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Lecture 8

• Model selection 
• Partial regression plots
• Regression diagnostics

Variable Selection

• We want to choose a model that 
includes a subset of the available 
explanatory variables

• Two separate problems
–How many explanatory variables 

should we use (subset size)
–Given the subset size, which 

variables should we choose

Example

• Y is survival time
• X’s are 

–Blood clotting score
–Prognostic index
–Enzyme function test
–Liver function test 

Example 

• n = 54 patients
• Diagnostics suggest that Y should be  

transformed with a log
• Start with the usual plots and 

descriptive statistics

Data

survival<-
read.table('ch09ta01a.txt', 
header=TRUE);
pairs(~surv+blood+prog+enz+live
r,survival);

Scatter Plot Matrix
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The two problems in 
variable selection

• To determine an appropriate subset 
size you may use e.g. C p, SBC or AIC

• For comparing models with the same 
number of variables, we use R 2

Cp

• The basic idea is to compare subset 
models with the full model 

• A subset model is good if there is not 
substantial bias in the predicted 
values (relative to the full model)

• Bias -
• Cp is an estimator of 
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Use of C p

• p is the number of regression coefficients 
including the intercept (this is consistent 
with the notation we have been using)

• A model is good according to this 
criterion if C p is close to or smaller than p

• Pick the smallest model for which 
• Cp is  close to or smaller than p or the 

one for which C p is the smallest (minimize 
MSE for prediction)

SBC and AIC

Chose the model for which
log(likelihood) - penalty for the 
dimension is maximal

AIC – minimize 

• SBC – minimize 
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Ordering models of the 
same subset size

• use R2  

• This approach can lead us to 
consider several models (subsets) 
that give us approximately the same 
predicted values

• We may need to apply knowledge of 
the subject matter to make a final 
selection 
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Proc reg

library("leaps");
b<-
regsubsets(lsurv~blood+prog+enz+
liver, nbest=3, survival);
u<-summary(b);
x<-cbind(u$bic,u$cp, u$rsq, 
u$which)

Int blood prog enz liver
1 -22.146376  66.488856 0.4275662   1     0    0   1     0
1 -21.581055  67.714773 0.4215420   1     0    0   0     1
1  -5.497592 108.555776 0.2208467   1     0    1   0     0
2 -46.813822  20.519679 0.6632899   1     0    1   1     0
2 -37.443097  33.504067 0.5994837   1     0    0   1     1
2 -30.988866  43.851738 0.5486346   1     1    0   1     0
3 -60.502425   3.390508 0.7572918   1     1    1   1     0
3 -52.364713  11.423673 0.7178164   1     0    1   1     1
3 -35.185709  32.931969 0.6121232   1     1    0   1     1
4 -56.942091   5.000000 0.7592108   1     1    1   1     1

Other approaches

• Maximize adjusted R 2

• PRESS (prediction SS)
–For each case i
–Delete the case and predict Y using 

a model based on the other n-1 
cases   

–Look at the SS for observed minus 
predicted

Other approaches (2)

• Step type procedures
–Forward selection (Step up)
–Backward elimination (Step down)
–Stepwise (forward selection with a 

backward glance)

Partial regression plots

• Also called added variable plots or 
adjusted variable plots

• One plot for each X i

Partial regression plots (2)

• Consider X 1

–Use the other X’s to predict Y 
–Use the other X’s to predict X 1

–Plot the residuals from the first 
regression vs the residuals from the 
second regression
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Partial regression plots (3)

• These plots show the strength of 
relatioship between Y and X i in the full 
model. They can also detect
– Nonlinear relationships 
– Heterogeneous variances
– Outliers

Example

• Y is amount of life insurance
• X1 is average annual income 
• X2 is a risk aversion score
• n = 18 managers  

Create a data set

insurance<-read.table
('ch10ta01.txt', col.names=
c("income", "risk", "insurance"));

The partial option with 
proc reg

library("faraway");
reg1<-lm(insurance~income+risk, 
insurance);
prplot(reg1,1);
prplot(reg1,2);
summary(reg1);

Output

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) -205.7187    11.3927 -18.057 1.38e-11 * **
income         6.2880     0.2041  30.801 5.63e-15 * **
risk           4.7376     1.3781   3.438  0.00366 * * 
---

Residual standard error: 12.66 on 15 degrees of fre edom
Multiple R-squared: 0.9864,     Adjusted R-squared:  0.9845 
F-statistic: 542.3 on 2 and 15 DF,  p-value: 1.026e -14 

The plot for risk
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The plot for income
Plot the residuals vs risk

x<-cbind(insurance$income,
insurance$risk,reg1$residuals);
x2<-x[order(x[,2]),];
plot(x2[,3]~x2[,2]);
s<-smooth.spline(x2[,2],x2[,3], 
spar=0.7);
lines(s);

The graph
Plot  residuals vs income

x1<-x[order(x[,1]),];
plot(x1[,3]~x1[,1]);
s<-smooth.spline(x1[,1],x1[,3], spar=0.7);
lines(s);

Plot residuals vs income
Regression Diagnostics

• Studentized deleted residuals
• Hat matrix diagonals
• Dffits, Cook’s D, DFBETAS
• Variance inflation factor
• Tolerance
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Residuals

• There are several versions
– Residuals 

• (Yi – )=ei

– Studentized residuals 

• Studentized means dividing by the 
standard error

• These are like t (n-p)

iŶ
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Residuals (2)

–Studentized deleted residuals
• Deleted means delete case i 

when computing this residual for 
case i

Residuals (3)

• We use the notation (i) to indicate that 
case i has been deleted from the 
computations

• Y(i) = Yi - is the deleted residual 

Y(i)  = ei/(1-h ii)

Var Y(i) =Var e i/(1-h ii)2=MSE(i)/(1- h ii)
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MSE(i) is the MSE with case i deleted
• The studentized deleted residual is 
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Residuals (4)

• When we examine the residuals we 
are looking for 
–Outliers
–Non normal error distributions
– Influential observations

Studentized residuals

x1<-rstandard(reg1);
x2<-rstudent(reg1);
x<-cbind(x1,x2);
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Output
x1          x2

1  -1.20587814 -1.22592579
2  -0.91036231 -0.90484533
3   2.12082543  2.44867347
4  -0.36253288 -0.35178460
5  -0.20962843 -0.20281761
6   1.01288864  1.01382844
7   2.29272103  2.74826933
8  -0.84557683 -0.83709929
9  -0.84223637 -0.83362782
10  0.08793325  0.08497349
11  0.41506608  0.40331472
12  1.17680637  1.19332347
13  0.15004659  0.14506769
14 -1.39233371 -1.44149247
15 -0.48693378 -0.47418536
16 -1.01122970 -1.01204637
17  1.27145643  1.30041597
18 -0.04785973 -0.04624043

Hat matrix diagonals

• h ii is a measure of how much Y i is 
contributing to the prediction of 

• = h11Y1 + h12 Y2 + h13Y3 +  …
• h ii is sometimes called the leverage 

of the i th observation

iŶ

1̂Y

Hat matrix diagonals (2)

• 0     h ii 1
• Sum(h ii) = p
• Large value of h ii suggess that i – th case 

is distant  from  the center of all X’s  
• The average value is p/n
• Values far from this average point to 

cases that should be examined carefully

≤

≤ ≤

Hat diagonals
h<-matrix(hatvalues(reg1),18,1);

[1,] 0.06928999
[2,] 0.10064451
[3,] 0.18901274
[4,] 0.13157726
[5,] 0.07559158
[6,] 0.34985551
[7,] 0.62250833
[8,] 0.13187873
[9,] 0.06575455

[10,] 0.10052380
[11,] 0.12011384
[12,] 0.29940207
[13,] 0.09441512
[14,] 0.20960495
[15,] 0.09569345
[16,] 0.07752426
[17,] 0.18175654
[18,] 0.08485276

DFFITS

• A measure of the influence of case i 
on 

• It is a standardized version of the 
difference between       computed 
with and without case i

• It is closely related to h ii

• (1 for small data sets            for large)

iŶ

iŶ

np /2

Cook’s Distance

• A measure of the influence of case i 
on all of the        ’s

• It is a standardized version of the 
sum of squares of the differences 
between the predicted values 
computed with and without case i

• (median of F(p,n-p))

iŶ
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DFBETAS
• A measure of the influence of case i on 

each of the regression coefficients
• It is a standardized version of the 

difference between the regression 
coefficient computed with and without 
case i

• (1 for small data sets            for large)n/2

Variance Inflation Factor

• The VIF is related to the variance of 
the estimated regression coefficients

• VIFk=(1 – R2
k)-1, where R 2

k is the 
squared multiple correlation 
obtained in a regression where all 
other explanatory variables are used 
to predict X k

VIF and Tolerance

• We calculate it for each explanatory 
variable

• One suggested rule is that a value of 
10(0) or more for VIF indicates 
excessive multicollinearity

• TOL = 1/VIF

Full diagnostics

x1<-dffits(reg1);
x2<-cooks.distance(reg1);
x3<-dfbeta(reg1);

res<-cbind(x1,x2,x3);
library("HH");
v<-vif(reg1);

Output (influence)
x1     x2 (Intercept)    income          risk

1  -0.33449 3.6086e-02  -1.3214  0.024999295 -0.150 0880915
2  -0.30269 3.0914e-02  -0.4522 -0.030183342  0.238 8595313
3   1.18214 3.4943e-01   9.4662 -0.174531639  0.171 3647622
4  -0.13693 6.6377e-03   0.9042 -0.017267160 -0.058 2497731
5  -0.05799 1.1978e-03  -0.4634  0.006031320  0.001 5318152
6   0.74371 1.8402e-01  -6.0300  0.062174829  0.705 6598554
7   3.52921 2.8894e+00  -3.4683  0.452994431 -3.075 3786845
8  -0.32626 3.6205e-02   0.9387  0.005246229 -0.341 3906605
9  -0.22115 1.6642e-02   0.3543 -0.013850595 -0.050 8972758
10  0.02840 2.8804e-04   0.2811 -0.002907831 -0.013 0668697
11  0.14901 7.8393e-03   1.0123 -0.022204864  0.076 0740853
12  0.78010 1.9727e-01  -6.5387  0.090493328  0.556 6674725
13  0.04684 7.8242e-04   0.4103 -0.006207116  0.002 0624386
14 -0.74231 1.7136e-01  -2.9775 -0.052375248  0.834 4029029
15 -0.15425 8.3634e-03  -0.1915  0.011154275 -0.134 8746687
16 -0.29338 2.8645e-02  -2.0608  0.005270169  0.196 0552402
17  0.61289 1.1969e-01   6.4636 -0.072016993 -0.347 2612267
18 -0.01408 7.0793e-05  -0.1191  0.001697464 -0.000 1870976

Output (tolerance)

• income risk
• 1.069249 1.069249
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Regression Diagnostics
Summary

• Check normality of the residuals with a 
normal quantile plot

• Plot the residuals versus predicted 
values, versus each of the X’s and 
(where appropriate) versus time

• Examine the partial regression plots
– If there appears to be a curvilinear 

pattern, generate the graphics version 
with a smooth

Regression Diagnostics
Recommendations (2)

• Examine 
– the studentized deleted residuals 
–The hat matrix diagonals
–Dffits, Cook’s D, and the DFBETAS

• Check observations that are extreme 
on these measures relative to the 
other observations

Regression Diagnostics
Recommendations (3)

• Examine the tolerance for each X
• If there are variables with low 

tolerance, you need to do some 
model building
–Recode variables
–Variable selection

Remedial measures

• Weighted least squares
• Ridge regression
• Robust regression
• Nonparametric  regression
• Bootstrapping

Maximum Likelihood
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• Maximization of L with respect to β’s
• Is equivalent to minimization
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Weighted least squares

• Least squares problem is to minimize  
the sum of w i times the squared 
residual for case i 

• Computations are easy, use the 
weight statement in proc lm

• bw = (X’WX)-1(X’WY)
–where W is a diagonal matrix with 

the weights
• The problem is to determine the 

weight

Determination of weights

• Find a relationship between the absolute 
residual and another variable and use 
this as a model for the standard 
deviation 

• Similarly for the squared residual and 
the variance

• Use grouped data or approximately 
grouped data to estimate the variance

Example

• Y is diastolic blood pressure
• X is age
• n = 54 healthy adult women aged 20 

to 60 years old 

Get the data 

pressure<-read.table('ch10ta01.dat’, 
col.names=c("age", "diast"));
pressure<-pressure
[order(pressure$age),];
plot(diast~age, pressure);
s<-smooth.spline(pressure$age,
pressure$diast, spar=0.7);
lines(s);

Diastolic bp vs age
Prediction intervals (1)

• reg1=lm(diast~age, pressure);
• c1<-predict.lm(reg1,  se.fit=TRUE, 

interval='prediction');
• plot(diast~age, pressure)
• lines(c1$fit[,1]~age, pressure)
• lines(c1$fit[,2]~age,pressure)
• lines(c1$fit[,3]~age,pressure)
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Calculate the absolute and 
squared residuals

r1<-abs(reg1$residuals);
r2<-reg1$residuals^2;
plot(reg1$residuals~age,pressure);
plot(r1~age,pressure);
s<-smooth.spline(pressure$age,r1, 
spar=0.7);
lines(s);
plot(r2~age,pressure);
s<-smooth.spline(pressure$age,r2, 
spar=0.7);
lines(s );

Residuals vs age Absolute value of the 
residuals vs age

Squared residuals vs age Calculate weights
reg2<-lm(r1~age, pressure);
c1<-predict.lm(reg2);
w<-1/(c1^2);
reg3<-lm(diast~age, 
weights=w,pressure);
c1<-predict.lm(reg3,  se.fit=TRUE, 
interval='prediction');
plot(diast~age, pressure)
lines(c1$fit[,1]~age, pressure)
lines(c1$fit[,2]~age,pressure)
lines(c1$fit[,3]~age,pressure)
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Ridge regression

• Similar to a very old idea in numerical analysis
• If (X’X) is difficult to invert (near singular) the n 

approximate by inverting (X’X+kI).
• Estimators of coefficients are biased but more 

stable. 
• For some value of k ridge regression estimator 

has a smaller mean square error than ordinary 
least square estimator.

• Interesting but has not turned out to be a 
useful method in practice .

• Library(‘’MASS”, lm.ridge)

Robust regression

• Basic idea is to have a procedure that is 
not sensitive to outliers

• Alternatives to least squares, minimize
–sum of absolute values of residuals
–Median of the squares of residuals
–Reiterated weighted linear regression
–e.g. rlm function in library ‘’MASS”

Nonparametric 
regression

• Several versions
• We have used smoothed splines
• Interesting theory
• All versions have some smoothing 

parameter similar to the par=0.7
• Confidence intervals and significance 

tests not fully developed

Bootstrap
• Very important theoretical development 

that has a major impact on applied 
statistics

• Based on simulation
• Sample with replacement from the data 

or residuals and get the distribution of 
the quantity of interest

• CI based on quantiles of the sampling 
distribution

Model validation

• Three approaches to checking the 
validity of the model
–Collect new data, does it fit the 

model
–Compare with theory, other data, 

simulation
–Use some of the data for the basic 

analysis and some for validity 
check
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One qualitative 
explanatory variable

• Indicator (or dummy) variables have 
the value 0 when the quality is 
absent and 1 when the quality is 
present

• Examples include
–Gender as an explanatory variable
–Placebo versus control

Binary predictor

• X1 has values 0 and 1 corresponding to 
two different groups

• X2 is a continuous variable
• Y =  β0 + β1X1 + β2X2 + β3X1X2  + ξ
• For X 1 = 0, Y =  β0 + β2X2 + ξ
• For X 1 = 1, Y =  (β0 + β1)+ (β2 + β3) X2 + ξ

Binary predictor

• For X 1 = 0, Y =  β0 + β2X2 + ξ
• For X 1 = 1, Y =  (β0 + β1)+ (β2 + β3) X2 + ξ
• H0: β1 = β3 = 0 tests the hypothesis that 

the lines are the same
• H0: β1 = 0 tests equal intercepts
• H0: β3 = 0 tests equal slopes

More models

• If a categorical (qualitative) variable has 
several k possible values we need k-1 
indicator variables

• These can be defined in many different 
ways; 

• We also can have several categorical 
explanatory variables, interactions, etc

More models (2)

• Piecewise linear regression
• At some (known) point we allow the 

slope to change

Example

• NKNW p 476
• Y is unit cost 
• X1 is lot size
• The slope is allowed to change at a 

lot size of 500
• n = 8
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Plot the data
Model

• Our model has 
–An intercept
–A coefficient for lotsize (the slope)
–An additional explanatory variable 

that will add a constant to the 
slope whenever lotsize is greater 
than 500

New variable

ind<-as.numeric(cost$size>500);
cost$cslope<-ind*(cost$size-500);
unitcost size cslope
1     2.57  650    150
2     4.40  340      0
3     4.52  400      0
4     1.39  800    300
5     4.75  300      0
6     3.55  570     70
7     2.49  720    220
8 3.77  480      0

reg3<-lm(unitcost~size+cslope,
cost);

Results of regression
Coefficients:

Est Std t  Pr(>|t|)    
Int 5.895   0.604  9.757 0.0001 ***
size        -0.003   0.001 - 2.650 0.0454 *  
cslope -0.003   0.002 - 1.685 0.1527    

Residual standard error: 0.2449 
on 5 degrees of freedom
Multiple R-squared: 0.9693,     
F-statistic: 79.06 on 2 and 5 DF,  
p-value: 0.0001645 

Plot data with fit

cost<-cost[order(cost$size),];
reg3<-lm(unitcost~size+cslope, 
cost);
x1<-predict.lm(reg3);
plot(unitcost~size, cost);
lines(x1~size, cost);

The plot


