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Abstract

Let A be a thick building of type A, and let ¥ be its set of vertices. We study a commutative
algebra o of ‘averaging’ operators acting on the space of complex valued functions on ¥. This
algebra may be identified with a space of ‘biradial functions’ on ¥, or with a convolution algebra of
bi-K -invariant functions on G, if G is a sufficiently large group of ‘type-rotating’ automorphisms
of A, and X is the subgroup of G fixing a given vertex. We describe the multiplicative functionals
on & and the corresponding spherical functions. We consider the C*-algebra induced by &
on £2(¥), find its spectrum X, prove positive definiteness of a kernel , for each z € Z, find
explicitly the spherical Plancherel formula for any group G of type rotating automorphisms,
and discuss the irreducibility of the unitary representations appearing therein. For the class
of buildings A o arising from the groups I" & introduced in [2], this involves proving that the
weak closure of & is maximal abelian in the von Neurnann algebra generated by the left regular
representation of I" 7.

1991 Mathematics subject classification (Amer. Math. Soc.): primary: 51 E 24, 22 E 50;
secondary: 43 A 35,43 A 90.
Keywords and phrases: triangle buildings, spherical Plancherel formula.

1. Introduction and notation

Over the past ten years or more, there has been a great deal of effort devoted
to the study of groups acting on a homogeneous tree T of degree ¢ + 1 > 3,

© 1994 Australian Mathematical Society 0263-6115/94 $A2.00 + 0.00
Research carried out while the second author was an ARC Research Associate at the University
of New South Wales.

345



346 Donald I. Cartwright and Wojciech Miotkowski 2]

and in particular to groups I which act simply transitively on the vertices of 7.
The possible groups I' are well known (see [5, Chapter I, Theorem 6.3]). When
q is a prime power, T is the (thick, type A;) Tits building of SL(2, F) for any
local field F whose residual field has order g (see [11]). Thus PGL(2, F) can
be embedded in Aut(T'), and all the possible groups I" can be realized as lattice
subgroups of PGL(2, F) (see [5, Appendix, Proposition 5.5]). Thus much of
the theory of spherical representations of I' developed by intrinsic methods in,
for example, [6] can be derived from the corresponding theory for PGL(2, F),
especially in view of the recent theorem of Cowling and Steger [4] referred to
below.

Now consider a (thick) Tits building A of type A,, and denote by ¥ its set
of vertices. Following Tits [12], we shall call A a triangle building. The aim
of the present paper is to study explicitly the ‘spherical harmonic analysis’ of
groups acting on A. In two recent papers, [2, 3], the groups I were described
which act simply transitively on #. We shall be particularly interested in the
harmonic analysis of these groups. Some, but not all, such I can be embedded
in PGL(3, F) for some F.

The reader is referred to [1, 10] for the formal definition of a building and of a
triangle building in particular. Only in Section 1 and Lemma 2.1 is any building
theory used. Let us describe the features of these objects which we need here.

Firstly, a triangle building A is a simplicial complex consisting of vertices,
edges and triangles. The triangles are also called chambers. Any two triangles
can be joined by a ‘gallery’ of triangles so that two successive triangles have
a common edge. In particular, (the vertices and edges of) A form a connected
graph, which we always assume is locally finite, and we denote by d(u, v) the
usual graph-theoretic distance between vertices 4 and v. Each vertex v has a
‘type’ T(v) = 0, 1 or 2, say, and each triangle has one vertex of each type. As
A is thick, that is, as each edge lies on at least 3 triangles, one can show that
each edge lies on the same finite number of triangles, and this number is denoted
g + 1. We call g the order of A. Unlike the case of trees, A is not determined
by g (see, for example, [12]).

If we fix a vertex vy of type 0, say, the vertices v satisfying d(vo, v) = 1, that
is, the neighbours of vy, have the structure of a finite projective plane: one lets
P and L be the sets of neighbours of vy of types 1 and 2, respectively (or vice
versa) and we call u € P and v € L incident if u, v and vy lie on a common
triangle. One has |[P| = |L| =¢*+q + 1.

An automorphism of A will be thought of as a bijection g of ¥ mapping
edges to edges and chambers to chambers. An automorphism induces a per-
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mutation m = 7, of types such that if # € ¥ has type i, then gu has type 7 (i).
An automorphism is called rype rotating if there is a ¢ € {0, 1, 2} such that
n(i) = i 4+ ¢ (mod 3) for each i. The type rotating automorphisms form a
subgroup Aut,(A) of index at most 2 in the full automorphism group.

There are two natural averaging operators A* and A~ defined on the space of
complex valued functions on 7

(A f) () = Y. fW (u e ).

q2 + q + 1 vid(u,v)=1

r(v)=rw)t1mod 3

We shall show in Section 2 that A* and A- commute, and generate an algebra &/
whose structure depends only on g. This algebra is linearly spanned by other
averaging operators A,, ,. To describe these, we need to discuss the apartments
of A. These apartments are certain subcomplexes of A, each of which is
isomorphic to a plane tessellated regularly by equilateral triangles. Any two
chambers lie on a common apartment. If ¥ and v are two vertices of A, we
can find an apartment A containing a sector having u as its vertex, and rays
r=1(w =u,vy,...)and r' = (v = u, vy,...), so that v is at distance n
from r and distance m from r’ and so that 7(v;;;) = t(v;) + 1 (mod 3) and
t(v;,) = t(v)) — 1 (mod 3) for each i > 0 (see Figure 1).

v
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In this case, we write v € S, ,(#). The parallelogram uv'vv”, which we call
the convex hull of u and v, is common to any apartment containing u and v {1,
p- 152], and so S,, ,(u) is well defined. Any such subcomplex is contained in
some apartment [1, p. 166]. Clearly v € S, ,(u) if and only if 4 € S, ,,(v).
We shall see that N, , = |S,. .(#)| does not depend on u. The operator A,, , is
defined by

1
A W) = uevy).
(Ana W) = 5— YESXM‘,(M) fO)  we?)
Thus A" = A;gand A~ = Ag;.

Let G be a group of type rotating automorphisms of A, and let A denote the
representation of G induced on the space of complex valued functions on ¥
(AMg)f)m) = f(g'u). The significance of the type rotating hypothesis is
that it implies that each A(g) commutes with each A € /. This is because
g(Sm,n(u)) = Sm,n(gu)-

We shall repeatedly refer below to two classes of triangle buildings:

(a) Let F be local field whose residual field has order ¢g. Then there is a
triangle building Ay associated with SL(3, F), (see [1, Section VI 9F] or
[10, Section 9.2]). Briefly, it is constructed as follows. Let v be the valuation
on F,let 6 = {x € F : v(x) > 0}, and let w € O satisfy v(w) = 1.
Let L be a lattice in V = F3, that is, an €&-submodule of V of the form
{a1vy + av, + azv; : ay, az, a3 € O}, where {v;, v,, v3} is a basis for V over F.
Lattices L and L’ are called equivalent if L’ = tL for some t € F. The vertices
of Ar are the lattice classes [L]. The chambers of A ¢ consist of triples of distinct
vertices [L;], [L,] and [L;] suchthat L, D L, D Ly D @wl,. If {e], es,e3}is
the usual basis of F?, let L be the &-submodule generated by e, e, and e3. The
group 4 = PGL(3, F) acts on A by left multiplication. The type of [gL,] is
v(det(g)) (mod 3) foreach g € GL(3, F)andso ¥ C Aut,(Ar). The stabilizer
of [Ly] is the image £ in 4 of GL(3, €). One apartment A, in Ay consists of
the subcomplex whose vertices are [L; , ,], where [,m,n € Z and L, ,, , is the
O-submodule generated by w'e;, w™e, and w"e;. The other apartments are
gAo, for g € 4. If u = [Ly], then S, , () is the £ -orbit of [Lg m minl-
(b) Another class of triangle buildings was introduced in [2, 3]. Let (P, L) be
a projective plane of order ¢, let > : P — L be a bijection, and let Z be a set
of triples (x, y, z), where x, y, z € P, with the following properties:

(i) givenx,y € P,then (x,y,z) €  for some z € P if and only if y and

A(x) are incident;
(ii) (x,y,z) € J implies that (y, z, x) € J;
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(iii) givenx,y € P,then (x, y,z) € Z foratmostone z € P.
Let {a, : x € P} be | P| distinct letters, and form the abstract group

Fy = ({a, : x € P} | a,aya, = 1 foreach (x, y,z) € 7).

Then by [2, Theorem 3.4] . givesrise to a triangle building A & whose vertices
and edges form the Cayley graph of I"» with respect to the generators a, and
their inverses, and whose chambers are the sets {g, ga; L ga,}, where g € I' 7,
and x,y € P with (x,y,z) € J forsomez € P. Thetype of g € "7 is
7(g), where 7 : ' — Z/3Z is the homomorphism determined by 7(a,) = 1 for
each x € P. Of course I' » acts simply transitively on the vertices of A &, and
does so in a type-rotating way. It was shown in [2] that any triangle building
on whose vertices a group acts simply transitively and in a type rotating way
is isomorphic to a building A». If g € 'y, any minimal word for g in the
generators a, and their inverses contains the same number of generators and the
same number of inverse generators (see Section 6). If u is the identity element 1
in I"#, then §,, ,(u) consists of elements g € I" » for which these numbers are
m and n, respectively.

Let us summarize the contents of the paper. As mentioned above, the operat-
ors A* and A~ generate a commutative algebra & whose structure depends only
on g. This algebra may also be identified with a space of ‘biradial functions’.
In Section 3, we calculate explicitly the multiplicative functionals # on &/. These
may be indexed by pairs (z, w) of complex numbers, so that %, ,, is the unique
multiplicative functional 4 such that h(A*) = z and #(A™) = w. They may also
be naturally indexed by the group S = {s = (51, 52, 53) € C: 515253 = 1}, the
two indexing methods being connected by

q q 1 1 1
Z—m(sl+52+53) and W—m(;+g+g)
When A = Ap, & is isomorphic to the algebra of bi-J¢ -invariant functions
on Y = PGL(3, F). The multiplicative functionals for the closely related
algebra of bi-K -invariant functions on SL(3, F), where K = SL(3, ), may
be found in the book [7] as a very special case. However, as PG L is not simply
connected, the present situation is not quite covered by that book. In any case,

our methods are quite different from those in [7] and completely elementary.
In Section 4, we consider & as an algebra of operators on £2(%'), and calculate

the spectrum of the commutative C*-algebra obtained by taking the closure of .2

with respect to the corresponding operator norm. It is a certain hypocycloid X



350 Donald I. Cartwright and Wojciech Mlotkowski [6]

(see Figure 4). We also prove that the kernel corresponding to each z € X is
positive definite.

In Section 5, we calculate the associated Plancherel measure 4 on this hy-
pocycloid. According to a general theorem, the left regular representation A of
a closed subgroup G of Aut,(A) may be written as a direct integral over X,
with respect to 1, of unitary representations 7, (see, for example, [6, 9]. When
A = Arand G = PGL(3, F), the r, are irreducible and pairwise inequivalent.
If A = Ao, and if I" 5 embeds as a lattice in PGL(3, F), the representations
7, are all irreducible and pairwise inequivalent by a recent result of Cowling
and Steger [4]. In Section 6, we show that the weak closure of &/ in the von
Neumann algebra .# induced by the left regular representation on £2(I" ) is
maximal abelian in .#. This implies that almost every 7, is irreducible, even
when I' » cannot be embedded as a lattice in PGL(3, F) (see [9]).

We would like to thank Tim Steger for suggesting the problem solved in Sec-
tion 6, and also both Michael Cowling and him for some useful comments.
When this paper was in its final stages of preparation, we were informed that
Anna Maria Mantero and Anna Zappa had independently obtained some of our
results.

2, The algebra /. Biradial functions

We continue using the notation of Section 1. We start by considering v €
S;x(u) and w € S;o(v) (respectively w € Sp1(v)), and giving the possible
(m,n) suchthat w € S, ,(u).

LEMMA 2.1. Let v € S (u) and w € S, o(v) (respectively, w € Sy 1(v)).
Then
@ Ifj, k=1, then

Siv1x)  for g* w’s Sjen1(u)  forq* w’s
we ] Si—ie1(u) forqw’s (respectively) w € { Sjr14-1(u) for q w’s
Sik-1(w) forlw Si—1xu)  forlw.

®) Ifj=0andk = 1, then

Sox+1() for 42 w’s

c Siu(u) forq*+qw’s
Sl,k_l(u) forq + 1w’

St () for I w (respectively) w e{
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() If j = land k = 0, then

S;1(u)  forq*+qw’s

w € Sjr0() for ¢* w’s
Si_1,0(u) for 1 w.

S, 11 () forg + 1 ws (respectively) w € {

PROOF. Consider Figure 1, with the (m, n) there replaced by (J, k), and let
xo =7V, ..., x = vbethe vertices of the segment v'v, andlet yo = v", ..., y; =
v be the vertices of the segment v"v.

Suppose first that j,k > 1. Let v have type t(v) = 0, say. There are
g + 1 chambers containing the edge {y;_;, v}, and one of these is {y;_;, v, x4 }.
Note that 7(y;_;) = 2 and that t(x;—;) = 1. Clearly x,_; € §;;_1(«) and
Xi-1 € S),0(v). For each of the remaining ¢ chambers containing {y;_,, v}, its
type 1 vertex w is in S;_; 441 (u). For the convex hull of « and w consists of that
of u and y;_, together with 2(j — 1) new chambers, two containing y; for each
i =1,...,j— 1 (see Figure 2(a)). For working down from y;_,, let x be the
unique type 0 neighbour of y;_; which is a neighbour of both w and y;_;.

The two new chambers containing y;_; are {y;_i, w, x} and {y;_, yj_2, x}.
The other new chambers are constructed in a similar way. Now let {v, x;_;, w'}
be a chamber, other than {v, x,_;, y;_}, containing {v, x;_,}. Note that 7 (w’) =
2. For each of the ¢ chambers other than {v, w’, x,_;} containing {v, w'}, its
type 1 vertex w is in §),0(v) and in S;, (1) for similar reasons to those above
(see Figure 2(b)). Also, for each such w, the vertex w’ is determined, being the
unique type 2 vertex which is a neighbour of v and of both w and x;_;. So there
are g such w’s. This proves the first part of (a).

w v w

Xk—1

Yi— Xk—1

(@ ()

FIGURE 2
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w w’ w

(@) (b)
FIGURE 3

When j = 0and k > 1, the picture is a little different. Assuming once again
that v have type t(v) = 0, say, the vertex v,_, is in S;,0(v) and Sox—;(u). For
each of the g + 1 vertices w’ lying on a chamber containing {v, v,_,}, there are ¢
vertices w lying on a chamber other than {v, w’, v;_,} containing the edge {v, w'}
(see Figure 3(a)). Each such w is in Sy ;(u) and §; ¢(v), and there are g(q + 1)
of them. This proves the first part of (b).

When j > 1 and k = 0, each of the g + 1 type 1 vertices w lying in a
chamber containing {v;_;, v} is in S, 0(v) and S;_, ;(u). For each of the ¢°
remaining type 1 neighbours of v, pick any type 2 vertex w’ lying on a chamber
containing {v, w}. Then w # v;_,, and by similar reasoning to that above, we
see that w’ € S; ;(u) and that w € ;4 (see Figure 3(b)). This proves the first
part of (c).

The second parts of (a), (b) and (c) may be proved in the same way.

COROLLARY 2.2. The cardinalities N, , = |Sp..(4)| do not depend on u,
satisfy Ny, » = N, m, and are as follows:

Noo =1,
Nm,O = Noym — (q2 + q + 1)q2(m—l) 1fm Z 1’
Nm,n = (q2 + q + 1)(q2 + q)qZ(m+n—2) ifm, n> 1.

PROOF. We show that
(l) |Sm+1,n(u)| = q2|Sm.n(u)| if m >1 and n > 0,
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(1) 1Smns1@)| = ¢*|Spa()| if m > 0andn > 1,

(iil) |81 ()| = (¢* + IS0 ()| if n > 1, and

(iV) |Sm1@)| = (% + @)|Smo)| if m > 1.
Then the result follows from |S; o(#)| = |So.;(#)| = ¢* + q + 1 and induction.

To see (i), if v € Spi1..(1), let f(v) be the unique w € S, ,(u) such that
w e S, (v). Ifw € §,,,,(u), wherem > 1,thenv € S, o(w), thatis, w € Sy ;(v),
for g% v’s in S,41.,(#). Thus v > f(v) is a g*>-to-1 map, and (i) is proved. The
other formulas are proved in a similar way.

Let A* (= A1), A (= Ag,) and A, , be the averaging operators defined
in Section 1.

PROPOSITION 2.3. The linear span < of the operators A,, , is a commutative
algebra with identity I = Aoy, and is generated by A* and A~. Moreover, the
following formulas hold:

(a) AgoA" = A
(q2 + q)Al n + AO n—1 .
b A nA+ — s 8 > 1
(b) 0. itqtl ifn
2
g Anio+ @+ DA, )
c Ap A" = ' ifm>1
© 0 T if
2Am n Am— n Am n—
@ A = Lo T T el
@) AgoA™ = Ag,
@+ QAn1 + Am-r0 )
b/ Am A— — ) ’ i m > 1
(b") 0 Ftatl ifm >
2
QP Aonn + (@ + DA .
c ApnA™ = ' : ifn>1
(©) 0, PR ifn >
2Am’l Am n— Am— n
@) Agga = Tomn :zq o iz ]

PROOF. For a function f on ¥,

1
(A”""A f) () = @*+q+ 1N, wsszm;(u) ve%“’)f(v)
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(q +q+1)Nmn ZN f)

veyV

where
Ny =t{w € Spa) : v € Siow)} = {w € Suaw) : w € S ()}

These numbers are given in Lemma 2.1. Thus if v € §;,(u), then N, > Q only
for(m,n) =(j,k+1),(j+1,k—1)or(j —1,k), thatis, (j, k) = (m,n—1),
(m—1,n+1)or(m+1, n), where the numbers in each pair must be nonnegative,
of course. If m, n > 2, then each possible (j, k) satisfies j, k > 1,and N, = ¢?,
g and 1, respectively. Thus

Y N =q" Y. f+q Y. fO+ Y. fWw)

veV VESm.n—1(%) VESm_ 1 ny1{u) VESmy1.0(U)

= N Ama1 f W) + G A1 f W) + P Aniin W),

This proves (d) when m,n > 2. If m > 2 and n = 1, then k = 0 for the pair
(j, k) =(m,n—1),andso N, = g* + q if v € S,, . Thus

Y Nf) = (" + @) NnoAnof @) = Nu1(Ano f) @)

vES,,,vo(u)

This yields (d) when m > 2 and n = 1. The other cases of (d), and the other
formulas, are proved in the same way.

Now A* and A~ commute, by special cases of (b) and (b’). By a simple
induction on m + n, we see that each A,,, is a polynomial in A* and A-.
Similarly, by induction on k, any product A€ - - - A%, where each ¢; is + or —,
is a linear combination of the A, ,. This proves the first statement in the
Proposition.

Biradial functions Let(f, g) = ZUE,, f(v)g(v) whenever the sum on the
right converges absolutely. If A € &7, let A* be the adjoint of A with respect to
this bilinear form: (Af, g) = (f, A*g). Since A}, | = A, n, we see that A* € &
whenever A € &.

Let o be a fixed vertex of A. Let x,, denote the characteristic function
of S,..(0). Using the fact that v € S, ,(u) if and only if u € S, ,(v) (and
Numn = Num), we see that

@.1) Apndy = 22m

Nium
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We shall call functions which are constant on each set S, ,(0) (0-)biradial. The
finitely supported biradial functions have the x,, ., m,n € N, as a basis. Thus
A+ A*$, gives a vector space isomorphism of & onto this space of functions,
mapping A, . t0 Xm.n/Nm.n-

Notice that A(BS,) = (AB)3J, implies that each A € & leaves invariant the
space of biradial functions of finite support, and hence the space of all biradial
functions. If ¢ is the biradial function Zm'" Qm n Xm.n» WE define ¢* to be the
biradial function Zm‘n C.mXmn- Note that for A € &7, and biradial ¢,

.2) A*¢" = (Ap)*.

This holds because ¢ is abelian and, when ¢ is the finitely supported biradial
function corresponding to B € & under the above isomorphism, ¢* is that
corresponding to B*.

For any function f on ¥, let

1
(A =5— 3 fO»  (fxeS,,0).

m,n yESm,n (0)

Then & f is biradial, and & is a projection onto the space of biradial functions.
Notice that &* = &, so that if g is biradial, then (f, g) = (£f, g), for any
function f of finite support. Also, & commutes with each A € &: if f and g
have finite support, then

(A€ f,g) = (AEf, Eg) as A& f is biradial
=(&f, A*Eg)
= (f,A*&g) as A*£&’g is biradial
= (Af, &g)
= (FAf, 8)

When A = A », we can take o to be the identity element 1 of I" 5. If we let
v = ! p: and = ! p:
Sl s POLD b ey DBLE

xeP xeP

then A*f = fxpu and A-f = f x pu*, and the biradial functions of finite
support form a convolution algebra isomorphic to <.

The next proposition gives another interpretation of &/ when A = Ay, for
example.
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Let G be a subgroup of Aut,.(A) which is closed for the topology of pointwise
convergence. The subgroup K = {g € G : go = o} is compact and open for
this topology. Notice that K acts on each set S,, ,(0). Taking a left Haar measure
on G normalized so that K has measure 1, the space (G, K) of compactly
supported bi- K -invariant functions on G is a convolution algebra, and is spanned
by the functions xxzx, & € G (see, for example, [7, Proposition 1.1.1]).

PROPOSITION 2.4. Assume that G acts transitively on ¥, and that K acts
transitively on each set S, ,(0). Then £ (G, K) is isomorphic to & under the
map determined by Xxxex V> NpnAmn (f g0 € S,0(0)). Thus (G, K) is a
Gelfand pair.

PROOE. The hypotheses imply that if g, g’ € G, go € §,,,(0) and g'o €
S, s(0), then KgK = Kg'K if and only if (m,n) = (r,s). Foreach j, k € N,
pick g;« € G such that g; 0 € S;:(0). If go € S,,.,(0) and g'o € §,;(0), then

XKkgk * Xkg'k = E Cik XKgisK
ik

where
cix = (Xrgk * Xxgx)(gix)
= / Xxgk (8 xh) Xxgx (h™") dh.
G

Break this integral up into the sum of integrals over the distinct cosets g, K =
{h € G:ho=v},v eV, where g, € G satisfies g,0 = v. Foreachv € ¥,
the integrand is constant on g, K, being either always 1 there if g; 8, € KgK
and g;! € Kg'K, or always 0 there. Note that

g,;' € Kg'K ifandonlyif g 'o€ S, (0)
ifandonlyif o € S,;(v) ifandonlyif v e S, (0)

and similarly g;,g, € KgK if and only if v € S,,,,,,(g;,:o). Thus ¢;x =
| S (gjfklo) N S;.,(0)|. Notice that gjf,clo € Sk j(0). On the other hand, we can
write
(Nm,nAm,n)(Nr,sAr,s) = ZC;“B(Na,ﬂAa,ﬂ)
a,p

for suitable constants c,, 5. If we apply both sides of this to §, and evaluate at
any u € S, ;(0), we immediately obtain Cix = |Sma(@) N S ,(0)| = ¢ This
proves the result.
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'
EXAMPLE. Inthe notation of Section 1,if A = A, the last proposition applies

ifwetake G =9 and K = # . If weletG = SL3, F)and K =SL3,0),G
does not act transitively on ¥, and .Z (G, K) is isomorphic to the subalgebra &
of & defined in the next result.

PROPOSITION 2.5. Let oy be the subspace of &/ spanned by the A,,, for
whichm — n = 0 (mod 3). Then &/ is a subalgebra of &, and is generated by
A"A, (A" and (A°).

PROOF. Let w = €23, It is immediate from the formulas in Proposition 2.3
that there is an algebra isomorphism ® of o such that ®(A,,,) = @™ "A, .
Clearly &7y = {A € & : ®(A) = A}, and so is a subalgebra of &/. It is evident
from this and the formulas in Proposition 2.3 that if m — n = 0 (mod 3), then
for some number ¢ = ¢, ,,

A+A_Am',, = CAm+l,n+1 + terms in Aj,ko
where j +k <m +n+2and j — k = 0 (mod 3).

Similar formulas hold for (A*)*A,,, and (A~)3A,,,. A simple induction now
shows that &7, is generated by A*A-, (A7) and (A")>.

3. The multiplicative functionals on .o#. Spherical functions.

In this section, we show that for each z, w € C there is a multiplicative
functional # = h,,, on & such that z = h(A*) and w = h(A~), which is clearly
unique. We then explicitly calculate

pm,n(zv w) = hz,w(Am,n)-

Once the existence of 4, ,, has been demonstrated, it is evident from the formulas
in Proposition 2.3 that each p,, ,(z, w) is a polynomial in z and w.

It turns out that the multiplicative functionals may be indexed by the group
S={s = (s1,8,8) € C . 515283 = 1}, the correspondence between (z, w)
and s = (sy, 52, 53) being given by

q

q 1 1 1
z=————(si+5+53) and w=————(—+—+—)
t12+q+1(1 2 ) P+qg+1ls 5 s



358 Donald L. Cartwright and Wojciech Miotkowski (14}

and we sometimes write /; in place of 4, ,,, when s = (sy, 52, §3) is related in
this way to (z, w). Notice that if s = (s, 52, 53) € S and s’ = (51, 53, 53) € S,
then Ay = h; if and only if (s{, 55, §3) = (Ss1, S62, So3) for some permutation o
of {1,2, 3}.

Let z, w € €. We wish to solve the equations

(3'1) p0,0= 11 P1,0=Z, pO,l =w
2
32) P = q°Pm+1n + qPm-1.n+1 + Pmn—1 m.n> 1)
g +qg+1
2
(33) wpm,,, — q pm,n+l + qpm+1,n—1 + pm——l,n (m, n 2 1)
> +q+1
2
m 1) pm-
(3.4) 2P0 = q°Pmii0+ (@ + DPm_i 1 m>1)
*+q+1
@*+ @) Pm1 + Pt
3.5 WPmo = . . m>1
(3.5 Pm,0 pEp—— ( )
(q2 +q)P1 n + DPo,n—1
3.6 ZPon = . ’ n>1
(3.6) Po. g+l ( )
2
q°Pons1 + (@ + )Py
3.7 WPon = : . n>1
3.7 Do, P +q+1 ( )

Writing 2’ = (g2 + ¢ + z/q, w' = (> + g + Dw/q and p,, , = ¢"*" Pp.n,
these equations become

2,/ 2.,
9z / qw

3.1 Lo=1, = e——
3.1 Poo Pio @+q+1D) Po,

T (@*+g+D
(3.2) Zp,,= Prtin T Prcinii t Prni (m,n=1)
(3.3) WP, = Prunit t Prttnot T Prin (m,n=1)

) ' , qg+1 ,
3.4) ZPmo = Pmy10+ Tpm—l.l (m=1)

: AV :
(35) w pm,O = Tpm,l + pm_l,g (m > 1)

7 ! I q + 1 ! ’
3.6) 2'py, = Tpl’" + POt n=1

7ot ' +1 ’
(37/) w pO,n = po_n+1 + qT.pl,n—l (n > 1)
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Using 3.4’ and 3.5, we see that p, , satisfies the relation

(3.8) Pns20 = Z Pmp1o t WPno = Pnogo=0  (m=1).

Consider the cubic equation

3.9 X—X*+wX-1=0.

Assume that the roots of (3.9) are distinct, and denote them by s,, i = 1, 2, 3.
Then the solution of (3.8) is

3.10) Pro = A1oS] + A28y + A3 057 (m > 0)

where A, o,i = 1, 2, 3, are the unique numbers satisfying (3.10) form =0, 1, 2.
Solving, one finds that
(5:q — si)(8:q — i)

A1 Ao = [ =1,2,
@10 o (si —5)(si — Si”)(‘l2 +g+1) ¢ 2%

where i’, i” denote the numbers in {1, 2, 3} other than ;.
We see from 3.4’ that

Py = A1 + Az 18y + Az 157 (m > 0)

where

1 1
A= 5i(Z' — $i)Aip = 7 ( + _’)Ai,O

q ——— —
q+1 q+1 Sir Sin

(with the same meaning for i’ and i”). Using 3.2’, with m + 1 in place of m, we
see that

(312) p:nn = Al‘,,S;n + A2_,,S£n + A3,,,S§n (m > 0)
where
(3.13) Aini1 =812 — 5)Ain — SiAip (n>1).

Now the roots of the quadratic equation
X2 —s5:(Z —s)X +s5, =0
are X = 1/s; and X = 1/s;». Thus

(3.14) Ain= Cir , Cir (n > 0)

n n
S,-, Sin

1
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where C; ; and C; ;» are the unique numbers such that (3.14) holds forn = 0, 1,
It follows that .
’ si

3.15) Pon = ZC”S_”
i, ji#j J

When we solve (3.14) for n = 0, 1, we find that

q3

C,“z
T @+ D@ +q+ D)

C(Scrl » S52, sa3)

for a permutation o = o; ; of {1, 2, 3}, where

1 1 1 1
S — -Sj ST — =5 1 — =853 S» — =83
sy 82,8) = [ [ —— = ! ! — .
i<j S — S8 51— 8 §1 — 83 S — 853
Indeed, 0y, = (2,3), 013 =id, 05, = (1,2,3),0,3 =(1,2),03, = (1, 3) and
032 = (1, 3, 2). Moreover, if we take integers n;, n, and n; sothatm = n; —n,

ny n2 nj3

and n = n, — n3, we find that s7"/s? = s7}s,5s,3 for 0 = 0; ;. Notice that

n, > n, > ny, and that s\s)3s.3 is unchanged if we replace (n,, n,, n3) by

(n1 + k, ny + k, n3 + k) for any integer k (because 515,53 = 1).
If, conversely, the p, , are given by (3.15) for these C; ;, then it is routine to
check that they satisfy conditions 3.1'-3.7" above.

We have therefore proved the following result:

PROPOSITION 3.1. Suppose that

i 1 1
9 (s1+52,+s3) and w=——q—( +_+_)

316) z= ———M —
(3.16) g*+q+1 g*+qg+1\s; s 53

where 55,53 = 1. Suppose that sy, s, and sy are distinct. Then, writing S for
the group of permutations of {1, 2, 3},

3
q 1 ny _ny n
(BAT) pualz, w) = Gt D@ 1g+ 1D g E 551552543 €(So1, Sa2, So3)

0€ESs

for any integers ny, ny, n3y such thatm = ny — ny andn = n, — ns.

REMARKS. Let &/ be the subalgebra of & defined in Proposition 2.5. Con-
sider the restriction A, of A = h,,, to &y If B = h, ,, then hj, = hz,
if and only if (z/, w) = (z, w), (wz, ®w 'w) or (v 'z, ww), where @ = /3,
Indeed, if h|, = hiz,, then ') = (A = h(A)?) = 23, W) =
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(A )) = h((A)?) = w? and z7w’ = K (A"A”) = h(A*A") = zw, so that
(2, w') = (z, w), (wz, o 'w) or (w™'z, ww). The reverse implication follows
from, for example, the identity p, ,(wz, o™ 'w) = @™ "p,..(z, w), which is
easily proved by induction.

Each multiplicative functional 4, on & is the restriction of a multiplicative
functional 4 on &. For we can let z be a cube root of 4g((A*)*) and w a cube
root of Ao((A°)?) so that zw = ho(A*A~). Then h = h,, agrees with h, on
(A3, (A7) and A*A-, and hence on &/,

Formula (3.17) coincides with the formula in [7, p. 52] except that there
ny +n, + n3; = 0 and sy, 5, and 53 do not satisfy 515,53 = 1, and are determined
only up to acommon factor. Note that natural numbers 7 and n may be expressed
m=n,—nyandn =n, —n3 wheren,; +n, +n; =0ifandonlyif m —n =0
(mod 3). Thus the formula in [7, p. 52] agrees with our formula for 4, .

The singular cases In the ‘singular cases’, that is, when the numbers s;
are not distinct, we can solve the recurrence relations (3.1'-3.7") by appropriate
modifications of the methods used above. However, it is quicker to appeal to
the fact that p,, , must be a polynomial in the s;’s and their inverses, and obtain
the desired formula by taking limits of the ‘nonsingular formula’.

PROPOSITION 3.2. Suppose that s, = s3 # s,. Then for eachm,n > 0, p,, ,
is given by

1 1
m.n(za w) =
P @+ D(g2+q+ 1) gm
x ((cl,2 +Cm)sT /] + (Co + C) ,m)sy/s]
(3.18) +(Can+ Cj o (m + n))s;"—")
where
c _(@+ g - $2)? c _Gg =119 — $2)?
L2 (51 — 2)? 12 (s1 — 52)?
c, @+ Diszg — 51)° AR VG B 51)?
21 (S2—S1)2 21 (32_51)2
c, .34+ D (s2+52) — 2q* +1)s152 o~ @=DEg=5)(s2:9—s1)
* (51=5,)? 2 (52—51)?

PROOF. Consider formula (3.17). Combining the terms corresponding to
o =idando = (2 3), letting s3 — 5, and using lim,_, , (x*y' —x'y*) /(x — y) =
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(k — Dx**'=!, we obtain the terms in s7 /s in (3.18). Similarly, combining the
terms corresponding to 0 = (1 3) and 0 = (1 2 3), we obtain the terms in
57 /st in (3.18). The terms in 53 " are obtained in the same way by combining
the remaining two terms in (3.17), though this case is a little more complicated.

PROPOSITION 3.3. If (z, w) and (s, 52, 53) are as in (3.16), with s) = 5, = s3,
then
_ sy 1
T 2(g+ D@+ g+ 1) gt

X {(q — )’mn(m +n) + (g— 1)2(q+ D(m*+ 4mn + n?)

Pmn(zZ, W)

+3(g— D@+ D20n +n) + 2+ D(@*+q+ D)

_ 577" Q(m, n)
= ————qm+n , say.

PROOF. This can most easily be obtained from the formula in Proposition 3.2,
letting s, — s; and applying I’'Hopital’s rule.

Spherical functions The multiplicative functionals on &/ can be expressed
in terms of (zonal) spherical functions in a well known way. Fix avertexo € 7.
A function ¢ on ¥ is called spherical if

(i) ¢ is biradial with respect to o;
(i) ¢)=1
(iii) Foreach A € & there is a number ¢4 such that Ap = c9.

PROPOSITION 3.4. Let ¢ be a biradial function on V. Then ¢ is spherical if
and only if
(3.19) h(A) = (A5, ¢) = (Ag)(0)

defines a multiplicative functional on of . Moreover, each multiplicative func-
tional on & arises in this way.

PROOF. Let ¢ be spherical, and define & : &/ — C by (3.19). Then
(3.20) ca = (Ap)(0) = h(A).
Also, if A, B € &/, then

h(AB) = (ABy)(0) = (Acpp)(0) = cgh(A) = h(A)h(B).
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If now ¢ is biradial and if (3.19) defines a multiplicative functional on &7,
then for A € & and x € S, ,(0) we have

(Ap)(x) = (8. Ap) = (&5, Ap)
Xm n
= . ,A
(Nm,,, “’)
= (An,mam A(/)) == (30, AmnAgp)

= (80, Am,n(p)(aos A‘P) = (éﬂé\x, ¢’)(5m A¢)
= Cap(x) for c4 = (8, Ag).

Also, (o) = h(I) = 1, and so ¢ is spherical.

Finally, if 4 is any multiplicative functional on &, if we set ¢(x) = A(A,, »)
for any x € S, ,(0), a similar calculation shows that ¢ is a spherical function
satisfying (3.19).

The spherical function associated with h, , = h, is

(3.21) Cow =0 = Y Prn(Z, W) Xmn-

m,n=0

We mention also that the spherical functions on ¥ may be characterized by
being the nonzero functions satisfying, for each u € ¥ and eachm,n € N,

Y. o) = eWe®)  ifv e Spa0).

MR €S ()

If G is a subgroup of Aut,(A) which acts transitively on 7, then this condition
is equivalent to

E(Mg ) = 0(go)y

where A(g) f(v) = f(g7'v).

As we have already mentioned when calculating p,, , in the singular cases,
we can express p,, , as a polynomial in the s;’s and their inverses, and therefore
(as 515253 = 1) as a polynomial in the s;’s alone. In fact, we can do this so that
all the coefficients are positive (compare {7, (3.3.8")]):

PROPOSITION 3.5. Let x € S,,,. Then we can write

ky ky k
p.(x) = E Crn:kSy S7°55° ((s1, 52, 83) € S)
k
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where the sum is over a finite set of triples k = (ky, k2, k3) of positive integers,
and where the coefficients c,, ».x are nonnegative. Consequently,

|(ps(x)| S ‘plsl(x)
where |s| = (Is1], |s2l, Is3]).
PROOF. Consider the generating function

o
Fxt,y) =Y q"" pualz, w)x"y"

m,n=0

Using Proposition 3.1, with ny = m + n, n, = n and n; = 0, we see that

3

q So1X So1802Y
F(x,y)= Y (851, So2: So .
@) = i g7 D 2 o5 3)(1—s,,1x)(1—salsazy)

gES;
Nowleta; = six/(1 —s;:x) (1 = 1,2, 3),
b, = 5283y b, = 5153y by = 5182y
1 — 5583y 1 — 5183y 1 — 518y

and ro = (@ + D@ +q+ 1), n=4¢g+1,n=1(q-Dg@g+1D,
rn=@—-19Qq+1)/3,rs=¢>rs=(q -1 +1),r=(q —1)q(4q —
1)/6, r; = (g — 1)g* rs = 2(qg — 1)’q/3 and r¢ = (q — 1)*/3. Then the
proposition is immediate from the fact that the following expression, divided by
(g + 1)(g* +q + 1), equals F(x, y):

ro+ 1 Z(a, +b)+r2 ) (aa; + bib))
i<j
+r3 Za,b + ry Za,b + r5((11(1203 +b b2b3)
i#]
+ 76 Z(aiaj(bi + b;) + (a; + a;)b;b;) + ”7( Z (aia;b, + akbibj)>
i<y i< ki,

+rs(@iaaas Y b+ bibaby Y ai+ Y aa(bibi+ biby)
i i i<jkti,j
+ n;(Z a,-ajbib,- + aiaxa; Z b,‘bj + b1b2b3 Z aiaj).
i<j i<j i<j

An alternative proof can be found by writing ¢ Zae 5 SoA 8503805 €(So1s So25 So3)
as asum xg + x;(g — 1) + x2(g — 1)? + x3(q — 1)*, where the x; are rational
functions of the s;’s, and by repeated use of a* —b* = (a —b)(@*~' +-- - +b*1)
showing that each x; is actually a polynomial with positive integer coefficients
in the s;’s.
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4. The spectrum X

Each A € & maps £*(¥) into £2(¥), and we let ||A|,, denote the cor-
responding operator norm. Let &, denote the closure of 2 in the space of
bounded operators on the complex Hilbert space £2(¥') (with the usual inner
product (f, g) = (f, g)). The adjoint (A*)* of A* with respect to this inner
product is A™, so that &/, is a commutative C*-algebra. In this section we find
its spectrum X. At this point we thank Tim Steger for providing the elegant
proof below, which is much shorter than our original proof, of the next important
lemma, in which we estimate ||A,, . ||2... As we shall see in Corollary 4.6 below,
this estimate is sharp.

LEMMA 4.1. Let m,n € N. Then || A, 1ll22 < Q(m, n)/q™*" where Q(m, n)
is the symmetric cubic polynomial appearing in Proposition 3.3.

PROOF. Let ¢, be the spherical function defined in (3.21) for s = (1,1, 1)
(corresponding to the multiplicative functional ;). Then by (3.20) and Pro-
position 3.3, An.¢1 = hi(Ana)e1 = Ce for C = Q(m,n)/q™*". Also,
A, 01 = A, np1 = Cey, for the same C, because Q(m, n) is symmetric. Pro-
position 3.3 shows that ¢, is strictly positive on ¥, and so the Schur Test (see
[8, p. 102], for example) implies the result.

LEMMA 4.2. Let z,w € C and let ¢, be the spherical function defined
in (3.21). Then ¢, ,, & (V).

PROOF. Let (51, 57, 53), where 515,53 = 1, satisfy (3.16). Writing p,, ,(z, w) =
G Doy s if @2 € I2(¥), then

@1) 0> @:ulli =Y 1PmaC W) Nuw = D 1pp,P 2 Y 1Pl

m,neN m,neN meN

In particular, p, , is bounded as m,n — ©0. Let us show that this implies
that |s;| = 1 for each i. If sy, s, and s; are equal, then obviously |s;] = 1 for
each i. If 51, 5, and s; are distinct, then by (3.10) p,,, = Z?=1 A;os" can only
be bounded if |s;| < 1 for each i. For if, say, |s;| < |s2] < |s3], then (3.11)
shows that A; o # 0. If, say, s; # s, = 53, then by Proposition 3.2, we can write
Pmo = AT + (A2 + mAz)sy. If |s] < |s,], then |s;] > 1, we find that A; # 0
and so p,, , is unbounded. If |s;| < |s|, then |s;| > 1 and we find that A, # O,
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and so again p, ,is unbounded. Thus |s;| < 1fori = 1, 2. Similarly, p; , being
bounded implies that 1/|s;| < 1 in each case.

Suppose then that |s;| = 1 for each i. Then (4.1) implies that p, , — 0 as
m — oo. This is impossible if the s; are distinct, because p;, ;s;™ — A;o # Oin
the Cesaro sense. If, say, s; # s, = s3, then p, , = As7" + (A2 +mAs3)sy is not
even bounded. If the s; are all equal, then by Proposition 3.3, | p;, .| = Q(m, n),
which is unbounded. This proves the result.

NOTATION. Let us denote by X the set of points z € C of the form

q
4.2 z=————(1+ 85+
(4.2) AT )

where |S1| = |S2| = |S3| =1 and §18283 = 1.
LEMMA 4.3. ForO0<e < landz € %, let

(pzé = Z (1 - €)m+npm,n(zs E)Xm,n-

m,neN

If z is as in (4.2) with s,, s, and s; distinct, then for each m,n > 0 there is a
number M,, , . such that

(43) "Am,ngozE - pm,n(z’ Z)‘P: ”2 =< Mm,n,z
for eache € (0,1/2). Ase — 0, [|¢¢||2 — oo.

PROOF. We shall prove this by induction on m + n, and start by proving that
|A* @S — z¢t || is bounded. Writing p,, , for p,, .(z, z), and using formulas (3.1-
7), Proposition 2.3, and the fact that for A € & and a biradial function

f = Zam,nXm,ns
Af = Zﬁm,nXm,n for ﬁm.n = (f: A*An,mao)a
we find that

€ = 1
A+ € € = — _——— ( 2 n— T "_)1— " n
Ve 20 = m€2X00 ~ a T > (@ +Dp, [ Pon-1)(1=€)"Xo,

n=1

€ =,
YD) G Pm+1.0(1 =€) Xm0
g’+q+1 ,;

€ 1
prerre D (e ) (G S

m,n>1
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From (3.15) we see that | p,, ,| < C,/q™"" for a number C, depending’only on z.
Thus

[e o]
“A+(0: - Z(pf”% S GZCZZ(MI + M2 Z(l _ e)2n

n=1

+ M; i(l — 6)2”' + M, i (1-— 6)2(m+"))
m=1

m,n=1

for numbers M,, M,, M; and M, depending only on g. It follows that || A" ¢ —
z¢¢ ||, is bounded. One can show that ||A~¢¢ — z¢f ||, is bounded similarly or by
using (A*)* = A", (¢} ;)* = ¢;,, Formula (2.2), and what we have just proved.
The rest of the proof of 4.3 is a routine induction on m + n, using (3.1)~3.7) and
the formulas in Proposition 2.3. The last statement follows immediately from
Lemma 4.2.

PROPOSITION 4.4. Let z, w € C. The multiplicative functional h, ,, on & is
continuous for the £* operator norm on & if and only if w = Z and z € .
The map z + h,; is thus a homeomorphism of X onto the spectrum of the
C*-algebra & ,.

PROOF. Suppose that &, ,, is continuous for thenorm ||A |}, 2. Then |4, ,,(An )|
< |Amnll22 for each m,n > 0. Hence, by Lemma 4.1, |p,.(z, w)] <
Q(m,n)/q™*". Let (51, 52, 53) € (o satisfying 55,53 = 1, be related to (z, w)
as in (3.16). Writing p;, , = q¢"*" pm.n(z, w), the condition |p,, .| < Q(m, n)
for each m, n > 0 implies, as in the proof of Lemma 4.2, that |s;| = 1 foreach i,
sothat w = z and z € X. Of course, w = Z is also an immediate consequence
of A~ = (A*)* and the assumed continuity of 4, ,,.

Conversely, suppose that z € X is as in (4.2) with the s;’s distinct. Then by
Lemma 4.3,

lA*p; — 297l
lles 1l

which implies that z is in the spectrum o (A*) of A* on £2(¥). As this spectrum
is closed, and coincides with the set of values A(A*), where 4 is a continuous
multiplicative functional, the result follows.

-0

Let us now describe the set T explicitly.
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PROPOSITION 4.5. The set X is a hypocycloid with three cusps and its interior
(see Figure 4). It is the set of points z € C for which

49(¢* + g+ 1P+ ) — (¢* +q+ 12?22 — 18¢%(q> +q + 1)*224+-27¢* > 0.
PROOF. Firstly, I is the set X, dilated by the factor ¢ /(g% + g + 1), where
Xy = {s1 + 52+ 53 Isi] = |s2] = [s3] = 1 and 55283 = 1}.
The Jacobian of the transformation

x = cos(6;) + cos(6;) + cos(6;, + 6,)
y = sin(6;) + sin(6,) — sin(6; + 6,)

is, writing 6; for —6, — 6,
J = %(eié)] _ ei@z)(ei92 - eiGg)(ei(), _ ei03).
Thus
W2 =4+7%) — 2222 — 1822427  if z=¢€% 4%+

(see Formula (5.5) below). The boundary of ¥, is given by the vanishing of J,
and so is the set of points 5, + s, + 53, where |s;| = Is;| = [s3] = 1, 515253 = 1,
and the s;’s are not distinct. But if s; = s;, with i # j, we get a hypocycloid.

Zow

20=13q/(¢*+q+1)

Zow ™

FIGURE 4
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COROLLARY 4.6. For each m,n > 0 we have, in the notation of Proposi-
tion 3.3, |Apnll22 = Q(m, n)/q™*".

PROOF. By Proposition 4.4, the muitiplicative functional /, corresponding to
s = (1,1, 1) is continuous for the £> operator norm on &/. Thus ||A,, |22 >
{h1(Amn)| = Q(m, n)/q™*". The reverse inequality is just Lemma 4.1.

REMARKS. Each A € & also maps £'(¥) into £'(¥). If ||A], is the
corresponding operator norm and if &7, is the closure of &/ in the space of
bounded operators on £!(¥'), we can also calculate the spectrum of this Banach
algebra. Indeed, let z, w € C and let s = (s5q, 5;, 53) € S be related as in (3.16).
Then 4, ,, is continuous for the norm ||A||; ; if and only if the spherical function
¢..» = @, is bounded, and this holds if and only if

1
4.4) ~<lsl=q (=1223).
q

The first statement holds because | A, .|l;.; = 1 for each m, n, and the second
is proved as in Lemma 4.2. Condition (4.4) may be expressed geometrically:
it holds if and only if (log|s;[, log|s,|, log |s3|) lies in the hexagon whose six
vertices are (logg, 0, —logg) and its permutations. Thus the above statement
is essentially a very special case of [7, Theorem 4.7.1].

PROPOSITION 4.7. Let z € £. Definek, : ¥ x ¥ — C by k,(u,v) =
Pmn(2,2) if v € Sua(u). Then k, is a positive definite kernel, that is, for any
integern > landany vy, ..., v, € ¥, the matrix (j, k) = k,(v;, vy) is positive
definite. If g € Aut,(A), then k,(gu, gv) = k,(u, v), and so g — ¢,:(go) =
k. (0, go) is positive definite on Aut,(A).

PROOF. Let z be given by (4.2), where s;, 5, and s; are distinct. Observe
that &, (u, v) = (¢;;)(v), where, for any (o-)biradial function f, we define the
u-biradial function f* by

fu = Zam,nxsm,n(u) if f = Zam’"xs"""(a).
pg m,n

Notice that {f*, g*} = (f, g) for biradial f, g € £*(¥). If &’ is the natural
projection onto the space of v-biradial functions, we have, for any o-biradial
function f,

E'f =Annf’ ifve Spa.u).
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Indeed, if f = A,,SS,, = XSS‘,(O)/NI',S’ then fu = XS,V,(u)/Nr,s = Am(su. Because
&7, like &, commutes with each A € &, we have

éavfu = CgJUAr,sau = Ar,sgvsu = Ar.sXS,,,,,,(v)/Nm.n = Ar.sAm,n‘Sv = Am,nfv-

If u — f,is any map ¥ — £2(¥), (u,v) — {(f., f,) is a positive definite
kernel. So it is sufficient to prove that, in the notation of Lemma 4.3,

k. (u,v) = Zigg((%‘)“, @)/ lgS 13-
Butifv € S, (u),

(@9, (99)°) — kG, VIS N3 = ((©5)* = Pmn(z, D) (95)", (#)")
= (6" ((@5)") = Pz, D@5, (5)7)
= (Amn (@) = Pmn(z, 2)@5)", (¢5)°)

and, by Lemma 4.3, in modulus this is at most M,, , . |5 [l..
If z is given by (4.2) but the s; are not distinct, k, is still positive definite,
being the pointwise limit of &, for a sequence (z;) of ‘nonsingular’ z; € .

5. The spherical Plancherel formula

Let A —> A, where A(z) = h,:(A), be the Gelfand isomorphism. The
Plancherel measure u on X is determined by the condition that

1 fm=n=0
0 otherwise.

(5.1 [ Ao dstz) = {
z
The following theorem is essentially a special case of [7, Theorem 5.1.2]:

PROPOSITION 5.1. Let S; = {(s1, 52, 53) € T° : 515085 = 1}, let ds denote
normalized Haar measure on S, and let ¥ : S, — X be the map (sy, 52, §3) >
q(sy + 82 +53)/(q*+q + 1). Then the Plancherel measure w is the image under
W of the following measure on S,

(@+D@*+q+1 1 ds
6q° e

5.2)
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PROOF. (cf. [7, pp. 65-67]) We verify that (5.1) holds for the measure u
on X which is the image under ¥ of the measure on S, given by (5.2). Using
Proposition 3.1, continuity of A, ,(z), and the fact that for s = (sy, 52, 53) € S1,

2 - - -
Ic(sols S52, SUS)I = C(sala So2 saB)C(salv $52, saB)

does not depend on the permutation o, we have, writing M = (g 4+ 1)(¢*+ g +
1/64°,

] An() du(z) = f B (W (5)—— d
5 S |()|

§M g2 oM
S 58
1962%¢3
— § :/ a 2% ds
S

&= Js €615 502, 503)

(5.3)

where n; > n, > nj are integers, withm = n, —n; and n = n, — n;. Now

5 — Sz k
c(sy, 32,33) _1—1 &’ _1—[(1— q—l)z )

i<j S, i<j

So replacing (sy, 52, 53) by (5,1, S52, S53) and multiplying out the product, the last
integrand in (5.3) may be expanded in an absolutely and uniformly convergent
series of integrals

ki +k: k3—k ky—k:
(5.4) / gyl gtk gk g
M

ol o

where ki, k,, k3 > 0. Remembering that n; > n, > n;, we see that the three
exponents n; + k; + ky, ny + k3 — k; and n; — k; — k3 cannot be equal unless
ki = k; = k3 = 0 and n|, = n, = n;. Thus all the integrals (5.4) are zero unless
ki = k; = k3 = 0 and n; = n; = nj3, so that [ ;\\,,,,,,(z) du(z) = 0 unless
m = n = 0, in which case this integral reduces to

n —_
/ soisohsoy ds = 1.
(7653 S

This completes the proof.

Let us now work out a more explicit formula for the measure p. Using the
identity

[(gs1—52)(gs1—53)(gs2—53)|

s 5): @+’ +7) - ¢’z 7 —q(@*+ g+ 1)(g*+49+ D217 +(g*+q +1)°
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for (s, 52, 53) € Sy and z; = 51 + 5, + 53, we find that if z = ¥ (s) € X, then
1
lc(s)|?

qS

T @tq+1)?
14 (4 + 1’ +2°) — (¢*+q+1)*2222 — 18¢%(¢*+q+1)*22 + 274"
(@+12(23+23) — (g™ H+q+1)2222 — (¢™+49+1)zz + g

q3

T @ Fq+ 1y

Thus [;, f(z) du(z) = M, [ g(z) di'(z), where My = (¢ +1)/6(q> +q +1)?,
g(z) = f(2)a(z), and i’ is the image under i of the normalized Haar measure
on §;. Now

a (Y (s)), say.

f g(z) du'(z) = f g(Y(s)) ds
) S
— 471t2 /ﬂ n g(w(eml’ ¢ e—i(01+02))) d6,d6,.

The Jacobian of the transformation

q
= ———(cos(8;) + cos(6,) + cos(6, + 6
75 g1\ +cos(8r) + cos(61 + 6)
q . . .
= —(sin{(6,) + sin(@,) — sin(9; + €
y q2+q+1( (Y (6) (61 +62))

is, writing 6; for —6; — 6,,

2

q o0 i85y (02 637 ¢ i0 63
—_— —e?) (et — ) (e — ™).
= +q+1)22< ) )
Thus, by (5.5) again,
= |JJ?
_49(q*+q+ 1)@ + %) — (¢*+q+1)*2°2* — 18¢%(¢°+q+1)%2Z +27q

4(q*+q+1)*

Applying the change of variable formula, we have

1 2
f o) sy = L HIHD +"+ ) / / 2(2)r(z) dxdy
py
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for

r(z):
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1
V3@ g+ D34 ) — (@ + 1) 2222 —18¢2 (g™ q + 1) 222+ 27"

Combining the above calculations, we have therefore proved:

PROPOSITION 5.2. The Plancherel measure on X is given by

1
/f(z) dli(2)=‘i2+2 fff(z)R(z) dxdy
z /1 T

where dx dy denotes Lebesgue measure on R* = C, and where

R(2)

_ V49(@g+q+ 1P @42 — (g™+q +1)*2222 - 18¢2(¢*+q + 1)222 + 27¢*
@+ D2+ — (q+q+1)222 — (g+4q+ )2z + g

Now suppose that G is a closed subgroup of Aut,(A). Let A be the regular
representation of G on £2(¥): A(g)f () = f(g~'u). Then we obtain direct
integral decompositions £2(¥) = @ [, ', du(z) and A = @ [ 7, du(z) in
the usual way. We omit the details, referring the reader to [6] or [9], for example,
except to say that one starts by defining { f, f3), = Z”eaf/ fi (u)ﬁ(T)kz (u, v)
for finitely supported fi, f, on ¥, with k, as in Proposition 4.7.

EXAMPLES.

(@)

(b)

(©)

Suppose that G acts transitively on ¥, and that K = {g € G : go = o}
acts transitively on each S, ,(0). Then (G, K) is a Gelfand pair (Proposi-
tion 2.4) and so the representations 7, are irreducible and pairwise inequi-
valent (see, for example, [5, Chapter II, Theorem 5.3]). For example, this
holds when A = Ar and G = PGL(3, F).

Let A = A, and suppose that I'»> embeds as a lattice in PGL(3, F)
for some F. Then by a recent theorem of Cowling and Steger [4], the 7,
remain irreducible and pairwise inequivalent.

Let A = A #,and suppose that I'» does notembed as a latticein PG L(3, F)
for any F. Examples of such & appear in [3]. Then all we can currently
say is that almost all of the n, are irreducible. This follows from the fact
that the weak closure of & in the von Neumann algebra ¥ generated
on £2(I" ) by the left regular representation is a maximal abelian subal-
gebra of .Z (see [9]). This in turn follows from Theorem 6.1 in the next
section.
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6. The maximal abelian property

In this section we consider the case A = A (see Section 1), in which &/
may be identified with the convolution algebra on I" > generated by u* and p-
(see Section 2). Our aim, for reasons explained at the end of Section 5, is to
prove the following result:

THEOREM 6.1. Let f € €*(I's), and suppose that f * u* = u* x f and
fxu = * f. Then f is biradial (with respect to the identity element 1).

NOTATION. For x,y € P, we shall simply write x and y~' for the elements
a, and a;‘, respectively, of ' . We know from Proposition 3.2 in [2] that each
g € ' » can be written uniguely in the form

-1

(61) g:xlxz...xmyl—l...yn

where the x; and y; are in P, and there is no ‘obvious’ way of shortening this
word for g:

(a) m,n > 0 are integers;

(b) xiy1 € A(xy) forl <i < m;

(© ¥ €Ay forl < j <m;

d xn #y (ifm,n>1).

We shall call this the right normal form of g, and refer to the number m +n as the
length of g, and denote it /(g). This word for g has the geometric interpretation
of the shortest path 1 = u — v — v = g between 1 and g (see Figure 1).

We need to know that each element can also be written uniquely with the
inverse generators on the left and no obvious cancellations:

LEMMA 6.2. Each g € T & can be written uniquely in the form
(6.2) g= vl‘1 cen v;luluz e Uy

where

(@) m',n’ > 0 are integers;

(d) wip1 € Aw) forl <i <m';
© vi¢gAMyyy) for1 <j<n;
d) v Fuy (fm',n" > 1).
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Moreover, if g is as in (6.1), then m’ = m and n’ = n. We call (6.2) the left
normal form of g. Any minimal word for g in the x’s and their inverses contains
mx’sandn y~'s.

PROOF. To show the existence of a left normal form for g, take any minimal
word for g in the x’s and y™'’s. If u,v € P and u # v, there is a unique
s € P such that s € A(u) and s € A(v). Then there are unique x,y € P
such that (u,s,x) € J and (v,s,y) € . Thus aq,a,a, = 1 = a,a,a,. So
a;'a, = a,a;', or in the more concise notation, uv~! = x~'y. In this way,
inverse generators can be moved from right to left, and after a finite number of
steps we obtain a word for g in left normal form.

If the uniqueness were false, we could pick a g € T" having two distinct left
normal forms:

(6.3) g=v;' v 'uy---u, and g=0" Ak ky

n/
with m’ + n’ minimal. Thus

-1
n

1

1 _ 1 _
ls"'llvl IR )) _kl...krum,...ul_

By minimality, if s,n" > 1, then /|, # v, and if r,m’ > 1, then k, # u,,.
So by the uniqueness of right normal forms, the words I, - --[,v;" --- v, and
ky---ku,' ---u;' must be identical. But this contradicts the hypothesis that
the two words for g in (6.3) are in left normal form.

To see that m’ = m and n’ = n, just observe that, starting from any minimal
word for g, moving inverse generators from right to left as above to obtain a left
normal form, or moving them from left to right to get a right normal form, we
don’t change the number of inverse generators present.

Write S;, for S; (1), where 1 is the identity element of I . It is not hard to
prove by induction that §; ; is just the set of elements g € I for whichm = j
and n = k is the last lemma (one uses the fact that I' > embeds in Aut, (A #) by
left multiplication).

Letw € §,;, where r, s > 0. Write

(6.4) w:,'r...,'ljl—l...fl=1—1...11—1k1...kr

s s

(the right and left normal forms of w). We can re-interpret Lemma 2.1 in the
current context as follows. For example, using the fact that v € S; ,(u) if and
only if v = u& for some £ € S, the second part of Lemma 2.1(a) becomes:

Let w € §,; be as in (6.4), where r,s > 1. Let x € P. Then one of the
following three mutually exclusive possibilities occurs:



376 Donald I. Cartwright and Wojciech Mlotkowski [32]

(a) x=I;thenl(xw)=Il(w)—land xw € §,_,.

(b) x #I;buti, € A(x); thenl(xw) = I(w) and xw € §,_15,1. This holds for
exactly g x’s.

(c) i, ¢ A(x); then!/(xw) = I(w) + 1 and xw € §,,,,. This holds for exactly
g% x’s.

NOTATION. It is convenient to work in the group algebra C(I"#) of ' », and
to use the non-normalized convolution operators f — x** fand f > x % f,
where

x*=Y x eCl'y) and x =) y' eCy).

x€P yeP

Let w € S, ;, where r, s > 0. With notation as in (6.4), if s > 1, write

w =1 IT% -k and W =i iyt i (€8l

s—1"
and if r > 1, write
* 1

w =ir—1"'i1j1_1"'js_ and w**=ls—l'”ll_1k1"'kr_| (E Sr—l,s)-

LEMMA 6.3. Let w € S,;,as in (6.4), wherer > 0ands > 1. Let fo=w €
C(T2),and forn > 1 let

Z . .. .1 -1 -1
[ xn...xllr---lljl -..j: v] ...v"

+Zu;l...ul_lls—l...ll_lkl...kryl...y"]

1
=5

and
-1 . .ol —1. -1 -1
gn:W E xn—l"'xllr"'lljl ...js vl ...v"

+Zu;l"’ul_lls_l"'ll_lkl"'kryl"'_)’n—I]
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where the sums are over the x;’s, y;’s, u;’s and v;’s in P for which all the terms
in the sums are in normal form, as written. Then for n > 1 we can write

ot -+ ) = (fot -+ XD+ (@1t +8) —(g1+ -+ 8)Xx7)
1 1

= w - w// +f + 2 I I(An_Bn) + éﬁ(cn_Dn'*'En—Fn)

(6.5)

where fo = 0, and, for r > 1, f, is a linear combination of 2q terms of the form
& — ni, where §;,n; € S,_ c11, and where

E: : -~—1 =1, -1 -1
An= x" 1"'xllr"'ll_11 . ] vl ...U"+1
—1 -1 -1
n_E un_H ll l kl"'kyl"'yn—l

: -1, -1 -1
ce Xy ll]] . Jo Y R )

o]

AN
o
MM

“1—11; ...ll—lkl ke yr e Y
ul_lls—l .. 'll_lkl . 'kryl “e Y

S
I
(]
x
==

. PRI e ps -1
-.xllr..-ll‘ll . j vl '.v" yl

=
Il
N
=

and where again the sums are over the x;’s, y;’s, u;’s and v;’s for which all the
terms in the sums are in normal form, as written, except that in E, we sum over

x; and over the u;’s and y;’s so that u;' . ll“ lkl -kyyp e yn isin
normal form and x, # u,,, and in F,,, we sum over 1 and over the v;’s and x;’s
so that x, -+ - xyip - iy ji ! “lyrt. . v7lis in normal form and y, # v,.

PROOF. We first derive this formula when n = 1. The calculation is then
slightly different in the cases r = 0 and r > 1, as we shall see. Now

X fo=fox* =11 Ik _ir"'iljl_l"'js-—ll

lel_ lkl kr—zir"'iljl_l"'js—lyl

=w’—w”+Eo

(where the sums are over x; such that x; # [, and over y; such that y; # j;).
Next,

1
f1=272[2x1i,---i1j1“-- TR Y ALERRY b TR
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and so
X - le+
2{ D urtiy it “+ szxu, St g

+Zl 1. lkl k,yl+——leul_lls"l-~-ll_1k,-~-k,y1
—leir' l1]1 *Js lelr' 11]1 Js lvx 1
.__§: Uy hm“— 2§:u#l‘ e ko)

1 1 1 1
=—{—P0+—2C1+D0+-—2E1—C0——2F1——Q0——ED1}, say.
21q q q q q q

Here the ranges of the sums are as explained above. Some comment is needed
for the sums Py and Q. Assume that r > 1. Given u; € P, we have

' if 3
{2, x1) € P22 (xz, x1,u1) € T and i, ¢ A(x)} = { g ifZi i i',.

So the sum Py is over u;, v, € P for which j; ¢ A(v,) and u; # i,. If however
r=290,

N L [q ifweAGy
ﬁ{(xz,xl)eP .(XZ,Xl,ul)Gg and xl#.ll}_[ q+l 1fu1¢),(_]1)

and so (1/q) Py, must be replaced by

1 o o qg+1 1. _
6.6) 1 Z wilict e o Z wiljol

2
€A (1) 9 uean

the sums also extending over v, such that j; ¢ A(v,). Similarly, the sum in Qg
extends over u;, v; € P for which u; ¢ A(l;) and v, # k,, but when r = 0,
—(1/g9) Qo must be replaced by

1 1
67 —- S VIO e P B A et R e Rl
1 %s 1 1 2 1 °%s

9 L) 9 g

the sums also extending over u, such that u; ¢ A(l;). Also, whenr =0,

Y it

X1:X1% j1



[35] Harmonic analysis for groups acting on triangle buildings 379

so that Cy = Eq because j; = {;. Similarly, Dy = F; when r =< 0.
Next,

g‘——[Zl,- SV TRRERY A Y7l SRRy 200 }

and so, whenr > 1,

X 8 — 88X
1 L le—. . .
=_{Zl""'1111"'1s1y1+521r"'11hl"'}s1v11v21
1
+ - Z —11“ 1kl ’-1+—Z”III;I"'l;1k1"-k,vl_l

~~Zi"“"”i1jl_' CjiTlyT ——Zul CHRRRE 1Y RO
Sl Rk ——Zu2 WU k)

1

1 1
= —{Fo+ —A+ —R0+ —Qo— —So — —Po— Ey — —Bl}, say.
2 q q q q q q

Whenr =0, (1/9)Ry + (1/g) Qo must be replaced by

1 1
(6.8) D D T SRR P e S W it AR st

v €ex()) vy ga(vy)

the sums also extending over u; € P such that u; ¢ A(l;). Also, —(1/9)S, —
(1/q) P, must be replaced by

6.9) _ l Z 1—111—1 __js—lvl—l - l 2 ul-ljl—l .js—lvl-l
ur€r(jr) w1 gr(j1)
the sums also extending over v; € P such that j; ¢ A(v)).

Suppose that r = 0. We’ve noted that Cy = Ey and Dy = F,. Also, the first
parts of (6.6) and (6.9) cancel, as do the first parts of (6.7) and (6.8), and the
second parts of (6.6) and (6.7) cancel, as do the second parts of (6.8) and (6.9).
Combining these facts, we find that

(x*(fo+ f) = (fo+ fl)X+) +(x 8 —81x)

" 1 1
—w +2 (A1—Bl) 2—(12(C1—D1+E1—F1)
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whichis (6.5)forn =1,r =0and fy = 0.
When r > 1, we obtain (6.5) for n = 1 when we set
i i 1

fr= E(EO - Co) — E(FO — Do) + Z(RO — o).

Using the Lemma 2.1, as re-interpreted after (6.4), we see that

EO—CO={ Z nw - Z xlw} = Z Xjw

xp:d (g w)=Hw) xpd(nw)=l(w)+1 xi:Ad(xyw)=l(w)

is a sum of g elements of S,_; ;,;. Similarly, /o — Dy is a sum of ¢ elements
of §,_1s4+1. Thus f, is a sum of 2¢q terms ¢;(§; — n;), where ¢; = 1/2 forq i’s,
and ¢; = 1/2q forq i’s.

One now proves (6.5) by induction on n, using the formula, validif n > 1 for
anyr >0,

(X+fn+1 - fn+lX+) + (X_gn+1 - gn+1X_)

1 1
~ 2g2 1 (B, —Ax) + W(Dn —C.+ F,— E,)
1 1
+ W(Anﬂ - Bn+1) + W(C,,_H — Dn_H + E"_'_1 _ Fn+1)

which is derived by calculations similar to those for x* fi— fix*and x "g1—g1x".

LEMMA 6.4. Let r, s > 0, and let V' (respectively, V*) denote the linear span
(in the group algebra) of the set of elements of the form w' — w” (respectively,
w* — w*), where w € S, (respectively, w € S,,,;) (using the notation
defined before Lemma 6.3). Let £ E ¢ S,s. Then & —EisinV' +V~.

PROOF. Write

E=i iyt ji =0 Rk

8 s

and

£ =i---njte g =l~s‘1-~-l~f'1;1~-lzr-

Now the left normal form ls'1 .- -ll‘lkl ---k, of & is obtained from the right
normal form by ‘passing the j !’s from right to left’. After v steps, where
0 <v <s, we have

T T R O N O 1
S_ls '”ls—v+llr BRI W NS TR
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andi@...i® =i .. ijandi® .. i =k, ---k,. Nowlet ji ™' - j’"" € Sy
with j; ¢ A(j;). Consider
w=i iyt jT € Segne
Then w = [;1i® .. iV j7' .. j='jI~! and so
w' —w =i,y T =iV e v
Repeating this, we find that
R N A A A T Rt W i EEEY A AR A4

forv =1,...,s. Adding, we have
(6.10) ,'r...,‘ljl—l...js—l _kl...krjlf‘l...js’“ eV,

Now suppose that § S e S,s are as above, where s > 1, and that k; -- -k, =
k, k Pick j;~ L. 'e Sos With j;, j; ¢ A(j]), and we obtain (6.10) and
also

(6.11) LoDyt i =k ---k,j{‘l-nj;_’ eV

Subtracting (6.11) from (6.10), we get & — £ € V'. This, in particular, proves
the lemma when r = 0.

By an entirely analogous argument, one shows thatif » > 1 and [T Lot
l . l1 !, then & — £ € V*, proving the lemma when s = 0, in pamcular Now
1f r,s > 1, pick kj - - -k, € S, such that k; # [, ll. Then the elements

.S'

[ LEERY U TR S PR Y AR is—l...il-lk; okl — is—l...il—lil...lzr
and I;'- - 07 -k, —I70 - 0T - kL are in V*, V* and V', respectively,
sotheirsum & — £isin V' + V*,

PROOF OF THEOREM 6.1. Let f € [2(I" #) be real valued and satisfy f * x* =
x** fand f*x = x *f. We must show that f is constant on each set
S.,. Let&, E e S, s. We must show that (& — E, f)=0. By the last lemma, we
may suppose that § — £ = w’ — w”, where w € Sysqpp0ré — E=w — w™
where w € §,44,. Becausef*X = x* *f andf*X = x *f where
f(x) = f(x"), and because (w=!)* = (w”)~! and (w™)** = (w')~!, we may
suppose & —§ =w —w”’, where w € §,;;1. Soletw € S, , where s > 1, we
show that f(w’) = f(w").
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If we consider the inner product of f with both sides of (6.5), we see, using
(h,g) =hx fle)=fxh(e), fox =x"xfand fxx =x«f,that

0=f(w)- f(w">+<f,,f>+<2 Ll(A ~B,) + 212 (Co-DutEn- Fn),f>

Now A, regarded as a function on I' #, is the characteristic function of a set
of ¢*" distinct elements in S, ,_1 ;11 ((g2 + 9)g*?" P elements when r = 0).
Thus ||A,ll2 < /g% + ¢ ¢*', and so

1 2
I<FAmf>]s(q2+q) Yo If@P =0 asn— oo

XESr4n—1.54n+1

Similarly, the terms involving B,, C, and D, tend to 0. The terms in E, and F,
are slightly different. We can write E, = x1E,, ., where

X €P

E,,= Z“n—l T T T ey Ky Y

the sum being over the u;’s and y;’s so that the terms are in normal form as
written and u,, # x;. Then

1Eallz < D NEqal: < @ +q+ DV +q ¢

XlEP

Because E, is a linear combination of terms in S, 15400 U Srin—1sent1s
|(q+,,E,,, f)| = Oasn — oo. We can similarly deal with the term involving F,.
We thus obtain 0 = f(w') — f(w")Y+ (f,, f) Whenr =0, f; = 0 and we
have f(w’) = f(w"), so that we have proved that for any s > 0, if &, §, € Sy,
then f(&) = f(&). Assume that » > 1 and that it has been proved that for
any n > 0 and for any &, & € S,_1,, f(&) = f(&) holds. Then (f;, f) =0

because of the form of f,. This completes the proof.

References

[11 K. S. Brown, Buildings (Springer, New York, 1989).

[2]1 D.I Cartwright, A. M. Mantero, T. Steger and A. Zappa, ‘Groups acting simply transitively
on the vertices of a building of type A, I’, Geom. Ded. 47 (1993), 143—166.

, ‘Groups acting simply transitively on the vertices of a building of type A, II: the

cases ¢ = 2 and g = 3°, Geom. Ded. 47 (1993), 167-223.

B3]



[39] Harmonic analysis for groups acting on triangle buildings 383

[41 M. G. Cowling and T. Steger, ‘The irreducibility of restrictions of unitary representations
to lattices’, J. Reine Angew. Math. 420 (1991), 85-98.

[5] A.Figa-Talamanca and C. Nebbia, Harmonic analysis and representation theory for groups
acting on homogeneous trees, London Math. Soc. Lecture Note Ser. 162 (Cambridge
University Press, Cambridge, 1991).

[6] A. Figa-Talamanca and M. A. Picardello, Harmonic analysis on free groups, Lect. Notes
Pure Appl. Math. 87 (Marcel Dekker, New York, 1983).

[71 L G.Macdonald, Spherical functions on a group of p-adic type, Ramanujan Inst. Publica-
tions 2 (University of Madras, 1971).

[8] G. K. Pedersen, Analysis now, Graduate Texts in Math. 118 (Springer, New York, 1989).

[9]  T.Pytlik, ‘Radial functions on free groups and a decomposition of the regular representation
into irreducible components’, J. Reine Angew. Math. 326 (1981), 124-135.

[10] M. Ronan, Lectures on Buildings, Perspect. in Math. 7 (Academic Press, New York, 1989).

[11] J-P. Serre, Trees (Springer-Verlag, New York, 1980).

[12] 7. Tits, ‘Spheres of radius 2 in triangle buildings. I’, in: Finite geometries, buildings, and
related topics (eds. W. Kantor et al.) (Clarendon Press, Oxford, 1990) pp. 17-28.

School of Mathematics and Statistics Institute of Mathematics
The University of Sydney The University of Wroctaw
NSW 2006 pl. Grunwaldzki 2/4
Australia 50-384 Wroctaw

Poland



