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Abstract We show that a convolution semigroup {μt } of measures has Jacobi pa-
rameters polynomial in the convolution parameter t if and only if the measures come
from the Meixner class. Moreover, we prove the parallel result, in a more explicit
way, for the free convolution and the free Meixner class. We then construct the class
of measures satisfying the same property for the two-state free convolution. This class
of two-state free convolution semigroups has not been considered explicitly before.
We show that it also has Meixner-type properties. Specifically, it contains the analogs
of the normal, Poisson, and binomial distributions, has a Laha–Lukacs-type charac-
terization, and is related to the q = 0 case of quadratic harnesses.
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1 Introduction

Any probability measure μ on the real line, all of whose moments are finite, has
associated to it two sequences of Jacobi parameters {βi, γi}: for example, μ is the
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spectral measure of the tridiagonal matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β0 γ0 0 0
. . .

1 β1 γ1 0
. . .

0 1 β2 γ2
. . .

0 0 1 β3
. . .

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We will denote this fact by

J (μ) =
(

β0, β1, β2, β3, . . .

γ0, γ1, γ2, γ3, . . .

)
,

with βn(μ) := βn, γn(μ) := γn. These parameters are related to the moments of the
measure via the Viennot–Flajolet [22, 44] and Accardi–Bożejko [1] formulas. On the
other hand, in probability theory and other applications, measures frequently come
in time-dependent convolution semigroups. In general, the time dependence of the
Jacobi parameters is complicated (they are rational functions of t). However, for the
Gaussian convolution semigroup

μt(x) = 1√
2πt

e−x2/2t ,

the Jacobi parameters are simply

βn(t) = 0, γn(t) = (n + 1)t,

while for the Poisson convolution semigroup

μt(x) = e−t
∞∑

k=0

1

k! t
kδk(x),

they are

βn(t) = n + t, γn(t) = (n + 1)t.

So it is natural to ask, what are all the measures whose Jacobi parameters are lin-
ear (in the calculus sense, that is, affine) functions of the convolution parameter? A
seemingly more general question is to describe all collections {αn,βn, γn, an, bn, cn}
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such that the spectral measures {μt } of tridiagonal matrices

t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β0 γ0 0 0
. . .

α0 β1 γ1 0
. . .

0 α1 β2 γ2
. . .

0 0 α2 β3
. . .

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0 c0 0 0
. . .

a0 b1 c1 0
. . .

0 a1 b2 c2
. . .

0 0 a2 b3
. . .

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

form a convolution semigroup. In this paper we provide the answer: such measures
form precisely the Meixner class [31]. Thus we add a new, more dynamical descrip-
tion to already numerous known characterizations of this class. In particular, far from
being infinite dimensional, this family of measures is described by only four param-
eters. For more on the Meixner class, see the probabilistic characterizations in [29,
45], its role in statistics (where it is known under the name of quadratic exponential
families) [20, 34, 35], and a more combinatorial description [27].

The reason convolution semigroups appear in probability theory is that if {X(t)} is
a process with stationary independent increments, and μt is the distribution of X(t),
then {μt } form a convolution semigroup. In non-commutative probability theories,
one encounters other notions of independence, and correspondingly other convolution
operations based on them. In many ways, these operations are more complicated than
the usual convolution; notably, the usual operation is distributive,

μ ∗ (ν1 + ν2) = μ ∗ ν1 + μ ∗ ν2,

while the other ones are not. Nevertheless, in other ways they appear to be simpler.
The combinatorial theory of such convolutions is typically based on an appropriate
sequence of cumulants which linearize it; for example, the classical cumulants r∗

n(μ)

defined via
∞∑

n=1

(iθ)n

n! r∗
n(μ) = log

∫
R

eiθx dμ(x)

have the property that

r∗
n(μ ∗ ν) = r∗

n(μ) + r∗
n(ν). (2)

In particular, r∗(μ∗t ) = t · r∗(μ): cumulants are always proportional to the convolu-
tion parameter t . While, as pointed out above, there is a nice relation between Jacobi
parameters and moments, as well as a relation between cumulants and moments (see
Sect. 2.3), we are not aware of a simple relation between Jacobi parameters and cu-
mulants. However, in [32], the second author found a formula relating Jacobi param-
eters and free cumulants, which linearize the free convolution [37]. This allows us to
provide a constructive proof that Jacobi parameters are linear in the free convolution
parameter if and only if the measure belongs to the free Meixner class considered in
[3, 7, 38] and numerous other sources. We then give a simple but indirect argument
which provides the corresponding characterization for the Meixner class. Another
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consequence of the analysis is that there are no measures whose Jacobi parameters
are polynomial functions of the free convolution parameter of degree greater than
one, so the spectral measures of matrices from (1) are no more general.

Yet another convolution operation was introduced in [10] in relation to what the
authors called “conditionally free probability”, but is better called two-state free prob-
ability theory. As the name indicates, this is a convolution operation �c on pairs of
measures, and as such does not really have a classical analogue. The techniques from
[32] allow us to find all pairs of measures (μ̃,μ) such that if (μ̃t ,μt ) := (μ̃,μ)�ct

then the Jacobi parameters of μ̃t are linear with respect to this convolution. In fact, it
suffices to only require that the Jacobi parameters of μ̃t are polynomials in t , and the
linearity of the Jacobi parameters of both μ̃t and μt then follows automatically. Un-
like in the cases above, this class has not been explicitly described before. It consists
of measures whose Jacobi parameters do not depend on n for n ≥ 2 (except for the
special case described in Proposition 6).

Even the fact that these (pairs of) measures form a two-state free convolution semi-
group is apparently new. We show that these measures also have, in the two-state
context, Meixner-type properties. Namely, just like the Meixner and free Meixner
classes, this family includes the two-state versions of the normal, Poisson, and bino-
mial distributions; their two-state cumulants satisfy a quadratic recursion; they have
a two-state Laha–Lukacs characterization [8]; and they appear as a subclass of the
q = 0 case of quadratic harnesses [16].

2 Background

2.1 Partitions

A partition of a linearly ordered set X is a family π of nonempty, pairwise disjoint
subsets of X, called blocks of π , such that

⋃
π = X. A partition is noncrossing

if whenever x1 < x2 < x3 < x4, x1, x3 ∈ V1 ∈ π and x2, x4 ∈ V2 ∈ π then V1 = V2.
Every noncrossing partition admits a natural partial order: U � V if there are r, s ∈ V

such that r ≤ k ≤ s holds for every k ∈ U . Now we can define depth of a block U ∈ π ,
namely

d(U,π) := ∣∣{V ∈ π : U � V 	= U}∣∣.
If d(U,π) ≥ 1 then we define the derivative of U as the unique block U ′ ∈ π such
that U � U ′ and d(U ′,π) = d(U,π)−1. The derivatives of higher orders are defined
by putting V (k) := (V (k−1))′.

In particular, a block of a noncrossing partition with d(U,π) = 0 is called outer,
and a block with d(U,π) ≥ 1 is called inner. An interval partition is a noncrossing
partition with only outer blocks. For the set {1,2, . . . ,m}, we will denote the lattice
of all partitions by P(m), the lattice of all noncrossing partitions by NC(m), and
the lattice of all interval partitions by Int(m). In addition, NC1,2(m) will stand for
the class of all partitions π ∈ NC(m) such that |V | ≤ 2 holds for every V ∈ π . The
family of all outer (resp. inner) blocks of π will be denoted by Out(π) (resp. Inn(π)).
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Fig. 1 Illustration for
Example 1

Example 1 The noncrossing partition π = {{1,5,10}, {2,3}, {4}, {6,7,9}, {8},
{11,12}, {13}} is drawn in Fig. 1. The blocks {1,5,10}, {11,12}, {13} are outer
(and so have depth 0); the rest of the blocks are inner, with d({6,7,9},π) = 1 and
d({8},π) = 2. {8}′ = {6,7,9} and {2,3}′ = {1,5,10}.
2.2 Jacobi Parameters

Throughout the paper, μ will be a probability measure on R all of whose moments

sm(μ) :=
∫

R

xm dμ(x) (3)

are finite. Then there is a sequence {Pm}∞m=0 of monic polynomials, with degPm = m,
which are orthogonal with respect to μ. They satisfy a recurrence relation: P0(x) = 1
and for m ≥ 0

xPm(x) = Pm+1(x) + βmPm(x) + γm−1Pm−1(x), (4)

under convention that P−1(x) = 0, where the Jacobi parameters [19] satisfy βm ∈ R

and γm ≥ 0. Then we will write

J (μ) =
(

β0, β1, β2, β3, . . .

γ0, γ1, γ2, γ3, . . .

)
.

{Pm} are unique for m ≤ | supp(μ)|. Moreover N := | supp(μ)| < ∞ if and only if
γN−1 = 0 and γm > 0 for m < N − 1. In this case for m ≥ N , Pm+1 are not uniquely
determined, and βm,γm are undefined, so that the sequence of Jacobi parameters is
finite. By convention, we may still write infinite sequences of Jacobi parameters, but
their terms after the first γm = 0 should be disregarded.

The Viennot–Flajolet theory [22, 44] gives the relation between moments of a
measure and its Jacobi parameters in terms of Motzkin paths. We will use a related
formula of Accardi and Bożejko [1] expressing the same relation using noncrossing
partitions:

sm(μ) =
∑

σ∈NC1,2(m)

∏
V ∈σ|V |=1

βd(V,σ ) ·
∏
V ∈σ|V |=2

γd(V,σ ). (5)

This formula should be compared with the formula (7) below.

2.3 Cumulants

The classical cumulants r∗
n(μ) [40], free cumulants

rn(μ) = r�
n (μ)
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[37, 41, 42], Boolean cumulants r�
n (μ) [43], and two-state free cumulants

Rn(μ̃,μ) = r�c
n (μ̃,μ)

[10] are defined via the following moment-cumulant formulas, which express them
implicitly in terms of the moments sm(μ):

sm(μ) =
∑

π∈P (m)

∏
V ∈π

r∗|V |(μ), (6)

sm(μ) =
∑

π∈NC(m)

∏
V ∈π

r|V |(μ), (7)

sm(μ) =
∑

π∈Int(m)

∏
V ∈π

r�|V |(μ), (8)

and

sm(μ̃) =
∑

π∈NC(m)

∏
V ∈Out(π)

R|V |(μ̃,μ)
∏

U∈Inn(π)

r|U |(μ). (9)

2.4 Convolutions

Using cumulants, we can define in a uniform way the classical convolution ∗, the free
convolution �, and the Boolean convolution �, via (2) and its analogs, for example

rn(μ � ν) = rn(μ) + rn(ν).

The two-state free (or conditionally free—these terms will be used interchangeably)
convolution �c is an operation on pairs of measures, defined as follows: (μ̃,μ) �c

(ν̃, ν) = (τ̃ , τ ) if and only if τ = μ � ν and

Rn(τ̃ , τ ) = Rn(μ̃, ν) + Rn(ν̃, ν).

Note that the classical convolution defined in this way does coincide with the more
familiar formula

(μ ∗ ν)(A) =
∫

μ(A − x)dν(x),

but there are no such explicit formulas for the other operations. Instead, each of them
is related to an appropriate notion of independence, see the references above.

For any of the convolution operations, for example for ∗, a convolution semigroup
generated by μ is a family of measures {μt } such that μ1 = μ and μt ∗ μs = μt+s .
So a classical convolution semigroup is characterized by the property that

r∗
n(μt ) = t · r∗

n(μ),

and a similar relation holds between other convolution semigroups and corresponding
cumulants.
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A priori, our semigroups will be indexed by t ∈ N. For μ ∗-infinitely divisible,
μ∗t is defined for all t ∈ [0,∞); a similar comment applies for �- and �c-infinitely
divisible distributions. However, for free convolution � and two-state free convolu-
tion �c , for any μ one can extend the semigroup to t ∈ [1,∞), see Lecture 14 of [37]
and [6]. Moreover, for the Boolean convolution �, any μ is infinitely divisible [43].

2.5 Generating Functions

It is frequently more convenient to work with generating functions instead of mo-
ments and cumulants. For example, the Fourier transform

Fμ(z) =
∞∑

m=0

1

m! sm(μ)(iz)m

is the exponential moment generating function of μ, and

Cμ(z) =
∞∑

m=1

(iz)m

m! r∗
m(μ)

is its (classical) cumulant generating function.
The ordinary moment generating function of μ is

Mμ(z) =
∞∑

m=1

sm(μ)zm.

We denote the free cumulant generating function (also called the R-transform) by

Rμ(z) =
∞∑

k=1

rk(μ)zk

and the two-state free cumulant generating function by

Rμ̃,μ(z) =
∞∑

k=1

Rk(μ̃,μ)zk.

Note that these are the combinatorial R-transforms, which differ by a factor of z from
the versions used in complex analysis.

We have the functional relations

Mμ(z) = Rμ
((

1 + Mμ(z)
)
z
)

(10)

and

ημ̃(z) = (
1 + Mμ(z)

)−1
Rμ̃,μ

((
1 + Mμ(z)

)
z
)
. (11)

Here the eta-transform (Boolean cumulant generating function) ημ satisfies

ημ(z) = 1 − (
1 + Mμ(z)

)−1
. (12)
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Recall that the corresponding property in the classical case is

Cμ(z) = log Fμ(z).

2.6 Continued Fractions

The Jacobi parameters of μ also appear in the continued fraction expansion

1 + Mμ(z) = 1

1 − β0(μ)z − γ0(μ)z2

1 − β1(μ) − γ1(μ)z2

. . .

, (13)

and from (12),

ημ(z) = β0(μ)z + γ0(μ)z2

1 − β1(μ)z − γ1(μ)z2

1 − β2(μ) − γ2(μ)z2

. . .

. (14)

Definition 1 Meixner distributions are measures with Jacobi parameters

J (μ) =
(

β0, b + β0, 2b + β0, 3b + β0, . . .

γ0, 2(c + γ0), 3(2c + γ0), 4(3c + γ0), . . .

)

for γ0 ≥ 0, and either c ≥ 0 or c = −γ0/N , N ∈ N (in the second case, the se-
quence of Jacobi parameters is finite). In particular this class includes the nor-
mal (Gaussian) distribution for β0 = b = c = 0, γ0 = 1, Poisson distribution for
β0 = b = γ0 = 1, c = 0, binomial distributions for β0 = pN , γ0 = p(1 − p)N ,
b = 1 − 2p, c = −p(1 − p), gamma distributions for β0 = γ0 = α, b = 2, c = 1, and
negative binomial distributions for β0 = p

1−p
r , γ0 = p

(1−p)2 r , b = 1+p
1−p

, c = p

(1−p)2 .
See [39] for more details.

Moreover, for fixed β0, γ0, b, c, the measures {μt : t ∈ N} with Jacobi parameters

βn(t) = nb + β0t, γn(t) = (n + 1)(nc + γ0t)

all belong to the Meixner class and form a convolution semigroup. If c = −γ0/N < 0,
the semigroup can be extended to {μt : t = n

N
,n ∈ N}. μ is ∗-infinitely divisible if and

only if c ≥ 0, in which case the measures {μt : t ≥ 0} form a convolution semigroup,
a (classical) Meixner semigroup.

Definition 2 Free Meixner distribution are measures with Jacobi parameters

J (μ) =
(

β0, b + β0, b + β0, b + β0, . . .

γ0, c + γ0, c + γ0, c + γ0, . . .

)
(15)

for γ0 ≥ 0, c+γ0 ≥ 0, in other words their Jacobi parameters are independent of n for
n ≥ 1. The normalized free Meixner distributions μb,c have mean β0 = 0, variance
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γ0 = 1, and parameters b ∈ R, c ≥ −1; general free Meixner distributions are affine
transformations of these. More explicitly,

dμb,c(x) = 1

2π
·
√

(4(1 + c) − (x − b)2)+
1 + bx + cx2

dx + 0,1,or 2 atoms,

see [3, 7, 38].
Free Meixner distribution with Jacobi parameters (15) is �-infinitely divisible if

and only if c ≥ 0, see Theorem 1 below. Moreover, for fixed b, c, these distributions
form a two-parameter free convolution semigroup with respect to β0 and γ0. This fol-
lows from the formula for their R-transform in [38] or from the formula for their free
cumulants in [25]. In the particular case c ≥ −1, the measure with Jacobi parameters

(15) is precisely μ
�γ0
b,c � δβ0 (note that the free convolution with a delta measure is a

shift) and in this case it follows directly that

(
μ

�γ ′
0

b,c � δβ ′
0

)
�

(
μ

�γ ′′
0

b,c � δβ ′′
0

) = μ
�(γ ′

0+γ ′′
0 )

b,c � δβ ′
0+β ′′

0
.

Remark 1 There are numerous characterizations of the free Meixner class in free
probability. Here is a partial list.

(a) The following measures all belong to the free Meixner class: free normal (semi-
circular) distributions have b = c = 0 (and so their Jacobi parameters do not de-
pend on n), free Poisson (Marchenko–Pastur) distributions have c = 0, b 	= 0, and
free binomial distributions correspond to c < 0 (including the Bernoulli distribu-
tions for c = −γ0).

(b) The orthogonal polynomials of the measure μ have a generating function of the
“resolvent-type” form F(z)

1−xG(z)
[3].

(c) The free Laha–Lukacs property: two freely independent random variables X,Y

with the same distribution μ satisfy the property that the conditional expectation
ϕ[X|X + Y ] is linear in X + Y and the conditional variance Var[X|X + Y ] is
quadratic in X + Y [7].

(d) The free cumulant generating function of the measure μb,c satisfies a “Riccati
difference equation”

R(z)

z2
= 1 + b

R(z)

z
+ c

(
R(z)

z

)2

,

see the single-variable case of Theorem 6 from [4], or the q = 0 case of Re-
mark 5.4 from [7].

(e) The measure μ generates a quadratic free exponential family [14].
(f) The measure μ is characterized in terms of its free Jacobi field [11].

All of these properties have analogs for classical Meixner distributions, see the refer-
ences in Sect. 1.
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Fig. 2 Illustration for
Example 2

3 The Free Convolution

Formulas (5) and (7) relate moments of a measure to its Jacobi parameters, resp. free
cumulants. It is also possible to find a direct relation between free cumulants and
Jacobi parameters, see [32]. For this purpose we will need some additional notions.

A labeling of a noncrossing partition σ is a function κ on σ such that for any V ∈ σ

we have κ(V ) ∈ {0,1, . . . , d(V,σ )}. For a labeling κ of a noncrossing partition σ we
denote by R(σ, κ) the smallest equivalence relation on σ containing all the pairs
(V (i), V (j)) with V ∈ σ , 0 ≤ i, j ≤ κ(V ). By NCL1

1,2(m) (not to be confused with
noncrossing linked partitions introduced by Dykema [21]) we will denote the family
of all pairs (σ, κ) such that σ ∈ NC1,2(m), κ is a labeling of σ and R(σ, κ) = σ × σ .
In particular, σ has only one outer block.

Example 2 In Fig. 2 are drawn three labellings of the partition σ = {{1,6}, {2,5},
{3,4}}: κ1({3,4}) = 2, κ2({3,4}) = 1, κ2({2,5}) = 1, κ3({3,4}) = 1, with the rest
of the values zero. For each label κ(V ) > 0, we connect V to its derivatives of order
1,2, . . . , κ(V ). Pictorially, R(σ, κ) = σ ×σ if all the blocks of σ are connected in this
fashion. κ1 and κ2 produce connected partitions, while under R(σ, κ3), {2,5} ∼ {3,4}
but {1,6} 	∼ {2,5}.

In view of [32], we have the following relation between free cumulants and the
Jacobi parameters of a given probability measure μ:

rm =
∑

(σ,κ)∈NCL1
1,2(m)

w(σ, κ), (16)

where w(σ,κ) := ∏
V ∈σ w(V,κ(V )) and

w(V, k) :=
{

βk − βk−1 if |V | = 1,

γk − γk−1 if |V | = 2,
(17)

under convention that β−1 = γ−1 = 0. In particular,

r1 = β0, (18)

r2 = γ0, (19)

r3 = γ0(β1 − β0), (20)

r4 = γ0
[
(β1 − β0)

2 + (γ1 − γ0)
]
, (21)

r5 = γ0
[
(β1 − β0)

3 + 3(γ1 − γ0)(β1 − β0) + γ1(β2 − β1)
]
, (22)

r6 = γ0
[
(β1 − β0)

4 + 6(γ1 − γ0)(β1 − β0)
2 + 4γ1(β2 − β1)(β1 − β0)

+ γ1(β2 − β1)
2 + 2(γ1 − γ0)

2 + γ1(γ2 − γ1)
]
. (23)
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Theorem 1 Let μ be a probability measure with Jacobi parameters

J (μ) =
(

β0, β1, β2, β3, . . .

γ0, γ1, γ2, γ3, . . .

)
.

If for t ∈ N, the Jacobi parameters for the free powers of μ are

J
(
μ�t

) =
(

β0(t), β1(t), β2(t), β3(t), . . .

γ0(t), γ1(t), γ2(t), γ3(t), . . .

)
,

and all the parameters βm(t), γm(t) are polynomials on t , then

β1 = β2 = β3 = · · · and γ1 = γ2 = γ3 = · · · , (24)

so that μ is a free Meixner distribution.
On the other hand, if the Jacobi parameters of μ are such that (24) holds then,

putting

b := β1 − β0, c := γ1 − γ0, (25)

the measure μt = μ�t is well defined whenever t ≥ 0 and c + tγ0 ≥ 0 and then

J (μt ) =
(

β0t, b + β0t, b + β0t, b + β0t, . . .

γ0t, c + γ0t, c + γ0t, c + γ0t, . . .

)
. (26)

In particular, μ is �-infinitely divisible if and only if c ≥ 0. In this case,

Rμ(z) = β0z + γ0z
2
∫

R

dρ(x)

1 − zx
, (27)

where

J (ρ) =
(

b, b, b, b, . . .

c, c, c, c, . . .

)
, (28)

so that ρ is a semicircular distribution.

Proof Putting in formulas (16)–(23) rmt , βm(t), γm(t), wt instead of rm, βm, γm and
w, respectively, we see that

β0(t) = β0t, γ0(t) = γ0t.

If γ0 = 0, then μ is a point mass δβ0 . In this case we can take

J
(
μ�t

) =
(

β0t, 0, 0, . . .

0, 0, 0, . . .

)
,

which satisfies both the assumptions and the conclusions of the theorem. From now
on, we assume that γ0 > 0. From (20) we get r3t = γ0t (β1(t) − β0t) which yields

β1(t) = β1 − β0 + β0t.
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Similarly, from (21) we get

γ1(t) = γ1 − γ0 + γ0t.

Now assume that all the Jacobi parameters βm(t), γm(t) are polynomials on t . We
claim that βk(t) = β1 − β0 + β0t and γk(t) = γ1 − γ0 + γ0t for all k ≥ 1. Fix d ≥ 2
and assume that this holds for all 1 ≤ k < d . Then for a block V , with 1 ≤ |V | ≤ 2
and for 1 < k < d we have wt(V, k) = 0. Now we consider formula (16) for r2d+1t .

Put

σ1 := {{1,2d + 1}, {2,2d}, {3,2d − 1}, . . . , {d, d + 2}, {d + 1}},
K1 := {

κ : (σ1, κ) ∈ NCL1
1,2(2d + 1), κ

({d + 1}) = d
}
.

Note that if (σ, κ) ∈ NCL1
1,2(2d + 1) \ ({σ1} × K1), and wt(σ, κ) 	= 0 then κ(V ) = 1

for all V ∈ σ \ {{1,2d + 1}} and then

wt(σ, κ) = γ0t
∏
V ∈σ|V |=1

(β1 − β0) ×
∏

V ∈σ, |V |=2,
V 	={1,2d+1}

(γ1 − γ0).

Now we observe that if wt(σ1, κ) 	= 0, κ ∈ K1, then κ(V ) ∈ {0,1} for all inner blocks
V ∈ σ1, V 	= {d + 1}. Therefore

∑
κ∈K1

wt(σ1, κ) = γ0t
(
βd(t) − βd−1(t)

) d−1∏
k=1

1∑
i=0

(
γi(t) − γi−1(t)

)

= γ0t
(
βd(t) − βd−1(t)

)
γ1(t)

d−1,

which is a polynomial of degree at least d ≥ 2, unless βd(t) = βd−1(t) = β1 − β0 +
β0t .

Now we consider the formula for r2d+2t . Put

σ2 := {{1,2d + 2}, {2,2d + 1}, . . . , {d + 1, d + 2}},
K2 := {

κ : (σ2, κ) ∈ NCL1
1,2(2d + 2), κ

({d + 1, d + 2}) = d
}
.

Similarly as before, and using the previous step, we conclude that for (σ, κ) ∈
NCL1

1,2(2d + 2) \ ({σ2} × K2) if we have wt(σ, κ) 	= 0 then κ(V ) = 1 for all
V ∈ σ \ {{1,2d + 2}} and then

wt(σ, κ) = γ0t
∏
V ∈σ|V |=1

(β1 − β0) ×
∏

V ∈σ, |V |=2,
V 	={1,2d+2}

(γ1 − γ0).

Now we observe that if wt(σ2, κ) 	= 0, κ ∈ K2, then κ(V ) ∈ {0,1} for all inner
blocks V ∈ σ , V 	= {d + 1, d + 2}. Therefore

∑
κ∈K2

wt(σ2, κ) = γ0t
(
γd(t) − γd−1(t)

) d−1∏
k=1

1∑
i=0

(
γi(t) − γi−1(t)

)

= γ0t
(
γd(t) − γd−1(t)

)
γ1(t)

d−1,



J Theor Probab

which is again a polynomial of degree at least d ≥ 2, unless γd(t) = γd−1(t) = γ1 −
γ0 + γ0t . This proves the first part.

Conversely, suppose that μ has Jacobi parameters given by (24). As we have al-
ready noticed, if (σ, κ) ∈ NCL1

1,2(m), V ∈ σ and w(V,κ(V )) 	= 0 then either V is
the outer block of sigma (so κ(V ) = 0) or κ(V ) = 1. Then, using notation (25), for
μt defined via (26), we have μ1 = μ, r1(μt ) = β0t and for m ≥ 0

rm+2(μt ) = t · γ0

∑
σ∈NC1,2(m)

∏
V ∈σ|V |=1

b ·
∏
V ∈σ|V |=2

c (29)

so that rm(μt ) = t · rm(μ). Therefore μt = μ�t .
Finally, it follows from (29) that if c ≥ 0 then rm+2 = γ0 ·sm(ρ) where the measure

ρ is defined by (28), which proves (27) (cf. [38]). �

4 The Classical Convolution

In [24], the authors define cumulants {r�
n} for an abstract convolution operation �

via the following three properties. All convolutions and cumulants considered in this
paper satisfy them (with the exception of the conditionally free cumulants; these latter
satisfy properties which are similar to the ones below, but we choose instead to treat
them separately in the next section).

(a) r�
n(μ�t ) = t · r�

n(μ), where t ∈ N.
(b) r�

n(Dλμ) = λnr�
n(μ), where (Dλμ)(A) = μ(λ−1A).

(c) For any n, there is a polynomial Qn in n − 1 variables such that

sn(μ) = r�
n(μ) + Qn

(
r�

1(μ), . . . , r�
n−1(μ)

)
.

Lemma 2 Suppose measures {μt } form a convolution semigroup with respect to an
operation �, with corresponding cumulants {r�

k (t) = t · rk} satisfying axioms above.
Then

(a) Denoting si(t) = si(μt ) and ri = r�
i (μ1),

s1(t) = r1t,

s2(t) = r2t + a11r
2
1 t2,

s3(t) = r3t + a21r2r1t
2 + a111r

3
1 t3,

s4(t) = r4t + a31r3r1t
2 + a22r

2
2 t2 + a211r2r

2
1 t3 + a1111r

4
1 t4.

(b) Suppose a11 = 1. Then

β0(t) = β0t,

γ0(t) = γ0t.
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(c) Suppose μ is not a point mass so that γ0 	= 0, and

a11 = a111 = a1111 = 1, a211 = a2
21 − 2a21 + 3. (30)

Then

β1(t) = b + (a21 − 2)β0t,

γ1(t) = (
b′ − b2) + (

(a31 − 2a21 + 2)bβ0 + (a22 − 1)γ0
)
t,

an so all of these are linear in t .

Proof Part (a) follows by combining properties (a–c) of the cumulants. The rest fol-
low by combining part (a) with the formula (5). �

Proposition 3 In the setting of the preceding lemma, suppose a11 = 1. Let {μt },
{μ′

t } be two convolution semigroups all of whose Jacobi parameters are polynomial
in t . Suppose moreover that β0(μt ) = β0(μ

′
t ), γ0(μt ) = γ0(μ

′
t ), β1(μt ) = β1(μ

′
t ),

γ1(μt ) = γ1(μ
′
t ), and that γ1(μt ) varies with t . Then μt and μ′

t have the same mo-
ments.

Proof We will prove by induction on n that the rest of the Jacobi parameters of the
measure μt are the same as for μ′

t . Suppose this is true up to n − 1. Then using
formula (5),

s2n+1(μt ) = s2n+1
(
μ′

t

) + (
βn(μt ) − βn

(
μ′

t

))
γn−1(μt ) . . . γ1(μt )γ0(μt ),

so if

sk = r�
k + Qk

(
r�

1 , r�
2 , . . . , r�

k−1

)
,

then

r�
2n+1(μt ) = r�

2n+1

(
μ′

t

) + (
βn(μt ) − βn

(
μ′

t

))
γn−1(μt ) . . . γ1(μt )γ0(μt ).

By Lemma 2(b), γ0(μt ) = γ0t , and γ1(μt ) has degree at least one in t , while the other
γi(μt ) are polynomial in t , from which it follows that βn(μt ) = βn(μ

′
t ).

Similarly, from

s2n+2(μt ) = s2n+2
(
μ′

t

) + (
γn(μt ) − γn

(
μ′

t

))
γn−1(μt ) . . . γ1(μt )γ0(μt ),

it follows that γn(μt ) = γn(μ
′
t ). �

Corollary 4 The Meixner distributions are the only convolution semigroups whose
Jacobi parameters are polynomial in the convolution parameter.

Proof If γ0 = 0, the measure is a point mass, and so belongs to the Meixner class.
So suppose γ0 	= 0. For the usual cumulants, a21 = 3, a211 = 6, a22 = 3, a31 = 4,
so condition (30) is satisfied. Also, β1(t) = b + β0t , and γ1(t) = 2c + 2γ0t is not
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constant. If c ≥ 0, t ≥ 0, or c < 0, N = −γ0/c ∈ N, t ∈ N, the Meixner distribution
with these initial values of the Jacobi parameters has

J
(
μ∗t

) =
(

β0t, b + β0t, 2b + β0t, 3b + β0t, . . .

γ0t, 2(c + γ0t), 3(2c + γ0t), 4(3c + γ0t), . . .

)
.

Finally, suppose c < 0, −γ0/c 	∈ N. Jacobi parameters in the preceding equation still
define, via relation (5), a linear functional on polynomials, which, however, is no
longer positive. The uniqueness result in Proposition 3 applies equally well to such
functionals. Therefore, there is no positive linear functional (and so no measure) with
these initial Jacobi parameters whose Jacobi parameters are polynomial in t . �

Example 3 For the free cumulants, a21 = 3, a211 = 6, a22 = 2, a31 = 4, so condi-
tion (30) is satisfied. In this case, β1(t) = b+β0t , and γ1(t) = c+γ0t is not constant.
Therefore we re-prove our result that the free Meixner distributions are the only free
convolution semigroups whose Jacobi parameters are polynomial in the convolution
parameter.

Example 4 For the Boolean cumulants, a21 = 2, a211 = 3, a22 = 1, a31 = 2. So con-
dition (30) is still satisfied, but γ1(t) = c is independent of t . Therefore Proposition 3
does not apply. In fact, for any Boolean convolution semigroup, the Jacobi parameters
are

J
(
μ�t

) =
(

β0t, β1, β2, . . .

γ0t, γ1, γ2, . . .

)

and so are polynomial in t , see [12] and [5]. See Proposition 7 for a generalization of
this result.

Example 5 For the monotone cumulants [24, 36], a11 = 1, a21 = 5
2 , a211 = 13

3 . So
Proposition 3 applies, but condition (30) is not satisfied. In fact, in this case it is not
clear if we have a 4-parameter family of measures with linear Jacobi parameters;
for example, this condition implies that the mean β0 = 0. On the other hand, it may
also be possible to have a monotone convolution semigroup with Jacobi parameters
polynomial in t of degree greater than 1.

Corollary 5 The only convolution semigroups {μt } which are spectral measures of
tridiagonal matrices in (1) are Meixner families.

Proof μt is a spectral measure of a tridiagonal matrix in (1) if and only if there are
polynomials {Qn} orthogonal with respect to μt and satisfying the recursion relation

xPn(x) = (αnt + an)Pn+1(x) + (βnt + bn)Pn(x) + (γn−1t + cn−1)Pn−1(x).

It is well known that the corresponding monic orthogonal polynomials then satisfy
the recursion

xP̂n(x) = P̂n+1(x) + (βnt + bn)P̂n(x) + (αn−1t + an−1)(γn−1t + cn−1)P̂n−1(x).
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By Corollary 4, μt is a Meixner distribution. A posteriori, for each n,
αn−1γn−1 = 0. �

5 The Two-State Free Convolution

Suppose that in addition to the measure μ, we also have a measure μ̃, with moments
s̃m and Jacobi parameters γ̃m, β̃m. Recall from Sect. 2.3 that the conditionally free
cumulants Rm = Rm(μ̃,μ) of the pair (μ̃,μ) are defined by

s̃m =
∑

π∈NC(m)

∏
U∈Out(π)

R|U |(μ̃,μ)
∏

U∈Inn(π)

r|U |(μ), (31)

where rm(μ) are the free cumulants of μ.
For σ ∈ NC1,2(X) and V ∈ σ , with label k, we define

w̃(V , k, σ ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β̃k − βk−1 if |V | = 1 and k = d(V,σ ),

βk − βk−1 if |V | = 1 and k < d(V,σ ),

γ̃k − γk−1 if |V | = 2 and k = d(V,σ ),

γk − γk−1 if |V | = 2 and k < d(V,σ ),

(32)

keeping our convention that β−1 = γ−1 = 0. For (σ, κ) ∈ NCL1,2(X) we put

w̃(σ, κ) :=
∏
V ∈σ

w̃
(
V,κ(V ), σ

)
. (33)

Then, in view of [32], for every m ≥ 1 we have

Rm(μ̃,μ) =
∑

(σ,κ)∈NCL1
1,2(m)

w̃(σ, κ). (34)

For example:

R1 = β̃0, (35)

R2 = γ̃0, (36)

R3 = γ̃0(β̃1 − β0), (37)

R4 = γ̃0
[
(β̃1 − β0)

2 + (γ̃1 − γ0)
]
, (38)

R5 = γ̃0
[
(β̃1 − β0)

3 + 2(γ̃1 − γ0)(β̃1 − β0) + (γ̃1 − γ0)(β1 − β0)

+ γ̃1(β̃2 − β1)
]
, (39)

R6 = γ̃0
[
(β̃1 − β0)

4 + 3(γ̃1 − γ0)(β̃1 − β0)
2 + 2(γ̃1 − γ0)(β̃1 − β0)(β1 − β0)

+ (γ̃1 − γ0)(β1 − β0)
2 + 2γ̃1(β̃2 − β1)(β̃1 − β0) + 2γ̃1(β̃2 − β1)(β1 − β0)

+ γ̃1(β̃2 − β1)
2 + (γ̃1 − γ0)

2 + (γ̃1 − γ0)(γ1 − γ0) + γ̃1(γ̃2 − γ1)
]
. (40)
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The conditionally free power of a pair of measures: (μ̃,μ)�ct = (μ̃t ,μt ) is de-
fined by: μt = μ�t and Rm(μ̃t ,μt ) = t · Rm(μ̃,μ).

Theorem 6 Let (μ̃,μ) be a pair of measures with Jacobi parameters β̃m, γ̃m and
βm,γm, respectively.

Assume that neither μ̃ nor μ is a point mass and that for the conditionally free
powers (μ̃t ,μt ) := (μ̃,μ)�ct , t ∈ N, all the Jacobi parameters of μ̃t are polynomials
on t . Then

β1 = β̃2 = β2 = β̃3 = β3 = β̃4 = · · · , (41)

γ1 = γ̃2 = γ2 = γ̃3 = γ3 = γ̃4 = · · · , (42)

so that μ̃ is a general measure whose Jacobi parameters do not depend on n for
n ≥ 2, and μ is the corresponding free Meixner distribution.

On the other hand, if (41) and (42) hold then, putting

b̃ = β̃1 − β0, b = β1 − β0, c̃ = γ̃1 − γ0, c = γ1 − γ0, (43)

the conditionally free power (μ̃t ,μt ) := (μ̃,μ)�ct exists for t ≥ 0, c + γ0t ≥ 0, c̃ +
γ0t ≥ 0 and we have

J (μ̃t ) =
(

β̃0t, b̃ + β0t, b + β0t, b + β0t, . . .

γ̃0t, c̃ + γ0t, c + γ0t, c + γ0t, . . .

)
(44)

and

J (μt ) =
(

β0t, b + β0t, b + β0t, b + β0t, . . .

γ0t, c + γ0t, c + γ0t, c + γ0t, . . .

)
. (45)

In particular, the pair (μ̃,μ) is �c-infinitely divisible if and only if c ≥ 0 and c̃ ≥ 0.
In this case,

Rμ̃,μ(z) = β̃0z + γ̃0z
2
∫

R

dρ̃(x)

1 − xz
, (46)

where ρ̃ is the free Meixner probability measure which satisfies

J (ρ̃) =
(

b̃, b, b, b, . . .

c̃, c, c, c, . . .

)
. (47)

Remark 2 Note that we did not need to assume that the Jacobi parameters of μt are
polynomials in t ; rather, this fact is implied by the hypothesis of the theorem. If μ̃ is
a point mass, the conclusion of the theorem holds if we also suppose that the Jacobi
parameters of μt are polynomials in t . This follows from Theorem 1 and the fact that
for any free convolution semigroup {μt }, the family

{
(μ̃t = δβ̃0t

,μt )
}

form a two-state free convolution semigroup (with Rμ̃,μ(z) = β̃0z).
If μ is a point mass, the conclusion of the theorem is false, see Example 4. Propo-

sition 7 provides a complete description of this case.
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Definition 3 Two-state free Meixner distributions are pairs of measures (μ̃,μ) with
Jacobi parameters (44) and (45) for t = 1 and

γ0 > 0, γ̃0 ≥ 0, c + γ0 ≥ 0, c̃ + γ0 ≥ 0.

Remark 3 An explicit formula for μ̃t can be obtained from the continued fraction
expansion of its Cauchy transform:

Gμ̃t
(z) = 1

z − β̃0t − γ̃0t

z − β0t − b̃ − (γ0t + c̃)Gρt (z)

,

where ρt is the semicircular distribution with mean β0t +b and variance γ0t + c. The
corresponding measure belongs to the Bernstein–Szegő class, and has the form

μ̃t =
√

4(γ0t + c) − (x − β0t − b)2

cubic polynomial
dx + at most 3 atoms.

Proof of Theorem 6 Denote by β̃m(t), γ̃m(t) and βm(t), γm(t) the Jacobi parameters
of μ̃t and μt , respectively. Putting in formulas (16)–(23) and (33)–(40)

rmt, Rmt, βm(t), γm(t), β̃m(t), γ̃m(t), wt , w̃t

instead of

rm, Rm, βm, γm, β̃m, γ̃m, w, w̃

respectively, we see that

β0(t) = β0t, γ0(t) = γ0t, β1(t) = β1 −β0 +β0t, γ1(t) = γ1 −γ0 +γ0t,

by (18)–(21), and

β̃0(t) = β̃0t, γ̃0(t) = γ̃0t, β̃1(t) = β̃1 −β0 +β0t, γ̃1(t) = γ̃1 −γ0 +γ0t,

from (35)–(38). Now assume that neither μ̃ nor μ is a point mass (i.e. γ̃0 > 0, γ0 > 0).
It then follows from these formulas that γ0(t), γ1(t), γ̃0(t), and γ̃1(t) are all polyno-
mials of degree one in t .

Assume that all β̃m(t) and γ̃m(t) are polynomials on t . If we apply the last formu-
las to (39) then we get

R5t = constant · t + γ̃0(t)γ̃1(t)
(
β̃2(t) − β1(t)

)
.

Since, by assumption, β̃2(t) is a polynomial, this implies that

β̃2(t) = β1(t) = β1 − β0 + β0t
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(for otherwise the right hand side would be a polynomial of degree at least 2). Then
in (40) we obtain

R6t = constant · t + γ̃0(t)γ̃1(t)
(
γ̃2(t) − γ1(t)

)
,

which, in turn, yields

γ̃2(t) = γ1(t) = γ1 − γ0 + γ0t.

Now we are going to prove by induction that for every n ≥ 1:

β̃n+1(t) = βn(t) = β1 − β0 + β0t, (48)

γ̃n+1(t) = γn(t) = γ1 − γ0 + γ0t. (49)

Fix d ≥ 2 and suppose that (48)–(49) hold for all n such that 1 ≤ n < d . Now we
consider (16) for r2d+1t . Put

σd
1 := {{1,2d + 1}, {2,2d}, {3,2d − 1}, . . . , {d, d + 2}, {d + 1}},

Kd
1 := {

κ : (σd
1 , κ

) ∈ NCL1
1,2(2d + 1), κ

({d + 1}) = d
}
.

By our assumptions, if 1 < k < d then wt(V, k) = 0 for any block V , with
1 ≤ |V | ≤ 2. Therefore the right hand side of (16) for r2d+1t involves only such
(σ, κ) ∈ NCL1

1,2(2d + 1) that either κ(V ) = 1 for every inner block V ∈ σ (and then

wt(V, κ(V )) = wt(V,1) = β1 − β0 if |V | = 1 or γ1 − γ0 if |V | = 2) or σ = σd
1 ,

κ ∈ Kd
1 and κ(V ) ∈ {0,1} for all inner blocks V ∈ σ , V 	= {d + 1}. Accordingly we

get

r2d+1t = γ0t
∑

σ∈NC1,2(2d−1)

∏
V ∈σ|V |=1

(β1 − β0) ×
∏
V ∈σ|V |=2

V 	={1,2d+1}

(γ1 − γ0) +
∑

κ∈Kd
1

wt

(
σd

1 , κ
)

and

∑

κ∈Kd
1

wt

(
σd

1 , κ
) = γ0t

(
βd(t) − βd−1(t)

) d−1∏
k=1

1∑
i=0

(
γi(t) − γi−1(t)

)

= γ0t
(
βd(t) − β1(t)

)
γ1(t)

d−1.

This implies that
(
βd(t) − β1(t)

)
γ1(t)

d−1 = c1 (50)

for some constant c1.
Now we consider (34) for R2d+3t . Put

σd+1
1 := {{1,2d + 3}, {2,2d + 2}, {3,2d + 1}, . . . , {d + 1, d + 3}, {d + 2}},

Kd+1
1 := {

κ : (σd+1
1 , κ

) ∈ NCL1
1,2(2d + 3), κ

({d + 2}) = d + 1
}
,

Ld+1
1 := {

κ : (σd+1
1 , κ

) ∈ NCL1
1,2(2d + 3), κ

({d + 2}) = d
}
.
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By our assumption, if w̃t (σ, κ) 	= 0 then either κ(V ) = 1 for every inner block V ∈ σ

or σ = σd+1
1 , κ ∈ Kd+1

1 and κ(V ) ∈ {0,1} for all inner blocks V ∈ σ , V 	= {d + 2}
or σ = σd+1

1 , κ ∈ Ld+1
1 , κ({2,2d + 2}) = 1 and κ(V ) ∈ {0,1} for all inner blocks

V ∈ σ , V 	= {d + 2}, {2,2d + 2}. Therefore we have

R2d+3t = γ̃0t ·
∑

σ∈NC1,2(2d+1)

∏
V ∈σ|V |=1

V ∈Out(σ )

(β̃1 − β0) ·
∏
V ∈σ|V |=1

V ∈Inn(σ )

(β1 − β0)

·
∏
V ∈σ|V |=2

V ∈Out(σ )

(γ̃1 − γ0) ·
∏
V ∈σ|V |=2

V ∈Inn(σ )

(γ1 − γ0) +
∑

κ∈Ld+1
1

w̃t

(
σd+1

1 , κ
)

+
∑

κ∈Kd+1
1

w̃t

(
σd+1

1 , κ
)
.

In view of (50) we note that

∑

κ∈Ld+1
1

w̃t

(
σd+1

1 , κ
) = γ̃0t

(
γ̃1(t) − γ0(t)

)(
βd(t) − βd−1(t)

)
γ̃2(t) · · · γ̃d (t)

= γ̃0t (γ̃1 − γ0)
(
βd(t) − β1(t)

)
γ1(t)

d−1

= γ̃0t (γ̃1 − γ0)c1

and that

∑

κ∈Kd+1
1

w̃t

(
σd+1

1 , κ
) = γ̃0t

(
β̃d+1(t) − βd(t)

)
γ̃1(t)γ̃2(t) . . . γ̃d (t)

= γ̃0t
(
β̃d+1(t) − β1(t)

)
γ̃1(t)γ1(t)

d−1

+ γ̃0t
(
β1(t) − βd(t)

)
γ̃1(t)γ1(t)

d−1

= γ̃0t
(
β̃d+1(t) − β1(t)

)
γ̃1(t)γ1(t)

d−1 − γ̃0t γ̃1(t)c1.

If β̃d+1(t) 	= βd−1(t) then the first summand is a polynomial of degree at least d +1 ≥
3 and if c1 	= 0 then the second one is a polynomial of degree 2. Therefore c1 = 0 and

β̃d+1(t) = βd(t) = β1(t). (51)

Now we will study γ̃d+1(t) and γd(t) in a similar way. Consider (16) for r2d+2t

and put

σd
2 := {{1,2d + 2}, {2,2d + 1}, {3,2d}, . . . , {d + 1, d + 2}},

Kd
2 := {

κ : (σd
2 , κ

) ∈ NCL1
1,2(2d + 2), κ

({d + 1, d + 2}) = d
}
.
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Then by inductive assumption and by (51) we have

r2d+2t = γ0t
∑

σ∈NC1,2(2d)

∏
V ∈σ|V |=1

(β1 − β0) ·
∏
V ∈σ|V |=2

(γ1 − γ0) +
∑

κ∈Kd
2

w
(
σd

2 , κ
)

and similarly as before we see that

∑

κ∈Kd
2

wt

(
σd

2 , κ
) = γ0t

(
γd(t) − γ1(t)

)
γ1(t)

d−1,

which implies that
(
γd(t) − γ1(t)

)
γ1(t)

d−1 = c2 (52)

for some constant c2.
Now we consider (34) for R2d+4t . Put

σd+1
2 := {{1,2d + 4}, {2,2d + 3}, {3,2d + 2}, . . . , {d + 2, d + 3}},

Kd+1
2 := {

κ : (σd+1
2 , κ

) ∈ NCL1
1,2(2d + 4), κ

({d + 2, d + 3}) = d + 1
}
,

Ld+1
2 := {

κ : (σd+1
2 , κ

) ∈ NCL1
1,2(2d + 4), κ

({d + 2, d + 3}) = d
}
.

By our assumption and by (51) we have

R2d+4t = γ̃0t ·
∑

σ∈NC1,2(2d+2)

∏
V ∈σ|V |=1

V ∈Out(σ )

(β̃1 − β0) ·
∏
V ∈σ|V |=1

V ∈Inn(σ )

(β1 − β0)

·
∏
V ∈σ|V |=2

V ∈Out(σ )

(γ̃1 − γ0) ·
∏
V ∈σ|V |=2

V ∈Inn(σ )

(γ1 − γ0)

+
∑

κ∈Ld+1
2

w̃t

(
σd+1

2 , κ
) +

∑

κ∈Kd+1
2

w̃t

(
σd+1

2 , κ
)
.

Now similarly as before we note from (52) that

∑

κ∈Ld+1
1

w̃t

(
σd+1

1 , κ
) = t γ̃0(γ̃1 − γ0)c2,

and that
∑

κ∈Kd+1
2

w̃t

(
σd+1

2 , κ
) = γ̃0t

(
γ̃d+1(t) − γ1(t)

)
γ̃1(t)γ1(t)

d−1 − γ̃0t γ̃1(t)c2.

If γ̃d+1(t) 	= γd−1(t) then the first summand is a polynomial of degree at least
d + 1 ≥ 3 and if c2 	= 0 then the second is a polynomial of degree 2. Therefore c2 = 0
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and

γ̃d+1(t) = γd(t) = γ1(t), (53)

which completes the proof of the first part.
Conversely, suppose that μ̃ and μ (which in this case can be point masses) have

Jacobi parameters given by (41) and (42), respectively. Then by Theorem 1, (45)
holds for μt = μ�t . Also, using notation (43), for μ̃t defined via (44), we have μ̃1 =
μ̃, R1(μ̃t ,μt ) = β̃0t and for m ≥ 0

Rm+2(μ̃t ,μt ) = t · γ̃0

∑
σ∈NC1,2(m)

∏
V ∈σ|V |=1

V ∈Out(σ )

b̃ ·
∏
V ∈σ|V |=1

V ∈Inn(σ )

b ·
∏
V ∈σ|V |=2

V ∈Out(σ )

c̃ ·
∏
V ∈σ|V |=2

V ∈Inn(σ )

c, (54)

so that Rm(μ̃t ,μt ) = t · Rm(μ̃,μ). Therefore (μ̃t ,μt ) = (μ̃,μ)�ct .
Finally, it follows from (54) that if c ≥ 0 and c̃ ≥ 0, then Rm+2(μ̃,μ) = γ̃0 · sm(ρ̃),

which, in turn, yields (46). �

Remark 4 In addition to the convolution property with respect to the parameter t , note
that for fixed b̃, b, c̃, c, the family of all two-state free Meixner distributions (μ̃,μ)

constitute a four-parameter �c-semigroup with respect to the parameters β̃0, β0,
γ̃0, γ0 for γ0 > 0, γ0 ≥ −c, γ̃0 ≥ max(0,−c̃). Indeed, by formulas (16) and (34)
(see also [33]), if (μ̃′,μ′) and (μ̃′′,μ′′) are two-state free Meixner distributions, with
parameters β̃ ′

0, b̃, β ′
0, b, γ̃ ′

0, c̃, γ
′
0, c and β̃ ′′

0 , b̃, β ′′
0 , b, γ̃ ′′

0 , c̃, γ ′′
0 , c, respectively, then

(μ̃′,μ′) �c (μ̃′′,μ′′) is again a two-state free Meixner distribution with parameters

β̃ ′
0 + β̃ ′′

0 , b̃, β ′
0 + β ′′

0 , b, γ̃ ′
0 + γ̃ ′′

0 , c̃, γ ′
0 + γ ′′

0 , c.

Proposition 7 Let u ∈ R and μ̃ be an arbitrary probability measure on R with

J (μ̃) =
(

β̃0, β̃1, β̃2, β̃3, . . .

γ̃0, γ̃1, γ̃2, γ̃3, . . .

)
.

For t > 0 define μ̃t by

J (μ̃t ) =
(

β̃0t, β̃1 + (t − 1)u, β̃2 + (t − 1)u, β̃3 + (t − 1)u, . . .

γ̃0t, γ̃1, γ̃2, γ̃3, . . .

)
.

Then the pair (μ̃, δu) is �c-infinitely divisible and {(μ̃t , δtu)}t>0 is the corresponding
�c-semigroup.

Moreover, we have

Rμ̃,δu(z) = β̃0z + γ̃0z
2
∫

R

dρ̃(x)

1 − xz
,

where ρ̃ is given by

J (ρ̃) =
(

β̃1 − u, β̃2 − u, β̃3 − u, . . .

γ̃1, γ̃2, γ̃3, . . .

)
.
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Proof Since

J (δtu) =
(

tu, 0, 0, 0, . . .

0, 0, 0, 0, . . .

)
,

in calculating Rm(μ̃t , δtu) we can restrict ourselves to those pairs (σ, κ) ∈ NCL1
1,2(m)

that for V ∈ σ we have either |V | = 2, κ(V ) = d(V,σ ) or |V | = 1, k ∈ {1, d(V,σ )}.
More precisely, for the pair (μ̃t , δtu) we have in (32)

w̃(V , k, σ ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t β̃0 if |V | = 1, k = d(V,σ ) = 0,

˜tγ 0 if |V | = 2 and k = d(V,σ ) = 0,

β̃1 − u if |V | = 1 and k = d(V,σ ) = 1,

β̃k + (t − 1)u if |V | = 1 and k = d(V,σ ) > 1,

−tu if |V | = 1, k = 1 < d(V,σ ),

γ̃k if |V | = 2 and k = d(V,σ ) > 0,

0 otherwise.

This implies that for fixed σ ∈ NC1
1,2(m), m ≥ 2, with only one outer block, we have

∑
κ

(σ,κ)∈NCL1
1,2(m)

∏
V ∈σ

w̃
(
V,κ(V ), σ

) = t γ̃0

∏
V ∈Inn(σ )

|V |=2

γ̃d(V ,σ )

∏
V ∈σ|V |=1

(β̃d(V,σ ) − u).

Hence R1(μ̃t , δtu) = β̃0t and for m ≥ 0 we can write

Rm+2(μ̃t , δtu) = t γ̃0

∑
σ∈NC1,2(m)

∏
V ∈σ|V |=2

γ̃d(V ,σ )+1

∏
V ∈σ|V |=1

(β̃d(V,σ )+1 − u).

In particular, Rm(μ̃t , δtu) = tRm(μ̃, δu) for all m ≥ 1. �

6 The Two-State Free Meixner Class

Free Meixner distributions arise in many results in free and Boolean probability the-
ories. In this section we describe a number of appearances of the family from Theo-
rem 6 in the two-state-free probability theory, which justify the name “two-state free
Meixner class”. Other places where measures with Jacobi parameters independent of
n for n ≥ 2 were encountered include Theorems 11 and 12 of [28], examples in [30],
as well as [25, 26] and [23].

Definition 4 A triple (A, ϕ,ψ) is an (algebraic) two-state non-commutative proba-
bility space if A is a ∗-algebra, and ϕ,ψ are states (positive, unital linear functionals)
on it. A self-adjoint (X = X∗) element X ∈ A has the distribution (μ̃,μ) in (A, ϕ,ψ)

if μ̃,μ are probability measures such that

ϕ
[
Xn

] = sn(μ̃), ψ
[
Xn

] = sn(μ)

for all n ≥ 0.
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The next remark is the analog of the three results in Remark 1(a).

Remark 5 (Limit theorems and specific distributions)

(a) Theorem 4.3 of [10] is the two-state free central limit theorem. Let (ν̃, ν) be a
pair of measures such that

s1(ν̃) = 0 = s1(ν), s2(ν̃) = v ≥ 0, s2(ν) = u ≥ 0.

Then, denoting by D the dilation operator, we have the weak limit

D1/
√

N(ν̃, ν)�cN → (μ̃,μ).

The authors give explicit formulas for the limit distributions, based on the obser-
vation that

Rμ(z) = uz2, Rμ̃,μ(z) = vz2.

Thus formulas (27) and (46) give

β̃0 = β0 = 0, γ̃0 = v, γ0 = u, ρ̃ = ρ = δ0,

b̃ = b = 0, c̃ = c = 0.

In other words

J (μ) =
(

0, 0, 0 . . .

u, u, u, . . .

)

and μ is a semicircular distributions, while

J (μ̃) =
(

0, 0, 0 . . .

v, u, u, . . .

)

and μ̃ is a symmetric free Meixner distribution.
(b) Theorem 4.4 of [10] is the two-state free Poisson limit theorem. Let (ν̃N , νN) be

ν̃N =
(

1 − q

N

)
δ0 + q

N
δ1, νN =

(
1 − p

N

)
δ0 + p

N
δ1.

Then we have the weak limit

(ν̃N , νN)�N → (μ̃,μ). (55)

Again, the starting point for computing the explicit limit densities is the observa-
tion that

Rμ(z) = pz

1 − z
, Rμ̃,μ(z) = qz

1 − z
.

In this case formulas (27) and (46) give

β̃0 = γ̃0 = q, β0 = γ0 = p, ρ̃ = ρ = δ1, b̃ = b = 1, c̃ = c = 0.
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In other words

J (μ) =
(

p, 1 + p, 1 + p . . .

p, p, p, . . .

)

and μ is a free Poisson distribution, while

J (μ̃) =
(

q, 1 + p, 1 + p, . . .

q, p, p, . . .

)

is a free Meixner distribution.
(c) A more general version of the Poisson limit theorem (which appears to be new)

is to take

ν̃N =
(

1 − q

N

)
δ0 + q

N
δv, νN =

(
1 − p

N

)
δ0 + p

N
δu

for u,v 	= 0. In this case the limit distributions in (55) satisfy

Rμ(z) = puz

1 − uz
, Rμ̃,μ(z) = qvz

1 − vz
.

Thus

β̃0 = qv, β0 = pu, γ̃0 = qv2, γ0 = pu2, ρ̃ = δv,

ρ = δu, b̃ = v, b = u, c̃ = c = 0.

In other words

J (μ) =
(

pu, u + pu, u + pu . . .

pu2, pu2, pu2, . . .

)

and μ is still a free Poisson distribution, but

J (μ̃) =
(

qv, v + pu, u + pu, u + pu, . . .

qv2, pu2, pu2, pu2, . . .

)

only has Jacobi parameters independent of n for n ≥ 2.
(d) Let (A, ϕ,ψ) be a two-state non-commutative probability space, and X a self-

adjoint idempotent such that

ϕ[X] = q, ψ[X] = p

with 0 < p,q < 1. Thus the distributions μ̃ and μ of X with respect to ϕ and
ψ are both Bernoulli distributions, so we can refer to the pair (μ̃,μ) as a two-
state Bernoulli distribution. We now note that these distributions (and so their
convolution powers, the two-state free binomial distributions) are two-state free
Meixner distributions. Indeed,

μ̃ = (1 − q)δ0 + qδ1, μ = (1 − p)δ0 + pδ1.
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It is easy to see that we can write

J (μ) =
(

p, 1 − p

p(1 − p), 0

)

and

J (μ̃) =
(

q, 1 − q

q(1 − q), 0

)

(see the comment about finitely supported measures in Sect. 2.2). Thus (μ̃,μ) is
a two-state free Meixner distribution with

β̃0 = q, β0 = p, γ̃0 = q(1 − q), γ0 = p(1 − p),

b̃ = 1 − p − q, b = 1 − 2p, c̃ = c = −p(1 − p).

Consequently, the two-state free binomial distributions (μ̃t ,μt ) = (μ̃,μ)�ct

have

J (μ̃) =
(

qt, 1 − p − q + pt, 1 − 2p + pt, 1 − 2p + pt, . . .

q(1 − q)t, p(1 − p)(t − 1), p(1 − p)(t − 1), p(1 − p)(t − 1), . . .

)

and

J (μ) =
(

pt, 1 − 2p + pt, 1 − 2p + pt, 1 − 2p + pt, . . .

p(1 − p)t, p(1 − p)(t − 1), p(1 − p)(t − 1), p(1 − p)(t − 1), . . .

)

for t ≥ 1.

The next proposition is the analog of Remark 1(d).

Proposition 8 (μ̃,μ) is a two-state free Meixner distribution if and only if its two-
state free cumulants satisfy the recursion

Rm+2(μ̃,μ) = b̃ Rm+1(μ̃,μ) + c̃

γ0

m∑
k=2

rk(μ)Rm+2−k(μ̃,μ), (56)

(with γ0 	= 0) with the initial conditions

R1(μ̃,μ) = β̃0, R2(μ̃,μ) = γ̃0,

and the free cumulants of μ satisfy the recursion

rm+2(μ) = b rm+1(μ) + c

γ0

m∑
k=2

rk(μ) rm+2−k(μ), (57)

with the initial conditions

r1(μ) = β0, r2(μ) = γ0.
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Here

γ0 > 0, γ̃0 ≥ 0, c̃ + γ0 ≥ 0, c + γ0 ≥ 0. (58)

Condition (56) is equivalent to

Rμ̃,μ(z) − β̃0z

z2
= γ̃0 + b̃

Rμ̃,μ(z) − β̃0z

z
+ c̃

γ0

Rμ(z) − β0z

z

Rμ̃,μ(z) − β̃0z

z
.

Proof Suppose (μ̃,μ) is a two-state free Meixner distribution. In particular, μ is not
a point mass, so γ0 	= 0, and conditions (58) are satisfied. Since μ is a free Meixner
distribution, condition (57) holds, see Remark 1(d). The proof of (56) is based on
formula (54). The initial conditions follow directly from that formula. Also,

R3(μ̃,μ) = γ̃0b̃ = b̃ R2(μ̃,μ),

R4(μ̃,μ) = γ̃0b̃
2 + γ̃0c̃ = b̃ R3(μ̃,μ) + c̃

r2(μ)

γ0
R2(μ̃,μ).

For m ≥ 2, if the element {1} is an (outer) singleton of σ , it contributes b̃, and the
remaining classes of σ form a partition in NC1,2 of m − 1 elements. So the sum over
all such partitions is b̃Rm+1(μ̃,μ). If the element 1 is not a singleton of σ , it belongs
to an (outer) class {1, k}, for 2 ≤ k ≤ m. This class contributes c̃. The partition σ

restricted to the subset {k+1, . . . ,m} is in NC1,2. σ restricted to {2,3, . . . , k−1} also
is in NC1,2, but all the classes in this restriction are inner in σ , so the corresponding
products contain only b, c terms. Using (29), it follows that the sum over all such
partitions is exactly

γ̃0c̃

m∑
k=2

rk(μ)

γ0

Rm+2−k(μ̃,μ)

γ̃0
= c̃

γ0

m∑
k=2

rk(μ)Rm+2−k(μ̃,μ).

The formula for the generating functions follows.
Conversely, given a choice of parameters b, c,β0, γ0, b̃, c̃, β̃0, γ̃0 satisfying con-

dition (58), the recursions determine the measures (μ̃,μ) uniquely, and by the first
part of the argument, these are precisely two-state free Meixner distributions with this
choice of parameters. �

6.1 Laha–Lukacs Characterization

A classical paper [29] characterizes Meixner distributions in terms of certain con-
ditional expectations. In [7], the authors obtained a similar characterization of free
Meixner distributions. The following is their result for the two-state free indepen-
dence. Recall that X,Y are (ϕ|ψ)-free if all their mixed two-state free cumulants are
zero, see the paper quoted below for the terminology. Note also that if ϕ is a tracial
state equation (59) below implies that the conditional expectation

ϕ
[
(X − Y)2|S] = C

(
4I + 2bS + cS

2),
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is a quadratic function of S, see Remark 1(c). In two-state free probability theory,
typically ϕ will not be tracial, and the conditional expectation with respect to it will
not exist.

Theorem (Theorem 2.1 in [8]) Let (A, ϕ,ψ) be a two-state algebraic non-
commutative probability space, and X,Y two self-adjoint elements in it which are
(ϕ|ψ)-free and have the same distributions (with respect to both ϕ and ψ ). Further-
more, assume that ϕ[X] = 0, ϕ[X2] = 1. Let S = X + Y and suppose that there are
b,C ∈ R and c > −2 such that

ϕ
[
(X − Y)2

S
n
] = Cϕ

[(
4I + 2bS + cS

2)
S

n
]
, n = 0,1,2 . . . . (59)

Denote by (μ̃S,μS) the distribution of S in (A, ϕ,ψ), and by (μ̃,μ) the correspond-
ing distribution of X (and of Y). Then

1 + Mμ̃S(z) = 2 + c − (2bz + c)(1 + MμS(z))

2 + c − (4z2 + 2bz + c)(1 + MμS(z))
. (60)

Bożejko and Bryc described the corresponding distributions more explicitly in
particular cases corresponding to the Gaussian and Poisson regressions (that is, if
c = 0). We now provide a complete description of the possible ϕ and ψ distributions
of X,Y,S which satisfy such regression relations. Recall that if ϕ = ψ , then the ψ -
distributions of X,Y,S are free Meixner distributions.

Proposition 9 In the context of the preceding theorem,

J (μ̃S) =
(

0, b + (1 + c/2)β0(μS), β1(μS), . . .

2, (1 + c/2)γ0(μS), γ1(μS), . . .

)
.

Suppose in addition that μ is a free Meixner distribution with Jacobi parameters (15),
with γ0 ≥ 0 and c + γ0 ≥ 0. Then provided that c ≥ −1,

J (μ̃) =
(

0, (b + cβ0) + β0, b + β0, b + β0, . . .

1, cγ0 + γ0, c + γ0, c + γ0, . . .

)
.

Moreover, in this case (μ̃,μ) is a two-state free Meixner distribution.
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Proof Using (12) and (60),

ημ̃S = 1 − (
1 + Mμ̃S

)−1

= 1 − 2 + c − (4z2 + 2bz + c)(1 + MμS(z))

2 + c − (2bz + c)(1 + MμS(z))

= 4z2(1 + MμS(z))

2 + c − (2bz + c)(1 + MμS(z))

= − 4z2

2bz + c − (2 + c)(1 + MμS)−1

= − 4z2

2bz + c − (2 + c)(1 − ημS)

= − 4z2

−2 + 2bz + (2 + c)ημS

= 2z2

1 − bz − (1 + c/2)ημS

.

Comparing with the continued fraction expansion (14), we see that in terms of the
Jacobi parameters of μS,

J (μ̃S) =
(

0, b + (1 + c/2)β0(μS), β1(μS), . . .

2, (1 + c/2)γ0(μS), γ1(μS), . . .

)
.

Now suppose that X has, with respect to ψ , a free Meixner distribution with Jacobi
parameters (15), which in particular means γ0 ≥ 0 and c + γ0 ≥ 0. Then by Theo-
rem 1,

J (μS) = J
(
μ�2) =

(
2β0, b + 2β0, b + 2β0, . . .

2γ0, c + 2γ0, c + 2γ0, . . .

)
.

So

J (μ̃S) =
(

0, (b + cβ0) + 2β0, b + 2β0, b + 2β0, . . .

2, cγ0 + 2γ0, c + 2γ0, c + 2γ0, . . .

)
.

This is the t = 2 case of

J (μ̃t ) =
(

0, (b + cβ0) + β0t, b + β0t, b + β0t, . . .

t, cγ0 + γ0t, c + γ0t, c + γ0t, . . .

)
,

with b̃ = b + cβ0 and c̃ = cγ0. By setting t = 1 instead, we get

J (μ̃) =
(

0, (b + cβ0) + β0, b + β0, b + β0, . . .

1, cγ0 + γ0, c + γ0, c + γ0, . . .

)
.

This defines a positive measure provided that c ≥ −1. Combining this with
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J (μ) =
(

β0, b + β0, b + β0, . . .

γ0, c + γ0, c + γ0, . . .

)
,

we see that (μ̃,μ) is a two-state free Meixner distribution. �

6.2 Free Quadratic Harnesses

In a series of papers starting with [16], Bryc and Wesołowski (along with Matysiak
and Szabłowski) have investigated quadratic harnesses. These are square-integrable
processes (Xt )t≥0, with normalization E[Xt ] = 0, E[XtXs] = min(t, s), such that
E[Xt |Fs,u] is a linear function of Xs,Xu and Var[Xt |Fs,u] is a quadratic function of
Xs,Xu. Here Fs,u is the two-sided σ -field generated by {Xr : r ∈ [0, s] ∪ [u,∞)}.
Then

E[Xt |Fs,u] = u − t

u − s
Xs + t − s

u − s
Xu (61)

and under certain technical assumptions (see [15]),

Var[Xt |Fs,u] = (u − t)(t − s)

u(1 + σs) + τ − γ s

(
1 + σ

(uXs − sXu)
2

(u − s)2
+ τ

(Xu − Xs)
2

(u − s)2

+ η
uXs − sXu

u − s
+ θ

Xu − Xs

u − s

− (1 − γ )
(Xu − Xs)(uXs − sXu)

(u − s)2

)
. (62)

The authors proved the existence of such processes for a large range of parameters
σ, τ, η, θ, γ , in particular connecting the analysis to the Askey–Wilson measures in
[18] (the standard Askey–Wilson parameter is q = γ + στ ). One reason for the in-
terest in this analysis comes from numerous particular cases.

(a) If γ = 1 and σ = η = 0, the processes automatically have classically independent
increments, and each Xt has a Meixner distribution, see [45].

(b) For γ = σ = η = 0, the processes are classical versions of processes with free
independent increments, and have free Meixner distributions.

(c) For σ = η = 0 and −1 ≤ γ = q < 1, the corresponding orthogonal martingale
polynomials have Jacobi parameters

(
βn(t) = θ [n]q
γn(t) = [n + 1]q(t + τ [n]q)

)
,

where [n]q := 1 + q + · · · + qn−1 is the q-integer. If τ = 0, the process is a
(classical version of a) q-Poisson process from [2]. The case where in addition,
θ = 0 was considered even earlier in [13] and corresponds to the q-Brownian
motion [9]. The challenge of interpreting the general processes with σ = η = 0
as “processes with q-independent increments” remains open.

(d) Finally, for γ = σ = τ = 0, the free bi-Poisson processes from [17] are shown,
in Sect. 4 of that paper, to have increments freely independent with respect to a
pair of states.
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We will now extend the last result above. Proposition 4.3 of [15] states that for

q = γ + στ = 0,

there exist orthogonal martingale polynomials for the process. They satisfy recursion
relations P0(x, t) = 1,

xP0(x, t) = P1(x, t),

xP1(x, t) = (1 + σ t)P2(x, t) + (ut + v)P1(x, t) + tP0(x, t),

xP2(x, t) = (1 + σ t)P3(x, t) +
(

u + σv

1 − στ
t + v + τu

1 − στ

)
P2(x, t)

+ 1 + uv

1 − στ
(t + τ)P1(x, t),

xPn(x, t) = (1 + σ t)Pn+1(x, t) +
(

u + σv

1 − στ
t + v + τu

1 − στ

)
Pn(x, t)

+ 1 + uv

(1 − στ)2
(t + τ)Pn−1(x, t)

for n ≥ 3, where

u = η + σθ

1 − στ
, v = τη + θ

1 − στ

and as long as

1 + uv > 0, 0 ≤ στ < 1.

Note that the coefficients in this recursion are linear in t , so the corresponding tridi-
agonal matrix is of the form in (1). Moreover the coefficients are constant for n ≥ 2,
so this class is very close to the families considered in this paper. However, the corre-
sponding polynomials are not monic. The Jacobi parameters for the monic orthogonal
polynomials for this process (which are not martingale polynomials) are quadratic in
t (see Corollary 5). Therefore they do not form a semigroup with respect to any of
the convolutions considered in this paper, unless σ = 0.

Remark 6 It is a fundamental observation of Bryc et al. that if a process (Xt ) satisfies
properties (61) and (62), so does the process Yt = tX1/t , as long as parameters σ ↔ τ

and η ↔ θ are interchanged. In particular, the class of free quadratic harnesses is
closed under such a time-reversal operation. On the other hand, it is easy to see that
the class of families {μ̃t } which may arise in Theorem 6 is not closed under this
operation. In fact, the largest sub-family of this class which is closed in this way
corresponds to b̃ = b, c̃ = c = 0, which is precisely (up to re-scaling) the class of free
bi-Poisson processes.
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Proposition 10 Let q = 0, σ = 0, τ > 0, η 	= 0, and 1 + η(τη + θ) > 0. Denoting
by μ̃t the distribution of Xt , there exist {μt } such that the pairs {(μ̃t ,μt )} form a two-
state free convolution semigroup. Also in this case, ρ̃ is a free Poisson distribution.

Proof Since σ = 0, we have u = η, v = τη + θ . Thus the recursion above gives

J (μ̃t ) =
(

0, τη + θ + ηt, 2τη + θ + ηt, 2τη + θ + ηt, . . .

t, (1 + η(τη + θ))(t + τ ), (1 + η(τη + θ))(t + τ ), (1 + η(τη + θ))(t + τ ), . . .

)
.

Identifying the coefficients in the recursions above with parameters in our Theorem 6
gives

β̃0 = 0, β0 = η, b̃ = τη + θ, b = 2τη + θ

and

γ̃0 = 1, γ0 = 1 + η(τη + θ), c̃ = c = τ
(
1 + η(τη + θ)

)
.

Thus taking μt to be the free Meixner distributions with

J (μt ) =
(

ηt, 2τη + θ + ηt, 2τη + θ + ηt, . . .

(1 + η(τη + θ))t, (1 + η(τη + θ))(t + τ ), (1 + η(τη + θ))(t + τ ), . . .

)
,

the pairs {(μ̃t ,μt )} form a two-state free convolution semigroup. Also,

J (ρ̃) =
(

τη + θ, 2τη + θ, 2τη + θ, . . .

τ (1 + η(τη + θ)), τ (1 + η(τη + θ)), τ (1 + η(τη + θ)), . . .

)

and ρ̃ is a free Poisson distribution. �

Remark 7 Setting τ = 0, θ 	= 0 corresponds to the free bi-Poisson process with

J (μt ) =
(

ηt, θ + ηt, θ + ηt, . . .

(1 + ηθ)t, (1 + ηθ)t, (1 + ηθ)t, . . .

)
,

a free Poisson distribution, ρ̃ = δθ , and

J (μ̃t ) =
(

0, θ + ηt, θ + ηt, θ + ηt, . . .

t, (1 + ηθ)t, (1 + ηθ)t, (1 + ηθ)t, . . .

)
,

a free Meixner distribution. Additionally setting θ = 0 gives μt a (non-centered)
semicircular distribution and μ̃t = μ�t

η,0 a free Poisson distribution.
On the other hand, restriction to η = 0 gives

μt = μ̃t = μ�t
θ,τ

equal free Meixner distributions, and ρ̃ a semicircular distribution.
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