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Abstract: A new class of positive definite functions related to colour-length function on
arbitrary Coxeter group is introduced. Extensions of positive definite functions, called the
Riesz—Coxeter product, from the Riesz product on the Rademacher (Abelian Coxeter)
group to arbitrary Coxeter group is obtained. Applications to harmonic analysis, op-
erator spaces and noncommutative probability are presented. Characterization of radial
and colour-radial functions on dihedral groups and infinite permutation group are shown.

Uffe Haagerup (1949-2015) in Memoriam.

Introduction

In 1979, Uffe Haagerup in his seminal paper [HAA79] proved positive definiteness of
the function P, (x) := g"!, =1 < ¢ < 1, on the free group Fyy on N generators. Here,
| - | denotes the natural length function on F . From this he deduced Khinchine type in-
equalities and showed that the regular C*-algebra of F ; admits bounded approximation
property and the completely bounded approximation property (CBAP), see [DCHS85].
These results had a significant impact on harmonic analysis on free group and also
influenced free probability as well as the operator spaces theory, see [HP93].

Note that the Cayley graph of Fy is the homogeneous tree of order 2N, so these
results can be easily translated into the free Coxeter group W = Z/2 % --- x Z/2.
In fact, it was shown in the paper [BJS88] that the function P, (x) = g is positive
definite for g € [—1, 1] and for every Coxeter group, where | - | is now the natural word
length function on a Coxeter group with respect to the set of its Coxeter generators.
This implies that Coxeter groups have the Haagerup property (see [CCJ+01]). Recall,
that infinite groups with Haagerup property do not have Kazhdan’s property (T) (cf
[BDLHVO08]).

Later, Januszkiewicz [JANO2] and Fendler [FENO2B] applied Haagerup’s ideas to
prove that the map W > w — z/*! is a coefficient of a uniformly bounded Hilbert
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representation of W for all z € C such that |z| < 1. Valette [VAL93] observed that this
implies CBAP. For further extension of these Haagerup’s results for a big class of groups
we refer to the book [BOOS].

Bozejko and Speicher [BS96] considered the free product (convolution) of classic
normal distribution N (0, 1). They introduced a new length function on the permutation

group &, which here we will call the colour-length and denote || - ||. It is defined as
follows:if w = s . .. s; is aminimal representation of w as a product of generators s; € S
then we put |[w| = #{s1, 52, ..., sx}. In the case of G,,, S is the set of transpositions

(j,j+1),1 < j < n. Moreover, they found formula for the free additive convolution
power of the classical normal distribution @1 := N (0, 1) and the Bernoulli distribution
n—1 :=(86_1 +61) /2, namely

23] _
Mon (Mi?) —q" Z (:I:l)lﬂlq H?T||’
TeP2(2n)

Mo+l (ufi’) = 0, for ¢ € N. These results motivated us to study the colour length

function || - || in more details.

For further applications, we will study generalizations of the function x — ¢/*l ona
Coxeter group (W, S), namely Riesz—Coxeter products, which are defined by Rq(s) :=
gs, fors € S, and

Ry(xy) := Rq(x)Rq(y) whenever |lxy| = [lx| +[lyll,

where q = (g;)ses is a system of real parameters. In particular, if g = g forevery s € S
then Rq(x) =g I¥I Tn one of the most important results of this paper, Theorem 5.2, we
provide sufficient conditions for positive definiteness of the function Rq.

This implies, in particular, that in an arbitrary Coxeter group (W, S) the set of gener-
ators S is a weak Sidon set, i.e. that for every f : S — [0, 1] there exist positive definite
functions ¢;, ¢— : W — C such that f(s) = ¢.(s) — ¢_(s) for every s € S, see
Theorem 7.1. These ¢,., ¢_can be chosen as Ry, , Rq_ for suitable parameters q, q—.
This result answers a question of Pisier, who was particularly interested in the infinite
permutation group G.. As further consequence we obtain an operator version of the
Khinchin inequality for arbitrary Coxeter group, Theorem 7.2, which extend results of
[LP86,PIS03].

Let us also mention that the colour-length function on the permutation group S,, was
also studied in [BBLS11]. Its extension to pairpartitions was applied in the proof that
classical normal law N (0, 1) is infinitely divisible under the free additive convolution H.
We believe that positive definite functions on Coxeter groups of type B and D, especially
these which are colour dependent, may have applications in the development of type B
and D versions of free probability (see [BEH15,BEH17]).

The plan of the paper is as follows.

First we recall the definitions of Coxeter groups, the length and the colour-length
functions (Sect. 1), and discuss some classes of positive definite functions on such
groups, namely the radial, colour-radial and colour-dependent (Sect. 2).

In Sect. 3 we confine ourselves to Abelian Coxeter groups (W, ). In this case both the
lengths | - | and || - || coincide and we prove that every positive definite radial function on
W admits an integral representation. In the next section we extend this results and prove
integral representation of positive definite radial functions for some class of Coxeter
groups containing the infinite permutation group Ge. This result can be regarded as
an analog of the classical de Finetti theorem. A noncommutative version was shown by
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Kostler ans Speicher [KS09] (see also [LEH04]). We also show in Theorem 4.3, that the
function exp(— t|w|?) is positive definite for all # > 0 if and only if p € [0, 1].

In Sect. 5 we present the main properties of the colour-dependent positive definite
functions on Coxeter groups, in particular we show in Corollary 5.4. that on G, and
some other Coxeter groups, the function w > /Il is positive definite if and only if
r € [0, 1].

Section 6 provides characterization of all colour-dependent positive definite functions
on the dihedral groups D,,,m = 1,2, ..., co.

In Sect. 7 we prove that the set S of Coxeter generators is a weak Sidon set in an
arbitrary Coxeter group (W, §) with constant 2, and that it is also a completely bounded
A(p) set with constants as C/p, for p > 2.

In Sect. 8 we prove for arbitrary finitely generated Coxeter group an identity involving
both lengths | - | and || - || (see Proposition 8.3). We apply it to give a proof of Corollary
7 from [BS96], (see Eq. (8.1)) where the proof, involving probabilistic considerations,
was not presented in [BS96].

The paper concludes with Appendix, where we present a short proof of the equiva-
lence of two results concerning positive definite functions on finite Coxeter groups.

1. Coxeter Groups

In this part we recall the basic facts regarding Coxeter groups and introduce notation
which will be used throughout the rest of the paper. For more details we refer to [BOUG6S,
HUMO90].

A group W is called a Coxeter group if it admits the following presentation:

W= (SH(Slsz)m(‘”’”) =1:51,5 € S,m(s1,5) # OO})

where S C Wisasetand m is afunctionm : § x § — {1,2,3,..., 00} such that
m(sy, s2) = m(s2, s1) for all s;, 55 € S and m(sy, s2) = 1 if and only if s; = s2. The
pair (W, S) is called a Coxeter system. In particular, every generator s € S has order
two and every element w € W can be represented as

W =S5152...5n (1.1)

for some s1, 52, ..., s, € S.If the sequence (s1, ..., s;,) € S is chosen in such a way
that m is minimal then we write |w| = m and call it the length of w. In such a case the
right hand side of (1.1) is called a reduced representation or reduced word of w. This is
not unique in general, but the set of involved generators is unique [BOU68, Ch. 1v, §1,
Prop. 7], i.e. if w = s182...8, = t1t2 .. . t, are two reduced representations of w € W
then {s1, 2, ...,85n} = {t1,t2, ..., t,}. This set {s1, 52, ..., s} C S will be denoted
S and called the colour of w.

Given a subset T C S by W7 we denote the subgroup generated by 7 and call it
the parabolic subgroup associated with T'. To see that S, is independent of the reduced
representation of w notice that

s €Sy &= w¢& Ws . (1.2)

We define the colour-length of w putting |w| = #S, (the cardinality of S,,). Both
lengths satisfy the triangle inequality and we have [|w] < |w].
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In the case of the permutation group, the colour-length has the following pictorial
interpretation. If o is a permutation in &, then |o|| equals » minus the number of
connected components of the diagram representing o. Notice, that |o| equals to the
number of crossings in the diagram (the number of pairs of chords that cross).

o e (12) (12)(23) (12)(23)(12)
o] 0 1 2 3
loll 0 1 2 2

It would be convenient to define

0 ifs &Sy,

wlls= =11 its e s,

(1.3)

then, clearly, [|w]l = Y g lwlls.

2. Positive Defined Functions

A complex function ¢ on a group I is called positive definite if we have

> e Ma@aly) =0

x,yel

for every finitely supported function: I' — C.

A positive definite ¢ function is Hermitian and satisfies |¢(x)| < ¢(e) forall x € .
Usually it is assumed, that ¢ is normalised, i.e. that p(e) = 1.

In this and the following sections we discuss the radial functions on Coxeter groups.
These are functions which depend on |w| rather then on w.

We call a function ¢ on (W, S) colour-dependent if ¢(w) depends only on S,,. We
call it colour-radial if it depends only on ||w]|.

An Abelian Coxeter group generated by S is isomorphic to the direct product SscsZ/2.
On these groups the lengths | - | and || - || coincide and all functions are colour dependent.

The main example of a positive definite function will be the Riesz—Coxeter function.

Given a sequence q = (gy)ses We define Rq(w) = [[,cg qSHw”S = ]_[Sesw qs. We will
abuse notation and denote by Rq also the associated operator ),y Rq(w)w. That is

qu 1+ZQ55+ Z ds19s, W + Z gs19s7qsz3 W + - - -

ses w:Sy={s1,52} w:Sy={s1,52,53}

In the case all g; = g we get Rq = Zq”w“w.
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This generalises the classical case of Rademacher—Walsh functions in the Rademacher
group Rad,,. If we denote the generator of the i-th factor Z/2 of the latter by the symbol
r; then, by definition, rl2 =1,rirj =rjr; and

n
Ry =[] +aqr).

i=1

3. Rademacher Groups

In this section we are going to study positive definite radial functions on the Abelian
Coxeter groups, (W, S) = Radg. Since positive definiteness is tested on functions with
finite support, we can assume that S is countable. If #S = n we will write Rad,, instead of
Radg. Givenn € NU{oo}, we denote by P, the class of all functions f: {0, 1,...,n} —
Rforn finiteand f: N — Rifn = ocosuchthat p(w) = f(Jw]) is anormalised positive
definite function on Rad,,.

The following observation is straightforward.

Proposition 3.1. Assume that 1 <m < n < oo and f € P,. Then the restriction of f
t0 {0, ..., m} belongs to Py,. A function f belongs to Py, if and only if all its restrictions
to {0, ..., m} for any m € N belong to Py,.

Theorem 3.2. Assume n is finite. The set P, form a simplex whose vertices (extreme
points) are fl”(k) = (';)_l Zﬁzo(—l)i(];) ('l':lk), where 0 < | < n. Equivalently, every
normalised radial positive definite function on the group Rad, is of the form

o) =Y M f(IxD,
=0

where the sequence of nonnegative numbers (7)]_ is unique and satisfies Yok =1

Proof. We can identify the dual @ group of Rad,, with Rad,, via the paring (x, y) =

(—1)Xi=1 %, By Bochner’s theorem every normalised positive definite function ¢ on
Rad,, is of the form

px) = /,\(x, y) u(dy),
Rad,
for some probability measure w. Clearly, such a function is radial if and only if w is
invariant under the action of G,,.
Among such measures extreme ones are measures u; for 0 < [ < n, where p; is
equally distributed among elements of length /. Moreover,

ww=ﬁ\mwmww=ﬁwn
Rad,
as claimed. O

The following theorem is a version of the classical de Finetti Theorem (see [FEL71,
p. 223]) for the infinite Rademacher group.
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Theorem 3.3. Assume that ¢ is a radial function on the Rademacher group Rad,. Then
@ is a normalised positive definite if and only if there exists a probability measure |1 on
[—1, 1] such that

1
o(x) =/lq"“‘u(dq).

This measure | is unique.

Proof. Since the function ¢'*! is normalised positive definite for ¢ € [—1, 1], the “if”
implication is obvious.
Assume that ¢ is normalised positive definite. The group Rad is discrete and Abelian

and its dual is the compact group @ = [172, Z/2.By Bochner’s theorem, there exists
a probability measure n on Rady, such that

o(x) =,L (. ) dn(y),
Rad

where for x = (x1,x2,...) € Radeo, y = (¥1,¥2,...) € @oo we put (x,y) =
(— 1)2i=1%  The function o is radial if an only if for every permutation o € G, we
have ¢(x) = ¢(o(x)), where o (x) = (X5(1), X5(2), - - -). This, in turn, implies that » is
o-invariant for every 0 € G, i.e. we have n(A) = n(c(A)) for every Borel subset
A C Rads.

For a sequence € = (;)7_; € {0, 1}"* we define C),(¢) g@oo by

Cu(e) ={y € Radplyi = ¢ : 1 <i <n},

in particular Co(@) = Rad. Then we have 1(Cy(€)) = n(Cy(€)) if € = €, for
some o € &, and every 1 <i < n.For ¢ € R we put

and a, = n(C,(1™)). Moreover, for n, k > 0 we define the difference operators Aa,
by induction: Aoan = a, and Ak“an = Akan+1 — Akan. We claim that

(—DkAka, = n (cn+k (1"0k)) . 3.1)
Denoting the right hand side of (3.1) by c¢(n, k) we note that c¢(n, 0) = a, and
Cusert (170°0) U Copir (17041) = G (170%),
is a disjoint union. This implies
cn,k+1)y=cn, k) —c(n+1,k).

This formula, by induction on k, leads to (3.1).
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From (3.1) we see that the sequence (a,) is completely monotone, i.e. that (=Dk
AF an > 0forall n, kK > 0. By the celebrated theorem of Hausdorff (see [HAU21, Sitze
11 and 111]), there exists a unique probability measure p on [0, 1] such that

1
(—=D¥Akq, =f u(1 — wkdpu). (3.2)
0

(Note that Eq. (3.2) for arbitrary k > 0 follows from the case k = 0.)
For x = (1"0°%°) € Rad, so that |x| = n, we have

o(x) = JL (x, y)dn(y) = (—D)Xi=1% dn(y)
Radoo Radeo

n

Y hE ey = Y (Z)(—l)"n (ca (1))

ecf{0,1}" k=0
n n 1 1
= (F)evt [ata = tanan = [Fa -2 apw
im0 \K 0 0
1
=1/1q”duwx

where  is defined by (A) = p (% + %A) foraBorelset A € [—1,1]. O

4. Remarks on Radial Positive Definite Functions on Some Infinitely Generated
Coxeter Groups

In this section we extend the last theorem of the previous section to a certain class of
Coxeter groups.

Theorem 4.1. Assume that (W, S) is a Coxeter system and that there is an infinite subset
So € S such that st = ts for s,t € So. Assume that ¢ is a radial function on W with
@(e) = 1. Then ¢ is positive definite if and only if there exists a probability measure |
on [—1, 1] such that

1
9(0) =/lq‘“‘u(dq)-

This measure [ is unique.

Proof. 1t is sufficient to note that the group generated by Sp is a parabolic subgroup
isomorphic with Rad,. O

Example. For W = G, we have S = {(n,n + 1) : n € N}. Then we can take Sg =
{(2n — 1,2n) : n € N}. Similar Sy can be found in infinitely generated groups of type
B and D.

Problem 4.2. When —1 < ¢ < 1, g # 0 s the positive definite function ¢! on G, an
extreme point in the set of normalised positive definite functions?

_tlglp

Theorem 4.3. The function ¢,(0) = e is positive definite on S if and only if

0<p=1l
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Proof. By contraposition, assume that for some p > 1 and fy > 0 the function v/, (0) =

— P . .. .
e0lo1” is positive definite on Go.

For go = e, choosing o such that |o'| = 2n we have qéhy’ = f_ll q*" dpo(q) for

1/n
some probability measure poon[—1, 1]. Since (f_ll q2" dug (q)) tends to max{q2 lg €

1/n
supp (o} while (q(()zn)p) — 0, we conclude that p is the Dirac measure at 0, which

is a contradiction.

The “if” part is standard. We need to show that f(x) = e™"* " is the Laplace transform
of some probability measure supported on [0, 00), so f is a convex combination of
functions of the form e™5*.

By characterisation of Laplace transforms (see [HAU21, Satz 111]) this is equivalent
to complete monotonicity, that is (—1)" f™ > 0 foralln = 0, 1, .... And indeed, by
induction, (—1)" £ is a positive linear combination of positive functions of the form
xPinf(x)forl < j<n. 0O

The measures with Laplace transforms e " fort >0and 0 < p <1 are studied in
detail in [YOS80, Ch. 1X.11] (see Propositions 1 and 2 there).

Let us note that for such groups like Z* or R¥ with the Euclidean distance d the
functions exp(—td”) are positive definite forallr > 0 and 0 < p < 2 (the case p =2
corresponds to the GauBlian Law).

5. Colour-Dependent Positive Definite Functions on Coxeter Groups

The question which colour-dependent or colour-radial functions are positive functions
on Coxeter groups is wide open. In this section we provide some sufficient conditions.
In the next section we will examine the dihedral groups in full details.

Lemma 5.1. Let H be a subgroup of a group T of index d. Then the function ¢, defined
by o (x) = 1 ifx € H and ¢,(x) = r otherwise is positive definite on I if and only if
r € [—1/(d — 1), 1], with natural convention that if d = oo then —1/(d — 1) = 0.

Note, that if H = {1} thend = |T'|.
Proof. First assume that d is finite and let us enumerate the left cosets:
{¢gH :gel'}={H|, H, ..., Hy}.

Note, that for x € H;, y € H; we have y’lx € H if and only if i = j. Therefore, for

ro = —1/(d — 1) and for a finitely supported complex function f on I" we have

2
Y o 0T = d—il Yoo rw=> o,

x,yel 1<i<j<d |xeH; YEH;

which proves that ¢,, is positive definite. For r € [—1/(d — 1), 1] the function ¢, is
positive definite as a convex combination of ¢, and the constant function ¢;.

On the other hand, if we choose x; € H; for each i < d and define f as the
characteristic function of the set {x1, ..., x4} then

Yo e O =d+ @ —adr, (5.1)

x,yel
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which proves that r > —1/(d — 1) is a necessary condition for positive definiteness of
Pr-

If d = oo then ryp = 0 and the function ¢y is positive definite as the characteristic
function of the subgroup H. For “only if" part we chose an arbitrarily long sequence
X1, ..., xq of elements from different left cosets and use (5.1) with d’ instead of d. O

Theorem 5.2. Assume that for every s € S we are given a number g,

<qgs <1,

dy — 1 -

where dg denotes the index if the parabolic subgroup generated by S~\{s} in W: d; =
[W : Wgis}]. Then the Riesz—Coxeter Rq is positive definite on W.

Proof. From Lemma 5.1 the function w > ¢! is positive definite for s € S and

—1/(d; — 1) < g5 < 1. Since the pointwise product of positive definite functions is
positive definite, the statement holds. O

Example. Take W = G,;, the permutation group on the set {1, 2, ..., n}. It is generated
by the transpositions S = {s; = ({,i +1),1 <i <n—1}. Forl <i <n —1 the
parabolic subgroup generated by S~ {s;} is isomorphic with G;_| x &,,_;_1, so its index
isi(}).

It would be interesting to determine for which r the function w > "Il is positive
definite. By Proposition 5.2 this holds for r € [—1/(d — 1), 1], where d is the maximal

index of the parabolic subgroups of the form Wy (s;. We note a necessary condition.

Proposition 5.3. Assume that we have distinct generators sg, 1, ..., S, € S such that
S0Sk 7~ SkSo (i.e. m(sg, sg) > 2) for 1 < k < n. If the function w +— rlwll g positive
definite on W, then —1/n-1 < <1

If there is an element sy € S for which there are infinitely many s € S such that
sos # sso then r'"Iis positive definite on W if and only if 0 < r < 1.

Proof. Consider elements wy = sosxso. Note, that for k # [ we have ||wl_lwk|| =3.1If
@, is positive definite on W then we have

n
0= ) ol ') =n+m>—n)r,
k=1

which implies 73 > ~1/u-1. O

Corollary 5.4. The function w — ¢! on S is positive definite if and only if 0 <
qg <1

Problem 5.5. Thus, it is valid to ask the following. Is it true that every normalised
positive definite colour-length-radial function ¢: Go, — R is of the form ¢ (o) =

fol g9 du(g) for some probability measure 1 on [0, 1]?
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6. Dihedral Groups

In this part will examine the class of colour-dependent positive definite functions on the
case the simplest noncommutative Coxeter groups. Assume that W = Dy, = (s, t|(st)")
(i.e. the group of symmetries of a regular n-gon), and define a colour-dependent function
on W:

1 ifw=e,
ifw=-s,
pw)y=1"" 6.1)
q ifw=rt,
r otherwise.

If p = g then ¢ is colour radial. We are going to determine for which parameters p, g, r
the function ¢ is positive definite on W. It is easy to observe necessary conditions:
p,q,r € [—1, 1]. Moreover, since (st) is a cyclic subgroup of order n, Lemma 5.1,
implies a necessary condition: —1/(n — 1) <r < 1.

Finite dihedral groups. Assume that W is a finite dihedral group, W = Dy, so that
(st)" = 1. We will use the following version of Bochner’s theorem: A function f on a
compact group G is positive definite if and only if its Fourier transform:

fr) = /G Fo)m ™ dx

is a positive operator for every m € G, where G denotes the dual object of G, i.e. the
family of all equivalency classes of unitary irreducible representations of G, see [SIM96].
Then we have

f@) =) dew[fmm)].

neG
Therefore, for every irreducible representation 7w of D, we are going to find
By = — D ¢@me™h
2n ’
geG

We will identify s with (0, —1) and 7 with (1, —1). If n is odd then D»,, possesses
two characters: x. 4 such that x; +(w) = 1 for every w € D, and x_ _ such that
X—.—(s) = x— —(t) = —1.If nis even then we have two additional characters x, _ and
X—.+suchthat . _(s) = x— +(t) = 1 and x4+ —(t) = x— +(s) = —1.Itis easy to check
that

20 (xes) = 1+ p+q+Qn—23r,
2ng(x-,-)=1—p—q+r,

which gives

—1-C2n-=3)yr<p+qg<1l+r
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and, for n even,

2m(xe—) = 1+p—q—r,
2n¢p(x—+) =1—p+q—r,

which implies
lp—ql=1-r
We have also the family of two dimensional representations Uy :

2rika/n 0
e
Ua(ks l) = < 0 eZm'ka/n) ’

0 eZnika/n
Ug(k, —1) = (eZm'ka/n 0 ’

wherea =1,2,..., I_%J Then for the function given by (6.1) we have
2np(Uq) = (1 = HId + (p — NUa(0, —1) + (g — r)Uq(1, —1)

_ 1—r p—r+(q—r)62”i“/”
“\p—r+(g—ryeFrian 1—r ’

This matrix is positive definite if and only if » < 1 and
‘p —r+(q — r)erTia/n| <1 —
Therefore we have
Proposition 6.1. The function ¢ given by (6.1) is positive definite on Dy, if and only if
l+p+qg+Q@2n—-3)r >0, l-p—q+r=>=0
(plus
l+p—g—r=0, 1-p+qg—r=0
whenever n is even) and

‘p—r+(q—r)ezma/" <1l-r

fora=1,2,..., L%J
Let us confine ourselves to colour-radial functions.

Corollary 6.2. Assuming that p = q, the function ¢ defined by (6.1) is positive definite
on W = Dy, if and only if

—2p—1 1+2 7 /n

max p—’2p_1 Sriﬂ’
2n —3 1 +2cos(/n)

i.e. if and only if the point (p, r) belongs to the triangle whose vertices are

< 1 —n — cos(™/n) 1 — cos(7/n) ) <n -2 -1 ) (L1
1+@n—1)cosC/n)’ 1+Q2n—1)cos())’ \2n—2"n—-1)" 77
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Proof. For p = g the conditions from Proposition 6.1 reduce to

2p—1<r, —1-2p<Q@2n—-3)r, and 2cos(*/)|p—r|<1—r.
It is sufficient to note that 2p — 1 < r implies 2cos("/u)(p —r) <l —rforp <1. O
Example. For D4 we have the positive definiteness of ¢ is equivalent to

—l+lp+ql=r=1-|p—gql

which means that the set of all possible (p, g, r) forms a tetrahedron with vertices
(-1,1,-1),d,—-1,-1), (—-1,—-1,1), (1,1, 1). For p = g the condition reduces to
2lpl—1<r <1.

In the case of D¢ Proposition 6.1 leads to the following conditions:

l—-p—qg+r =0, 1+p+g+3r =0,

l—rz\/p2+q2+r2—pq—pr—qr,

which can be expressed as

1-p*—q*+pg

1—p—
max #,p+q—1 <r=<
3 2—p—q

The infinite dihedral group. Here we are going to study W = D.

Proposition 6.3. The function ¢ given by (6.1) is positive definite on W = Do if and
onlyif0<rand|p—r|+|qg—r|<1-—r,ie

(6.2)

. l+p+gqg
max{0,p+qg— 1} <r <minjl —|p—q|,———¢.

3

Proof. First we note that the set of (p, g, ) € R? satisfying (6.2) constitutes a pyramid
which is the convex hull of the points (£1, 0, 0), (0, 1, 0) and (1, 1, 1) (apex). For these
particular parameters it is easy to see that ¢ is positive definite: (1, 1, 1) corresponds to the
constant function 1, (1, 0, 0) to the characteristic function of the subgroup (s) = {1, s},
and (—1, 0, 0) to the character x_ _ times the characteristic function of (s). Similarly
for (0, £1, 0). This, by convexity, proves that (6.2) is a sufficient condition.

On the other hand, we know already that » > 0 is a necessary condition. Let us fix n
and define Wt(n) = {x e W : |sx| < |x| <21}, W (n) = {x € W : |tx]| < |x| < 2n}
and

+1 ifx € WEn),

feo = 0  otherwise.
For x, y € W*(n) we have Sy-1y, = in 2n cases (namely, if x = y) Sy-1, = {s}
in 2n — 2 cases (namely if |x| = 2k, |y| = 2k + 1 or vice-versa, k = 1,...,n — 1)
Sy-1, = {t} in 2n cases (namely if |x| = 2k, |y| = 2k — 1 or vice-versa, k =1, ..., n)

and Sy-1, = {s, 7} in all the other (2n — 1)(2n — 2) cases. Similarly, for x, y € W™ (n)

we have S\-1, = ¥} in 2n cases, Sy-1, = {s} in 2n cases, Sy-1, = {r} in 2n — 2 cases
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and Sy—lx = {s,t}in 2n — 1)(2n — 2) cases. If x € W*(n), y € W~ (n) or vice-versa
then §y-1, = {s, #}. Summing up, we get

D 0T fa () fu ()
x,yeWw
=4dn+@n —-2)p+@n —2)g+ (4n —2)2n —2)r — 8n’r
=4n+ (@4n —-2)p+ (4n —2)g — (12n — 4)r.

Therefore for every n € N we have a necessary condition

1 1 1
1+(1- — 1——)g—(3-- .
MG e e TR G L

Lettingn — cowe get 1 + p+q > 3r.
Put x; = stst ..., |xx| = k. Fix n and define

X—+(x) ifx =xiforl <k <4n,
g(x) = .
0 otherwise,

where, as before, x_  is the character on W for which x_ .(s) = —1, x— +(t) = L.
Then

4n
D e gy = Y dl ) gx)g(x).

x,yeW k,l=1
Denote cx; = d:(xflxk)g(xk)g(xl). Thenwehavecy y = 1,1 <k <4n, cx -1 = q if
kiseven, cy -1 = —pifkisodd,2 <k <4nandcy; = cyx foralll <k,l < 4n.

Ifl <k,] <4nand|k —1I| > 2thenc; = (—1)jr, where j is the total number of s
appearing in x; and x;. Now it is not difficult to check that

ic f14g-2r  ifk=1lork=4n,
— k= l—p+g—r ifl <k < 4n,

which implies

Y ¢ 0g()g(y) =4n — (4n —2)p +4ng — (4n +2)r
x,yeWw
and leads to necessary condition r < 1 — p+¢q. In a similar manner we getr < 1+p —gq.
Finally, define a function 4 similarly like g, but now we use the character x_ _:

{x _(x) = (=¥ ifx = x; for 1 <k < dn,
hix) = ’

0 otherwise.
Putting dix; = ¢(xflxk)h(xk)h(x1) wehave dyx = 1, dyk—1 = —pif2 <k < 4n
is even and dy y—1 = —q if k is odd. Moreover, if |k — 1| > 2,1 < k,l < 4n then
drl = (—1)**r. Now one can check that
%d f1—gq if k= 1ork=4n,
— k= l—p—q+r ifl <k <4n,

which yields 1 — p — g +r > 0 and completes the proof that the conditions (6.2) are
necessary. [
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7. Weak Sidon Sets and Operator Khinchine Inequality

The aim of this section is to show that the set of Coxeter generators S in an arbitrary
Coxeter group W is a weak Sidon set, ie. an interpolation set for the Fourier—Stieltjes
algebra B(W).

Given a group I, the Fourier—Stieltjes algebra consists of linear combinations of
positive definite functions on I', ie. every element of B(I") is of the form f = ¢; — @2 +
i(p3 — ¢4) for some positive definite functions ¢; (1 <i < 4)onI'. The norm on B(I")
is defined as

Il fll gy = inf [Z(pi (e)|where f decomposes as above}

Theorem 7.1. The set of Coxeter generators S in an arbitrary Coxeter group W is a
weak Sidon set, ie. for every bounded function f: S — [—1, 1] there exists positive
definite functions ¢+, such that f(s) = ¢4+(s) — ¢—_(s) for any s € S. One can take
@+ = Ry for a suitable choice of q*. Moreover

los —o—llBw) <2

Proof. Put SL(f) ={s € S| £ f(s) > 0}. Set

+_ +f(s) fors e SL(f),
s 0 otherwise.

Then f(s) = Rq+(s) — Rq-(s) as claimed. The rest of the statement hold as the Riesz—
Coxeter function at the identity element equals to one. O

Given a matrix A € M, (C) and p > 1 the Schatten p-class norm [ Alls, is defined
as ||A||§p = (tr|A|?)!/7, where |A| = (A*A)1/2.

Let A denote the left regular representation of a group I'. Given a finite sum f =
> cgA(g) € C[I'] we define noncommutative L”-norm

LAy = (x (7 % f),,/z))w

where t(f) = c, is the von Neumann trace and L”(TI") is a completion of C[I'] with
respect to the above norm.

We recall, that a scalar-valued map ¢ on a group I' is called a completely bounded
Fourier multiplier on LP (I") if the associated operator

My(0(g)) = ¢(g)A(g), g€l

extends to a completely bounded operator on L”(I").
We let M, (LP (")) to be an algebra of completely bounded Fourier multipliers
equipped with the norm

lell s ey = 1My, ®idse |l
Following Pisier [PIS03], for a; € M,,(C), where s € S, we define

172 1/2
l@)sesllgne = max { H (D asa) (Y ara)
ses

seS

Sp }

Sr
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For a set E C I" we define the completely bounded constant A;b(E ) as infimum of C
such that

Zas ® A(s)

seS

<C| (as)seS”RmC
LP(W)

for all matrices a; € M,,(C) and n € N.

Theorem 7.2. If a; € M, (C), then for all p > 2 and any Coxeter system (W, S) we
have

Zas ® A(s)

seS

< 2A/\/E ”(as)sES”RﬂC .
LP(W)

l(as)sesllgne <

Proof. Tt was shown by Harcharras [LP86, Prop. 1.8] that A;b(E ) is finite if and only
if E is an interpolation set for M., (L? (")), i.e. every bounded function on E can be
extended to a multiplier, and

AP(E) = AP (R (E),

where R is the generating set in the Rademacher group Rads, and ,u,i,b(E ) is the inter-
polation constant.

As shown by Buchholz [BUCO0S, Thm. 5] for p = 2n, and R the standard generating
set in Rady, AEQ(R) = (2n—DIH/2 < A/p for some absolute A. This was
extended by Pisier [PIS03, Thm. 9.8.2] for any p > 2, i.e

AD(R) < A' /P,

for an absolute constant A’.

We have shown in Theorem 7.1 that in an arbitrary Coxeter group W its Coxeter
generating set S is a weak Sidon set, i.e. it is interpolation set for the Fourier—Stieltjes
algebra B(W). Since for p > 1, B(I") is a subalgebra of M., (L?(T")) and

ol me ey < l@llBmy,

we see that pL‘be(S) < 2. Thus A;b(S) < 2A’,/p. This finishes the proof of the right
inequality.
The left inequality holds for any group I' and any § C I (see [LP86]). O

Remark 7.3. Fendler [FENO2A] has shown that if for all s, € S, s # ¢, we have
m(s,t) > 3, then

AD(S) <2V2.

See also [BOZ75] and [BUC99] for related results in the case of free Coxeter groups. Also
Haagerup and Pisier have shown that Agg(S) = 2, where Agg(E) = Sup,>) A‘;b(E)
[HP93]. See the paper of Haagerup [HAA81] where the best constant was calculated for
the set of Coxeter generators of the Rademacher group in case when a; are scalars.

Remark 7.4. Theorem 7.2 implies that in an arbitrary Coxeter group the set of its Cox-
eter generators is a weak Sidon set and also it is completely bounded Ag,b-set, see
Theorems 7.1 and 7.2. Equivalently, the span of the linear operators {A(s)|s € S} in the
noncommutative L?”-space L? (W), for p > 2, is completely boundedly isomorphic to
row and column operator Hilbert space.
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8. Chromatic Length Function for Coxeter Groups and Pairpartitions

Let [2n] = {1,...,2n}. Let 21211 denote the set of subsets of [2n]. By a partition of
[2n] we mean = C 2[2"! such that | Jm = [2n] and if 7/, 7" € 7 then n’ = =" or
7' N = &. We say, that partition @ is a coarsening of a partition 7 if for any 7’ € 7
there exists o’ € ¢ such that 7’ C ¢'.

A partition is called crossing if thereexist | <a <b <c<d <2nandm|,m €n
witha, c € m # m 3 b, d; otherwise it is called noncrossing. For any partition r there
exists the smallest noncrossing coarsening @ (;r) of 7 (ie. if o is a noncrosing coarsening
of 7 then it is a coarsening of @ (7)). We define || || = n — #® (7). The notion for the
map ® was introduced in [BY06].

We say that  is a pairpartition if every member of & has cardinality two. The set of
pairpartitions of [2n] is denoted by P, (2n). Given w € P,(2n) we write || to denote
the number of ordered quadruples 1 < a < b < ¢ < d < 2n such that both {a, c}
and {b, d} belong to 7. Note, that |7| = O precisely when 7 is noncrossing. The set of
noncrossing pairpartitions is denoted N'C»(2n).

Given a noncrossing pairpartition @ we call {b, ¢} € @ an inner block if there exists
{a,d} € w witha < b < ¢ < d. The number of inner blocks of @ we denote as
inn(w).

The aim of this section is to prove the formula by Bozejko and Speicher, which has
been presented in [BS96, Cor. 7] without a proof.

> Dlg= 3 g, 8.1)
TeP2(2n) weNCy(2n)

Remark 8.1. Let fu(q) = 3 ene,@n (1 — q)inn(w)_ It is elementary to derive

).

where C, = (2”) —( n ) = #NC3(2n) denote the n-th Catalan number and »F is

n n—1

n,1—n
= Cy oF
fn(‘]) n21< )

the classical hypergeometric function. If we write f(g) = Z?;(l) t}“qf , then the triangle
(t;?)of j<n appears in [SLOOI1] as “sequence” A062991. Since we are not going to use
this formula, we leave it as an exercise to the reader. For the expansion of f,,(1 —¢) and

the Delanoy triangle appearing there the reader may consult [BWO1, Prop 6.1].

In order to prove Eq. (8.1) we define the Wick map P>(2n) > & +— m: € NC2(2n)
(related to the normal order in quantum field theory). Given a pairpartition = we define
t: by repetitive resolving crossings. That is, we replace repetitively every crossing pair
{a,c}and {b,d} witha < b < ¢ < d by {a, d} and {b, c}. In order to see that the result
is independent of the order of resolution we describe 7: in an equivalent way.

Let ®(;r) be the smallest noncrossing coarsening of 7. For each block 8 of & ()
define * = {y|@x) x € B, y > x, {x,y} € 7} and By = {x|@y) y € B, y >
x, {x,y} € w}. Order B* = {y1, ..., yx} in increasing way and 8~ = {x1, ..., xx} in
decreasing way. Then all pairs {x;, y;} will be parts of :7:.
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VAV VN ()
FIGURE. Examples of 7, :, and ® ()
Thus, Eq. (8.1) follows from the following, more refined statement.

Proposition 8.2. For every w € NCy(2n)

> DlTlghl = (1 — g, (8.2)
nePz(Zn)
Proof. Given a noncrossing partition n we write 9 = {{min 8, max 8}|8 € n}.If nisa
noncrossing coarsening of @ we say that it is admissible if ng C @ . Notice that all outer
blocks of @ belong to any its admissible coarsening, and for any p C @ containing all
outer blocks of @ there exists unique admissible coarsening 1 such that p = ng.
We need to show that for any admissible coarsening n of @ we have

> == (= (8.3)

TePyr(2n)
m=w, ®(7)=n

Indeed, @ () is alway an admissible coarsening of & = ;. Thus Eq. (8.2) follows
from (8.3) by multiplying by ¢”~#7 and summing over all admissible coarsenings 7 of
w.

Observe, that both sides of Eq. (8.3) factor over blocks of 1. Thus it is enough to prove
it for n being a single block. In such acase w = @, = {{i,2n+1 — o ()}|1 <i < n}.

All admissible coarsenings of @, are indexed by ordered subsets {a; }f.‘;ll of the set
[n — 1] (we set ag = 0 and ax = n for convenience) into parts {x|a;_] < x < @; or
n—a; <x <n—aj_1}. We call such coarsening 1,. Thus g is the coarsening into
one part.

By inclusion—exclusion principle we see that

Yoo =M= Y (= 1)**“1"[ > (= (8.4)

nePp(2n) aC[n—1] i=0 7€P(2aj+1—4;)
mi=w, ®(1)=ngy T=Da;q —a;

Given a permutation o € S, we construct a pairpartitiono = {{i,2n+1 -0 (i)}|1 <
i < n}. Note, that || is equal to the length of o with respect to the Coxeter generators
(1,2), ..., (n — 1, n) of S,,. Therefore, denoting by | - | the Coxeter length will not lead
into any confusion.
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Clearly, partitions m € P»(2k) with :r: = @y are of the form & for o € Si. Thus
right hand side of Eq. (8.4) reduces to (=" Las

Y =hr=0

TEeSk

for k > 1 (see the proof of Corollary 8.4) which is equivalent to the Eq. (8.3). O

Generalisation of Bozejko—Speicher formula to Coxeter groups. The formula (8.2) for
w = w, reads

S (=Dl = (1 - g, (8.5)

TeS,

Below we will generalise it to any finitely geerated Coxeter group.

By W(¢) we denote a (formal) growth series of a finitely generated Coxeter group
W. That is, a power series W(t) = Y, .y t'!. (Note, that the coefficient at ¢ equals
to #S. This explains why here and in the rest of this section we consider only finitely
generated Coxeter groups. We will not repeat this assumption for short. Moreover, for
X C W wewrite X(t) =Y, cx t]

Let us define a multivariable formal power series (chromatic length function). For
any X C W define

N ED I
weX SESy
In particular X (1) = X (¢, 1), where 1 = (1);¢5.

Proposition 8.3. The polynomial (or formal power series, if W is infinite) W(t, q)
satisfies

W=y wWr@)[]a [] 0—av.

TCS reT seSN\T

Proof. Let W, denote the set of all elements of Wg not contained in any proper parabolic
subgroup of Wg,ie. Wp: = Wg — UT; r Wr. Then, by inclusion-exclusion principle,

Wa(t) = Y 7 g (=D*¥E=D Wy (2). Therefore,

W=y t"[]a=Y wie) []a

weW sESy RCS rer
=Y > WD [ g,
RCSTCR rer
=Y wr[]a D J] (-a»
TCS reT TCRCS seR~\T
=Y wr[]a [] 0 —a»-
TCS reT seSNT
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Corollary 8.4. If W is a finite Coxeter group then

W1, =[] —q. (8.6)

seS

In particular, substituting q for every qs, we obtain

2Dl = 1 =gy,

reW

Proof. Choose s € T and put W}S} ={w e W : |w| < |ws|}. Clearly, Wr = W}S}WT

therefore Wr(t) = W}S}(t) Wisy(t). Since W is a finite group, W}S} is a polynomial.
Thus Wy (—1) = 0if T is nonempty (and Wg(—1) =1). O

Open problems.

Question 8.5. Both formulae (8.2) and (8.6) generalise (8.5). Is there a common gener-
alisation involving all (finitely generated) Coxeter groups and some analog of pairparti-
tions?

In the proof of Proposition 8.3 we have not assumed that W was finite. Let us finish
this section with a discussion of infinite Coxeter groups. Recall, that —1 does not lie in
the radius of convergence on W (z) if W is not finite. Nevertheless, W (¢) represents a
rational function as follows from the following result.

Proposition 8.6 ([STE68],[SER71, Prop. 26]). Let (W, S) be an infinite Coxeter system.

Then 7
1 (=D
—_— = _— 8.7
40 TX;C Wr(1/n) e

Where F denote the family of subsets T C S, such that the group Wt generated by T is
finite. In particular, W (t) is a series of a rational function (i.e. a quotient of polynomials).

One may ask a question what is the class of (infinite) Coxeter groups such that
Wr(—1) = 0 for any nonempty subset 7' of generators. A naive argument that

W) = Wi OWH(6) = 1+ )W 1)

shows, that the question if W (—1) # 0 is equivalent to whether W} (r) can have a pole
att = —1. On the other hand note, that if W is of type Z, ie. W is given by a presentation
(s; 01 <i <3|s? (sisj)>: 1 <i < j < 3) then, by Eq. (8.7), W(t) = % and
W(—1) = s

More generally, it is known ([BOU68]) that in each coset of W7 there exists the unique
shortest element. Let W’ denote the set of those shortest representatives. Moreover if
w = wlwy with w! € WT and wy € Wy then |w| = |w”| + |wr|. Therefore
WIOWr@) = W(). In particular, wT) represents a rational function, and it is
legitimate to ask about the value of wT(-1).

In the case of finite Coxeter group W, Eng [ENGO1] observed that

WT(—l) =#{w € WT‘wwow € WT},
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where wy is the longest element in W. (Eng’s proof was case-by-case. Later, a general
classification-free proof of Eng’s theorem was given in [RSWO04]).

Subsequently, Reiner [REI02] has shown that if W is crystallographic (ie. the Weyl
group in a compact Lie group G), then both sides of the above equality compute the
signature of the corresponding flag variety G/Qr, where Q7 is a parabolic subgroup
associated to T'.

Question 8.7. What is the meaning of W (—1) or W7 (—1) for infinite W?

We do not know if it possible for W(—1) to be negative. If one takes W = (s; :
. . . 3 52
1 <i <4|s? (sis))® 1 1 <i < j <4). Then, by Eq. (8.7), W(1) = M—Hfg; and
WSi(—1) = —1/ (in this case W(—1) = 00).
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Appendix: The Longest Element and Radial Positive Definite Functions on Finite
Coxeter Groups

If a Coxeter group W is finite, then it contains the unique element w, which has the
maximal length with respect to | - |.

From the definition it is clear, that a function ¢ on a group I" with values in the field
of complex numbers C is positive definite if and only der ¢(g)g is a nonnegative

(bounded if the group is finite) operator on T, (Weidentify g € I' withA(g) € B (EZF),
where A is the left regular representation, for short.)
Let W be a finite Coxeter group. The following two statements are well known.

(A) The function ¢!*! is positive definite for any 0 < ¢ < 1.
(B) The function A(w) = |w,|/2 — |w] is positive definite.

The first one was proven in [BJS88] (even for infinite Coxeter groups and also for
—1 < g < 1) while the second—in [BS03, Proposition 6]. Here we give a short direct
prove of the following.

Proposition. The above statements (A) and (B) are equivalent.

Proof. Let g = e~! (with ¢t > 0, as we assume g < 1). The case (A) is equivalent to
Q=) e e 2w =elleel/2% o g!"lw being nonnegative.

Assume (A). Recall first, that |w,w| = |wo| — |w| = |ww,|. Therefore |w,|/2 — |wow| =
—(lwo|/2 — |w)), ie. A(wow) = —A(w) and similarly, A(ww,) = —A(w).

The equality A(w,w) = A(ww,) implies that w, (and thus Q@ = (1 — w,)/2) commutes
with A (and thus ®;). Since Q = Q2 is nonnegative we conclude that

t(jwol/2—|w]) _ pt(lwo|/2—wesl) inh(z A
1 e e sinh(rA(w))
tQ Z 2t w Z t w

weW weW

is nonnegative. Therefore, taking the limit as 1 — 0, we obtain that ), v A(w)w is
nonnegative. Thus (B).
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Assuming (B) and using the Schur lemma, which says that the (pointwise) product of
positive definite functions is positive definite, we get that

d, = Z AWy = Z;—n' Z A(w)"w

weW n>0 " \weW

is nonnegative. Thus (A). O
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