Class 3

- Analysis of variance table
- General linear hypothesis test
- \mathbf{R}^{2}
- Diagnostics for X

Analysis of Variance (ANOVA)

- A way to organize arithmetic
- (Total) variation in Y can be expressed as $\Sigma\left(\mathbf{Y}_{\mathrm{i}}-\bar{Y}\right)^{2}$
- Partition this variation into two sources
- Model (regression)
-Error (residual)

ANOVA (Total)

- $\mathbf{S S T}=\boldsymbol{\Sigma}\left(\mathbf{Y}_{\mathrm{i}}-\bar{Y}\right)^{\mathbf{2}}$
- $\mathrm{dfT}=\mathrm{n}-1$
- MST = SST/dfT

ANOVA (Model)

- $\mathbf{S S M}=\boldsymbol{\Sigma}\left(\hat{Y}_{i}-\bar{Y} \quad\right)^{2}$
- dfM = 1 (for the slope)
- MSM = SSM/dfM

ANOVA (Error)

- SSE $=\boldsymbol{\Sigma}\left(\mathbf{Y}_{\mathbf{i}}-\hat{Y}_{i}\right)^{2}$
- $\mathrm{dfE}=\mathrm{n}$-2
- MSE = SSE/dfE
- MSE is an estimate of the variance of Y taking into account (or conditioning on) the explanatory variable(s))
the explanatory variable(s))

ANOVA Table

Source df	SS	MS	
Model	1	$\Sigma\left(\hat{Y}_{i}-\bar{Y}\right)^{2}$	SSM/dfM
Error	$\mathrm{n}-2$	$\Sigma\left(\mathrm{Y}_{\mathrm{i}}-\hat{Y}_{i}\right)^{2}$	SSE/dfE
Total	$\mathrm{n}-1$	$\Sigma\left(\mathrm{Y}_{\mathrm{i}}-\bar{Y}\right)^{2}$	$\mathrm{SST} / \mathrm{dfT}$

ANOVA Table (2)

Source	df	SS	MS	F	P
Model	1	SSM	MSM	MSM/MSE	.$n n$
Error	$\mathrm{n}-2$	SSE	MSE		
Total	$\mathrm{n}-1$				

Expected Mean Squares

- MSM, MSE are random variables
- $E(M S M)=\sigma^{2}+\beta_{1}{ }^{2} \Sigma\left(X_{i}-\bar{X}\right)^{2}$
- $\mathrm{E}(\mathrm{MSE})=\boldsymbol{\sigma}^{2}$
- When H_{0} is true, $\beta_{1}=0, \mathrm{E}(\mathrm{MSM})=$ $E(M S E)$ and

F test

- F=MSM/MSE ~ F(dfM, dfE) = F(1, n-2)
- When H_{0} is false, $\beta_{1} \neq 0$ and MSM tends to be larger than MSE
- We reject H_{0} when F is large:
- $F \geq F(1-\alpha, d f M, d f E)=F(.95,1, n-2)$
- In practice we use P values

F test (2)

- When H_{0} is false, F has a noncentral F distribution
- This can be used to calculate power
- Recall $t=b_{1} / s\left(b_{1}\right)$ tests H_{0}
- It can be shown that $\mathrm{t}^{2}=\mathrm{F}$
- So the two approaches give the same P values

```
time<-read.table('CH01TA01.txt',
col.names=c("size", "hours"));
reg1<-lm(hours~size, time);
anova (reg1)
summary(reg1)
```


General linear test

- A different view of the same problem
- We want to compare two models
$-Y_{i}=\beta_{0}+\beta_{1} x_{i}+\xi_{i}$ (full model)
$-Y_{i}=\beta_{0}+\xi_{i}$ (reduced model)
- Compare using SSEs: SSE(F), SSE(R)
- $F=((\operatorname{SSE}(R)-\operatorname{SSE}(F)) /(d f E(R)-d f E(F))) /$ MSE(F)

Simple Linear Regression

- $\operatorname{SSE}(\mathrm{R})=\boldsymbol{\Sigma}\left(\mathrm{Y}_{\mathrm{i}}-\mathrm{b}_{0}\right)^{2}=\boldsymbol{\Sigma}\left(\mathrm{Y}_{\mathrm{i}}-\bar{Y}\right)^{\mathbf{2}}=\mathbf{S S T}$
- SSE(F)=SSE
- $\operatorname{dfE}(R)=n-1, \operatorname{dfE}(F)=n-2$,
- dfE(R)-dfE(F)=1
- $\mathrm{F}=(\mathrm{SST}-\mathrm{SSE}) / \mathrm{MSE}=\mathrm{SSM} / \mathrm{MSE}$

R^{2}, r^{2}
• r is the usual (Pearson) correlation
- It is a number between -1 and +1 and
measures the strength of the linear
relation between two variables
- $r^{2}=S S M / S S T=1$ - SSE/SST
- Explained and unexplained variation

$$
\mathbf{R}^{2}, \mathbf{r}^{2}
$$

- We use R^{2} when the number of explanatory variables is arbitrary (simple and multiple regression)
- \mathbf{R}^{2} is often multiplied by 100 and thereby expressed as a percent

```
Response: hours
Df Sum Sq Mean Sq F value
size 1 252378 252378 105.88
Resid 23 54825 2384
Multiple R-squared: 0.8215
Adjusted R-squared: 0.8138
```

$\begin{aligned} & \text { R-Square } \\ & =\text { SSM/SST } \\ & =252378 /: \end{aligned}$	$\begin{aligned} & 0.8215 \text { (R) } \\ & 07203 \end{aligned}$
Adj R-Sq	0.8138 (R)
$\begin{aligned} & =1-\text { MSE } / \text { MST } \\ & =1-2383 /(307203 / 24) \end{aligned}$	

Diagnostics and remedial measures

- Diagnostics: look at the data to diagnose situations where the assumptions of our model are violated
- Remedies: changes in analytic strategy to fix these problems

Look at the data

- Before trying to describe the relationship between a response variable (Y) and an explanatory variable (X), we should look at the distributions of these variables
- We should always look at X
- If Y depends on X, looking at Y alone may not be very informative

Diagnostics for \mathbf{X}

- summary(time\$size)
- library(psych)
- describe(time\$size)

Diagnostics for $\mathbf{X}(2)$

- Examine the distribution of X
- Is it skewed?
- Are there outliers?
- Do the values of X depend on time (order in which the data were collected)?


```
stem(time$size, scale=2)
boxplot(time$size)
    2 0000
    4 00000
    6 0000
    8 0000000
10 0000
12 0
```


\square
plot(time\$size)

Normal distributions

- Our model does not state that X comes from a single normal population
- Same comment applies to Y
- In some cases, X and/or Y may be normal and it can be useful to know this

Normal quantile plots

- Consider n=5 observations iid $\mathbf{N}(0,1)$
- From table of normal distribution, we find
$-\mathrm{P}(\mathrm{z} \leq-.84)=.20$
$-\mathrm{P}(-.84<\mathrm{z} \leq-.25)=.20$
$-\mathrm{P}(-.25<\mathrm{z} \leq .25)=.20$
$-\mathrm{P}(.25<\mathrm{z} \leq .84)=.20$
$-P(.84<z)=.20$

Normal quantile plots (2)

- So we expect
-One observation $\leq-.84$
-One observation in (-.84, -.25)
- One observation in (-.25, .25)
- One observation in ($25, .84$)
-One observation > . 84

Normal quantile plots (3)

- Znorm $_{\mathrm{i}}=\boldsymbol{\Phi}^{-1}((\mathrm{i}-.375) /(\mathrm{n}+.25)), \mathrm{i}=1$ to n
- Plot the order statistics $X_{(i)}$ versus Znorm ${ }_{i}$

Normal quantile plots (4)

- The standardized X variable is $z=(X-\mu) / \sigma$
- So, $X=\mu+\sigma z$
- If the data are approximately normal, the relationship will be approximately linear with slope close to σ and intercept close to μ.

qqnorm(time\$size)

