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Lecture 7

• Extra Sums of Squares with 
applications

• Partial correlations
• Standardized regression 

coefficients

General Linear Tests

• A different way to look at the 
comparison of models

• Look at the difference 
– in SSE
– In SSM

• Because SSM+SSE=SST, these two 
ways are equivalent

General Linear Tests (2)
• Models we compare are hierarchical 

in the sense that one includes all of 
the explanatory variables of the other

• We can compare models with 
different explanatory variables
–X1, X2 vs   X 1

–X1, X2, X3, X4, X5 vs   X 1, X2, X3

• Note first includes all Xs of second

General Linear Tests (3)

• We will get an F test that compares 
the two models

• We are testing a null hypothesis that 
the regression coefficients for the 
extra variables are all zero

• For X 1, X2, X3, X4, X5 vs   X 1 , X2 , X3

–H0: β4 = β5 = 0
–H1: β4 and β5 are not both 0

General Linear Tests (4)

• F=((SSE(R) - SSE(F))/(dfE(R) - dfE(F)))/ MSE(F)
• Degrees of freedom for the F statistic are the 

number of extra variables and the dfE for the 
model with larger number of explanatory 
variables

• Suppose n=100 and we compare models with  
X1, X2, X3, X4, X5 vs   X1 , X2 , X3

• Numerator df is 2
• Denominator df is n-6 = 94

Notation for Extra SS 

• SSE(X1, X2, X3, X4, X5) is the SSE for the 
full model

• SSE(X1, X2, X3) is the SSE for the reduced 
model

• SSE(X4, X5 | X1, X2, X3) is the difference 
• SSE(X1, X2, X3) - SSE(X1, X2, X3, X4, X5), or 
• SSM(X1, X2, X3, X4, X5) - SSM(X1, X2, X3) 
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F test

• Numerator is (SSE(X 4, X5 | X1, X2, X3))/2
• Denominator is MSE(X 1, X2, X3, X4, X5)
• F ~ F(2, n-6)
• Reject if the P value is     0.05 and 

conclude that either X 4 or X 5 or both 
contain additional information useful 
for predicting Y in a linear model that 
also includes X 1, X2, and X 3

≤

Examples

• Predict bone density using age, 
weight and height; does diet add any 
useful information?

• Predict GPA using 3 HS grade 
variables; do  SAT scores add any 
useful information?

Examples (2)

• Predict yield of an industrial process 
using temperature and pH;  does the 
supplier of the raw material  (categorical) 
add any useful information?

Extra SS Special Cases

• Compare models that differ by one 
explanatory variable, F(1,n-p)=t 2(n-p)

• t test for the hypothesis b i=0 is 
equivalent to the general linear test 
based on 
SSM(Xi|X1,…, Xi-1, Xi+1 ,…, Xp-1) –
Type II SS in R

Type I SS in R (default)

• Add one variable at a time

– SSM (X1)

– SSM (X2 | X1)

– SSM (X3 |X1, X2)

– SSM (X4 |X1, X2, X3)

One Variable added 

• SSM (X1), SSM (X2 | X1), SSM (X3 |X1, X2), SSM 
(X4 |X1, X2, X3)

• Df = 1 for each of these
• F = (SS/1) / MSE(full) ~ F(1, n-k)
• This is  Type I SS in R
• SSM (X1) +SSM (X2 | X1) + SSM (X3 |X1, X2) + 

SSM (X4 |X1, X2, X3) =SSM(X1, X2, X3, X4)
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Example 

• 20 healthy female subjects
• Y is body fat
• X1 is triceps skin fold thickness
• X2 is thigh circumference
• X3 is midarm circumference
• Underwater weighing is the 

alternative

R code
fat<-read.table('ch07ta01.txt', 
col.names=c("skinfold", 
"thigh", "midarm", "fat"));
reg1<-
lm(fat~skinfold+thigh+midarm, 
fat);
summary(reg1);

Output 
Est Std t  p

Int 117.08 99.78 1.17 0.26
skin   4.33  3.02 1.44 0.17
thigh -2.86 2.58 -1.11 0.28
mid -2.19 1.59 -1.37 0.19

Multiple R-squared: 0.8014,     
Adjusted R-squared: 0.7641 
F-statistic: 21.52 on 3 and 16 
DF,  p-value: 7.343e-06 

Interpretation

• The P value for F(3, 16) is  <.0001
• But the P values for the individual 

regression coefficients are 0.1699, 
0.2849, and  0.1896

• None of these are near our standard 
of 0.05

• What is the explanation?

Look at the Extra SS

anova(reg1);
Anova(reg1,type="II"); 
[library „car”]

anova Output

Response: fat
Df Sum Sq F val Pr(>F)    

skin   1 352.27 57.28 1.13e-06 
thigh  1  33.17 5.39 0.03373   
midarm 1  11.55 1.88 0.18956    
Residuals 16  98.40
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• Anova Table (Type II tests)

• Response: fat
• Sum  Df F value Pr(>F)
• skinfold 12.705  1  2.0657 0.1699
• thigh      7.529  1  1.2242 0.2849
• midarm 11.546  1  1.8773 0.1896
• Residuals 98.405 16 

Interpretation

• Fact: the Type I and Type II SS are 
very different

• If we reorder the variables in the 
model statement we will get 
–Different Type I SS
–The same Type II SS

Run additional models

• Rerun with skinfold as the 
explanatory variable

reg2<-lm(fat~skinfold, fat);
summary(reg2);

Output

Est Std t p
Int -1.50 3.32 -0.45 0.66
skin  0.86 0.13 6.66 3.02e-06

Testing for remaining
variables

anova(reg2,reg1);
Analysis of Variance Table

Mod 1: fat ~skinfold
Mod 2: fat ~ skinfold+thigh+midarm

dfE RSS Df SS F  Pr(>F)  
1  18 143.12                              
2  16 98.40 2 44.72 3.64 0.04995 

Other uses 

• GL tests can be used to perform a 
significance test for any hypothesis 
involving a linear combination of the 
regression coefficients

• Examples
H0: β4 = β5 (model: I(x4+x5)+x1+…)
H0: β4 - 3β5 =12 [y12*x4~I(3*x4+x5)+…]
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Partial correlations

• Measures the strength of a linear relation 
between two variables taking into account 
other variables

• Procedure to find partial correlation
– Predict Y with conditioning on other X’s
– Predict X i with conditioning on other X’s
– Find  correlation between the two sets 

of residuals

Coefficients of Partial 
Determination

• Measures the percentage reduction 
in SSE due to one explanatory 
variable when all the others are 
already included in the model
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Standardized Regression 
Model

• Can help reduce round off errors in 
calculations

• Puts regression coefficients in 
common units

• Units for the usual coefficients are 
units for Y divided by units for X

Standardized Regression 
Model (2)

• Standardized can be obtained from 
the usual ones by multiplying by the 
ratio of the standard deviation of X to 
the standard deviation of Y

• Interpretation is that a one sd 
increase in X corresponds to a 
‘standardized beta’ increase in Y

Standardized Regression 
Model (3)

• Y = … + βX + …
• = … + β(sX/sY)(sY/sX)X + …
• = … + (β(sX/sY))  ((sY/sX)X) + …
• = … + (β(sX/sY))  (sY)  (X/sX) + …

Standardized Regression 
Model (4)

• Standardize Y and all X’s (subtract mean 
and divide by standard deviation)

• The regression coefficients for variables 
transformed in this way are the 
standardized  regression coefficients
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R code

library(QuantPsyc)
lm.beta(reg1)

skinfold thigh    midarm
4.263705 -2.928701 -1.561417 

Multicollinearity

• Numerical analysis problem is that the 
matrix X’X is close to singular and is 
therefore difficult to invert accurately

• Statistical problem is that there is too 
much correlation among the 
explanatory variables and it is therefore 
difficult to determine the regression 
coefficients

Multicollinearity (2)

• Solve the statistical problem and the 
numerical problem will also be solved
–We want to refine a model that has 

redundancy in the explanatory 
variables even if X’X can be inverted 
without difficulty

Multicollinearity (3)
• Extremes cases can help us to understand 

the problem
– if all columns in X matrix are uncorrelated, 

Type I SS and Type II SS will be the same, 
i.e, the contribution of each explanatory 
variable to the model will be the same 
whether or not the other explanatory 
variables are in the model

Multicollinearity (4)

• Extremes cases can help us to 
understand the problem
– if there is a linear combination of the 

explanatory variables that is a 
constant (e.g. X 1 = X2 (X1 - X2 = 0)), 
then the Type II SS for the X’s 
involved will be zero

An example
cs<-read.table('csdata.dat', 
col.names=c("id", "gpa", "hsm", 
"hss", "hse", "satm", 
"satv", "gen"));
cs$sat<-cs$satm+cs$satv;
reg3<-lm(gpa~sat+satm+satv,cs);
summary(reg3);
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Output
Coeff: (1 not defined because

of singularities)
Estimate Std. t  p

Int 1.29 0.38 3.43 0.0 007
sat -2.5e-05 6.2e-04 -0.04 0.9    
satm 2.4e-03 1.1e-03 2.10 0.04
satv NA       NA NA NA
F-stat: 7.476 on 2 and 221 DF,  
p-value: 0.0007218 

Extent of multicollinearity

• Our CS example had one explanatory 
variable equal to a linear combination of 
other explanatory variables

• This is the most extreme case of 
multicollinearity and is detected by 
statistical software because (X’X) does not 
have an inverse

• We are concerned with cases less extreme

Effects of multicollinearity

• Regression coefficients are not well 
estimated and may be meaningless

• Similarly for standard errors of these 
estimates

• Type I SS and Type II SS will differ
• R2 and predicted values are usually 

ok

Two separate problems

• Numerical accuracy 
– (X’X) is difficult to invert
–Need good software 

• Statistical problem
–Results are difficult to interpret
–Need a better model

Polynomial regression

• We can do linear, quadratic, cubic, 
etc. by defining  squares, cubes, etc. 
in a data step and using these as 
predictors in a multiple regression

• We can do this with more than one 
explanatory variable

• When we do this we generally create 
a multicollinearity problem

Example 

• Response variable is the life (in 
cycles) of a power cell

• Explanatory variables are 
–Charge rate (3 levels)
–Temperature (3 levels)

• This is a designed experiment
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Input and check the data

cell<-read.table('ch08ta01.txt',
col.names=c("cycles", "chrate", 
"temp"));
cell1<-cell;

cycles chrate temp
1     150    0.6   10
2      86    1.0   10
3      49    1.4   10
4     288    0.6   20
5     157    1.0   20
6     131    1.0   20
7     184    1.0   20
8     109    1.4   20
9     279    0.6   30
10    235    1.0   30
11    224    1.4   30

Create the new variables 
and run the regression

cell1$chr2<-cell1$chrate^2;
cell1$tm2<-cell1$temp^2;
cell1$chrtm<-
cell1$chrate*cell1$temp;
reg4<- lm(cycles~chrate+temp+chr2+
tm2+chrtm,cell1);
summary(reg4);

Est Std t p
Int 337.72 149.96 2.25 0.07
Chrate -539.52 268.86 -2.01 0.10 
temp      8.92 9.18   0.97 0.3 8
chr2    171.22 127.13 1.35 0.2 4
tm2      -0.11 0.20  - 0.52 0.62  
chrtm 2.87   4.05 0.71 0.5 1
Multiple R- squared: 0.9135,      
F- statistic: 10.57 on 5 and 5 DF,

p-value: 0.01086 

Conclusion

• We have a multicollinearity problem
• Lets look at the correlations (use

cor(cell))
• There are some very high correlations

– r(chrate,chr2) = 0.99103

– r(temp,tm2) = 0.98609

A remedy

• We can remove the correlation 
between explanatory variables and 
their squares 

• Center (subtract the mean) before 
squaring 
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cell2<-scale(cell);
• cycles    chrate      temp
• [1,] -0.2825953 -1.290994 -1.290994
• [2,] -1.1046906  0.000000 -1.290994
• [3,] -1.5799644  1.290994 -1.290994
• [4,]  1.4900477 -1.290994  0.000000
• [5,] -0.1926786  0.000000  0.000000
• [6,] -0.5266548  0.000000  0.000000
• [7,]  0.1541429  0.000000  0.000000
• [8,] -0.8092501  1.290994  0.000000
• [9,]  1.3744406 -1.290994  1.290994
• [10,]  0.8092501  0.000000  1.290994
• [11,]  0.6679524  1.290994  1.290994

Recompute squares and 
cross product

chr2<-cell2[,2]^2;
tm2<-cell2[,3]^2;
chrtm<-cell2[,2]*cell2[,3];
reg5<-lm(cell2[,1]~cell2[,2]+
cell2[,3]+chr2+tm2+chrtm);
summary(reg5); 

• Estimate Std. Error t value Pr(>|t|)   
• (Intercept) -0.11764    0.21333  -0.551  0.60508   
• cell2[, 2]  -0.55553      0.13150  -4.224  0.00829 **
• cell2[, 3]   0.75122      0.13150   5.712  0.00230 **
• chr2         0.21114       0.15676   1.347  0.23586    
• tm2         -0.08174       0.15676  -0.521  0.62435   
• chrtm 0.08863      0.12476   0.710  0.50918   
• ---
• Multiple R-squared: 0.9135, 
• F-statistic: 10.57 on 5 and 5 DF,  p-value: 0.01086 

Interaction Models

• With several explanatory variables, we 
need to consider the possibility that the 
effect of one variable depends on the 
value of another variable

• Special cases
–One binary variable and one continuous 

variable
–Two continuous variables

One binary variable and 
one continuous variable

• X1 has values 0 and 1 corresponding to 
two different groups

• X2 is a continuous variable
• Y =  β0 + β1X1 + β2X2 + β3X1X2  + ξ
• For X 1 = 0, Y =  β0 + β2X2 + ξ
• For X 1 = 1, Y =  (β0 + β1)+ (β2 + β3) X2 + ξ

One binary and one 
continuous

• For X 1 = 0, Y =  β0 + β2X2 + ξ
• For X 1 = 1, Y =  (β0 + β1)+ (β2 + β3) X2 + ξ
• H0: β1 = β3 = 0 tests the hypothesis that 

the lines are the same
• H0: β1 = 0 tests equal intercepts
• H0: β3 = 0 tests equal slopes
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Example

• Y is number of months for an insurance 
company to adopt an innovation

• X1 is the size of the firm (a continuous 
variable

• X2 is the type of firm (a qualitative or 
categorical variable)

A question

• X2 (the type of firm) has the value 0 
for a mutual fund and 1 for a stock 
fund

• We ask whether or not stock firms 
adopt the innovation slower or faster 
than mutual firms

• We ask the question across all firms, 
regardless of size 

funds<-read.table('ch08ta02.txt',
col.names=c("months", "size", "stock"));
v1<-funds[(funds$stock==0),];
v2<-funds[(funds$stock==1),];
plot(months~size,pch="M",v1);
u1<-order(v1$size);
v1<-v1[u1,];
s<-smooth.spline(v1$size,v1$months, 
spar=0.5);
lines(s);
points(months~size,pch="S",v2);
u2<-order(v2$size);
v2<-v2[u2,];
s<-smooth.spline(v2$size,v2$months, 
spar=0.5);
lines(s );

Two symbols

Interaction effects

• Interaction expresses the idea that 
the effect of one explanatory variable 
on the response depends on another 
explanatory variable

• In our example, this would mean that 
the slope of the line depends on the 
type of firm

Are both lines the same ?

• Are intercepts and slopes the same ? (GL 
test)

• funds$sizestock<-
funds$size*funds$stock;

• reg1<-
lm(months~size+stock+sizestock);

• reg2<-lm(months~size);
• anova(reg2,reg1);
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Output 
Model 1: months ~ size
Model 2: months ~ size + stock 
+ sizestock

RSS Df SS F    Pr(>F)    
1  492.63                                  
2 176.38  2 316.25 14.34 0.0003 7

Output (3)
How are they different ?

summary(reg1)

t value Pr(>|t|)    
(Intercept) 13.864 2.47e- 10 ***
size       -7.779 7.97e- 07 ***
stock        2.225   0.0408 *  
sizestock -0.023   0.9821

Multiple R- squared : 0.8951

Two parallel lines

reg3<-lm(months~size+stock, 
funds);
summary(reg3);

Output (3)
Error t value 

Pr(>|t|)    
Int 33.87 1.81 18.675 9.15e-13 
Size -0.10 0.01 -11.443 2.07e-9
stock 8.05 1.46 5.521 3.74e-5
Multiple R-squared: 0.8951,

Int for stock firms is 
33.87+8.05 = 41.92

Plot the two lines

s<-smooth.spline(v1$size,
v1$months, spar=1);
lines(s);
s<-smooth.spline(v1$size,
v1$months, spar=1);

The plot
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Two continuous variables

• Y =  β0 + β1X1 + β2X2 + β3X1X2  + ξ
• Y =  β0 + (β1 + β3X2)X1 + β2X2 + ξ
• Y =  β0 + β1X1 + (β2 + β3X1) X2 + ξ


