (X’X)"!

Estimation of variance of
b

* b~ N(B, o?(X’X)")
- o2 (X’X)"
* Is estimated by

. $2(X’X)"

ANOVA Table

» To organize arithmetic

« Sources of variation are
—Model

—Error or Residual
—Total

+ SS and df add

—SSM + SSE =SST
—dfM + dfE = dfT

SS
$M=i@—ﬂ2

SSE=>"(¥,-¥,)’
i=1

SST = i(Yi —Y)?

i=1

df
df M=p-1
df E=n-p
df T=n-1

Mean Squares

MSM = SSM/diM
MSE =SSE/dfE
MST =SST/dfT




Mean Squares (2)
MsM =Y (% =¥ 1(p-1)

MSE = (v, ) [(n - p)

i=1

MST =3 (¥, =¥)* /(n - 1)

i=1

ANOVA Table

Source SS df MS F

Model SSM dfM MSM MSM/MSE
Error SSE dfE MSE

Total SST dfT (MST)

ANOVA F test

. Ho: |31 = [32 = ... Bp_1 =0

* H,: B,# 0, for at least one k=1, ..., p-1
* Under H,, F ~ F(p-1,n-p)

* Reject H, if F is large, use P value

Study of CS students

+ Study of computer science majors at
Purdue

 Large drop out rate
+ Can we find predictors of success ?

» Predictors must be available at time
of entry into program

Data available

+ GPA after three semesters

» High school math grades

» High school science grades
» High school English grades

« SAT Math
« SAT Verbal

» Gender (of interest for other reasons)

Example

Data al;
infile‘../csdata.dat’;
input id gpa

hsm hss hse
satm satv genderml;
proc reg data=al;
model gpa=hsm hss hse;
run;




CS ANOVA Table

Sum of Mean

Source DF Squares Square F

Model 3 27.71

9.23 18.86

Error 220 107.75 0.48
Total 223 135.46

Hypothesis Tested by F

°H0: B1 = Bz = .. Bp-1 =0
*F = MSM/MSE
*Reject H, if the P value is < .05

What do we conclude?

R2

» The squared multiple regression
correlation (R?) gives the proportion of
variation in the response variable
explained by the explanatory variables
included in the model

« It is usually expressed as a percent

* It is sometimes called the coefficient of
multiple determination

Sum of Mean
Source Square F P
Model 9.23744 18.86 <.0001
Error 0.48977

R2(2)

R2 = SSM/SST, the proportion of variation
explained

R2 = 1 — (SSE/SST), 1 — the proportion of
variation not explained
F=[(R3)/(p-1)1/[(1- R®/(n-p) ]

For the CS data R?= 27.71/135.46=0.205

» The P-value for the F significance test
tells us one of the following:

—there is no evidence to conclude that
any of our explanatory variables can
help us to model the response variable
using this kind of model (P > .05)

—one or more of the explanatory
variables in our model is potentially
useful for predicting the response
variable in a linear model (P < .05)




Inference for individual
regression coefficients

b ~ N(B, 0% (X’X)")

S2,= s2(X’X)1

s?(b;) = S?(i,i)

Cl: b; £ t_s(b;), where t=1(.975, n-p)
Significance test for H;: B;, = 0 uses the
test statistic t =b,/s(b;), df=dfE=n-p, and
the P-value computed from the t(n-p)
distribution

CS Data results

Example

+ Dwaine Studios operates portrait
studios in 21 cities

* Y is sales

+ X, is number of persons aged 16 and
under

« X, is per capita disposable income
* n =21 cities

Parameter  Standard

» Variable DF Estimate Error tValue Pr> [t
* Intercept 1 0.58988 0.29424 2.00 0.0462
* hsm 1 0.16857 0.03549 4.75 <.0001
* hss 1 0.03432 0.03756 0.91 0.3619
* hse 1 0.04510 0.03870 1.17  0.2451
Check the data
data al;

infile ‘../ch06£fi05.txt’';
input young income sales;

proc print data=al;

run;

Print
Obs young income sales
1 68.5 16.7 174.4
2 45.2 16.8 164.4
3 91.3 18.2 244 .2
4 47.8 16.3 154.6
5 46.9 17.3 181.6

Proc Reg

proc reg data=al;

run;

model sales=young income;




Source DF Sq

C Tot 20 26196

Output

Sum of Mean
Sq F Pr >F

Model 2 24015 12008 99. <.0001
Error 18 2180 121

Output (2)

Root MSE 11.00 R-Sq 0.916
Dep Mean 181.9 Adj R-Sqg 0.907
Coeff Var 6.0

CLB option

proc reg data=al;
model sales=young income/clb;
run;

Output (3)
Par St
Var DF Est Err t P
Int 1 -68.8 60.0 -1.15 0.2663
young 1 1.454 0.21 6.87 <.0001
income 1 9.365 4.06 2.30 0.0333
Output (4)
95% Confidence Limits
Int -194.94 57.23
young 1.00 1.89
income 0.82 17.90

Estimation of E(Y,)

* X, is now a vector

o (1, X1 Xpas === 5 Xp1)’

+ We want a point estimate and a
confidence interval for the

subpopulation mean corresponding
to X,




Theory for E(Y,)

EY,) =p, =X, B
f, =X b
0-2(1[2/7) =X\, 2, X, = O-zx‘h X'X)"'X,

s2(f,)=5"X', (X'X)'X,

Cl: /:Zh m) (lah)t(o.975,n—p)

Estimation of E(Y,) (CLM)

proc reg data=al;

model sales=young income/clm;
id young income;

run;

E(Y,) CLM Output

DV Pre SE
Obs young inco sal Val Pre
1 68.5 16.7 174 187 3.8
2 45.2 16.8 164 154 3.5
3 91.3 18.2 244 234 4.5
4 47.8 16.3 154 153 3.2

E(Y,) CLM Output (2)

Obs 95% CL Mean

1 179.1146 195.2536
2 146.7591 161.6998
3 224 .7569 244.0358
4 146.5361 160.1210

Prediction of Y,

* X, is now a vector
o (1, Xi1s Xpos = 5 Xp1)’
+ We want a prediction for Y, with an

interval that expresses the
uncertainty in our prediction

Theory for Y,,
Y, =X, f+¢&
?h =i, =Xb

o’ (pred) = Var(Yh -Y,)=Var ?h +0?
=0’ (1+X', (X'X)'X,)

s*(pred) =s>(1+ X', (X'X)"'X,)

Cl: ,ah ts (pred)t(()‘975,n—p)




Prediction of Y, (CLI)

proc reg data=al;

model sales=young income/cli;
id young income;

run;

Obs

A WON =

Prediction Intervals

Output

95% CL Predict

162.6910
129.9271
209.3421
129.2260

211.6772
178.5317
259.4506
177.4311




