Class 3

- Analysis of variance table
- General linear hypothesis test
- R²
- Diagnostics for X

Analysis of Variance (ANOVA)

- A way to organize arithmetic
- (Total) variation in Y can be expressed as Σ(Y_i - <u>y</u>)²
- Partition this variation into two sources
 - -Model (regression)
 - -Error (residual)

ANOVA (Error)

- SSE = $\Sigma(Y_i \hat{Y}_i)^2$
- dfE = n-2
- MSE = SSE/dfE
- MSE is an estimate of the variance of Y taking into account (or conditioning on) the explanatory variable(s))

ANOVA Table

Source	df	SS	MS
Model	1	Σ(\hat{Y}_i - \overline{Y})²	SSM/dfM
Error	n-2	$\Sigma(\mathbf{Y}_{i} - \hat{Y}_{i})^{2}$	SSE/dfE
Total	n-1	$\Sigma(Y_i - \overline{Y})^2$	SST/dfT

ANOVA Table (2)

Source dfSSMSFPModel1SSMMSMMSM/MSE.nnErrorn-2SSEMSETotaln-1

Expected Mean Squares

- MSM, MSE are random variables
- E(MSM) = $\sigma^2 + \beta_1^2 \Sigma (X_i X_i)^2$
- E(MSE) = σ^2
- When H_0 is true, $\beta_1 = 0$, E(MSM) = E(MSE) and

F test

- F=MSM/MSE ~ F(dfM, dfE) = F(1, n-2)
- When H_0 is false, $\beta_1 \neq 0$ and MSM tends to be larger than MSE
- We reject H_0 when F is large:
- $F \ge F(1-\alpha, dfM, dfE) = F(.95, 1, n-2)$
- In practice we use P values

F test (2)

- When H_0 is false, F has a *noncentral* F distribution
- This can be used to calculate power
- Recall $t = b_1/s(b_1)$ tests H_0
- It can be shown that t² = F
- So the two approaches give the same P values

time<-read.table('CH01TA01.txt', col.names=c("size", "hours")); reg1<-lm(hours~size, time); anova(reg1) summary(reg1)

```
Analysis of Variance Table

Response: hours

Df Sum Sq Mean Sq F value

size 1 252378 252378 105.88

Resid 23 54825 2384

Pr(>F)

4.449e-10 ***

std t-value p-value

Int 62.366 26.177 2.382 0.0259 *

size 3.570 0.347 10.290 4.45e-10
```

General linear test

- A different view of the same problem
- We want to compare two models
 - $-Y_i = \beta_0 + \beta_1 X_i + \xi_i$ (full model)
 - $-Y_i = \beta_0 + \xi_i$ (reduced model)
- Compare using SSEs: SSE(F), SSE(R)
- F=((SSE(R) SSE(F))/(dfE(R) dfE(F)))/ MSE(F)

Simple Linear Regression

- SSE(R)= $\Sigma(Y_i-b_0)^2 = \Sigma(Y_i-\overline{Y})^2 = SST$
- SSE(F)=SSE
- dfE(R)=n-1, dfE(F)=n-2,
- dfE(R)-dfE(F)=1
- F=(SST-SSE)/MSE=SSM/MSE

 \mathbb{R}^2 , \mathbb{r}^2

- r is the usual (Pearson) correlation
- It is a number between –1 and +1 and measures the strength of the linear relation between two variables
- r² = SSM/SST = 1 SSE/SST
- Explained and unexplained variation

- We use R² when the number of explanatory variables is arbitrary (simple and multiple regression)
- R² is often multiplied by 100 and thereby expressed as a percent

Response: hours Df Sum Sq Mean Sq F value size 1 252378 252378 105.88 Resid 23 54825 2384 Multiple R-squared: 0.8215 Adjusted R-squared: 0.8138

R-Square 0.8215 (R) = SSM/SST = 252378/307203 Adj R-Sq 0.8138 (R) =1-MSE/MST =1-2383/(307203/24)

Diagnostics and remedial measures

- Diagnostics: look at the data to diagnose situations where the assumptions of our model are violated
- Remedies: changes in analytic strategy to fix these problems

Look at the data

- Before trying to describe the relationship between a response variable (Y) and an explanatory variable (X), we should look at the distributions of these variables
- We should always look at X
- If Y depends on X, looking at Y alone may not be very informative

Min.	1st	Qu.	Me	dian	Mean	L		
20	50)	1	70	70			
3rd 🤉	Qu.	M	ax.					
90		1						
n me	ean s	sd m	ed '	trm	mad	mj	in ma	\mathbf{x}
25 70	0 28	.72	70	70 29	9.65	20	120	
range	e sl	cew i	kur	tosi	5 S	e		
100	-0	.09	-1	.25	5.	74		

stem(time\$size, scale=2) boxplot(time\$size)						
2	0000					
4	00000					
6	0000					
8	000000					
10	0000					
12	0					

plot(time\$size)

Normal distributions

- Our model does *not* state that X comes from a single normal population
- Same comment applies to Y
- In some cases, X and/or Y may be normal and it can be useful to know this

Normal quantile plots

- Consider n=5 observations iid N(0,1)
- From table of normal distribution, we find

 $-P(.25 < z \le .84) = .20$

Normal quantile plots (2)

- So we expect
 - One observation \leq -.84
 - -One observation in (-.84, -.25)
 - -One observation in (-.25, .25)
 - -One observation in (25, .84)
 - -One observation > .84

Normal quantile plots (3)

- $Znorm_i = \Phi^{-1}((i-.375)/(n+.25))$, i=1 to n
- Plot the order statistics X_(i) versus Znorm_i

Normal quantile plots (4)

- The standardized X variable is $z = (X \mu)/\sigma$
- So, X = μ + σ z
- If the data are approximately normal, the relationship will be approximately linear with slope close to σ and intercept close to μ .

