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Lecture 9

Analysis of Variance

One-Way ANOVA

• The response variable Y is continuous
• The explanatory variable is categorical

–We call it a factor
–The possible values are called levels

• This is a generalization of the two-
sample t-test

Data for one-way ANOVA

• Y, the response variable
• A, the factor

– I  is the number of levels 
–We sometimes refer to these as 

groups or treatments
• Yij is the j th observation in the i th group

Example

• Y is the number of cases of cereal sold
• A is the design of the cereal package

–There are 4 levels for A because 
there are 4 different package designs

• i =1 to 4 levels
• j =1 to J i stores with design i (5,5,4,5)
• Use J if it does not depend on i 

Data for one-way ANOVA

cereal<-
read.table('ch16ta01.txt', 
col.names=c("cases", "design", 

"store"));

The data
cases design store

1     11      1     1
2     17      1     2
3     16      1     3
4     14      1     4
5     15      1     5
6     12      2     1
7     10      2     2
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Notation

• For Y ij we use  
– i to denote the level of the factor
– j to denote the j th observation at 

factor level i
• i = 1, . . . , I  levels of factor A
• j = 1, . . . , J i observations for level i 

of factor A 

Model

• We assume that the response variable 
observations are
–Normally distributed
–With a mean that may depend on the 

level of the factor
–And a variance that does not
– Independent

Model (2)

• Yij = µi + ξij

–where µi is the theoretical mean or 
expected value of all observations 
at level i and 

– the ξij are iid N(0, σ2)
–Yij ~N(µi, σ2), independent
–This is called the cell means model

Parameters
• The parameters of the model are

– µ1, µ2, … , µI

–σ2

Question – Does our explanatory 
variable influence Y ?  i.e.

Does µi depend on i ?
H0: µ1= µ2= … = µI

Ha: not all µ’s are the same

Estimates

• Estimate µi by the mean of the 
observations at level i, 

• = (ΣYij)/(J i)
• For each level we can get an estimate 

of the variance
• s i

2 = (Σ(Yij- )2)/(J i-1)
• We need to combine these to get an 

estimate of σ2

iY
iY

iY

Pooled estimate of σ2

• If the J i are all the same we would 
average the s i

2

–We would not average the s i

• In general we pool the s i
2, giving 

weights proportional to the df, J i -1
• The pooled estimate is 
• s2 = (Σ (Ji-1)s i

2) / (Σ (J i-1)) 
• = (Σ (J i-1)s i

2)/(n-I) 
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Run proc glm
cereal$design=
factor(cereal$design)
obj<-aov(cases~design, cereal)
model.tables(obj, type="means")

Output

design 
1    2    3    4

14.6 13.4 19.5 27.2
rep  5.0  5.0 4.0  5.0

Plot the data

plot(cases~design, cereal)

The plot

Notation

• Yi. = (Σj Yij)/ J i

• Y.. = (Σij Yij )/ n
• n is the total number of 

observations
• n = Σj Ji

ANOVA Table

Source  df SS                           MS
Model    I-1     Σij(Yi.-Y..)2 SSM/dfM
Error     n-I     Σij(Yij –Yi.)2 SSE/dfE
Total     n-1    Σij(Yij – Y..)2          SST/dfT
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Anova output

Summary(obj)

Df SS MS F     Pr(>F)    
des  3 588.2 196.1 18.6 2.5e- 05 ***
Res 15 158.2  10.5

Expected Mean Squares

• E(MSE) = σ2

• E(MSM) = σ2 +  (ΣiJ i (µi - µ.)2)/(I-1))
–where µ. = (ΣiJ iµi )/n 

F test

• F = MSM/MSE 
• H0: µ1 = µ2 = … = µI

• H1: not all of the µi are equal 
• Under H 0, F ~ F(I-1, n-I)
• Reject H 0 when F is large
• Report the P-value

More output
obj2<-lm(cases~design, cereal)
summary(obj2)

Residual standard error: 3.248 
on 15 degrees of freedom
Multiple R-squared: 0.7881,     
Adjusted R-squared: 0.7457 
F-statistic: 18.59 on 3 and 15 
DF,  p-value: 2.585e-05 

Factor Effects Model

• Yij = µ + αi + ξij

– the ξij are iid N(0, σ2)

Parameters

• The parameters of the model are
– µ, α1, α2, … , αI

–σ2
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An example

• Suppose I=3;  µ1 = 10, µ2 = 20, µ3 = 30
• What is an equivalent set of parameters 

for the factor effects model?
• We need to have µ + αi =  µi

• µ = 0, α1 = 10, α2 = 20, α3 = 30
• µ = 20, α1 = -10, α2 = 0, α3 = 10
• µ = 5000, α1 = -4990, α2 = -4980, α3 = -4970

Factor effects solution

• Put a constraint on the αi

• Σiαi = 0
• This effectively reduces the number 

of parameters by 1

Consequences

µi = µ + αi

• The constraint Σiαi = 0 implies
• µ = (Σi µi)/I
• αi = µi – µ

Hypotheses

• H0: µ1 = µ2 = … = µI

• H1: not all of the µi are equal 

are translated into

• H0: α1 = α2 = … = αI = 0
• H1: at least one αi is not 0

Estimators of parameters

• With the constraint Σiαi = 0
=  

• = Yi. –
µ̂

iα̂ I
 ∑ ⋅iY

µ̂

Regression Approach

• We can use multiple regression to 
reproduce the results based on the 
factor effects model

• Yij = µ + αi + ξij

• Σiαi = 0
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Coding for Explanatory 
Variables

• Xij = 1 if A is at level i
• = -1 if A is at level I
• = 0 if A is at any other level
• i = 1 to I-1

Means

model.tables(obj, type="means")
Grand mean

18.63158 
design 

1    2    3    4
14.6 13.4 19.5 27.2

rep  5.0  5.0 4.0  5.0

The mean of the means
m<-model.tables(obj,type ="means")
m<-m$tables$design
mean(m)
18.675

Explanatory variables
cereal$x1<-(cereal$design == 1)-
(cereal$design == 4);

cereal$x2<-(cereal$design == 2)-
(cereal$design == 4);

Cereal$x3<-(cereal$design == 3)-
(cereal$design == 4);

Output

cases des  x1 x2 x3

1    11   1   1  0  0

6    12   2   0  1  0

11    23   3   0  0  1

15    27   4  -1 -1 -1

Output with parameters

des x1 x2 x3

1    1  0  0 µ + α1

2    0  1  0 µ + α2

3    0  0  1 µ + α3

4   -1 -1 -1 µ - α1 - α2 - α3
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Run the regression

obj3<-lm(cases~x1+x2+x3, 
cereal);
summary(obj3)

Results
Estimate Std. Error t value Pr(>|t|)    

• Int  18.6750     0.7485  24.949 1.25e-13 **
• x1           -4.0750     1.2708  -3.207 0.005884 ** 
• x2           -5.2750     1.2708  -4.151 0.000854 **
• x3            0.8250     1.3706   0.602 0.556221 

• Residual standard error: 3.248 on 15 degrees of 
freedom

• Multiple R-squared: 0.7881,     Adjusted R-squared:  
0.7457 

• F-statistic: 18.59 on 3 and 15 DF,  p-value: 2.585e -
05 

Regression coefficients
Var Est

Int 18.675 mean of the means
x1  -4.075 Y1. - Int
x2  -5.275 Y2. - Int
x3   0.825 Y3. - Int

18.675-4.075 = 14.6

18.675-5.275 = 13.4

18.675+0.825 = 19.5

18.675+4.075+5.275-0.825=27.2 

R coding for X

The rows are 
1 1 0 0 0 for A=1 (5) 
1 0 1 0 0 for A=2 (5)
1 0 0 1 0 for A=3 (4)
1 0 0 0 1 for A=4 (5)

• Recall, X’X does not have an inverse
• R eliminates the first variable 

(column) involved in the equation

• i. e. in R solution α1=0

Some options

summary(obj2)

Est Std. t  Pr(>|t|)    
Int  14.6 1.45 10.05 4.66e- 08 ***
des2 -1.2 2.05 -0.58 0.5677    
des3  4.9 2.18 2.25 0.0399 *  
des4 12.6 2.05  6.13 1.91e- 05 ***
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Interpretation

• If α1 = 0  then the corresponding 
estimate should be zero

• the intercept µ is estimated by the mean 
of the observations in group 1

• Since µ + αi is the mean of group i, the αi
are the differences between the mean of 
group i and the mean of group 1

Parameter estimates from 
means

Level of

design  Mean 

µ(hat)  = 14.6
1       14.6  α1(hat) = 14.6-14.6 = 0
2       13.4  α2(hat) = 13.4-14.6 = -1.2
3       19.5  α3(hat) = 19.5-14.6 =  4.9
4       27.2  α4(hat) = 27.2-14.6 =  12.6

Confidence intervals for 
means 

• Yi. ~  N(µi, σ2/J i)
• CI for µi is Y i. ± t *s/
• t* is computed from the t(n-I) 

distribution

iJ

Confidence intervals
seprately in each class

t.test(cereal$cases
[cereal$design==1])
t.test(cereal$cases
[cereal$design==2])
t.test(cereal$cases
[cereal$design==3])
t.test(cereal$cases
[cereal$design==4])

Output

95% CI:11.74147 17.45853 
mean of x :14.6
95% CI : 8.871755 17.928245 
mean of x :13.4
95% CI: 15.29002 23.70998 
mean of x :19.5
95% CI: 22.28013 32.11987 
mean of x :27.2 

Confidence intervals from
anova

obj4<-lm(cases~design-1, cereal)
confint(obj4)

fit      lwr      upr
1  14.6 11.50438 17.69562
6  13.4 10.30438 16.49562
11 19.5 16.03899 22.96101
15 27.2 24.10438 30.29562
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Multiplicity Problem

• We have constructed 4 (in general, I) 95% 
confidence intervals

• The overall confidence level is less that 
95%

• Many different kinds of adjustments have 
been proposed

• We have seen the Bonferroni (use α/I)

BONFERRONI

confint(obj4,  level=1-0.05/4)

Bonferroni CIs
fit    lwr      upr

1  14.6 10.480212 18.71979
6  13.4  9.280212 17.51979
11 19.5 14.893937 24.10606
15 27.2 23.080212 31.31979

Hypothesis tests on 
individual means

• Not usually done
• Use t.test

Differences in means 

• Distribution of Y i.-Yk. is
• N(µi-µk, (σ2/J i)+(σ2/Jk))
• CI for µi-µk is Y i.-Yk. ± t *s(Y i.-Yk.)

• where s(Y i.-Yk.) =s(               )
ki J

1

J

1 +

t*

• We deal with the multiplicity problem 
by adjusting t* 

• Many different choices are available



10

R uses Tukey

• Based on the studentized range 
distribution (max minus min divided 
by the standard deviation)

• t* = q*/ 2

Example
TukeyHSD(obj)

diff  lwr upr p adj
2-1 -1.2 -7.12 4.72 0.9352978
3-1  4.9 -1.38 11.18 0.1548895
4-1 12.6  6.68 18.52 0.0001013
3-2  6.1 -0.18 12.38 0.0582866
4-2 13.8  7.88 19.72 0.0000368
4-3  7.7  1.42 13.98 0.0142180

Linear Combinations of 
Means

• These combinations should come 
from research questions, not from an 
examination of the data

• L = Σiw iµi

= Σiw iYi. ~ N(L, Var( ) )
• Var( ) = Σiw i

2Var(Y i.) 
• Estimated by s2Σiw i

2/Ji

L̂ L̂
L̂

Quantitative factors
• Factor A is a quantitative 

variable
• Regression is a possible 

alternative analytical approach
• We can compare models, e.g. 

linear with anova; linear plus 
quadratic versus anova, etc.

Quantitative factors (2)
• Extra SS principle applies here
• We use the factor first as a 

continuous explanatory variable 
(regression) then as a 
categorical explanatory variable 
(anova)

• This is a test for linearity

Example

• Y is the number of acceptable units 
produced 

• A is the number of hours of training
–There are 4 levels for A : 6 hrs, 8 

hrs, 10 hrs and 12 hrs
• i =1 to 4 levels (I=4)
• j =1 to 7 employee at each training 

level (J=7)
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data2<- read.table('ch17ta04.txt',
col.names=c("product",
"trainhrs”, "ind"));
data2$hrs<-2*data2$trainhrs+4;
obj<-lm(product~hrs, data2)
data2$trainhrs<-
factor(data2$trainhrs)
obj1<-lm(product~trainhrs , data2)
summary(obj1)
anova(obj,obj1)

Conclusion

• F-statistic: 141.5 on 3 and 24 DF, 
• p-value: 2.173e-15 

• Hours of training relates to product 
produced 

Output

Model 1: product ~ hrs
Model 2: product ~ trainhrs

Df RSS Df SS F Pr(>F)  
1 26 146.61                              
2 24 102.29 2 44.33 5.2 0.013 *

Interpretation

• The analysis indicates that there is 
statistically significant lack of fit for 
the linear regression model (F=5.20; 
df=2,24; P=0.0133)

• Let’s try a quadratic

Quadratic Model 

data2$hrs2<-data2$hrs^2
obj2<- lm(product~hrs+hrs2, data2)
anova(obj,obj2)
anova(obj2, obj1)

Output

Model 1: product ~ hrs
Model 2: product ~ hrs + hrs2

Df RSS Df SS F Pr(>F)   
1 26 146.61                              
2 25 102.86 1 43.75 10.63 0.003 **
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Model 1: product ~ hrs + hrs2
Model 2: product ~ trainhrs

Df RSS   Df Sum of Sq F    Pr(>F)
1     25 102.86                           
2     24 102.29  1   0.57857 0.1358 0.7158

Overview

• We will take the diagnostics and 
remedial measures that we learned 
for regression and adapt them to the 
ANOVA setting

• Many things are essentially the same
• Some things require modification

Residuals

• Predicted values are cell 
means,        = Y i.

• Residuals are the 
differences between the 
observed values and the 
cell means Y ij-Yi.

ijŶ

Basic plots

• Plot the data vs the factor levels (the 
values of the explanatory variables)

• Plot the residuals vs the factor levels
• Construct a normal quantile plot of 

the residuals

Example

• Compare 4 brands of rust inhibitor (A 
has I=4 levels)

• Response variable is a measure of 
the effectiveness of the inhibitor

• There are 10 units per brand (J=10)

Data
rust<-read.table('ch17ta02.txt', 
col.names=c("eff”,"brand","ind"));
rust$abrand=mat.or.vec(40,1)
rust$abrand[rust$brand==1]="A"
rust$abrand[rust$brand==2]="B"
rust$abrand[rust$brand==3]="C"
rust$abrand[rust$brand==4]="D"
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Residuals to A2

rust$abrand=factor(rust$abrand )
obj1<-lm(eff~abrand, rust)
r<-residuals(obj1)

Plots

• Data versus the factor
• Residuals versus the factor
• Normal  quantile plot fo the 

residuals

Plots vs the factor

plot(eff~abrand,rust)
plot(r~abrand,rust)
qqnorm(r)

Data vs the factor

Residuals vs the factor The plot


