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Lecture 5

• Other topics 
• Simple linear regression in a matrix form

Joint Estimation of β0 and β1 
• Confidence intervals are used for a 

single parameter, confidence regions 
for a two or more parameters

• The region for ( β0, β1) defines a set of 
lines

• Since β0 and β1 are (jointly) normal, 
the natural confidence region is an 
ellipse 

• We can also do rectangles 

Bonferroni

• We want the probability that both
intervals are correct to be (at least) .95

• Basic idea is an error budget (α =.05)
• Spend half on β0 (.025) and half on β1

(.025)
• We use α =.025 for the β0 CI (97.5% CI) 
• and α =.025 for the β1 CI (97.5% CI)

Bonferroni (2)

• So we use 
• b1 ± t *s(b1)
• b0 ± t *s(b0)
• where  t * = t(.9875, n-2)
• .9875 = 1 – (.05)/(2*2)

Bonferroni (3)

• Note we start with a 5% error budget 
and we have two intervals so we give

• 2.5% to each
• Each interval has two ends so we 

again divide by 2
• So, .9875 = 1 – (.05)/(2*2)

Bonferroni Inequality

• Let the two intervals be I 1 and I2

• We will use inc if the interval 
does not contain the true 
parameter value   
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Bonferroni Inequality (2)

• P(both cor)=1-P(at least one inc)
• P(at least one inc)
• = P(I1 inc)+ P(I 2 inc)-P(both inc) 
• P(I1 inc)+ P(I 2 inc)
• So if we use .05/2 for each interval
• P(at least one inc) ≤0.05

≤
<.025

.025

.025 .025

Mean Response CIs
• Simultaneous estimation for all Xh, use 

Working-Hotelling
• ± Ws(      ) where W 2=2F(1-α; 2, n-2) 
• For simultaneous estimation for a few 

(g) Xh, use Bonferroni ± Bs(       ) 
• where B=t(1- α/(2g), n-2)
• B: 2.100922 2.445006 2.639145 2.774529 
• W: 2.666292

hµ̂ hµ̂

hµ̂
hµ̂

Simultaneous PIs
• Simultaneous prediction for a few (g) Xh, 
• use Bonferroni
• ± Bs(pred)
• where B=t(1- α/(2g), n-2)

hµ̂

Regression through the 
Origin

• Yi = β1Xi + ξi

• Generally not a good idea
• Problems with r 2 and other statistics

Measurement Error

• For Y, this is usually not a problem
• For X, we can get biased estimators 

of our regression parameters
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Inverse Predictions

• Sometimes called calibration
• Given Y h, predict the corresponding 

value of X,   
• Solve the fitted equation for X h

• = (Yh – b0)/b1, b1 0
• Approximate CI can be given

hX̂

hX̂ ≠

Choice of X Values (Levels)

• Look at the formulas for the 
variances of the estimators of 
interest

• Usually we find Σ(Xi – )2 in a 
denominator

• So we want to spread out the values 
of X

X

The Model in Scalar Form

• Yi  =  β0 + β1Xi + ξi

• ξi are independent normally 
distributed random errors with mean 
0 and variance σ2

The Model in Matrix Form
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The Model in Matrix Form 
(2)
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Vector of parameters
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Simple Linear Regression 
in Matrix Form

Y =  Xβ + ξ

Y      =   X        β +  ξ
nx1    nx2 2x1    nx1

Covariance Matrix 
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Covariance Matrix of Y
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Distributional Assumptions 
in Matrix Form

• ξ ~ N(0, σ2I)
• I is an nxn identity matrix
• Ones in the diagonal elements specify that 

the variance of each ξi is 1 times σ2

• Zeros in the off-diagonal elements specify 
that the covariance between different ξi is 
zero

• This implies that the correlations are zero

Least Squares

• We want to minimize (Y-X β)′′′′(Y-Xβ)
• We take the derivative with respect to 

the (vector) β
• This is like a quadratic

Least Squares (2)

• The derivative is 2 times the derivative 
of (Y-Xβ)′′′′ with respect to β which is –X ′′′′

• times (Y-X β) 
• We set this equal to 0 (a vector)
• So, –2X′′′′(Y-Xβ) = 0
• Or, X′′′′Y = X′′′′Xβ

Normal Equations

• X′′′′Y = (X′′′′X)β
• Solving for β gives the least squares 

solution b = (b 0, b1)′′′′
• b = (X′′′′X)–1(X′′′′Y)
• The same approach works for multiple 

regression

Fitted Values

XbY =
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Hat Matrix
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Estimated Covariance 
Matrix of b 

• We have linear combinations of the 
elements of Y

• These are normal if Y is normal
• Approximately normal in general 

A Useful 
MultivariateTheorem

• U ~ N(µ, Σ), a multivariate normal vector
• V =  c + DU, a linear transformation of U
• c is a vector, D is a matrix
• V ~ N(c+Dµ, DΣD′′′′)

Application to b

• b = (X′′′′X)–1(X′′′′Y) = ((X′′′′X)–1X′′′′)(Y) 
• Y ~ N(Xβ, σ2I)
• So b ~ N( (X ′′′′X)–1X′′′′(Xβ),                         
σ2 ((X′′′′X)–1X′′′′) I ((X′′′′X)–1X′′′′)′′′′

• b ~ N(β, σ2 (X′′′′X)–1)


