Lecture 8

- Model selection
- Partial regression plots
- Regression diagnostics

Variable Selection

- We want to choose a model that includes a subset of the available explanatory variables
- Two separate problems
-How many explanatory variables should we use (subset size)
-Given the subset size, which variables should we choose

Example

- Y is survival time
- X's are
-Blood clotting score
-Prognostic index
-Enzyme function test
-Liver function test

Example

- $\mathrm{n}=54$ patients
- Diagnostics suggest that Y should be transformed with a log
- Start with the usual plots and descriptive statistics

The two problems in variable selection

- To determine an appropriate subset size you may use e.g. C $_{\mathrm{p}}$, SBC or AIC
- For comparing models with the same number of variables, we use \mathbf{R}^{2}

C_{p}

- The basic idea is to compare subset models with the full model
- A subset model is good if there is not substantial bias in the predicted values (relative to the full model)
- Bias - $E\left(\hat{Y}_{i}\right)-E\left(Y_{i}\right)=B_{i}$
- C_{p} is an estimator of

$$
\sum_{i=1}^{n} B_{i}{ }^{2} / \sigma^{2}
$$

\mathbf{C}_{p}
$C_{p}=\frac{S S E_{p}}{M S E(F)}-(n-2 p)$

Use of C_{p}

- p is the number of regression coefficients including the intercept (this is consistent with the notation we have been using)
- A model is good according to this criterion if \mathbf{C}_{p} is close to or smaller than p
- Pick the smallest model for which
- C_{p} is close to or smaller than p or the one for which C_{p} is the smallest (minimize MSE for prediction)

SBC and AIC

Chose the model for which
\log (likelihood) - penalty for the dimension is maximal
AIC - minimize $n \log \left(\frac{S S E_{p}}{n}\right)+2 p$

- SBC - minimize $n \log \left(\frac{S S E_{p}}{n}\right)+p \log (n)$

Ordering models of the same subset size

- use R ${ }^{2}$
- This approach can lead us to consider several models (subsets) that give us approximately the same predicted values
- We may need to apply knowledge of the subject matter to make a final selection

Proc reg

library("leaps");
b<-
regsubsets (lsurv~blood+prog+enz+
liver, nbest=3, survival);
u<-summary (b) ;
x<-cbind (u\$bic,u\$cp, u\$rsq,
u\$which)

Other approaches

- Maximize adjusted \mathbf{R}^{2}
- PRESS (prediction SS)
-For each case i
-Delete the case and predict Y using a model based on the other $\mathrm{n}-1$ cases
-Look at the SS for observed minus predicted

Other approaches (2)

- Step type procedures
-Forward selection (Step up)
-Backward elimination (Step down)
-Stepwise (forward selection with a backward glance)

Partial regression plots

- Also called added variable plots or adjusted variable plots
- One plot for each \mathbf{X}_{i}

Partial regression plots (2)

- Consider X_{1}
-Use the other X's to predict Y
-Use the other X's to predict X_{1}
-Plot the residuals from the first regression vs the residuals from the second regression

Partial regression plots (3)

- These plots show the strength of relatioship between Y and X_{i} in the full model. They can also detect
- Nonlinear relationships
- Heterogeneous variances
- Outliers

Example

- Y is amount of life insurance
- X_{1} is average annual income
- X_{2} is a risk aversion score
- $\mathrm{n}=18$ managers

Create a data set

insurance<-read.table
('ch10ta01.txt', col.names=
c("income", "risk", "insurance"));

Output
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept) -205.7187 11.3927-18.057 1.38e-11 ***
income $6.2880 \quad 0.2041$ 30.801 5.63e-15 ***
risk 4.73761 .37813 .438 0.00366 **
Residual standard error: 12.66 on 15 degrees of freedom Multiple R-squared: 0.9864, Adjusted R-squared: 0.9845 F-statistic: 542.3 on 2 and $15 \mathrm{DF}, \mathrm{p}$-value: $1.026 \mathrm{e}-14$

Output

```
coefficients:
(Tntercept) -205.7187
\(\begin{array}{llrrrr}\text { income } \quad 6.2880 & 0.2041 & 30.801 & 5.63 \mathrm{e}-15 & \text { *** }\end{array}\)
Residual standard error: 12.66 on 15 degrees of freedom
Multiple R-squared: 0.9864, Adjusted R-squared: 0.9845 F-statistic: 542.3 on 2 and 15 DF, p-value: \(1.026 \mathrm{e}-14\)
```


The partial option with proc reg

library ("faraway");
reg1<-lm(insurance~income+risk, insurance);
prplot (reg1,1);
prplot (reg1, 2) ;
summary (reg1);

Plot the residuals vs risk

x<-cbind (insurance\$income,
insurance\$risk,reg1\$residuals);
x2<-x[order (x[,2]),];
plot (x2[,3]~x2[,2]);
s<-smooth.spline (x2[,2], x2[,3],
spar=0.7);
lines(s);

Plot residuals vs income

x1<-x[order (x[,1]),];
plot (x1[,3]~x1[,1]);
s<-smooth.spline (x1[,1], x1[,3], spar=0.7); lines(s);

Plot residuals vs income

Regression Diagnostics

- Studentized deleted residuals
- Hat matrix diagonals
- Dffits, Cook's D, DFBETAS
- Variance inflation factor
- Tolerance

Residuals

- There are several versions
- Residuals
- $\left(\mathrm{Y}_{\mathrm{i}}-\hat{Y}_{i}\right)=\mathrm{e}_{\mathrm{i}}$
- Studentized residuals

$$
\frac{e_{i}}{\sqrt{M S E\left(1-h_{i i}\right)}}
$$

- Studentized means dividing by the standard error
- These are like $t_{(n-p)}$

Residuals (2)

-Studentized deleted residuals

- Deleted means delete case i when computing this residual for case \mathbf{i}

Residuals (3)

- We use the notation (i) to indicate that case i has been deleted from the

MSE $_{(\mathrm{i})}$ is the MSE with case i deleted computations

- $\mathrm{Y}_{(\mathrm{i})}=\mathrm{Y}_{\mathrm{i}}-\hat{Y}_{i(i)}$ is the deleted residual
$Y_{(i)}=e_{i} /\left(1-h_{i j}\right)$
$\operatorname{Var} \mathrm{Y}_{(\mathrm{i})}=\operatorname{Var} \mathrm{e}_{\mathrm{i}} /\left(1-\mathrm{h}_{\mathrm{ii}}\right)^{2}=$ MSE $_{(\mathrm{i})} /\left(1-\mathrm{h}_{\mathrm{ii}}\right)$
- The studentized deleted residual is

$$
\frac{Y_{(i)} \sqrt{\left(1-h_{i i}\right)}}{\sqrt{M S E_{(i)}}}=\frac{e_{i}}{\sqrt{M S E_{(i)}\left(1-h_{i i}\right)}}
$$

Residuals (4)

Studentized residuals

- When we examine the residuals we are looking for
- Outliers
-Non normal error distributions
x1<-rstandard(reg1);
x2<-rstudent (reg1);
x<-cbind (x1, x2) ;
- Influential observations

	Output	
	$\times 1$	$\times 2$
1	-1.20587814	-1.22592579
2	-0.91036231	-0.90484533
3	2.12082543	2.44867347
4	-0.36253288	-0.35178460
5	-0.20962843	-0.20281761
6	1.01288864	1.01382844
7	2.29272103	2.74826933
8	-0.84557683	-0.83709929
9	-0.84223637	-0.83362782
0	0.08793325	0.08497349
11	0.41506608	0.40331472
12	1.17680637	1.19332347
3	0.15004659	0.14506769
14	-1.39233371	-1.44149247
5	-0.48693378	-0.47418536
6	-1.01122970	-1.01204637
7	1.27145643	1.30041597
18	-0.04785973	-0.04624043

Hat matrix diagonals (2)

- $0 \leq \mathrm{h}_{\mathrm{ii}} \leq 1$
- $\operatorname{Sum}\left(\mathrm{h}_{\mathrm{ij}}\right)=\mathrm{p}$
- Large value of h_{ij} suggess that i - th case is distant from the center of all X 's

Hat diagonals

<-matrix(hatvalues (reg1), 18,1);
[1,] 0.06928999
[2,] 0.10064451
[3,] 0.18901274
$[4] \quad$,
[5,] 0.07559158
[6,] 0.34985551
[7,] 0.62250833
[8,] 0.13187873
[9,] 0.06575455

- The average value is p / n

10,] 0.10052380
[11,] 0.12011384
[12,] 0.29940207
[13,] 0.09441512
[14,] 0.20960495
[15,] 0.09569345
[16,] 0.07752426
[17,] 0.1817565
[18,] 0.08485276

DFFITS

- A measure of the influence of case i on \hat{Y}_{i}
- It is a standardized version of the difference between \hat{Y}_{i} computed with and without case i

Cook's Distance

- A measure of the influence of case i on all of the $\quad \hat{Y}_{i}$'s
- It is a standardized version of the sum of squares of the differences between the predicted values computed with and without case i
- (median of $F(p, n-p)$)

Hat matrix diagonals

- $h_{i i}$ is a measure of how much Y_{i} is contributing to the prediction of \hat{Y}_{i}
- $\hat{Y}_{1}=\mathbf{h}_{11} \mathbf{Y}_{1}+\mathbf{h}_{12} \mathbf{Y}_{2}+\mathbf{h}_{13} \mathbf{Y}_{3}+\ldots$
- $h_{i j}$ is sometimes called the leverage of the $\mathrm{i}^{\text {th }}$ observation
- Values far from this average point to cases that should be examined carefully

DFBETAS

- A measure of the influence of case i on each of the regression coefficients
- It is a standardized version of the difference between the regression coefficient computed with and without case i
- (1 for small data sets $2 / \sqrt{n}$ for large)

Variance Inflation Factor

- The VIF is related to the variance of the estimated regression coefficients
- VIF $_{k}=\left(1-R_{k}^{2}\right)^{-1}$, where R_{k}^{2} is the squared multiple correlation obtained in a regression where all other explanatory variables are used to predict \mathbf{X}_{k}

VIF and Tolerance

- We calculate it for each explanatory variable
- One suggested rule is that a value of 10(0) or more for VIF indicates excessive multicollinearity
- TOL = $1 / \mathrm{VIF}$

Full diagnostics

```
x1<-dffits(reg1);
x2<-cooks.distance(reg1);
x3<-dfbeta(reg1);
res<-cbind(x1,x2,x3);
library("HH");
v<-vif(reg1);
```

	Outout (infiuence)				
	x1	x2	(Intercept)	income	risk
1	-0.33449	$3.6086 \mathrm{e}-02$	-1.3214	0.024999295	-0.1500880915
2	-0.30269	$3.0914 \mathrm{e}-02$	-0.4522	-0.030183342	0.2388595313
3	1.18214	$3.4943 \mathrm{e}-01$	9.4662	-0.174531639	0.1713647622
4	-0.13693	$6.6377 e-03$	3.9042	-0.017267160	-0.0582497731
5	-0.05799	$1.1978 \mathrm{e}-03$	-0.4634	0.006031320	0.0015318152
6	0.74371	$1.8402 \mathrm{e}-01$	-6.0300	0.062174829	0.7056598554
7	3.52921	$2.8894 \mathrm{e}+00$	-3.4683	0.452994431	-3.0753786845
8	-0.32626	$3.6205 \mathrm{e}-02$	20.9387	0.005246229	-0.3413906605
9	-0.22115	$1.6642 \mathrm{e}-02$	0.3543	-0.013850595	-0.0508972758
10	0.02840	$2.8804 \mathrm{e}-04$	0.2811	-0.002907831	-0.0130668697
11	0.14901	$7.8393 \mathrm{e}-03$	1.0123	-0.022204864	0.0760740853
12	0.78010	$1.9727 \mathrm{e}-01$	-6.5387	0.090493328	0.5566674725
13	0.04684	$7.8242 \mathrm{e}-04$	0.4103	-0.006207116	0.0020624386
14	-0.74231	$1.7136 \mathrm{e}-01$	-2.9775	-0.052375248	0.8344029029
15	-0.15425	8.3634e-03	-0.1915	0.011154275	-0.1348746687
16	-0.29338	$2.8645 \mathrm{e}-02$	-2.0608	0.005270169	0.1960552402
17	0.61289	$1.1969 \mathrm{e}-01$	6.4636	-0.072016993	-0.3472612267
18	-0.01408	$7.0793 \mathrm{e}-05$	-0.1191	0.001697464	-0.0001870976

Output (tolerance)

- income risk
- 1.0692491 .069249

Regression Diagnostics Summary

- Check normality of the residuals with a normal quantile plot
- Plot the residuals versus predicted values, versus each of the X's and (where appropriate) versus time
- Examine the partial regression plots -If there appears to be a curvilinear pattern, generate the graphics version with a smooth

Regression Diagnostics Recommendations (2)

- Examine
-the studentized deleted residuals
- The hat matrix diagonals
- Dffits, Cook's D, and the DFBETAS
- Check observations that are extreme on these measures relative to the other observations

Regression Diagnostics Recommendations (3)

- Examine the tolerance for each X
- If there are variables with low tolerance, you need to do some model building
-Recode variables
- Variable selection

Remedial measures

- Weighted least squares
- Ridge regression
- Robust regression
- Nonparametric regression
- Bootstrapping

Maximum Likelihood

$Y_{i}=\beta_{0}+\beta_{1} X_{i}+\xi_{i}, \quad \operatorname{Var}\left(\xi_{i}\right)=\sigma_{i}{ }^{2}$
$Y_{i} \sim N\left(\beta_{0}+\beta_{1} X_{i}, \sigma_{i}^{2}\right)$
$f_{i}=\frac{1}{\sqrt{2 \pi} \sigma_{i}} e^{-\frac{1}{2}\left(\frac{Y_{i}-\beta_{0}-\beta_{1} X_{i}}{\sigma_{i}}\right)^{2}}$
$L=f_{1} \cdot f_{2} \cdot \ldots \cdot f_{n}$ - likelihood function

Weighted regression

- Maximization of L with respect to β 's
- Is equivalent to minimization
- Of
$\sum \frac{1}{\sigma_{i}^{2}}\left(Y_{i}-\beta_{0}-\beta_{1} X_{i 1}-\ldots-\beta_{p-1} X_{i p-1}\right)^{2}$
- Weights $\mathrm{w}_{\mathrm{i}}=1 / \boldsymbol{\sigma}_{\mathrm{i}}{ }^{2}$

Weighted least squares

- Least squares problem is to minimize the sum of w_{i} times the squared residual for case i
- Computations are easy, use the weight statement in proc Im
- $b_{w}=\left(X^{\prime} W X\right)^{-1}\left(X^{\prime} W Y\right)$
- where W is a diagonal matrix with the weights
- The problem is to determine the weight

Determination of weights

- Find a relationship between the absolute residual and another variable and use this as a model for the standard deviation
- Similarly for the squared residual and the variance
- Use grouped data or approximately grouped data to estimate the variance

Example

- Y is diastolic blood pressure
- X is age
- $\mathrm{n}=54$ healthy adult women aged 20 to 60 years old

Get the data

pressure<-read.table('ch10ta01.dat', col.names=c("age", "diast")); pressure<-pressure [order (pressure\$age),]; plot(diast~age, pressure); s<-smooth.spline (pressure\$age, pressure\$diast, spar=0.7); lines(s);

Prediction intervals (1)

- reg1=Im(diast~age, pressure);
- c1<-predict.Im(reg1, se.fit=TRUE, interval='prediction');
- plot(diast~age, pressure)
- lines(c1\$fit[,1]~age, pressure)
- lines(c1\$fit[,2]~age,pressure)
- lines(c1\$fit[,3]~age,pressure)

Calculate the absolute and squared residuals

```
r1<-abs(reg1$residuals);
```

r2<-reg1\$residuals^2;
plot (reg1\$residuals~age, pressure) ;
plot (r1~age, pressure) ;
s<-smooth. spline (pressure\$age, r1,
spar=0.7);
lines (s);
plot (r2~age, pressure) ;
s<-smooth.spline (pressure\$age, r2,
spar=0.7);
lines(s):

Residuals vs aqe

Squared residuals vs age

age

Calculate weights

reg2<-lm(r1~age, pressure);
c1<-predict. lm(reg2);
w<-1/(c1^2);
reg $3<-1 m$ (diast~age,
weights=w, pressure);
c1<-predict.lm(reg3, se.fit=TRUE,
interval='prediction');
plot (diast~age, pressure)
lines (c1\$fit[,1]~age, pressure)
lines (c1\$fit[, 2]~age, pressure)
lines (c1\$fit[, 3]~age, pressure)

Ridge regression

- Similar to a very old idea in numerical analysis
- If ($X^{\prime} X$) is difficult to invert (near singular) then approximate by inverting ($X^{\prime} \mathbf{X}+\mathbf{k l}$).
- Estimators of coefficients are biased but more stable.
- For some value of \mathbf{k} ridge regression estimator has a smaller mean square error than ordinary least square estimator.
- Interesting but has not turned out to be a useful method in practice.
- Library(''MASS", Im.ridge)

Robust regression

- Basic idea is to have a procedure that is not sensitive to outliers
- Alternatives to least squares, minimize - sum of absolute values of residuals - Median of the squares of residuals
-Reiterated weighted linear regression -e.g. rlm function in library ''MASS"

Nonparametric regression

- Several versions
- We have used smoothed splines
- Interesting theory
- All versions have some smoothing parameter similar to the par=0.7
- Confidence intervals and significance tests not fully developed

Bootstrap

- Very important theoretical development that has a major impact on applied statistics
- Based on simulation
- Sample with replacement from the data or residuals and get the distribution of the quantity of interest
- Cl based on quantiles of the sampling distribution

Model validation

- Three approaches to checking the validity of the model
- Collect new data, does it fit the model
- Compare with theory, other data, simulation
- Use some of the data for the basic analysis and some for validity check

One qualitative explanatory variable

- Indicator (or dummy) variables have the value 0 when the quality is absent and 1 when the quality is present
- Examples include
-Gender as an explanatory variable
-Placebo versus control

Binary predictor

- X_{1} has values 0 and 1 corresponding to two different groups
- X_{2} is a continuous variable
- $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+\xi$
- For $X_{1}=0, Y=\beta_{0}+\beta_{2} X_{2}+\xi$
- For $X_{1}=1, Y=\left(\beta_{0}+\beta_{1}\right)+\left(\beta_{2}+\beta_{3}\right) X_{2}+\xi$

Binary predictor

- For $X_{1}=0, Y=\beta_{0}+\beta_{2} X_{2}+\xi$
- For $X_{1}=1, Y=\left(\beta_{0}+\beta_{1}\right)+\left(\beta_{2}+\beta_{3}\right) X_{2}+\xi$
- $H_{0}: \beta_{1}=\beta_{3}=0$ tests the hypothesis that the lines are the same
- $H_{0}: \beta_{1}=0$ tests equal intercepts
- $H_{0}: \beta_{3}=0$ tests equal slopes

More models

- If a categorical (qualitative) variable has several k possible values we need k-1 indicator variables
- These can be defined in many different ways;
- We also can have several categorical explanatory variables, interactions, etc

More models (2)

- Piecewise linear regression
- At some (known) point we allow the

Example

- NKNW p 476
- Y is unit cost
- X_{1} is lot size
- The slope is allowed to change at a lot size of 500
- $\mathrm{n}=8$

Model

- Our model has
- An intercept
-A coefficient for lotsize (the slope)
- An additional explanatory variable that will add a constant to the slope whenever lotsize is greater than 500

New variable

```
ind<-as.numeric(cost$size>500);
cost$cslope<-ind*(cost$size-500);
unitcost size cslope
1 2.57 650 150
    4.40 340 0
    4.52 400 0
    1.39 800 300
    4.75 300 0
    3.55 570 70
    2.49 720 220
8 3.77 480
    0
reg3<-lm(unitcost~size+cslope,
    cost);
```


Results of regression

Coefficients:

	Est	Std	t $\operatorname{Pr}(>\|t\|)$	
Int	5.895	0.604	9.757	0.0001
size	-0.003	0.001	-2.650	0.0454
cslope	-0.003	0.002	-1.685	0.1527

Residual standard error: 0.2449
on 5 degrees of freedom
Multiple R-squared: 0.9693,
F-statistic: 79.06 on 2 and 5 DF , p-value: 0.0001645

Plot data with fit

```
cost<-cost[order(cost$size),];
reg3<-lm(unitcost~size+cslope,
cost);
x1<-predict.lm(reg3);
plot(unitcost~size, cost);
lines(xl~size, cost);
```

