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Class 3

• Analysis of variance table
• General linear hypothesis test
• R2

• Diagnostics for X

Analysis of Variance 
(ANOVA)

• A way to organize arithmetic
• (Total) variation in Y can be 

expressed as Σ(Yi – )2

• Partition this variation into two 
sources
–Model (regression)
–Error (residual)

Y

ANOVA (Total) 

• SST = Σ(Yi – )2

• dfT = n-1
• MST = SST/dfT

Y

ANOVA (Model) 

• SSM = Σ(      - )2 

• dfM = 1 (for the slope)
• MSM = SSM/dfM

YiŶ

ANOVA (Error) 

• SSE = Σ(Yi – )2 

• dfE = n-2
• MSE = SSE/dfE
• MSE is an estimate of the variance of Y 

taking into account (or conditioning on) 
the explanatory variable(s))

iŶ

ANOVA Table

Source  df SS                                    MS
Model     1     Σ(     - )2 SSM/dfM
Error     n-2   Σ(Yi – )2 SSE/dfE
Total     n-1    Σ(Yi – )2                  SST/dfT

iŶ
iŶ

Y

Y
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ANOVA Table (2)

Source  df SS      MS     F                      P    
Model     1     SSM  MSM  MSM/MSE     .nn
Error     n-2   SSE   MSE
Total     n-1

Expected Mean Squares

• MSM, MSE are random variables
• E(MSM) = σ2 + β1

2Σ(Xi – )2

• E(MSE) = σ2

• When H0 is true, β1 = 0, E(MSM) = 
E(MSE) and

X

F test 

• F=MSM/MSE ~ F(dfM, dfE) = F(1, n-2)

• When H0 is false,  β1 0 and MSM 
tends to be larger than MSE

• We reject H 0 when F is large:
• F      F(1-α, dfM, dfE) = F(.95, 1, n-2) 
• In practice we use P values

≠

≥

F test (2)
• When H0 is false,  F has a noncentral

F distribution
• This can be used to calculate power
• Recall t = b 1/s(b 1) tests H 0 

• It can be shown that t 2 = F
• So the two approaches give the same 

P values

time<- read.table('CH01TA01.txt', 
col.names=c("size", "hours"));
reg1<-lm(hours~size, time);
anova(reg1)
summary(reg1)

Analysis of Variance Table

Response: hours
Df Sum Sq Mean Sq F value

size   1 252378  252378 105.88 
Resid 23 54825    2384

Pr(>F)
4.449e-10 ***

std t-value p-value
Int 62.366 26.177 2.382 0.0259 *  
size 3.570 0.347 10.290 4.45e-10 
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General linear test

• A different view of the same problem
• We want to compare two models

–Yi  =  β0 + β1Xi + ξi (full model)
–Yi  =  β0 + ξi (reduced model)

• Compare using SSEs: SSE(F), SSE(R)
• F=((SSE(R) - SSE(F))/(dfE(R) - dfE(F)))/ 

MSE(F)

Simple Linear Regression

• SSE(R)= Σ(Yi-b0)2= Σ(Yi- )2=SST
• SSE(F)=SSE
• dfE(R)=n-1,   dfE(F)=n-2,  
• dfE(R )-dfE(F )=1
• F=(SST-SSE)/MSE=SSM/MSE

Y

R2 , r2

• r is the usual (Pearson) correlation
• It is a number between –1 and +1 and 

measures the strength of the linear 
relation between two variables

• r2 = SSM/SST = 1 – SSE/SST
• Explained and unexplained variation

R2 , r2

• We use R2 when the number of 
explanatory variables is arbitrary 
(simple and multiple regression)

• R2 is often multiplied by 100 and 
thereby expressed as a percent 

Response: hours
Df Sum Sq Mean Sq F value

size   1 252378  252378 105.88 
Resid 23 54825    2384

Multiple R-squared: 0.8215
Adjusted R-squared: 0.8138 

R-Square     0.8215 (R)

= SSM/SST

= 252378/307203

Adj R-Sq     0.8138 (R)

=1-MSE/MST 

=1-2383/(307203/24)
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Diagnostics and remedial 
measures

• Diagnostics: look at the data to 
diagnose situations where the 
assumptions of our model are 
violated

• Remedies: changes in analytic 
strategy to fix these problems

Look at the data

• Before trying to describe the 
relationship between a response 
variable (Y) and an explanatory 
variable (X), we should look at the 
distributions of these variables

• We should always look at X
• If Y depends on X, looking at Y alone 

may not be very informative 

Diagnostics for X

• summary(time$size)
• library(psych)
• describe(time$size)

Diagnostics for X (2)

• Examine the distribution of X
– Is it skewed?
–Are there outliers?

• Do the values of X depend on time (order 
in which the data were collected)?

Min. 1st Qu. Median Mean
20  50      70    70

3rd Qu.    Max.
90     120

n mean sd med trm mad min max 
25 70 28.72 70 70 29.65 20 120

range  skew kurtosis   se
100 -0.09  -1.25 5.74

stem(time$size, scale=2)
boxplot(time$size)

2 | 0000
4 | 00000
6 | 0000
8 | 0000000

10 | 0000
12 | 0
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plot(time$size)

Normal distributions

• Our model does not state that X 
comes from a single normal 
population

• Same comment applies to Y
• In some cases, X and/or Y may be 

normal and it can be useful to know 
this

Normal quantile plots
• Consider n=5 observations iid N(0,1)
• From table of normal distribution, we 

find
–P(z     -.84) = .20
–P(-.84 < z     -.25) = .20
–P(-.25 < z      .25) = .20
–P(.25 <  z     .84) = .20
–P(.84 < z ) = .20

≤
≤
≤

≤

Normal quantile plots (2)

• So we expect
–One observation     -.84
–One observation in (-.84, -.25)
–One observation in (-.25, .25)
–One observation in (25, .84)
–One observation  > .84

≤
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Normal quantile plots (3)

• Znorm i = ΦΦΦΦ-1((i-.375)/(n+.25)), i=1 to n
• Plot the order statistics X (i) versus 

Znorm i

Normal quantile plots (4)

• The standardized X variable is           
z = (X - µ)/σ

• So, X = µ + σ z
• If the data are approximately normal,  

the relationship will be approximately 
linear with slope close to σ and 
intercept  close to µ.  

qqnorm(time$size)


