Lecture 9

Analysis of Variance

Data for one-way ANOVA

- Y , the response variable
- A, the factor
$-I$ is the number of levels
-We sometimes refer to these as groups or treatments
- Y_{ij} is the j^{th} observation in the $\mathrm{i}^{\text {th }}$ group

One-Way ANOVA

- The response variable Y is continuous
- The explanatory variable is categorical -We call it a factor
-The possible values are called levels
- This is a generalization of the twosample t-test

Example

- Y is the number of cases of cereal sold
- A is the design of the cereal package
-There are 4 levels for A because there are 4 different package designs
- $i=1$ to 4 levels
- $\mathrm{j}=1$ to J_{i} stores with design $\mathrm{i}(\mathbf{5 , 5 , 4 , 5)}$
- Use J if it does not depend on i

Data for one-way ANOVA

```
cereal<-
```

cereal<-

```
cereal<-
read.table('ch16ta01.txt',
read.table('ch16ta01.txt',
read.table('ch16ta01.txt',
col.names=c("cases", "design",
col.names=c("cases", "design",
col.names=c("cases", "design",
"store"));
"store"));
"store"));
Data for one-way ANOVA
```


Notation

- For Y_{ij} we use
-i to denote the level of the factor
$-j$ to denote the $j^{\text {th }}$ observation at factor level i
- $i=1, \ldots$, I levels of factor A
- $j=1, \ldots, J_{i}$ observations for level i of factor A

Model

- We assume that the response variable observations are
-Normally distributed
- With a mean that may depend on the level of the factor
- And a variance that does not
- Independent

Model (2)

- $Y_{i j}=\mu_{i}+\xi_{i j}$
-where μ_{i} is the theoretical mean or expected value of all observations at level i and
-the ξ_{ij} are iid $\mathrm{N}\left(0, \sigma^{2}\right)$
$-Y_{\mathrm{ij}} \sim N\left(\mu_{\mathrm{i}}, \sigma^{2}\right)$, independent
-This is called the cell means model

Parameters

- The parameters of the model are
$-\mu_{1}, \mu_{2}, \ldots, \mu_{1}$
$-\boldsymbol{\sigma}^{2}$
Question - Does our explanatory variable influence Y ? i.e.
Does μ_{i} depend on i?
$H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{1}$
H_{a} : not all μ 's are the same

Estimates

- Estimate μ_{i} by the mean of the observations at level $\mathrm{i}, \overline{\mathrm{Y}}_{i}$
- $\overline{\mathrm{Y}}_{i}=\left(\Sigma \mathrm{Y}_{\mathrm{ij}}\right) /\left(\mathrm{J}_{\mathrm{i}}\right)$
- For each level we can get an estimate of the variance
- $\mathrm{s}_{\mathrm{i}}{ }^{2}=\left(\Sigma\left(\mathrm{Y}_{\mathrm{ij}}-\overline{\mathrm{Y}}_{i}\right)^{2}\right) /\left(\mathrm{J}_{\mathrm{i}}-1\right)$
- We need to combine these to get an estimate of σ^{2}

Pooled estimate of $\boldsymbol{\sigma}^{\mathbf{2}}$

- If the J_{i} are all the same we would average the $\mathrm{s}_{\mathrm{i}}{ }^{2}$
- We would not average the s_{i}
- In general we pool the $s_{i}{ }^{2}$, giving weights proportional to the df, $\mathrm{J}_{\mathrm{i}}-1$
- The pooled estimate is
- $s^{2}=\left(\Sigma\left(J_{i}-1\right) s_{i}^{2}\right) /\left(\Sigma\left(J_{i}-1\right)\right)$
- $=\left(\Sigma\left(J_{i}-1\right) s_{i}^{2}\right) /(n-I)$

Run proc glm

cereal\$design=

factor (cereal\$design)
obj<-aov(cases~design, cereal)
model.tables(obj, type="means")

Output

design

	1	2	3	4
	14.6	13.4	19.5	27.2
rep	5.0	5.0	4.0	5.0

The plot

Plot the data

```
plot(cases~design, cereal)
```


Notation

- $\mathrm{Y}_{\mathrm{i} .}=\left(\Sigma_{\mathrm{i}} \mathrm{Y}_{\mathrm{ij}}\right) / \mathrm{J}_{\mathrm{i}}$
- $Y_{. .}=\left(\Sigma_{i \mathrm{i}} Y_{\mathrm{ij}}\right) / n$
- n is the total number of observations
- $\mathbf{n}=\boldsymbol{\Sigma}_{\mathbf{i}} \mathbf{J}_{\mathbf{i}}$

ANOVA Table

Source df SS
MS
$\begin{array}{llll}\text { Model } & \text { l-1 } & \Sigma_{i j}\left(Y_{i .}-Y_{. .}\right)^{2} \quad S S M / d f M\end{array}$
Error $n-\sum_{i j}\left(Y_{i j}-Y_{i j}\right)^{2} \quad$ SSE/dfE Total $\quad \mathrm{n}-1 \quad \Sigma_{\mathrm{ij}}\left(\mathrm{Y}_{\mathrm{ij}}-\mathrm{Y}_{. .}\right)^{2} \quad \mathrm{SST} / \mathrm{dfT}$

Anova output

```
Summary(obj)
    Df SS MS F Pr (>F)
des 3 588.2 196.1 18.6 2.5e-05
Res 15 158.2 10.5
```


F test

- $F=$ MSM/MSE
- $H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{1}$
- H_{1} : not all of the μ_{i} are equal
- Under $\mathrm{H}_{0}, \mathrm{~F} \sim \mathrm{~F}(\mathrm{I}-1, \mathrm{n}-\mathrm{I})$
- Reject H_{0} when F is large
- Report the P-value
- Replall

Expected Mean Squares

- $\mathrm{E}(\mathrm{MSE})=\boldsymbol{\sigma}^{2}$
- $E($ MSM $\left.)=\sigma^{2}+\left(\Sigma_{i} J_{i}\left(\mu_{i}-\mu\right)^{2}\right) /(I-1)\right)$ - where $\mu_{.}=\left(\Sigma_{i} J_{i} \mu_{i}\right) / n$

More output

obj2<-lm(cases~design, cereal) summary (obj2)

Residual standard error: 3.248
on 15 degrees of freedom Multiple R-squared: 0.7881, Adjusted R-squared: 0.7457
F-statistic: 18.59 on 3 and 15 DF, p-value: 2.585e-05

Factor Effects Model

- $\mathrm{Y}_{\mathrm{ij}}=\mu+\mathrm{a}_{\mathrm{i}}+\xi_{\mathrm{ij}}$
-the ξ_{ij} are iid $\mathrm{N}\left(0, \sigma^{2}\right)$

Parameters

- The parameters of the model are
$-\mu, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{1}$
$-\sigma^{2}$

An example

- Suppose I=3; $\mu_{1}=10, \mu_{2}=20, \mu_{3}=30$
- What is an equivalent set of parameters for the factor effects model?
- We need to have $\mu+\alpha_{i}=\mu_{i}$
- $\mu=0, \alpha_{1}=10, \alpha_{2}=20, \alpha_{3}=30$
- $\mu=20, \alpha_{1}=-10, \alpha_{2}=0, \alpha_{3}=10$
- $\mu=5000, \alpha_{1}=-4990, \alpha_{2}=-4980, \alpha_{3}=-4970$

Consequences

$$
\mu_{i}=\mu+\alpha_{i}
$$

- The constraint $\Sigma_{i} \alpha_{i}=0$ implies
- $\mu=\left(\Sigma_{i} \mu_{i}\right) / /$
- $\alpha_{i}=\mu_{i}-\mu$

$$
a_{i}=\mu_{i}-\mu
$$

Factor effects solution

- Put a constraint on the α_{i}
- $\Sigma_{i} \alpha_{i}=0$
- This effectively reduces the number of parameters by 1

Hypotheses

- $H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{1}$
- H_{1} : not all of the μ_{i} are equal
are translated into
- $H_{0}: \alpha_{1}=\alpha_{2}=\ldots=\alpha_{1}=0$
- H_{1} : at least one α_{i} is not 0

Estimators of parameters

- With the constraint $\Sigma_{i} \mathbf{a}_{\mathbf{i}}=\mathbf{0}$
$\hat{\mu}=\frac{\sum Y_{i}}{\mathrm{I}}$
- $\hat{\alpha}_{i}=\mathbf{Y}_{\mathrm{i}}-\hat{\mu}$

Regression Approach

- We can use multiple regression to reproduce the results based on the factor effects model
- $Y_{i j}=\mu+\alpha_{i}+\xi_{i j}$
- $\Sigma_{i} a_{i}=0$

Coding for Explanatory Variables

- $X_{i j}=1$ if A is at level i
- $\quad=-1$ if A is at level I
- $\quad=0$ if A is at any other level
- $\mathbf{i}=1$ to l-1

The mean of the means

m<-model.tables (obj,type="means") m<-m\$tables\$design mean (m)
18.675

Explanatory variables

```
cereal$x1<-(cereal$design == 1)-
(cereal$design == 4);
cereal$x2<-(cereal$design == 2)-
(cereal$design == 4);
Cereal$x3<-(cereal$design == 3)-
(cereal$design == 4);
```


Run the regression

obj3<-lm(cases~x1+x2+x3,
cereal);
summary(obj3)

Results

Estimate Std. Error t value $\operatorname{Pr}(>|t|)$ $18.6750 \quad 0.7485 \quad 24.9491 .25 \mathrm{e}-13$ ** -4.0750 1.2708-3.207 0.005884 ** $-5.27501 .2708-4.1510 .000854$ ** 1.37060 .6020 .556221

Residual standard error: 3.248 on 15 degrees of freedom

- Multiple R-squared: 0.7881, Adjusted R-squared: 0.7457
- F-statistic: 18.59 on 3 and 15 DF, p-value: 2.585e05

Regression coefficients

Var
Est
Int 18.675 mean of the means
x1 -4.075 Y_{1}. - Int
x2 -5.275 $\quad \mathbf{Y}_{2}$. - Int
x3 $0.825 \quad \mathrm{Y}_{3}$. - Int
18.675-4.075 = 14.6
18.675-5.275 = 13.4
$18.675+0.825=19.5$
$18.675+4.075+5.275-0.825=27.2$

- Recall, $X^{\prime} X$ does not have an inverse
- R eliminates the first variable (column) involved in the equation
- i. e. in R solution $\alpha_{1}=0$

R coding for X

The rows are
11000 for $A=1$ (5)
10100 for $A=2$ (5)
10010 for $A=3$ (4)
10001 for $A=4$ (5)

Some options

summary (obj2)

```
Est Std. \(t \quad \operatorname{Pr}(>|t|)\)
```

Int $14.61 .4510 .054 .66 e-08$
des2 -1.2 2.05 -0.58 0.5677
des3 4.92 .182 .250 .0399 *
des4 $12.62 .05 \quad 6.131 .91 \mathrm{e}-05$

Interpretation

- If $\alpha_{1}=0$ then the corresponding estimate should be zero
- the intercept μ is estimated by the mean of the observations in group 1
- Since $\mu+\alpha_{i}$ is the mean of group i, the α_{i} are the differences between the mean of group i and the mean of group 1

Parameter estimates from means

Level of
design Mean

$$
\mu(\text { hat })=14.6
$$

$1 \quad 14.6 \quad \alpha_{1}($ hat $)=14.6-14.6=0$
$2 \quad 13.4 \quad \alpha_{2}(\mathrm{hat})=13.4-14.6=-1.2$
$3 \quad 19.5 \quad \alpha_{3}($ hat $)=19.5-14.6=4.9$
$4 \quad 27.2 \quad \alpha_{4}($ hat $)=27.2-14.6=12.6$

Confidence intervals for means

- $\mathbf{Y}_{\mathbf{i}}$ ~ $\sim\left(\mu_{i}, \sigma^{2} / \mathbf{J}_{\mathbf{i}}\right)$
- Cl for μ_{i} is $Y_{i} . \pm t{ }^{*} s / \sqrt{J_{i}}$
- \mathbf{t}^{*} is computed from the $\mathbf{t}(\mathrm{n}-\mathrm{I})$ distribution

Confidence intervals seprately in each class
t.test (cereal\$cases [cereal\$design==1])
t.test (cereal\$cases
[cereal\$design==2])
t.test (cereal\$cases
[cereal\$design==3])
t.test (cereal\$cases
[cereal\$design==4])

Output

```
95% CI:11.74147 17.45853
mean of x :14.6
95% CI: 8.871755 17.928245
mean of x :13.4
95% CI: 15.29002 23.70998
mean of x :19.5
95% CI: 22.28013 32.11987
mean of x :27.2
```


Confidence intervals from anova

```
obj4<-lm(cases~design-1, cereal)
```

confint (obj4)
fit lwr upr
$1 \quad 14.6 \quad 11.50438 \quad 17.69562$
$6 \quad 13.4 \quad 10.30438 \quad 16.49562$
$\begin{array}{llll}11 & 19.5 & 16.03899 & 22.96101\end{array}$
1527.224 .1043830 .29562

Multiplicity Problem

- We have constructed 4 (in general, I) 95% confidence intervals
- The overall confidence level is less that 95\%
- Many different kinds of adjustments have been proposed
- We have seen the Bonferroni (use $\alpha /$ /)

BONFERRONI

confint (obj4, level=1-0.05/4)

	Bonferroni Cls
	fit lwr upr
	$1 \begin{array}{llll}1 & 14.6 & 10.48021218 .71979\end{array}$
	613.49 .28021217 .51979
	1119.514 .89393724 .10606
	15 27.2 23.08021231 .31979

Hypothesis tests on individual means

- Not usually done
- Use t.test

Differences in means

- Distribution of $Y_{i}-Y_{k}$. is
- $\mathrm{N}\left(\mu_{\mathrm{i}}-\mu_{\mathrm{k}},\left(\sigma^{2} / \mathrm{J}_{\mathrm{i}}\right)+\left(\sigma^{2} / \mathrm{J}_{\mathrm{k}}\right)\right)$
- Cl for $\mu_{i}-\mu_{k}$ is $Y_{i .}-Y_{k .} \pm t^{*} s\left(Y_{i} .-Y_{k}\right)$
- where $\mathbf{s}\left(\mathbf{Y}_{\mathrm{i} .}-\mathbf{Y}_{\mathrm{k}}\right)=\mathbf{s}\left(\sqrt{\frac{1}{\mathrm{~J}_{\mathrm{i}}}+\frac{1}{J_{k}}}\right)$

We deal with the multiplicity problem by adjusting t^{*}

- Many different choices are available

\mathbf{t}^{*}

-

R uses Tukey

- Based on the studentized range distribution (max minus min divided by the standard deviation)
- $\mathbf{t}^{\star}=\mathbf{q}^{\star} / \sqrt{2}$

Example

TukeyHSD (obj)
diff lwr upr padj
2-1 -1.2 -7.12 $4.72 \quad 0.9352978$
$\begin{array}{lllll}3-1 & 4.9 & -1.38 & 11.18 & 0.1548895\end{array}$
$\begin{array}{lllll}4-1 & 12.6 & 6.68 & 18.52 & 0.0001013\end{array}$
3-2 6.1 -0.18 $12.38 \quad 0.0582866$
$\begin{array}{lllll}4-2 & 13.8 & 7.88 & 19.72 & 0.0000368\end{array}$
$\begin{array}{lllll}4-3 & 7.7 & 1.42 & 13.98 & 0.0142180\end{array}$

Linear Combinations of Means

- These combinations should come from research questions, not from an examination of the data
- $L=\boldsymbol{\Sigma}_{\mathrm{i}} \mathbf{w}_{\mathrm{i}} \boldsymbol{\mu}_{\mathrm{i}}$
$\hat{L}=\Sigma_{i} w_{i} \mathbf{Y}_{\mathrm{i}}{ }^{\sim} \sim N(L, \operatorname{Var}(\hat{L}))$
- $\operatorname{Var}(\hat{L})=\Sigma_{i} \mathbf{w}_{\mathrm{i}}{ }^{2} \operatorname{Var}\left(\mathbf{Y}_{\mathrm{i}}\right)$
- Estimated by $s^{2} \Sigma_{i} w_{i}{ }^{2} / J_{i}$

Quantitative factors

- Factor \mathbf{A} is a quantitative variable
- Regression is a possible alternative analytical approach
- We can compare models, e.g. linear with anova; linear plus quadratic versus anova, etc.

Quantitative factors (2)

- Extra SS principle applies here
- We use the factor first as a continuous explanatory variable (regression) then as a categorical explanatory variable (anova)
- This is a test for linearity

Example

- Y is the number of acceptable units produced
- A is the number of hours of training -There are 4 levels for A: 6 hrs, 8 hrs, 10 hrs and 12 hrs
- $i=1$ to 4 levels (l=4)
- $\mathrm{j}=1$ to 7 employee at each training level (J=7)

```
data2<-read.table('ch17ta04.txt'
col.names=c("product",
"trainhrs", "ind"));
data2$hrs<-2*data2$trainhrs+4;
obj<-lm(product~hrs, data2)
data2$trainhrs<-
factor(data2$trainhrs)
obj1<-lm(product~trainhrs, data2)
summary(obj1)
```

anova(obj,obj1)

```
```

```
anova(obj,obj1)
```

```

\section*{Conclusion}
- F-statistic: 141.5 on 3 and 24 DF,
- p-value: 2.173e-15
- Hours of training relates to product produced

\section*{Output}
```

Model 1: product ~ hrs
Model 2: product ~ trainhrs
Df RSS Df SS F Pr (>F)
1 26 146.61
2 24 102.29 2 44.33 5.2 0.013 *

```

\section*{Interpretation}
- The analysis indicates that there is statistically significant lack of fit for the linear regression model ( \(F=5.20\); \(d f=2,24 ; P=0.0133\) )
- Let's try a quadratic

\section*{Quadratic Model}
data2\$hrs2<-data2\$hrs^2 obj2<-lm(product~hrs+hrs2, data2) anova (obj, obj2)
anova(obj2, obj1)

\section*{Output}
```

Model 1: product ~ hrs
Model 2: product ~ hrs + hrs2
Df RSS Df SS F Pr (>F)
1 26 146.61
2 25 102.86 1 43.75 10.63 0.003

```

Model 1: product ~hrs + hrs2
Model 2: product ~ trainhrs
Df RSS Df Sum of Sq F \(\operatorname{Pr}(>F)\)
\(1 \quad 25102.86\)
\(\begin{array}{lllll}2 & 24102.29 & 1 & 0.57857 & 0.1358 \\ 0.7158\end{array}\)

\section*{Residuals}
- Predicted values are cell means, \(\hat{\mathrm{Y}}_{\mathrm{ij}}=\mathrm{Y}_{\mathrm{i}}\).
- Residuals are the differences between the observed values and the cell means \(\mathrm{Y}_{\mathrm{ij}} \mathrm{Y}_{\mathrm{i}}\).

\section*{Overview}
- We will take the diagnostics and remedial measures that we learned for regression and adapt them to the ANOVA setting
- Many things are essentially the same
- Some things require modification

\section*{Basic plots}
- Plot the data vs the factor levels (the values of the explanatory variables)
- Plot the residuals vs the factor levels
- Construct a normal quantile plot of the residuals

\section*{Example}
- Compare 4 brands of rust inhibitor (A has \(\mathrm{I}=4\) levels)
- Response variable is a measure of the effectiveness of the inhibitor
- There are 10 units per brand ( \(\mathrm{J}=10\) )

\section*{Data}
rust<-read.table ('ch17ta02.txt', col. names=c ("eff", "brand", "ind")) ;
rust\$abrand=mat. or . vec ( 40,1 )
rust\$abrand [rust\$brand==1] ="A"
rust\$abrand [rust\$brand==2] ="B"
rust\$abrand [rust\$brand==3] ="C"
rust\$abrand [rust\$brand==4] ="D"
\begin{tabular}{|c|}
\hline \multicolumn{1}{|c|}{ Residuals to A2 } \\
\begin{tabular}{l} 
rust \(\$\) abrand=factor (rust \(\$ a b r a n d)\) \\
obj1<-lm(eff~abrand, rust) \\
r<-residuals (obj1)
\end{tabular} \\
\\
\end{tabular}

\section*{Plots}
- Data versus the factor
- Residuals versus the factor
- Normal quantile plot fo the residuals

\section*{Plots vs the factor}
plot (eff~abrand, rust)
plot (r~abrand, rust)
qqnorm(r)


```

