Lecture 8

- Model selection
- Partial regression plots
- Regression diagnostics

Variable Selection

- We want to choose a model that includes a subset of the available explanatory variables
- Two separate problems
 - How many explanatory variables should we use (subset size)
 - Given the subset size, which variables should we choose

- To determine an appropriate subset size you may use e.g. C_p, SBC or AIC
- For comparing models with the same number of variables, we use R²

$$C_p$$

The basic idea is to compare subset
models with the full model
A subset model is good if there is not
substantial bias in the predicted
values (relative to the full model)
Bias - $E(\hat{Y}_{-}) - E(Y_{-}) = B_{-}$

• C_p is an estimator of
$$\sum_{i=1}^{n} B_i^2 / \sigma^2$$

$$\mathbf{C}_{p}$$

$$C_{p} = \frac{SSE_{p}}{MSE(F)} - (n - 2p)$$

Ordering models of the same subset size

- use R²
- This approach can lead us to consider several models (subsets) that give us approximately the same predicted values
- We may need to apply knowledge of the subject matter to make a final selection

Proc reg

```
library("leaps");
b<-
regsubsets(lsurv~blood+prog+enz+
liver, nbest=3, survival);
u<-summary(b);
x<-cbind(u$bic,u$cp, u$rsq,
u$which)
```

				Int	blood	prog	enz	liver
1	-22.146376	66.488856	0.4275662	1	0	0	1	0
1	-21.581055	67.714773	0.4215420	1	0	0	0	1
1	-5.497592	108.555776	0.2208467	1	0	1	0	0
2	-46.813822	20.519679	0.6632899	1	0	1	1	0
2	-37.443097	33.504067	0.5994837	1	0	0	1	1
2	-30.988866	43.851738	0.5486346	1	1	0	1	0
3	-60.502425	3.390508	0.7572918	1	1	1	1	0
3	-52.364713	11.423673	0.7178164	1	0	1	1	1
3	-35.185709	32.931969	0.6121232	1	1	0	1	1
4	-56.942091	5.000000	0.7592108	1	1	1	1	1

Other approaches

- Maximize adjusted R²
- PRESS (prediction SS)
 - -For each case i
 - Delete the case and predict Y using a model based on the other n-1 cases
 - Look at the SS for observed minus predicted

Other approaches (2)

- Step type procedures
 - -Forward selection (Step up)
 - -Backward elimination (Step down)
 - Stepwise (forward selection with a backward glance)

Partial regression plots

- Also called added variable plots or adjusted variable plots
- One plot for each X_i

Partial regression plots (2)

- Consider X₁
 - -Use the other X's to predict Y
 - –Use the other X's to predict X_1
 - Plot the residuals from the first regression vs the residuals from the second regression

Partial regression plots (3)

- These plots show the strength of relatioship between Y and X_i in the full model. They can also detect
 - Nonlinear relationships
 - Heterogeneous variances
 - Outliers

Г

Example

- Y is amount of life insurance
- X₁ is average annual income
- X₂ is a risk aversion score
- n = 18 managers

Create a data set

insurance<-read.table
('ch10ta01.txt', col.names=
c("income", "risk", "insurance"));</pre>

The partial option with proc reg

```
library("faraway");
reg1<-lm(insurance~income+risk,
insurance);
prplot(reg1,1);
prplot(reg1,2);
summary(reg1);
```

		Outp	ut				
Coefficients	3:						
	Estimate	Std. Error	t value	Pr(> t)			
(Intercept)	-205.7187	11.3927	-18.057	1.38e-11	* * *		
income	6.2880	0.2041	30.801	5.63e-15	* * *		
risk	4.7376	1.3781	3.438	0.00366	* *		
Residual standard error: 12.66 on 15 degrees of freedom Multiple R-squared: 0.9864, Adjusted R-squared: 0.984 F-statistic: 542.3 on 2 and 15 DF, p-value: 1.026e-14							

Plot the residuals vs risk

x<-cbind(insurance\$income, insurance\$risk,reg1\$residuals); x2<-x[order(x[,2]),]; plot(x2[,3]~x2[,2]); s<-smooth.spline(x2[,2],x2[,3], spar=0.7); lines(s);

Plot residuals vs income

x1<-x[order(x[,1]),];
plot(x1[,3]~x1[,1]);
s<-smooth.spline(x1[,1],x1[,3], spar=0.7);
lines(s);</pre>

Regression Diagnostics

- Studentized deleted residuals
- Hat matrix diagonals
- Dffits, Cook's D, DFBETAS
- Variance inflation factor
- Tolerance

Residuals (2)

- Studentized deleted residuals
 Deleted means delete case *i*
 - when computing this residual for case i

Residuals (3)

- We use the notation (i) to indicate that case i has been deleted from the computations
- $Y_{(i)} = Y_i \hat{Y}_{i(i)}$ is the deleted residual

 $Y_{(i)} = e_i / (1 - h_{ii})$

Var Y_(i)=Var e_i/(1-h_{ii})²=MSE_(i)/(1- h_{ii})

MSE_(i) is the MSE with case i deleted

The studentized deleted residual is

$$\frac{Y_{(i)}\sqrt{(1-h_{ii})}}{\sqrt{MSE_{(i)}}} = \frac{e_i}{\sqrt{MSE_{(i)}(1-h_{ii})}}$$

Residuals (4)

- When we examine the residuals we are looking for
 - -Outliers
 - -Non normal error distributions
 - -Influential observations

Studentized residuals

x1<-rstandard(reg1); x2<-rstudent(reg1); x<-cbind(x1,x2);</pre>

Output

	xl	x 2
1	-1.20587814	-1.22592579
2	-0.91036231	-0.90484533
3	2.12082543	2.44867347
4	-0.36253288	-0.35178460
5	-0.20962843	-0.20281761
6	1.01288864	1.01382844
7	2.29272103	2.74826933
8	-0.84557683	-0.83709929
9	-0.84223637	-0.83362782
10	0.08793325	0.08497349
11	0.41506608	0.40331472
12	1.17680637	1.19332347
13	0.15004659	0.14506769
14	-1.39233371	-1.44149247
15	-0.48693378	-0.47418536
16	-1.01122970	-1.01204637
17	1.27145643	1.30041597
18	-0.04785973	-0.04624043

Hat matrix diagonals

- h_{ii} is a measure of how much Y_i is contributing to the prediction of Ŷ_i
- $\hat{Y}_1 = \mathbf{h}_{11}\mathbf{Y}_1 + \mathbf{h}_{12}\mathbf{Y}_2 + \mathbf{h}_{13}\mathbf{Y}_3 + \dots$
- h_{ii} is sometimes called the leverage of the ith observation

Hat matrix diagonals (2)

- 0≤ h_{ii}≤1
- Sum(h_{ii}) = p
- Large value of h_{ii} suggess that i th case is distant from the center of all X's
- The average value is p/n
- Values far from this average point to cases that should be examined carefully

Hat diagonals h<-matrix(hatvalues(reg1),18,1); [1,] 0.06928999 [2,] 0.10064451 [3,] 0.18901274 [4,] 0.13157726 [5,] 0.07559158 [6,] 0.34985551 [7,] 0.62250833 [8,] 0.13187873 [9,] 0.06575455 [10,] 0.10052380 [11,] 0.12011384 [12,] 0.29940207 [13,] 0.09441512 [14,] 0.20960495 [15,] 0.09569345 [16,] 0.07752426 [17,] 0.18175654 [18,] 0.08485276

DFFITS

- A measure of the influence of case i on $\hat{Y_i}$
- It is a standardized version of the difference between $\hat{Y_i}$ computed with and without case i
- · It is closely related to h_{ii}
- (1 for small data sets $2\sqrt{p/n}$ for large)

Cook's Distance

- A measure of the influence of case i on all of the \hat{Y}_i 's
- It is a standardized version of the sum of squares of the differences between the predicted values computed with and without case i
- (median of F(p,n-p))

DFBETAS

- A measure of the influence of case i on each of the regression coefficients
- It is a standardized version of the difference between the regression coefficient computed with and without case i
- (1 for small data sets $2/\sqrt{n}$ for large)

Variance Inflation Factor

- The VIF is related to the variance of the estimated regression coefficients
- VIF_k= $(1 R_k^2)^{-1}$, where R_k^2 is the squared multiple correlation obtained in a regression where all other explanatory variables are used to predict X_k

VIF and Tolerance

- We calculate it for each explanatory variable
- One suggested rule is that a value of 10(0) or more for VIF indicates excessive multicollinearity
- TOL = 1/VIF

Full diagnostics

```
x1<-dffits(reg1);
x2<-cooks.distance(reg1);
x3<-dfbeta(reg1);</pre>
```

res<-cbind(x1,x2,x3); library("HH"); v<-vif(reg1);</pre>

		Outpu	ut (in	fluence	;)
	xl	x2 (I	ntercept) income	risk
1	-0.33449	3.6086e-02	-1.3214	0.024999295	-0.1500880915
2	-0.30269	3.0914e-02	-0.4522	-0.030183342	0.2388595313
3	1.18214	3.4943e-01	9.4662	-0.174531639	0.1713647622
4	-0.13693	6.6377e-03	0.9042	-0.017267160	-0.0582497731
5	-0.05799	1.1978e-03	-0.4634	0.006031320	0.0015318152
6	0.74371	1.8402e-01	-6.0300	0.062174829	0.7056598554
7	3.52921	2.8894e+00	-3.4683	0.452994431	-3.0753786845
8	-0.32626	3.6205e-02	0.9387	0.005246229	-0.3413906605
9	-0.22115	1.6642e-02	0.3543	-0.013850595	-0.0508972758
10	0.02840	2.8804e-04	0.2811	-0.002907831	-0.0130668697
11	0.14901	7.8393e-03	1.0123	-0.022204864	0.0760740853
12	0.78010	1.9727e-01	-6.5387	0.090493328	0.5566674725
13	0.04684	7.8242e-04	0.4103	-0.006207116	0.0020624386
14	-0.74231	1.7136e-01	-2.9775	-0.052375248	0.8344029029
15	-0.15425	8.3634e-03	-0.1915	0.011154275	-0.1348746687
16	-0.29338	2.8645e-02	-2.0608	0.005270169	0.1960552402
17	0.61289	1.1969e-01	6.4636	-0.072016993	-0.3472612267
18	-0.01408	7.0793e-05	-0.1191	0.001697464	-0.0001870976

Output (tolerance)

- income risk
- 1.069249 1.069249

Regression Diagnostics Summary

- Check normality of the residuals with a normal quantile plot
- Plot the residuals versus predicted values, versus each of the X's and (where appropriate) versus time
- Examine the partial regression plots

 If there appears to be a curvilinear pattern, generate the graphics version with a smooth

Regression Diagnostics Recommendations (2)

- Examine
 - -the studentized deleted residuals
 - -The hat matrix diagonals
 - -Dffits, Cook's D, and the DFBETAS
- Check observations that are extreme on these measures relative to the other observations

Regression Diagnostics Recommendations (3)

- Examine the tolerance for each X
- If there are variables with low tolerance, you need to do some model building
 - -Recode variables
 - -Variable selection

Remedial measures

- Weighted least squares
- Ridge regression
- Robust regression
- Nonparametric regression
- Bootstrapping

Maximum Likelihood

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \xi_{i}, \quad \operatorname{Var}(\xi_{i}) = \sigma_{i}^{2}$$

$$Y_{i} \sim N\left(\beta_{0} + \beta_{1}X_{i}, \sigma_{i}^{2}\right)$$

$$f_{i} = \frac{1}{\sqrt{2\pi}\sigma_{i}}e^{-\frac{1}{2}\left(\frac{Y_{i} - \beta_{0} - \beta_{1}X_{i}}{\sigma_{i}}\right)^{2}}$$

$$L = f_{1} \cdot f_{2} \cdot \ldots \cdot f_{n} - \operatorname{likelihood function}$$

Weighted least squares

- Least squares problem is to minimize the sum of w_i times the squared residual for case i
- Computations are easy, use the weight statement in proc Im
- b_w = (X'WX)⁻¹(X'WY)
 where W is a diagonal matrix with the weights
- The problem is to determine the weight

Determination of weights

- Find a relationship between the absolute residual and another variable and use this as a model for the standard deviation
- Similarly for the squared residual and the variance
- Use grouped data or approximately grouped data to estimate the variance


```
r1<-abs(regl$residuals);
r2<-regl$residuals^2;
plot(regl$residuals~age,pressure);
plot(r1~age,pressure);
s<-smooth.spline(pressure$age,r1,
spar=0.7);
lines(s);
plot(r2~age,pressure);
s<-smooth.spline(pressure$age,r2,
spar=0.7);
lines(s);
```


Ridge regression

- Similar to a very old idea in numerical analysis
- If (X'X) is difficult to invert (near singular) then approximate by inverting (X'X+kl).
- Estimators of coefficients are biased but more stable.
- For some value of k ridge regression estimator has a smaller mean square error than ordinary least square estimator.
- Interesting but has not turned out to be a useful method in practice .
- Library("MASS", Im.ridge)

Robust regression

- Basic idea is to have a procedure that is not sensitive to outliers
- Alternatives to least squares, minimize

 sum of absolute values of residuals
 - -Median of the squares of residuals
 - -Reiterated weighted linear regression
 - -e.g. rlm function in library 'MASS"

Nonparametric regression

- Several versions
- · We have used smoothed splines
- Interesting theory
- All versions have some smoothing parameter similar to the *par=0.7*
- Confidence intervals and significance tests not fully developed

Bootstrap

- Very important theoretical development that has a major impact on applied statistics
- Based on simulation
- Sample *with* replacement from the data or residuals and get the distribution of the quantity of interest
- Cl based on quantiles of the sampling distribution

Model validation

- Three approaches to checking the validity of the model
 - Collect new data, does it fit the model
 - Compare with theory, other data, simulation
 - Use some of the data for the basic analysis and some for validity check

One qualitative explanatory variable

- Indicator (or dummy) variables have the value 0 when the quality is absent and 1 when the quality is present
- Examples include
 - -Gender as an explanatory variable
 - -Placebo versus control

Binary predictor

- X₁ has values 0 and 1 corresponding to two different groups
- X₂ is a continuous variable
- Y = $\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \xi$
- For $X_1 = 0$, $Y = \beta_0 + \beta_2 X_2 + \xi$
- For $X_1 = 1$, $Y = (\beta_0 + \beta_1) + (\beta_2 + \beta_3) X_2 + \xi$

More models

- If a categorical (qualitative) variable has several *k* possible values we need *k-1* indicator variables
- These can be defined in many different ways;
- We also can have several categorical explanatory variables, interactions, etc

More models (2)

- Piecewise linear regression
- At some (known) point we allow the slope to change

Example

- NKNW p 476
- Y is unit cost
- X₁ is lot size
- The slope is allowed to change at a lot size of 500
- n = 8

ind<-as.numeric(cost\$size>500);						
<pre>cost\$cslope<-ind*(cost\$size-500);</pre>						
unitcost size cslope						
1 2.57 650 150						
2 4.40 340 0						
3 4.52 400 0						
4 1.39 800 300						
5 4.75 300 0						
6 3.55 570 70						
7 2.49 720 220						
8 3.77 480 0						
reg3<-lm(unitcost~size+cslope.						
cost);						

	Results of regression							
Coefficients:								
		Est	Std	t P:	r(> t)			
	Int	5.895	0.604	9.757	0.0001	* :		
	size -	0.003	0.001	-2.650	0.0454	*		
	cslope -	-0.003	0.002	-1.685	0.1527			
	Residual standard error: 0.2449 on 5 degrees of freedom Multiple R-squared: 0.9693, F-statistic: 79.06 on 2 and 5 DF, p-value: 0.0001645							

Plot data with fit

cost<-cost[order(cost\$size),]; reg3<-lm(unitcost~size+cslope, cost); x1<-predict.lm(reg3); plot(unitcost~size, cost); lines(x1~size, cost);

