Lecture 6

- Data, model and inference for multiple regression

Data for Multiple Regression

- $\mathbf{Y}_{\mathbf{i}}$ is the response variable
- $\mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \ldots, \mathrm{X}_{\mathrm{ip}-1}$ are $p-1$ explanatory variables for cases $i=1$ to n

Multiple Regression Model

- $Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\ldots+\beta_{p-1} X_{i p-1}+\xi_{i}$
- Y_{i} is the value of the response variable for the $t^{\text {th }}$ case
- β_{0} is the intercept
- $\beta_{1}, \beta_{2}, \ldots, \beta_{p-1}$ are the regression coefficients for the explanatory variables

Multiple Regression Model (2)

- X_{ik} is the value of the $\boldsymbol{k}^{\text {th }}$ explanatory variable for the $i^{\text {th }}$ case
- ξ_{i} are independent normally distributed random errors with mean 0 and variance $\boldsymbol{\sigma}^{\mathbf{2}}$

Many interesting special cases

- $Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+\ldots+\beta_{p-1} X_{i}^{p-1}+\xi_{i}$
- Xs can be indicator or dummy variables with 0 and 1 (or any other two distinct numbers) as possible values
- Interactions
- $Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1} X_{i 2}+\xi_{i}$

Multiple Regression Parameters

- β_{0} the intercept
- $\beta_{1}, \beta_{2}, \ldots, \beta_{p-1}$ the regression coefficients for the explanatory variables
- σ^{2} the variance of the error term

\[

\]

Least Squares

$$
\begin{aligned}
& \mathbf{Y}=\mathbf{X} \beta+\boldsymbol{\xi} \\
& \min (\mathbf{Y}-\mathbf{X b})^{\prime}(\mathbf{Y}-\mathbf{X b}) \\
& \mathbf{X}^{\prime} \mathbf{X b}=\mathbf{X}^{\prime} \mathbf{Y}
\end{aligned}
$$

Least Squares Solution

$\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \mathbf{Y}$
Fitted (predicted) values

$$
\begin{gathered}
\hat{\mathbf{Y}}=\mathbf{X b}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y} \\
=\mathbf{H Y}
\end{gathered}
$$

Residuals

$$
\begin{aligned}
\mathbf{e} & =\mathbf{Y}-\hat{\mathbf{Y}} \\
& =\mathbf{Y}-\mathbf{H} \mathbf{Y} \\
& =(\mathbf{I}-\mathbf{H}) \mathbf{Y}
\end{aligned}
$$

$\mathbf{I}-\mathbf{H}$ is symetric and idempotent i.e.

$$
(\mathbf{I}-\mathbf{H})(\mathbf{I}-\mathbf{H})=(\mathbf{I}-\mathbf{H})
$$

Covariance Matrix of residuals

- $\operatorname{Cov}(\mathrm{e})=\sigma^{2}(I-\mathrm{H})(\mathrm{I}-\mathrm{H})^{\prime}=\sigma^{2}(\mathrm{I}-\mathrm{H})$
- So,
- $\operatorname{Var}\left(\mathrm{e}_{\mathrm{i}}\right)=\sigma^{2}\left(1-\mathrm{h}_{\mathrm{ij}}\right)$
- $\mathbf{h}_{\mathrm{ii}}=\mathbf{X}_{\mathrm{i}}{ }^{\prime}\left(\mathrm{X}^{\prime} \mathrm{X}^{-1} \mathrm{X}_{\mathrm{i}}\right.$
- $X_{i}^{\prime}=\left(1, X_{i 1}, \ldots, X_{i(p-1)}\right)$
- Residuals are usually correlated
- $\operatorname{Cov}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{i}}\right)=-\sigma \mathrm{h}_{\mathrm{ij}}$

Estimation of σ

$$
\begin{aligned}
s^{2} & =\frac{\mathbf{e}^{\prime} \mathbf{e}}{n-p} \\
& =\frac{(\mathbf{Y}-\mathbf{X b})^{\prime}(\mathbf{Y}-\mathbf{X b})}{n-p} \\
& =\frac{S S E}{d f \mathbf{e}}=M S E \\
s & =\sqrt{s^{2}}=\text { Root } M S E
\end{aligned}
$$

Distribution of \mathbf{b}

- $b=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$
- $\mathbf{Y} \sim N\left(X \beta, \sigma^{2}\right)$
- $E(b)=\left(\left(X^{\prime} X\right)^{-1} X^{\prime}\right) X \beta=\beta$
- $\operatorname{Cov}(b)=\sigma^{2}\left(\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime}$
$=\sigma^{2}\left(X^{\prime}\right)^{-1}$

Estimation of variance of

 b- $\mathbf{b} \sim \mathbf{N}\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$
- $\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$
- Is estimated by
- $\mathrm{s}^{2}\left(\mathrm{X}^{\prime} \mathbf{X}\right)^{-1}$

ANOVA Table

- To organize arithmetic
- Sources of variation are
-Model
-Error
-Total
- SS and df add
-SSM + SSE =SST
$-\mathrm{df} \mathrm{M}+\mathrm{dfE}=\mathrm{dfT}$

$$
\begin{aligned}
& \quad \mathrm{df} \\
& d f \mathrm{M}=\mathrm{p}-1 \\
& d f \mathrm{E}=\mathrm{n}-\mathrm{p} \\
& d f \mathrm{~T}=\mathrm{n}-1
\end{aligned}
$$

Mean Squares
MSM $=$ SSM $/ \mathrm{dfM}$
MSE =SSE/dfE
MST $=$ SST/dfT

Mean Squares (2)

$\mathrm{MSM}=\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2} /(p-1)$
$\mathrm{MSE}=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2} /(n-p)$
$\operatorname{MST}=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} /(n-1)$

ANOVAF test

- $H_{0}: \beta_{1}=\beta_{2}=\ldots \beta_{p-1}=0$
- $H_{a}: \beta_{k} \neq 0$, for at least one $k=1, \ldots, p-1$
- Under $\mathrm{H}_{0}, \mathrm{~F} \sim \mathrm{~F}(\mathrm{p}-1, \mathrm{n}-\mathrm{p})$
- Reject H_{0} if F is large, use P value

Study of CS students

- Study of computer science majors at Purdue
- Large drop out rate
- Can we find predictors of success
- Predictors must be available at time of entry into program
- Can wictors must be available at time

Data available

- GPA after three semesters
- High school math grades
- High school science grades
- High school English grades
- SAT Math
- SAT Verbal
- Gender (of interest for other reasons)

ANOVA Table

Source SS df MS F Model SSM dfM MSM MSM/MSE Error SSE dfE MSE Total SST dfT (MST)

Example

```
cs<-read.table ('csdata.dat', col.names=c("id", "gpa", "hsm", "hss", "hse", "satm", "satv", "gen")) ;
reg1<-lm(gpa~hsm+hss+hse, cs);
Anova (reg1) ;
summary (reg1);
```


Hypothesis Tested by F

$\cdot \mathrm{H}_{0}: \beta_{1}=\beta_{2}=\ldots \beta_{\mathrm{p}-1}=0$
$\cdot \mathrm{F}=\mathrm{MSM} / \mathrm{MSE}$
\cdot Reject H_{0} if the P value is $\leq .05$
-What do we conclude ?

\mathbf{R}^{2}

- The squared multiple regression correlation (\mathbf{R}^{2}) gives the proportion of variation in the response variable explained by the explanatory variables included in the model
- It is usually expressed as a percent
- It is sometimes called the coefficient of multiple determination

R^{2} (2)

- $\mathbf{R}^{\mathbf{2}}=\mathbf{S S M} / \mathrm{SST}$, the proportion of variation explained
- $R^{2}=1$ - (SSE/SST), 1 - the proportion of variation not explained
- $F=\left[\left(R^{2}\right) /(p-1)\right] /\left[\left(1-R^{2}\right) /(n-p)\right]$
- The P-value for the F significance test tells us one of the following:
-there is no evidence to conclude that any of our explanatory variables can help us to model the response variable using this kind of model ($\mathrm{P} \geq .05$)
- one or more of the explanatory variables in our model is potentially useful for predicting the response variable in a linear model ($\mathrm{P} \leq .05$)

Stat 512 Class 14

- Review multiple linear regression
- data
- Model

Inference for multiple regression (continued)
Diagnostics and remedies

Data for Multiple Regression

- Y_{i} is the response variable
- $\mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \ldots, \mathrm{X}_{\mathrm{ip}-1}$ are $p-1$ explanatory variables for cases $i=1$ to n
- $\mathrm{Y}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \ldots, \mathrm{X}_{\mathrm{ip}-1}$ is the data for case i, where $i=1$ to n
- Y / X is the data

Multiple Regression Model

- $Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\ldots+\beta_{p-1} X_{i p-1}+\xi_{i}$
- Y_{i} is the value of the response variable for the $i^{\text {th }}$ case
- β_{0} is the intercept
- $\beta_{1}, \beta_{2}, \ldots, \beta_{p-1}$ are the regression coefficients for the explanatory variables

Multiple Regression Model (2)

- X_{ik} is the value of the $\boldsymbol{k}^{\text {th }}$ explanatory variable for the $i^{\text {th }}$ case
- ξ_{i} are independent normally distributed random errors with mean 0 and variance σ^{2}

Model in Matrix Form

```
Y = X
\beta+\xi
```

nx1 nxp px1 nx1

$$
\xi \sim \mathrm{N}\left(0, \sigma^{2} \mathbf{I}\right)
$$

$\mathbf{Y} \sim \mathbf{N}\left(\mathbf{X} \beta, \sigma^{2} \mathbf{I}\right)$

Least Squares Solution

$$
\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}
$$

Estimation of $\boldsymbol{\sigma}^{\mathbf{2}}$

$$
\begin{aligned}
& s^{2}=\text { MSE } \\
& s=\text { Root MSE }
\end{aligned}
$$

ANOVA F test

- $H_{0}: \beta_{1}=\beta_{2}=\ldots \beta_{p-1}=0$
- $H_{a}: \beta_{k} \neq 0$, for at least one $k=1, \ldots, p-1$
- Under $\mathrm{H}_{0}, \mathrm{~F} \sim \mathrm{~F}(\mathrm{p}-1, \mathrm{n}-\mathrm{p})$
- Reject H_{0} if F is large, using P value we reject if P leq 0.05

$\mathbf{R}^{\mathbf{2}}$

- $\mathbf{R}^{2}=\mathbf{S S M} / \mathbf{S S T}$, the proportion of variation explained by the explanatory variables

Inference for individual regression coefficients

- $\mathbf{b} \sim \mathbf{N}\left(\boldsymbol{\beta}, \boldsymbol{\sigma}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)$
- $S^{2}{ }_{b}=\mathbf{s}^{2}\left(X^{\prime} X\right)^{-1}$
- $s^{2}\left(b_{i}\right)=S_{b}^{2}(i, i)$
- CI: $\mathrm{b}_{\mathrm{i}} \pm \mathrm{t}^{*} \mathrm{~s}\left(\mathrm{~b}_{\mathrm{i}}\right)$, where $\mathrm{t}^{*}=\mathrm{t}(.975, \mathrm{n}-\mathrm{p})$
- Significance test for $\mathrm{H}_{0 \mathrm{i}}: \beta_{i},=0$ uses the test statistic $t=b_{i} / s\left(b_{i}\right)$, df $=d f E=n-p$, and the P -value computed from the $\mathrm{t}(\mathrm{n}-\mathrm{p})$ distribution

Example

- Dwaine Studios operates portrait studios in 21 cities
- Y is sales
- X_{1} is number of persons aged 16 and under
- X_{2} is per capita disposable income
- $\mathrm{n}=21$ cities

R code

dwst<-read.table('ch06fi05.txt', col.names=c("young", "income",

```
"sales"));
```

reg<-lm(sales~young+income,
dwst);
summary (reg)

	Est	Std	t	p-val
Int	-68.86	60.02	-1.15	0.2663
young	1.45	0.21	6.87	$2 e-06$
income	9.37	4.06	2.31	0.0333
Residual standard error:	11.01			
on 18 degrees of freedom				
Multiple R-squared: 0.9167,				
Adjusted R-squared: 0.9075				
F-statistic:	99.1 on 2 and 18			
DF, p-value:	$1.921 e-10$			

confint (reg)

	2.5%	97.5%
Int	-194.9480130	57.233867
young	1.0096226	1.899497
income	0.8274411	17.903560

Theory for $E\left(Y_{h}\right)$

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{h}}\right)=\mu_{h}=\mathrm{X}_{\mathrm{h}}^{\prime} \beta \\
& \hat{\mu}_{h}=\mathrm{X}_{\mathrm{h}}^{\prime} \mathrm{b} \\
& \sigma^{2}\left(\hat{\mu}_{h}\right)=\mathrm{X}_{\mathrm{h}}^{\prime} \sum_{b} \mathrm{X}_{\mathrm{h}}=\sigma^{2} \mathrm{X}_{\mathrm{h}}^{\prime}\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}_{\mathrm{h}} \\
& s^{2}\left(\hat{\mu}_{h}\right)=s^{2} \mathrm{X}_{\mathrm{h}}^{\prime}\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}_{\mathrm{h}} \\
& C I: \hat{\mu}_{h} \pm s\left(\hat{\mu}_{h}\right) \mathrm{t}_{(0.975, \mathrm{n}-\mathrm{p})}
\end{aligned}
$$

Estimation of $E\left(Y_{h}\right)$

- X_{h} is now a vector
- $\left(1, X_{h 1}, X_{h 2}, \ldots, X_{h 1}\right)^{\prime}$
- We want an point estimate and a confidence interval for the subpopulation mean corresponding to X_{h}

Estimation of $E\left(Y_{h}\right)(C L M)$

predict.lm(reg,
interval='confidence');

$E\left(Y_{h}\right)$ Cl Output

fit lwr upr

1 187.1841 179.1146 195.2536
2154.2294146 .7591161 .6998
$3 \quad 234.3963224 .7569244 .0358$
$4 \quad 153.3285146 .5361160 .1210$
$5 \quad 161.3849152 .0778170 .6921$

Prediction of \mathbf{Y}_{h}

- X_{h} is now a vector
- $\left(1, X_{h 1}, X_{h 2}, \ldots, X_{h 1}\right)^{\prime}$
- We want a prediction for Y_{h} with an interval that expresses the uncertainty in our prediction

$$
\begin{aligned}
& \quad \text { Theory for } \mathbf{Y}_{\mathrm{h}} \\
& \mathrm{Y}_{\mathrm{h}}=\mathrm{X}_{\mathrm{h}}^{\prime} \beta+\xi \\
& \hat{\mathrm{Y}}_{\mathrm{h}}=\hat{\mu}_{h}=\mathrm{X}_{\mathrm{h}}^{\prime} \mathrm{b}
\end{aligned} \begin{aligned}
& \sigma^{2}(\text { pred })=\operatorname{Var}\left(\hat{\mathrm{Y}}_{\mathrm{h}}-\mathrm{Y}_{\mathrm{h}}\right)=\operatorname{Var} \hat{\mathrm{Y}}_{\mathrm{h}}+\sigma^{2} \\
& =\sigma^{2}\left(1+\mathrm{X}_{\mathrm{h}}^{\prime}\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}_{\mathrm{h}}\right)
\end{aligned} \begin{aligned}
& s^{2}(\text { pred })=s^{2}\left(1+\mathrm{X}_{\mathrm{h}}^{\prime}\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}_{\mathrm{h}}\right) \\
& C I: \hat{\mu}_{h} \pm s(\text { pred }) \mathrm{t}(0.975, \mathrm{n-p})
\end{aligned}
$$

Prediction of $\mathbf{Y}_{\mathrm{h}}(\mathrm{PI})$

predict. lm(reg,
interval='prediction');

Prediction Intervals

 Output| | fit | lwr | upr |
| :---: | :---: | :---: | :---: |
| 1 | 187.1841 | 162.6910 | 211.6772 |
| 2 | 154.2294 | 129.9271 | 178.5317 |
| 3 | 234.3963 | 209.3421 | 259.4506 |
| 4 | 153.3285 | 129.2260 | 177.4311 |
| 5 | 161.3849 | 136.4566 | 186.3132 |

Diagnostics (2)

- Are the residuals approximately normal?
- Look at a histogram
- Normal quantile plot
- Is the variance constant?
- Plot the squared residuals vs anything that might be related to the variance (e.g. residuals vs predicted)

Diagnostics

- Look at the distribution of each variable
- Look at the relationship between pairs of variables
- Plot the residuals versus
- Each explanatory variable
- Time

Remedial measures

- Transformations such as Box-Cox
- Analyze without outliers

Scatter Plot Matrix
pairs(~gpa+satm+satv,cs)

