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Class 9

• Data, model and inference for 

multiple regression

Data for Multiple 
Regression

• Yi is the response variable

• Xi1, Xi2, … , Xip-1 are p-1 explanatory 

variables for cases i =  1 to n

Multiple Regression Model

• Yi  =  β0 + β1Xi1 + β2Xi2 +…+ βp-1Xip-1 + ξi

• Yi  is the value of the response 
variable for the ith case

• β0 is the intercept

• β1, β2, … , βp-1 are the regression 
coefficients for the explanatory 
variables

Multiple Regression 
Model (2)

• Xik is the value of the kth explanatory 

variable for the ith case

• ξi are independent normally distributed 
random errors with mean 0 and 

variance σ2

Many interesting special 
cases

• Yi  =  β0 + β1Xi + β2Xi
2 +…+ βp-1Xi

p-1+ ξi

• Xs can be indicator or dummy variables 

with 0 and 1 (or any other two distinct 
numbers) as possible values

• Interactions

• Yi=  β0 + β1Xi1+ β2Xi2+β 3X i1Xi2+ ξi

Multiple Regression 
Parameters

• ββββ0 0 0 0 the intercept

• β1, β2, … , βp-1 the regression 

coefficients for the explanatory 
variables

• σσσσ2  the variance of the error term 
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Model in Matrix Form
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Least Squares Solution
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Covariance Matrix of 
residuals

• Cov(e)=σ2(I-H)(I-H)’= σ2(I-H)

• So,

• Var(ei)= σ2(1-hii)

• hii= X’i(X’X)-1Xi

• X’i =(1,Xi1,…,Xi(p-1))

• Residuals are usually correlated

• Cov(ei,ej)= - σ2hij

Estimation of σ
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Distribution of b

• b= (X’X)-1X’Y

• Y~N(Xβ, σ2I)

• E(b)=((X’X)-1X’)Xβ=β

• Cov(b)=σ2 ((X’X)-1X’) ((X’X)-1X’)’

= σ2 (X’X)-1

Estimation of variance of 
b

• b ~ N(β, σ2 (X’X)-1)

• σ2 (X’X)-1

• Is estimated by 

• s2 (X’X)-1

ANOVA Table

• To organize arithmetic

• Sources of variation are 

– Model 

– Error  or Residual

– Total 

• SS and df add

– SSM + SSE =SST

– dfM + dfE = dfT
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Mean Squares (2)
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ANOVA Table

Source    SS    df MS  F  

Model   SSM dfM MSM MSM/MSE

Error     SSE  dfE MSE 

Total     SST  dfT (MST)

ANOVA F test
• H0: β1 = β2 =  … βp-1 = 0 

• Ha: βk 0, for at least one  k=1, … , p-1

• Under H0, F ~ F(p-1,n-p)

• Reject H0 if F is large, use P value 

≠

Study of CS students 

• Study of computer science majors at 

Purdue

• Large drop out rate

• Can we find predictors of success ?

• Predictors must be available at time 

of entry into program 

Data available

• GPA after three semesters 

• High school math grades

• High school science grades

• High school English grades

• SAT Math

• SAT Verbal

• Gender (of interest for other reasons)

Example

Data a1; 

infile‘…/csdata.dat';

input id gpa

hsm hss hse

satm satv genderm1;

proc reg data=a1; 

model gpa=hsm hss hse;

run;
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CS ANOVA Table

Sum of    MeanSum of    MeanSum of    MeanSum of    Mean

Source  DF  Squares Square  FSource  DF  Squares Square  FSource  DF  Squares Square  FSource  DF  Squares Square  F

Model    3   27.71  9.23 18.86Model    3   27.71  9.23 18.86Model    3   27.71  9.23 18.86Model    3   27.71  9.23 18.86

Error  220  107.75  0.48Error  220  107.75  0.48Error  220  107.75  0.48Error  220  107.75  0.48

Total  223  135.46Total  223  135.46Total  223  135.46Total  223  135.46

Hypothesis Tested by F

•H0: β1 = β2 =  … βp-1 = 0 

•F = MSM/MSE

•Reject H0 if the P value is      .05 ≤

What do we conclude?

Sum of              Mean

Source             Square             F            P

Model              9.23744      18.86    <.0001

Error                0.48977

R2

• The squared multiple regression 
correlation (R2) gives the proportion of 

variation in the response variable 
explained by the explanatory variables 

included in the model

• It is usually expressed as a percent

• It is sometimes called the coefficient of 

multiple determination 

R2 (2) 

• R2 = SSM/SST,  the proportion of variation 
explained

• R2 = 1 – (SSE/SST), 1 – the proportion of 

variation not explained 

• F = [ (R2)/(p-1) ] / [ (1- R2)/(n-p) ]

• For the CS data R2= 27.71/135.46=0.205

• The P-value for the F significance test 
tells us one of the following:

– there is no evidence to conclude that 
any of our explanatory variables can 
help us to model the response variable 
using this kind of model (P    .05)

– one or more of the explanatory 
variables in our model is potentially 
useful for predicting the response 
variable in a linear model (P     .05)≤

≥
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Inference for individual 
regression coefficients

• b ~ N(β, σ2 (X’X)-1) 

• S2
b= s2 (X’X)-1

• s2(bi) = S2
b(i,i)

• CI: bi ± tcs(bi), where  tc= t(.975, n-p)

• Significance test for H0i: βi, = 0 uses the 
test statistic t =bi/s(bi), df=dfE=n-p, and 
the P-value computed from the t(n-p) 
distribution

CS Data results

Parameter Standard

• Variable DF  Estimate Error t Value Pr > |t|

• Intercept 1        0.58988     0.29424    2.00      0.0462

• hsm 1       0.16857     0.03549    4.75      <.0001

• hss 1       0.03432     0.03756    0.91      0.3619

• hse 1       0.04510     0.03870    1.17      0.2451

Example 

• Dwaine Studios operates portrait 

studios in 21 cities

• Y is sales

• X1 is number of persons aged 16 and 

under

• X2 is per capita disposable income

• n = 21 cities  

Check the data

data a1; 

infile ‘…/ch06fi05.txt';

input young income sales;

proc print data=a1; 

run;

Print

Obs young    income    sales

1     68.5     16.7     174.4

2     45.2     16.8     164.4

3     91.3     18.2     244.2

4     47.8     16.3     154.6

5     46.9     17.3     181.6

Proc Reg

proc reg data=a1; 

model sales=young income;

run;
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Output

Sum of  Mean

Source DF    Sq    Sq  F  Pr > F

Model  2  24015 12008 99. <.0001

Error 18   2180   121

C Tot 20  26196

Output (2)

Root MSE 11.00  R-Sq 0.916

Dep Mean 181.9  Adj R-Sq 0.907

Coeff Var 6.0

Output (3)

Par   St

Var DF   Est Err     t      P

Int 1 -68.8 60.0 -1.15 0.2663

young  1 1.454 0.21  6.87 <.0001

income 1 9.365 4.06  2.30 0.0333

CLB option

proc reg data=a1; 

model sales=young income/clb;

run;

Output (4)

95% Confidence Limits

Int -194.94   57.23

young     1.00    1.89

income    0.82   17.90

Estimation of E(Yh)

• Xh is now a vector

• (1, Xh1, Xh2, … , Xh1)’

• We want a point estimate and a 

confidence interval for the 
subpopulation mean corresponding 

to Xh
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Theory for E(Yh)
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Estimation of E(Yh) (CLM)

proc reg data=a1; 

model sales=young income/clm;

id young income;

run;

E(Yh) CLM Output

DV Pre  SE  

Obs young  inco sal Val Pre

1 68.5  16.7 174 187 3.8

2    45.2  16.8 164 154 3.5

3    91.3  18.2 244 234 4.5 

4    47.8  16.3 154 153 3.2

E(Yh) CLM Output (2)

Obs 95% CL Mean

1      179.1146   195.2536

2      146.7591   161.6998

3      224.7569   244.0358

4      146.5361   160.1210

Prediction of Yh

• Xh is now a vector

• (1, Xh1, Xh2, … , Xh1)’

• We want a prediction for Yh with an 

interval that expresses the 
uncertainty in our prediction
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Ŷ )YŶ()(

b'XˆŶ
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Prediction of Yh (CLI)

proc reg data=a1; 

model sales=young income/cli;

id young income;

run;

Prediction Intervals 
Output

Obs 95% CL Predict

1      162.6910   211.6772

2      129.9271   178.5317    

3      209.3421   259.4506

4      129.2260   177.4311


