Lecture 5

 Other topics
e Simple linear regression in a matrix form

Joint Estimation of B,and B,

» Confidence intervals are used for a
single parameter, confidence regions
for a two or more parameters

» The region for ( By, B;) defines a set of
lines

* Since B,and B, are (jointly) normal,
the natural confidence region is an
ellipse

* We can also do rectangles

Bonferroni

* We want the probability that both
intervals are correct to be (at least) .95

» Basic idea is an error budget (a =.05)

» Spend half on B,(.025) and half on B,
(.025)

* We use a =.025 for the B,CI (97.5% CI)
» and o =.025 for the B, Cl (97.5% CI)

Bonferroni (2)

* So we use

* b, £t's(b,)

e by +t's(by)

» where t* =1(.9875, n-2)
« .9875 = 1 — (.05)/(2*2)

Bonferroni (3)

* Note we start with a 5% error budget
and we have two intervals so we give

* 2.5% to each

» Each interval has two ends so we
again divide by 2

» So, .9875 =1 — (.05)/(2*2)

Bonferroni Inequality

* Let the two intervals be | ;andl,

* We will use inc if the interval
does not contain the true
parameter value




Bonferroni Inequality (2)

P(both cor)=1-P(at least one inc)
P(at least one inc)
= P(l; inc)+ P(l , inc)-P(both inc)
< P(l, inc)+ P(l, inc)
So if we use .05/2 for each interval
P(at least one inc) <0.05

Mean Response Cls

» Simultaneous estimation for  all X,, use

Working-Hotelling
o [, +Ws( [,) where W 2=2F(1-a; 2, n-2)
« For simultaneous estimatAion for afew
(9) Xy, use Bonferroni [+ Bs(  j)
» where B=t(1- a/(2g), n-2)
» B: 2.100922 2.445006 2.639145 2.774529
* W: 2.666292

Simultaneous Pls

Simultaneous prediction for  a few (g) X,,
use Bonferroni
[, + Bs(pred)

where B=t(1- a/(2g), n-2)

Regression through the
Origin
* V=B X +§

e Generally not a good idea
» Problems with r 2 and other statistics

Measurement Error

* For Y, this is usually not a problem

« For X, we can get biased estimators
of our regression parameters




Inverse Predictions

* Sometimes called calibration

* Given Y, predict the corresponding

value of X, X,

Solve the fitted equation for X
X, = (Y, — bg)/b,, b,% 0

« Approximate Cl can be given

h

Choice of X Values (Levels)

* Look at the formulas for the
variances of the estimators of
interest

» Usually we find Z(X;— X )?ina
denominator

* So we want to spread out the values
of X

The Model in Scalar Form

* Y= Bo+ BX +

« €, are independent normally

distributed random errors with mean

0 and variance 02

The Model in Matrix Form
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Simple Linear Regression
in Matrix Form

Y=XB+ §
Y = X B + ¢
nx1l nx2 2x1 nx1

Covariance Matrix
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Covariance Matrix of Y
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Distributional Assumptions
in Matrix Form

* &~ N(0, o2)

« |is an nxn identity matrix

» Ones in the diagonal elements specify that
the variance of each § is 1times o2

e Zeros in the off-diagonal elements specify
that the covariance between different ~ §; is
zero

e This implies that the correlations are zero

Least Squares

* We want to minimize (Y-X B)'(Y-XB)
* We take the derivative with respect to
the (vector) B

e This is like a quadratic

Least Squares (2)

» The derivative is 2 times the derivative

of (Y-XB)' with respectto B whichis-X"'
times (Y-X B)

« We set this equal to 0 (a vector)

So, -2X'(Y-XB) =0

Or, X'Y = X'XB

Normal Equations

X'Y = (X'X)B

Solving for B gives the least squares
solutionb = (b ,, by)'

b = (X'X)1(X"Y)

* The same approach works for multiple
regression

Fitted Values
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Hat Matrix Estimated Covariance
~ Matrix of b
Y =Xb
R * We have linear combinations of the
Y — X(xlx)—lle elements of Y

e These are normal if Y is normal

? — H Y e Approximately normal in general
H = X(X'X)*X'

A Useful Applicationto b

MultivariateTheorem

* b= (XX)HXY) = (XX)X)(Y)

* U~ N(M, X), a multivariate normal vector . Y ~ N(XB, 02))
* V = ¢ + DU, a linear transformation of U « S0 b ~ N( (X"X)2X"(XB),
 cis avector, D is a matrix a2 (X' X)X I (X" X)LX")"

« V ~ N(c+Dp, DED") * b~ N(B, 02 (X'X)™?)




