Lecture 9

Analysis of Variance

One-Way ANOVA

- The response variable Y is continuous
- The explanatory variable is categorical -We call it a factor
 - -The possible values are called levels
- This is a generalization of the twosample t-test

Data for one-way ANOVA

- Y, the response variable
- A, the factor
 - -I is the number of levels
 - We sometimes refer to these as groups or treatments
- Y_{ii} is the jth observation in the ith group

Example

- Y is the number of cases of cereal sold
- A is the design of the cereal package -There are 4 levels for A because
- there are 4 different package designs • i =1 to 4 levels
- j =1 to J_i stores with design i (5,5,4,5)
- Use J if it does not depend on i

Data for one-way ANOVA

cereal<read.table('ch16ta01.txt',
col.names=c("cases", "design",
 "store"));</pre>

	The data			
	cases	design	store	
1	11	1	1	
2	17	1	2	
3	16	1	3	
4	14	1	4	
5	15	1	5	
6	12	2	1	
7	10	2	2	

Notation

- For Y_{ij} we use
 - -i to denote the level of the factor
 - j to denote the jth observation at factor level i
- i = 1, ..., I levels of factor A
- j = 1, ..., J_i observations for level i of factor A

Model

- We assume that the response variable observations are
 - -Normally distributed
 - With a mean that may depend on the level of the factor
 - -And a variance that does not
 - -Independent

Model (2)

- $Y_{ij} = \mu_i + \xi_{ij}$
 - -where μ_i is the theoretical mean or expected value of all observations at level i and
 - -the ξ_{ii} are iid N(0, σ^2)
 - $-Y_{ij} \sim N(\mu_i, \sigma^2)$, independent
 - -This is called the cell means model

Parameters

- The parameters of the model are
 - $\mu_1, \mu_2, \dots, \mu_l$ $-\sigma^2$
 - Question Does our explanatory variable influence Y ? i.e.

Does μ_i depend on i ?

 $H_0: \mu_1 = \mu_2 = \dots = \mu_1$ $H_a:$ not all μ 's are the same

Estimates

- Estimate μ_i by the mean of the observations at level i, $\overline{Y}_{\it i}$
- $\overline{\mathbf{Y}}_i = (\boldsymbol{\Sigma}\mathbf{Y}_{ij})/(\mathbf{J}_i)$
- For each level we can get an estimate of the variance
- $s_i^2 = (\Sigma(Y_{ij} Y_i)^2)/(J_i 1)$
- We need to combine these to get an estimate of σ^2

Pooled estimate of $\sigma^{\scriptscriptstyle 2}$

- If the J_i are all the same we would average the $s_i^{\ 2}$
 - -We would *not* average the s_i
- In general we pool the s_i², giving weights proportional to the df, J_i-1
- The pooled estimate is
- $s^2 = (\Sigma (J_i-1)s_i^2) / (\Sigma (J_i-1))$
- = (Σ (J_i-1)s_i²)/(n-l)

Run proc glm

cereal\$design= factor(cereal\$design) obj<-aov(cases~design, cereal) model.tables(obj, type="means")

Output

design 1 2 3 4 14.6 13.4 19.5 27.2 rep 5.0 5.0 4.0 5.0

Source	df	SS	MS
Model	I-1	Σ _{ii} (Y _{i.} -Y_)²	SSM/dfM
Error	n-l	$\frac{\Sigma_{ii}(Y_{ii} - Y_{i})^2}{\Sigma_{ii}(Y_{ii} - Y_{i})^2}$	SSE/dfE
Total	n-1	$\Sigma_{ij}(Y_{ij} - Y_{})^2$	SST/dfT

Anova output

Summary(obj) Df SS MS F Pr(>F) des 3 588.2 196.1 18.6 2.5e-05 * Res 15 158.2 10.5

Expected Mean Squares

- E(MSE) = σ²
- E(MSM) = σ^2 + ($\Sigma_i J_i (\mu_i \mu_i)^2$)/(I-1)) -where $\mu_i = (\Sigma_i J_i \mu_i)/n$

- F = MSM/MSE
- $H_0: \mu_1 = \mu_2 = \dots = \mu_1$
- H_1 : not all of the μ_i are equal
- Under H₀, F ~ F(I-1, n-I)
- Reject H_0 when F is large
- Report the P-value

More output

obj2<-lm(cases~design, cereal) summary(obj2)

Residual standard error: 3.248 on 15 degrees of freedom Multiple R-squared: 0.7881, Adjusted R-squared: 0.7457 F-statistic: 18.59 on 3 and 15 DF, p-value: 2.585e-05

Factor Effects Model

• $Y_{ij} = \mu + \alpha_i + \xi_{ij}$ -the ξ_{ii} are iid N(0, σ^2)

Parameters

• The parameters of the model are - μ , α_1 , α_2 , ..., α_1 - σ^2

An example

- Suppose I=3; $\mu_1 = 10$, $\mu_2 = 20$, $\mu_3 = 30$
- What is an equivalent set of parameters for the factor effects model?
- We need to have $\mu + \alpha_i = \mu_i$
- $\mu = 0$, $\alpha_1 = 10$, $\alpha_2 = 20$, $\alpha_3 = 30$
- $\mu = 20$, $\alpha_1 = -10$, $\alpha_2 = 0$, $\alpha_3 = 10$
- $\mu = 5000$, $\alpha_1 = -4990$, $\alpha_2 = -4980$, $\alpha_3 = -4970$

Factor effects solution

- Put a constraint on the α_i
- $\Sigma_i \alpha_i = 0$
- This effectively reduces the number of parameters by 1

Estimators of parameters

- With the constraint $\Sigma_i \alpha_i = 0$ $\hat{\mu} = \frac{\sum Y_{i.}}{\mathbf{\alpha}_{i}}$ • $\hat{\alpha}_{i} = \mathbf{Y}_{i.}^{\mathrm{I}} - \hat{\mu}$

- reproduce the results based on the factor effects model
- $Y_{ij} = \mu + \alpha_i + \xi_{ij}$
- $\Sigma_i \alpha_i = 0$

Coding for Explanatory Variables

- X_{ii} = 1 if A is at level i
- = -1 if A is at level I
- = 0 if A is at any other level
- i = 1 to I-1

Means

The mean of the means

m<-model.tables(obj,type="means") m<-m\$tables\$design mean(m) 18.675

Explanatory variables

cereal\$x1<-(cereal\$design == 1)-(cereal\$design == 4);

cereal\$x2<-(cereal\$design == 2)-(cereal\$design == 4);

Cereal\$x3<-(cereal\$design == 3)-(cereal\$design == 4);

Output

	cases	des	x1	x2	х3	
1	11	1	1	0	0	
6	12	2	0	1	0	
11	23	3	0	0	1	
15	27	4	- 1	-1	- 1	

Output with parameters

Run the regression

```
obj3<-lm(cases~x1+x2+x3,
cereal);
summary(obj3)
```

Results Estimate Std. Error t value Pr(>|t|) • Int 18.6750 0.7485 24.949 1.25e-13 ** x1 -4.0750 1.2708 -3.207 0.005884 ** 1.2708 -4.151 0.000854 ** • x2 -5.2750 1.3706 0.602 0.556221 0.8250 • x3 Residual standard error: 3.248 on 15 degrees of freedom Multiple R-squared: 0.7881, Adjusted R-squared: 0.7457 F-statistic: 18.59 on 3 and 15 DF, p-value: 2.585e-05

Regression coefficients

Var Est Int 18.675 mean of the means $x1 - 4.075 Y_1 - Int$ $x2 - 5.275 Y_2 - Int$ $x3 0.825 Y_3 - Int$ 18.675-4.075 = 14.6 18.675-5.275 = 13.4 18.675+0.825 = 19.5 18.675+4.075+5.275-0.825=27.2

R coding for X

The rows are 1 1 0 0 0 for A=1 (5) 1 0 1 0 0 for A=2 (5) 1 0 0 1 0 for A=3 (4) 1 0 0 0 1 for A=4 (5)

- Recall, X'X does not have an inverse
- R eliminates the first variable (column) involved in the equation
- i. e. in R solution $\alpha_1=0$

Some options

summary(obj2)

Est Std. t Pr(>|t|) Int 14.6 1.45 10.05 4.66e-08 *** des2 -1.2 2.05 -0.58 0.5677 des3 4.9 2.18 2.25 0.0399 * des4 12.6 2.05 6.13 1.91e-05 ***

Interpretation

- If α₁ = 0 then the corresponding estimate should be zero
- the intercept $\boldsymbol{\mu}$ is estimated by the mean of the observations in group 1
- Since $\mu + \alpha_i$ is the mean of group i, the α_i are the differences between the mean of group i and the mean of group 1

Parameter estimates from means

Level of					
design	Mean				
		μ(hat) = 14.6			
1	14.6	$\alpha_1(hat) = 14.6-14.6 = 0$			
2	13.4	$\alpha_{2}(hat) = 13.4-14.6 = -1.2$			
3	19.5	$\alpha_{3}(hat) = 19.5-14.6 = 4.9$			
4	27.2	α_4 (hat) = 27.2-14.6 = 12.6			

Confidence intervals for means

- Y_i . ~ $N(\mu_i, \sigma^2/J_i)$
- Cl for μ_i is Y_i . ± t*s/ $\sqrt{J_i}$
- t^{*} is computed from the t(n-l) distribution

Confidence intervals seprately in each class

t.test(cereal\$cases
[cereal\$design==1])
t.test(cereal\$cases
[cereal\$design==2])
t.test(cereal\$cases
[cereal\$design==3])
t.test(cereal\$cases
[cereal\$design==4])

Output

95% CI:11.74147 17.45853 mean of x :14.6 95% CI: 8.871755 17.928245 mean of x :13.4 95% CI: 15.29002 23.70998 mean of x :19.5 95% CI: 22.28013 32.11987 mean of x :27.2

Confidence intervals from anova

obj4<-lm(cases~design-1, cereal) confint(obj4) fit lwr upr 1 14.6 11.50438 17.69562

- 6 13.4 10.30438 16.49562
- 11 19.5 16.03899 22.96101
- 15 27.2 24.10438 30.29562

Multiplicity Problem

- We have constructed 4 (in general, I) 95% confidence intervals
- The overall confidence level is less that 95%
- Many different kinds of adjustments have been proposed
- We have seen the Bonferroni (use α/I)

BONFERRONI

confint(obj4, level=1-0.05/4)

Bonferroni Cls

fit lwr upr 1 14.6 10.480212 18.71979 6 13.4 9.280212 17.51979 11 19.5 14.893937 24.10606 15 27.2 23.080212 31.31979

Hypothesis tests on individual means

- Not usually done
- Use t.test

Differences in means

- Distribution of Y_{i} - Y_{k} is
- $N(\mu_i \mu_k, (\sigma^2/J_i) + (\sigma^2/J_k))$
- CI for μ_i - μ_k is $Y_{i.}$ - $Y_{k.} \pm t^*s(Y_{i.}$ - $Y_{k.})$

)

• where
$$s(Y_{i}-Y_{k}) = s(\sqrt{\frac{1}{J_{i}} + \frac{1}{J_{k}}})$$

- We deal with the multiplicity problem by adjusting t^{*}
- Many different choices are available

R uses Tukey

- Based on the studentized range distribution (max minus min divided by the standard deviation)
- $t^* = q^* / \sqrt{2}$

TUKEYIIDD(OD))					
2-1 3-1 4-1 3-2	diff -1.2 4.9 12.6 6.1	lwr -7.12 -1.38 6.68 -0.18	upr 4.72 11.18 18.52 12.38	p adj 0.9352978 0.1548895 0.0001013 0.0582866	
4-2	13.8	7.88 1 42	19.72	0.0000368	
- -5	/•/	T •47	12.90	0.0142100	

Linear Combinations of Means

- These combinations should come from research questions, not from an examination of the data
- $\mathbf{L} = \boldsymbol{\Sigma}_{i} \mathbf{w}_{i} \boldsymbol{\mu}_{i}$
- $\hat{L} = \Sigma_{i} w_{i} Y_{i} \sim N(L, Var(\hat{L}))$
- Var(\hat{L}) = $\Sigma_i w_i^2 Var(Y_i)$
- Estimated by $s^2 \Sigma_i w_i^2 / J_i$

Quantitative factors

- Factor A is a quantitative variable
- Regression is a possible
 alternative analytical approach
- We can compare models, e.g. linear with anova; linear plus quadratic versus anova, etc.

Quantitative factors (2)

- Extra SS principle applies here
- We use the factor first as a continuous explanatory variable (regression) then as a categorical explanatory variable (anova)
- This is a test for linearity

Example

- Y is the number of acceptable units produced
- A is the number of hours of training -There are 4 levels for A : 6 hrs, 8 hrs, 10 hrs and 12 hrs
- i =1 to 4 levels (I=4)
- j =1 to 7 employee at each training level (J=7)

```
data2<-read.table('ch17ta04.txt',
col.names=c("product",
"trainhrs", "ind"));
data2$hrs<-2*data2$trainhrs+4;
obj<-lm(product~hrs, data2)
data2$trainhrs<-
factor(data2$trainhrs)
obj1<-lm(product~trainhrs, data2)
summary(obj1)
anova(obj,obj1)
```

Conclusion

- F-statistic: 141.5 on 3 and 24 DF,
- p-value: 2.173e-15
- Hours of training relates to product produced

Output

Model 1: product ~ hrs
Model 2: product ~ trainhrs
Df RSS Df SS F Pr(>F)
1 26 146.61
2 24 102.29 2 44.33 5.2 0.013 *

Interpretation

- The analysis indicates that there is statistically significant lack of fit for the linear regression model (F=5.20; df=2,24; P=0.0133)
- · Let's try a quadratic

Quadratic Model

data2\$hrs2<-data2\$hrs^2
obj2<-lm(product~hrs+hrs2, data2)
anova(obj,obj2)
anova(obj2, obj1)</pre>

Output

Model 1: product ~ hrs
Model 2: product ~ hrs + hrs2
Df RSS Df SS F Pr(>F)
1 26 146.61
2 25 102.86 1 43.75 10.63 0.003 *

Model 1: product ~ hrs + hrs2 Model 2: product ~ trainhrs Df RSS Df Sum of Sq F Pr(>F) 1 25 102.86 2 24 102.29 1 0.57857 0.1358 0.7158

Overview

- We will take the diagnostics and remedial measures that we learned for regression and adapt them to the ANOVA setting
- Many things are essentially the same
- Some things require modification

Residuals

- Predicted values are cell means, $\hat{Y}_{ii} = Y_i$.
- Residuals are the differences between the observed values and the cell means Y_{ij}-Y_i.

Basic plots

- Plot the data vs the factor levels (the values of the explanatory variables)
- Plot the residuals vs the factor levels
- Construct a normal quantile plot of the residuals

Example

- Compare 4 brands of rust inhibitor (A has I=4 levels)
- Response variable is a measure of the effectiveness of the inhibitor
- There are 10 units per brand (J=10)

Data

rust<-read.table('ch17ta02.txt', col.names=c("eff","brand","ind")); rust\$abrand=mat.or.vec(40,1) rust\$abrand[rust\$brand==1]="A" rust\$abrand[rust\$brand==2]="B" rust\$abrand[rust\$brand==3]="C" rust\$abrand[rust\$brand==4]="D"

Residuals to A2

rust\$abrand=factor(rust\$abrand)
obj1<-lm(eff~abrand, rust)
r<-residuals(obj1)</pre>

Plots

- Data versus the factor
- Residuals versus the factor
- Normal quantile plot fo the residuals

