Lecture 5

- Other topics
- Simple linear regression in a matrix form

Bonferroni

- We want the probability that both intervals are correct to be (at least) . 95
- Basic idea is an error budget ($\alpha=.05$)
- Spend half on $\beta_{0}(.025)$ and half on β_{1} (.025)
- We use $\alpha=.025$ for the $\beta_{0} \mathrm{Cl}(97.5 \% \mathrm{Cl})$ - and $\alpha=.025$ for the $\beta_{1} \mathrm{Cl}(97.5 \% \mathrm{Cl})$

Joint Estimation of β_{0} and β_{1}

- Confidence intervals are used for a single parameter, confidence regions for a two or more parameters
- The region for $\left(\beta_{0}, \beta_{1}\right)$ defines a set of lines
- Since β_{0} and β_{1} are (jointly) normal, the natural confidence region is an ellipse
- We can also do rectangles

Bonferroni (2)

- So we use
- $b_{1} \pm \mathrm{t}^{*} s\left(\mathrm{~b}_{1}\right)$
- $b_{0} \pm t^{*} s\left(b_{0}\right)$
- where $\mathbf{t}^{*}=\mathrm{t}(.9875, \mathrm{n}-2)$
- $.9875=1$ - (.05)/(2*2)

Bonferroni (3)

- Note we start with a 5\% error budget and we have two intervals so we give
- 2.5\% to each
- Each interval has two ends so we again divide by 2
- So, $.9875=1$ - (.05)/(2*2)

Bonferroni Inequality

- Let the two intervals be I_{1} and I_{2}
- We will use inc if the interval does not contain the true parameter value

Bonferroni Inequality (2)

- $P($ both cor $)=1-P($ at least one inc)
- P (at least one inc)
- $\quad=P\left(I_{1}\right.$ inc $)+P\left(I_{2}\right.$ inc $)-P($ both inc $)$
- $\quad \leq P\left(I_{1}\right.$ inc $)+P\left(I_{2}\right.$ inc $)$
- So if we use $.05 / 2$ for each interval
- P(at least one inc) ≤ 0.05

Mean Response Cls

- Simultaneous estimation for all X_{h}, use Working-Hotelling
- $\hat{\mu}_{h} \pm \mathbf{W s}\left(\hat{\mu}_{h}\right)$ where $\mathbf{W}^{2}=2 \mathbf{2 F}(1-\mathrm{a} ; \mathbf{2}, \mathrm{n}-2)$
- For simultaneous estimation for a few (g) Xh, use Bonferroni $\hat{\mu}_{h} \pm \operatorname{Bs}\left(\hat{\mu}_{h}\right)$
- where B=t(1- $\mathrm{a} /(2 \mathrm{~g}), \mathrm{n}-2)$
- B: 2.1009222 .4450062 .6391452 .774529
- W: $\mathbf{2 . 6 6 6 2 9 2}$

Simultaneous Pls

- Simultaneous prediction for a few (g) X_{h},
- use Bonferroni
- $\hat{\mu}_{h} \pm \operatorname{Bs}$ (pred)
- where $B=t(1-\alpha /(2 g), n-2)$

Regression through the

 Origin- $\mathrm{Y}_{\mathrm{i}}=\boldsymbol{\beta}_{1} \mathrm{X}_{\mathrm{i}}+\xi_{\mathrm{i}}$
- Generally not a good idea
- Problems with r^{2} and other statistics

Measurement Error

- For Y, this is usually not a problem
- For X, we can get biased estimators of our regression parameters

Inverse Predictions

- Sometimes called calibration
- Given Y_{h}, predict the corresponding value of \mathbf{X}, \hat{X}_{h}
- Solve the fitted equation for X_{h}
- $\hat{X}_{h}=\left(\mathbf{Y}_{\mathrm{h}}-\mathbf{b}_{0}\right) / \mathbf{b}_{1}, \mathbf{b}_{\mathbf{1}} \neq \mathbf{0}$
- Approximate Cl can be given

Choice of X Values (Levels)

- Look at the formulas for the variances of the estimators of interest
- Usually we find $\Sigma\left(\mathrm{X}_{\mathrm{i}}-\bar{X}\right)^{2}$ in a denominator
- So we want to spread out the values of X

The Model in Scalar Form

- $Y_{i}=\beta_{0}+\beta_{1} X_{i}+\xi_{i}$
- ξ_{i} are independent normally distributed random errors with mean 0 and variance σ^{2}

The Model in Matrix Form

$$
\left(\begin{array}{c}
\mathrm{Y}_{1} \\
\mathrm{Y}_{2} \\
\ldots \\
\mathrm{Y}_{\mathrm{n}}
\end{array}\right)=\left(\begin{array}{c}
\beta_{0}+\beta_{1} \mathrm{X}_{1} \\
\beta_{0}+\beta_{1} \mathrm{X}_{2} \\
\ldots \\
\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{n}}
\end{array}\right)+\left(\begin{array}{c}
\xi_{1} \\
\xi_{2} \\
\ldots \\
\xi_{\mathrm{n}}
\end{array}\right)
$$

The Model in Matrix Form
(2)

$$
\left(\begin{array}{c}
\mathrm{Y}_{1} \\
\mathrm{Y}_{2} \\
\ldots \\
\mathrm{Y}_{\mathrm{n}}
\end{array}\right)=\left(\begin{array}{cc}
1 & \mathrm{X}_{1} \\
1 & \mathrm{X}_{2} \\
\ldots \\
1 & \mathrm{X}_{\mathrm{n}}
\end{array}\right)\binom{\beta_{0}}{\beta_{1}}+\left(\begin{array}{c}
\xi_{1} \\
\xi_{2} \\
\ldots \\
\xi_{\mathrm{n}}
\end{array}\right)
$$

Design matrix

$$
\mathrm{X}_{\mathrm{n} \times 2}=\left(\begin{array}{c}
1 \\
1
\end{array} \mathrm{X}_{1},\left(\begin{array}{c}
1 \\
1
\end{array} \mathrm{X}_{2} .\right.\right.
$$

Vector of parameters

$\beta_{2 \times 1}=\binom{\beta_{0}}{\beta_{1}}$

Vector of response

$$
Y_{\mathrm{nx} 1}=\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\cdots \\
Y_{\mathrm{n}}
\end{array}\right)
$$

Covariance Matrix

$\operatorname{Cov}(Y)=\left(\begin{array}{llll}\operatorname{Var}\left(Y_{1}\right) & \operatorname{Cov}\left(\mathrm{Y}_{1}, \mathrm{Y}_{2}\right) & \cdots & \operatorname{Cov} \\ \operatorname{Cov}\left(\mathrm{Y}_{2}, \mathrm{Y}_{1}\right) & \operatorname{Var}\left(\mathrm{Y}_{2}\right) & \cdots & \operatorname{Cov} \\ \cdots & \cdots & \cdots & \\ \operatorname{Cov}\left(\mathrm{Y}_{\mathrm{n}}, \mathrm{Y}_{1}\right) & \cdots & \cdots & \end{array}\right.$
$\operatorname{Cov}\left(Y_{1}, Y_{n}\right)$
$\operatorname{Cov}\left(Y_{2}, Y_{n}\right)$
$\operatorname{Var}\left(\mathrm{Y}_{\mathrm{n}}\right)$
Covariance Matrix
$\operatorname{Cov}(Y)=\left(\begin{array}{llll|}\operatorname{Var}\left(Y_{1}\right) & \operatorname{Cov}\left(\mathrm{Y}_{1}, \mathrm{Y}_{2}\right) & \cdots & \operatorname{Cov}\left(\mathrm{Y}_{1}, \mathrm{Y}_{\mathrm{n}}\right) \\ \operatorname{Cov}\left(\mathrm{Y}_{2}, \mathrm{Y}_{1}\right) & \operatorname{Var}\left(\mathrm{Y}_{2}\right) & \cdots & \operatorname{Cov}\left(\mathrm{Y}_{2}, \mathrm{Y}_{\mathrm{n}}\right) \\ \cdots & \cdots & \cdots & \cdots \\ \operatorname{Cov}\left(\mathrm{Y}_{\mathrm{n}}, \mathrm{Y}_{1}\right) & \cdots & \cdots & \operatorname{Var}\left(\mathrm{Y}_{\mathrm{n}}\right)\end{array}\right)$

Vector of error terms

$$
\xi_{\mathrm{nx1}}=\left(\begin{array}{c}
\xi_{1} \\
\xi_{2} \\
\cdots \\
\xi_{\mathrm{n}}
\end{array}\right)
$$

Simple Linear Regression in Matrix Form

$$
\begin{aligned}
Y & =X \beta+\xi \\
Y & =\underset{n \times 1}{X} \underset{\mathbf{n \times 2}}{\beta} \underset{2 \times 1}{\beta}+\underset{\mathrm{n} \times 1}{\xi}
\end{aligned}
$$

Covariance Matrix of ξ

$$
\operatorname{Cov}\left(\begin{array}{c}
\xi_{1} \\
\xi_{2} \\
\ldots \\
\xi_{\mathrm{n}}
\end{array}\right)=\sigma^{2} \mathbf{I}
$$

Covariance Matrix of Y

Distributional Assumptions in Matrix Form

- $\boldsymbol{\xi} \sim \mathbf{N}\left(\mathbf{0}, \boldsymbol{\sigma}^{2} \mathrm{I}\right)$
- I is an $n x n$ identity matrix
- Ones in the diagonal elements specify that the variance of each ξ_{i} is 1 times σ^{2}
- Zeros in the off-diagonal elements specify that the covariance between different ξ_{i} is zero
- This implies that the correlations are zero

Least Squares

- We want to minimize (Y-X $\left.{ }^{\prime}\right)^{\prime}(\mathrm{Y}-\mathrm{X} \beta$)
- We take the derivative with respect to the (vector) β
- This is like a quadratic

Least Squares (2)

- The derivative is 2 times the derivative of $(\mathrm{Y}-\mathrm{X} \beta)^{\prime}$ with respect to β which is $-\mathrm{X}^{\prime}$
- times ($\mathrm{Y}-\mathrm{X} \beta$)
- We set this equal to 0 (a vector)
- So, $-2 X^{\prime}(Y-X \beta)=0$
- Or, $X^{\prime} Y=X^{\prime} X \beta$

Normal Equations

- $X^{\prime} Y=\left(X^{\prime} X\right) \beta$
- Solving for β gives the least squares solution $\mathrm{b}=\left(\mathrm{b}_{0}, \mathrm{~b}_{1}\right)^{\prime}$
- $\mathrm{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{Y}\right)$
- The same approach works for multiple regression

Fitted Values

$$
\hat{\mathbf{Y}}=\left(\begin{array}{c}
\hat{\mathrm{Y}}_{1} \\
\hat{\mathrm{Y}}_{2} \\
\ldots \\
\hat{\mathrm{Y}}_{\mathrm{n}}
\end{array}\right)=\left(\begin{array}{c}
b_{0}+b_{1} \mathbf{X}_{1} \\
b_{0}+b_{1} \mathbf{X}_{2} \\
\ldots \\
b_{0}+b_{1} \mathbf{X}_{\mathrm{n}}
\end{array}\right)=\left(\begin{array}{cc}
1 & \mathbf{X}_{1} \\
1 & \mathrm{X}_{2} \\
\ldots \\
1 & \mathbf{X}_{\mathrm{n}}
\end{array}\right)\binom{b_{0}}{b_{1}}=\mathbf{X} \mathbf{b}
$$

$$
\begin{aligned}
& \text { Hat Matrix } \\
\hat{\mathbf{Y}} & =\mathbf{X b} \\
\hat{\mathbf{Y}} & =\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y} \\
\hat{\mathbf{Y}} & =\mathbf{H Y} \\
\mathbf{H} & =\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}
\end{aligned}
$$

Estimated Covariance Matrix of b

- We have linear combinations of the elements of Y
- These are normal if \mathbf{Y} is normal
- Approximately normal in general

A Useful MultivariateTheorem

- $\mathbf{U} \sim \mathbf{N}(\boldsymbol{\mu}, \Sigma)$, a multivariate normal vector
- $V=c+D U$, a linear transformation of U
- c is a vector, D is a matrix

Application to b

- $\mathrm{b}=\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1}\left(\mathrm{X}^{\prime} \mathrm{Y}\right)=\left(\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime}\right)(\mathrm{Y})$
- $\mathbf{Y} \sim N\left(X \beta, \sigma^{2}\right)$
-So b ~ N(($\left.\mathbf{X}^{\prime}\right)^{-1} \mathbf{X}^{\prime}(X \beta)$, $\left.\sigma^{2}\left({ }^{\prime} \mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right) I\left(\left(X^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right)^{\prime}$
- $b \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$

