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Abstract

Let A be a thick building of type A2, and let V be its set of vertices. We study a commutative
algebra B4 of 'averaging' operators acting on the space of complex valued functions on T. This
algebra may be identified with a space of 'biradial functions' on ~V, or with a convolution algebra of
bi-K-invariant functions on G, if G is a sufficiently large group of 'type-rotating' automorphisms
of A, and K is the subgroup of G fixing a given vertex. We describe the multiplicative functionals
on d and the corresponding spherical functions. We consider the C*-algebra induced by ei
on £2(T), find its spectrum E, prove positive definiteness of a kernel kz for each z e E, find
explicitly the spherical Plancherel formula for any group G of type rotating automorphisms,
and discuss the irreducibility of the unitary representations appearing therein. For the class
of buildings A y arising from the groups Fy introduced in [2], this involves proving that the
weak closure of si is maximal abelian in the von Neumann algebra generated by the left regular
representation of Ty.

1991 Mathematics subject classification (Amer. Math. Soc): primary: 51 E 24, 22 E 50;
secondary: 43 A 35,43 A 90.
Keywords and phrases: triangle buildings, spherical Plancherel formula.

1. Introduction and notation

Over the past ten years or more, there has been a great deal of effort devoted
to the study of groups acting on a homogeneous tree T of degree q + 1 > 3,
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and in particular to groups F which act simply transitively on the vertices of T.
The possible groups F are well known (see [5, Chapter I, Theorem 6.3]). When
q is a prime power, T is the (thick, type A{) Tits building of SL(2, F) for any
local field F whose residual field has order q (see [11]). Thus PGL(2, F) can
be embedded in Aut(7), and all the possible groups F can be realized as lattice
subgroups of PGL(2, F) (see [5, Appendix, Proposition 5.5]). Thus much of
the theory of spherical representations of F developed by intrinsic methods in,
for example, [6] can be derived from the corresponding theory for PGL(2, F),
especially in view of the recent theorem of Cowling and Steger [4] referred to
below.

Now consider a (thick) Tits building A of type A2, and denote by V its set
of vertices. Following Tits [12], we shall call A a triangle building. The aim
of the present paper is to study explicitly the 'spherical harmonic analysis' of
groups acting on A. In two recent papers, [2, 3], the groups F were described
which act simply transitively on "V. We shall be particularly interested in the
harmonic analysis of these groups. Some, but not all, such F can be embedded
in PGL(3, F) for some F.

The reader is referred to [1,10] for the formal definition of a building and of a
triangle building in particular. Only in Section 1 and Lemma 2.1 is any building
theory used. Let us describe the features of these objects which we need here.

Firstly, a triangle building A is a simplicial complex consisting of vertices,
edges and triangles. The triangles are also called chambers. Any two triangles
can be joined by a 'gallery' of triangles so that two successive triangles have
a common edge. In particular, (the vertices and edges of) A form a connected
graph, which we always assume is locally finite, and we denote by d(u, v) the
usual graph-theoretic distance between vertices u and v. Each vertex v has a
'type' r(v) = 0, 1 or 2, say, and each triangle has one vertex of each type. As
A is thick, that is, as each edge lies on at least 3 triangles, one can show that
each edge lies on the same finite number of triangles, and this number is denoted
(7 + 1. We call q the order of A. Unlike the case of trees, A is not determined
by q (see, for example, [12]).

If we fix a vertex i>0 of type 0, say, the vertices v satisfying d(v0, v) = 1, that
is, the neighbours of v0, have the structure of a finite projective plane: one lets
P and L be the sets of neighbours of v0 of types 1 and 2, respectively (or vice
versa) and we call u e P and v e L incident if u, v and v0 lie on a common
triangle. One has \P\ = \L\ = q2 + q + 1.

An automorphism of A will be thought of as a bijection g of "V mapping
edges to edges and chambers to chambers. An automorphism induces a per-
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mutation n = Ttg of types such that if u e V has type /, then gu has type n(i).
An automorphism is called type rotating if there is a c e {0,1,2} such that
n(/) = i + c (mod 3) for each /. The type rotating automorphisms form a
subgroup Auttr( A) of index at most 2 in the full automorphism group.

There are two natural averaging operators A+ and A~ denned on the space of
complex valued functions on V:

1

q2 + q
(U € Y).

v:d(u,v)=\
r(v)=r(u)±imod3

We shall show in Section 2 that A+ and A~ commute, and generate an algebra srf
whose structure depends only on q. This algebra is linearly spanned by other
averaging operators Am,„. To describe these, we need to discuss the apartments
of A. These apartments are certain subcomplexes of A, each of which is
isomorphic to a plane tessellated regularly by equilateral triangles. Any two
chambers lie on a common apartment. If u and v are two vertices of A, we
can find an apartment A containing a sector having u as its vertex, and rays
r = (vo — u, vi,...) and r' = (v'o = u, v[,...), so that v is at distance n
from r and distance m from r' and so that z(vi+i) = r(u,) + 1 (mod 3) and
T(V('+1) = r(w1') — 1 (mod 3) for each / > 0 (see Figure 1).

u = v0 = v0

FIGURE 1
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In this case, we write v e 5mn(w). The parallelogram uv'vv", which we call
the convex hull of u and v, is common to any apartment containing u and v [1,
p. 152], and so Sm,„(«) is well defined. Any such subcomplex is contained in
some apartment [1, p. 166]. Clearly v e Sm<n{u) if and only if u e Sn,m(v).
We shall see that Nm,„ = |Sm,,,(w)| does not depend on u. The operator Am,„ is
defined by

(Am,nf)(u) = J - £ /(v) («er).

Thus A+ = Aii0 and A" = A0,i.
Let G be a group of type rotating automorphisms of A, and let X denote the

representation of G induced on the space of complex valued functions on r :
(A(g)/)(«) = f{g~^u). The significance of the type rotating hypothesis is
that it implies that each X(g) commutes with each A e #/. This is because

We shall repeatedly refer below to two classes of triangle buildings:

(a) Let F be local field whose residual field has order q. Then there is a
triangle building AF associated with SL(3, F), (see [1, Section VI 9F] or
[10, Section 9.2]). Briefly, it is constructed as follows. Let v be the valuation
on F, let 6 - {x e F : v(x) > 0}, and let m € 6 satisfy v(m) - 1.
Let L be a lattice in V = F3, that is, an £?-submodule of V of the form
{a\V\ + a2V2 + a3vi : at, a2, a^ e G\, where {v\, v2, v^} is a basis for V over F.
Lattices L and L' are called equivalent if V = tL for some t € F. The vertices
of A/? are the lattice classes [L]. The chambers of AF consist of triples of distinct
vertices [Lx], [L2] and [L3] such that Lx D L2 D L3 D nrLi. If {ei, e2, 3̂} is
the usual basis of F3, let Lo be the ^"-submodule generated by e\, e2 and e3. The
group §f = PGLQ, F) acts on AF by left multiplication. The type of [gL0] is
v(det(g)) (mod 3) for each g e GL(3, F) and so ̂  c Auttr(AF). The stabilizer
of [Lo] is the image Jf in Sf of GL(3, 0). One apartment Ao in Af consists of
the subcomplex whose vertices are [L/m,„], where /, m, n e Z and L/m„ is the
^-submodule generated by rzr'ei, ztrme2 and c"^3- The other apartments are
gA0, for g g Sf. If M = [Lo], then 5m,«(w) is the JT-orbit of [L0,m,m+n].

(b) Another class of triangle buildings was introduced in [2, 3]. Let (P, L) be
a projective plane of order q, let X : P —»• L be a bijection, and let <!?" be a set
of triples (*, v, z), where x, v, z e f, with the following properties:

(i) given x, y e P, then (x, y, z) e ^ for some z e /* if and only if v and
A.(J:) are incident;

(ii) (x, y,z) e & implies that (y, z, JC) G ^ ;
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(iii) given x, y e P, then (x, v, z) e & for at most one z € P.

Let [ax : x e P}be \P\ distinct letters, and form the abstract group

IV = ({ax : x € P) | axayaz = 1 for each (x, y, z) e «^>.

Then by [2, Theorem 3.4] 2T gives rise to a triangle building A^- whose vertices
and edges form the Cay ley graph of IV with respect to the generators ax and
their inverses, and whose chambers are the sets (g, ga~l, gay], where g e IV,
and x, y e P with (x, y, z) e f7 for some z e P. The type of g e IV is
r(g), where x : T -> Z/3Z is the homomorphism determined by r(a,) = 1 for
each x e P. Of course IV acts simply transitively on the vertices of Ay, and
does so in a type-rotating way. It was shown in [2] that any triangle building
on whose vertices a group acts simply transitively and in a type rotating way
is isomorphic to a building Ay. If g e IV, any minimal word for g in the
generators ax and their inverses contains the same number of generators and the
same number of inverse generators (see Section 6). If u is the identity element 1
in Vy, then Sm<n{u) consists of elements g e IV for which these numbers are
m and n, respectively.

Let us summarize the contents of the paper. As mentioned above, the operat-
ors A+ and A~ generate a commutative algebra si whose structure depends only
on q. This algebra may also be identified with a space of 'biradial functions'.
In Section 3, we calculate explicitly the multiplicative functionals h on si. These
may be indexed by pairs (z, w) of complex numbers, so that /zZU) is the unique
multiplicative functional h such that h(A+) = z and h{A~) = w. They may also
be naturally indexed by the group 5 — {s = (s\, s2, S3) e C : s^S2S3 = 1}, the
two indexing methods being connected by

z = —— (si + s7 + S3) and w =

When A = AF, srf is isomorphic to the algebra of bi-J^-invariant functions
on Sf = PGL(3, F). The multiplicative functionals for the closely related
algebra of bi-K-invariant functions on 5L(3, F), where K — SL(3, 6), may
be found in the book [7] as a very special case. However, as PGL is not simply
connected, the present situation is not quite covered by that book. In any case,
our methods are quite different from those in [7] and completely elementary.

In Section 4, we consider srf as an algebra of operators ont2{V), and calculate
the spectrum of the commutative C*-algebra obtained by taking the closure of srf
with respect to the corresponding operator norm. It is a certain hypocycloid £
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(see Figure 4). We also prove that the kernel corresponding to each z e E is
positive definite.

In Section 5, we calculate the associated Plancherel measure /z on this hy-
pocycloid. According to a general theorem, the left regular representation A of
a closed subgroup G of Aut^A) may be written as a direct integral over S,
with respect to /A, of unitary representations nz (see, for example, [6, 9]. When
A = AF and G = P GL (3, F), the nz are irreducible and pairwise inequivalent.
If A = A&, and if FV embeds as a lattice in PGL(3, F), the representations
nz are all irreducible and pairwise inequivalent by a recent result of Cowling
and Steger [4]. In Section 6, we show that the weak closure of $4 in the von
Neumann algebra =§? induced by the left regular representation on t2(T^) is
maximal abelian in jSf. This implies that almost every nz is irreducible, even
when IV cannot be embedded as a lattice in PGL(3, F) (see [9]).

We would like to thank Tim Steger for suggesting the problem solved in Sec-
tion 6, and also both Michael Cowling and him for some useful comments.
When this paper was in its final stages of preparation, we were informed that
Anna Maria Mantero and Anna Zappa had independently obtained some of our
results.

2. The algebra sf. Biradial functions

We continue using the notation of Section 1. We start by considering v e
Sj<k(u) and w e Si<0(v) (respectively w e So,\(v)), and giving the possible
(m, n) such that w e Smtn(u).

LEMMA 2.1. Let v e Sjik(u) and w e Sh0(v) (respectively, w e S0,i(v)).
Then
(a) Ifj,k > I, then

Sj+i,k(u) for q2 w's I Sj,k+i(u) for q2 w's
w e { Sj-\ik+\(u) for q w's (respectively) w e < S;+i,*_i(«) for q w's

Sj,k-i(u) for 1 w [ S/_i,t(«) forlw.

(b) / / ; = 0 andk > 1, then

w\Sl,k(u)forq2
 + qw's .^ w \S0,k+l(u)for q2 w's

[S0,k-i(u) for 1 w [S\tk-i(u)forq + \ws.
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(c) If j > 1 andk - 0, then

{ S,+ 1 0(M) for q2 w's . [ Sn(u) for q2 + q w's

J+1. ( , . 1 ' (respectively) w € { J- ' J
f , H

S,_ U (M) forq + lw's y " \Sj-Xfi(u) for 1 w.
PROOF. Consider Figure 1, with the (m, n) there replaced by (j, k), and let

x0 = v',..., xk = v be the vertices of the segment v'v, and let yo = v",... ,yj =
v be the vertices of the segment v"v.

Suppose first that j,k > 1. Let v have type r(v) = 0, say. There are
q + 1 chambers containing the edge {yj-\, v), and one of these is {y;_i, v, xk-X}.
Note that T(yj_i) = 2 and that r fe_i) = 1. Clearly xk_x e Sj,k-\{u) and
^*-i € 5i,0(v). For each of the remaining q chambers containing {jy_i, v}, its
type 1 vertex w is in S/_i,,t+i (M). For the convex hull of w and w consists of that
of u and }>y_! together with 2(j — 1) new chambers, two containing yt for each
i = 1 , . . . , j — 1 (see Figure 2(a)). For working down from yj^u let x be the
unique type 0 neighbour of >>y_i which is a neighbour of both u» and yj-\.

The two new chambers containing yy_i are {jy-i, w, x} and {yy_i, j;-2» x}.
The other new chambers are constructed in a similar way. Now let {v, xk-U w'}
be a chamber, other than [v,xk-\, yj-\}, containing {v, xk_i}. Note that x{w') =
2. For each of the q chambers other than {v, w', xk_i\ containing {v, w'}, its
type 1 vertex w is in 5i,o(f) and in SJ+ik(u) for similar reasons to those above
(see Figure 2(b)). Also, for each such w, the vertex w' is determined, being the
unique type 2 vertex which is a neighbour of v and of both w and xk-\. So there
are q2 such w's. This proves the first part of (a).

(a) (b)

FIGURE 2
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(a) (b)

FIGURE 3

When j — 0 and k > 1, the picture is a little different. Assuming once again
that v have type r(v) = 0, say, the vertex v'k_^ is in Sh0(v) and S0,*-i(")- For
each of the q + 1 vertices u/ lying on a chamber containing {v, v'k_,}, there are q
vertices w lying on a chamber other than [v, w', v'k__x) containing the edge {v, w'}
(see Figure 3(a)). Each such w is in SI,*(M) and Sl0{v), and there are q(q + 1)
of them. This proves the first part of (b).

When j > 1 and k — 0, each of the q + 1 type 1 vertices K; lying in a
chamber containing {u;_i, v] is in Sii0(i>) and S^UCM). For each of the q2

remaining type 1 neighbours of v, pick any type 2 vertex w' lying on a chamber
containing {v, w}. Then w ^ u,-_i, and by similar reasoning to that above, we
see that w' e 57,I(M) and that u> e 5,-+i,o (see Figure 3(b)). This proves the first
part of (c).

The second parts of (a), (b) and (c) may be proved in the same way.

COROLLARY 2.2. The cardinalities Nmtfl — \Smn(u)\ do not depend on u,
satisfy Nm<n = Nn^m, and are as follows:

# 0 . 0 = 1 ,

Nm,0 = N0,m = (q2 + q + l ) ^" 1 " 1 ' ifm > 1,

Nm,H = (q2+q + \){q2 + q)q2(m+"-2) ifm,n>\.

PROOF. We show that

(i) |Sm+1,n(«)| = q2\Sm,n(u)\ if m > 1 and n > 0,
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(ii) \Sm,a+i(u)\ = q2\Sm,n(u)\ if m > 0 and n > 1,
(iii) \SUn(u)\ = (q2 + ?)|50,n(«)| if n > 1, and
(iv) |5w.i(«)| = {a2 + ?)|SB,0(«)| if m > 1.

Then the result follows from |SI|O(«)| = |So,i(«)l = <72 + <7 + 1 and induction.
To see (i), if v e 5m+i,n(M), let f(v) be the unique w € Smtn(u) such that

w e 50,i(u). Ifu> e Smn(w), where m > l,thenu e Si,0(u0,thatis, w e So,i(v),
for q2 u's in 5m+i>n(«). Thus v (->• / (v ) is a ^2-to-l map, and (i) is proved. The
other formulas are proved in a similar way.

Let A+ (= Aio), .A (= A0,i) and Amn be the averaging operators defined
in Section 1.

PROPOSITION 2.3. The linear span srf of the operators Am<n is a commutative
algebra with identity I = Ao,o, and is generated by A+ and A". Moreover, the
following formulas hold:

(a)

(b)

(c)

(d)

(a')

(b')

(c')

(d')

A0,0A
+

A0,nA
+

Am,oA

A A+

Ao,oA~

A.,0A-

AmnA'

= Ah0

0? 2 -

q A,

= A0,i

q2A{

q2A,

f- q)Ax<n -f

q2 + q +
7i+i,o + (q

q2+q

q2 +

q2 + q +
D.n+i + (q

q2 + q
m,n-\-l "i ~f

- A 0 , n - l

1

+ l)Am_
+ 1

q + l

1- A m _ l i 0

- 1

+ l)^l,n-
+ 1

i/n > 1

- Am,n_x

if tn ^

- ifn :

> 1

'/w,« > 1

1

> 1

ifm,n > 1
+ <7 + l

PROOF. For a function / on V,
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where

Nv = tJ {w € 5W,B(M) : u e Si,0(u>)} = ft {w e Sm,«(«) : u> e S

These numbers are given in Lemma 2.1. Thus if v e Sjtk(u), then Nv > 0 only
for (w, n) = (;, k + 1), (/ + 1, * - 1) or (j - 1, *), that is, (j, k) = (m,n- 1),
(m — l,n + l)oT(m + l,n), where the numbers in each pair must be nonnegative,
of course. If m,n > 2, then each possible (j,k) satisfies;, k > \,andNv = q2,
q and 1, respectively. Thus

f(v)+q J2 / ( u ) + E

This proves (d) when m,n > 2. If m > 2 and n = 1, then & = 0 for the pair
(j, k) = (m, n — 1), and so Nv = q2 + <? if v e 5m,0. Thus

This yields (d) when m > 2 and n = 1. The other cases of (d), and the other
formulas, are proved in the same way.

Now A+ and A~ commute, by special cases of (b) and (b'). By a simple
induction on m + n, we see that each Amn is a polynomial in A+ and A'.
Similarly, by induction on k, any product Ae' • • • Aet, where each e7 is + or —,
is a linear combination of the Am<n. This proves the first statement in the
Proposition.

Biradial functions Let (/, g) = 5Zuer f(v)8(v) whenever the sum on the
right converges absolutely. If A € s/, let A* be the adjoint of A with respect to
this bilinear form: (Af, g) — (/, A*g). Since A*mn — Anjn, we see that A* e s/
whenever A e srf.

Let o be a fixed vertex of A. Let Xm,n denote the characteristic function
of Sm<n(o). Using the fact that v e Smn{u) if and only if u e Snm(v) (and
Nm,n = Nn,m), we see that

(2.1) AmJo = ^ - .
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We shall call functions which are constant on each set Sm,n{o) (o-)biradial. The
finitely supported biradial functions have the Xm.n, m,n e N, as a basis. Thus
A i-> A*S0 gives a vector space isomorphism of sif onto this space of functions,
mapping Am<n to Xm,n/Nm,n.

Notice that A(BSO) — (AB)SO implies that each A & sf leaves invariant the
space of biradial functions of finite support, and hence the space of all biradial
functions. If cp is the biradial function ^ m n a m n x m , n , we define <p* to be the
biradial function J2m n a",mXm,n- Note that for A e sf, and biradial <p,

(2.2) A*<p* = (AcpT.

This holds because sf is abelian and, when <p is the finitely supported biradial
function corresponding to B e srf under the above isomorphism, cp* is that
corresponding to B*.

For any function / on y, let

J2 /O0 (if* e SM
m-" yeSm.,,(o)

Then & f is biradial, and £ is a projection onto the space of biradial functions.
Notice that g* = S, so that if g is biradial, then (/, g) = (Sf, g), for any
function / of finite support. Also, £ commutes with each A e si/: if / and g
have finite support, then

(A&f, g) = {ASf, Sg) as ASf is biradial
= {Sf, A*Sg)

= {f, A*£g) as A*<Sg is biradial
= (Af, gg)

= (#Af, g)

When A = A^, we can take o to be the identity element 1 of Ty. If we let

>^Sa and u = —

i2+«
then A+f = f * fj,~ and A~f — f * /x+, and the biradial functions of finite
support form a convolution algebra isomorphic to s/.

The next proposition gives another interpretation of sf when A = AF, for
example.
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Let G be a subgroup of Aut^A) which is closed for the topology of pointwise
convergence. The subgroup K = {g € G : go = o) is compact and open for
this topology. Notice that K acts on each set 5mn(o). Taking a left Haar measure
on G normalized so that K has measure 1, the space ££(G, K) of compactly
supported bi-K -invariant functions on G is a convolution algebra, and is spanned
by the functions Xicgic, g e G (see, for example, [7, Proposition 1.1.1]).

PROPOSITION 2.4. Assume that G acts transitively on V, and that K acts
transitively on each set Smn(o). Then j£?(G, K) is isomorphic to &/ under the
map determined by XKSK >-> Nm,nAm,n (if go e Sm,n(o)). Thus (G, K) is a
G elf and pair.

PROOF. The hypotheses imply that if g, g' e G, go e Sm,n(o) and g'o e
Sr,,(o), then KgK = Kg'K if and only if (m, n) = (r, s). For each j , k e N,
pick gjik € G such that gjiko € Sjtk(o). If go € 5m,n(o) and g'o € 5rj(o), then

* XKg'K =

where

Cj.k = {XKgK*XKg>K)(gj,k)

= / XKgic(gj,kh) XKg'K(h~l) dh.
JG

Break this integral up into the sum of integrals over the distinct cosets gvK =
{h e G : ho = v], v e Y, where gv e G satisfies #„<? = v. For each v e Y,
the integrand is constant on gvK, being either always 1 there if gj,kgv e KgK
and g"1 G Kg'K, or always 0 there. Note that

g;1 € tfg'AT if and only if g~lo € Sr,,(o)

if and only if o e Sr,s(v) if and only if u e 5jr(o)

and similarly §/,*#„ e A"gA" if and only if v e Sm,n(g~lo). Thus c,-it =
|5m,«(g;~to) fl 5s,r(o)|. Notice that g~A'o e Skj(o). On the other hand, we can
write

for suitable constants c ^ . If we apply both sides of this to 80 and evaluate at
any u e SkJ(o), we immediately obtain c'jk — \Sm<n(u) H 5j r(o)| = c;Jt. This
proves the result.
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EXAMPLE. In the notation of Section 1, if A = AF, the last proposition applies
if we take G = <S and K = X. If we let G = SL(3, F) and K = SL(3, 6), G
does not act transitively on V, and _£f (G, K) is isomorphic to the subalgebra sz/0

of sf defined in the next result.

PROPOSITION 2.5. Let s/0 be the subspace of srf spanned by the Amn for
which m — n = 0 (mod 3). Then s/0 is a subalgebra of si, and is generated by
A+A,(A+)3and(A)3.

PROOF. Let a> — el7ri/3. It is immediate from the formulas in Proposition 2.3
that there is an algebra isomorphism <I> of srf such that <&(Amn) = (jf~"Am^.
Clearly s>/0 — [A e s/ : <P(A) = A}, and so is a subalgebra of s/. It is evident
from this and the formulas in Proposition 2.3 that if m — n = 0 (mod 3), then
for some number c — cmn,

A+A~Am,n = cAm+Un+i + terms in A M ,

where j + k < m +n + 2 and j — k = 0 (mod 3).

Similar formulas hold for (A+)3Am_„ and (A~)3Amin. A simple induction now
shows that £?0 is generated by A+A~, (A+)3 and (A)3.

3. The multiplicative functionals on £/. Spherical functions.

In this section, we show that for each z, w e C there is a multiplicative
functional h = hZtW on si such that z = h(A+) and w = h(A~), which is clearly
unique. We then explicitly calculate

pm,n(z, w) = hZiW(Am,n).

Once the existence ofhzw has been demonstrated, it is evident from the formulas
in Proposition 2.3 that each pm,n{z, w) is a polynomial in z and w.

It turns out that the multiplicative functionals may be indexed by the group
S = {s = (si,S2,s3) e C3 : s\s2s3 = 1}, the correspondence between (z, w)
and s = (si, s2,s3) being given by

1
and w= ( +

q2 + q + l\ss s2
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and we sometimes write hs in place of hzw, when s = {s\, Si, s3) is related in
this way to (z, w). Notice that if 5 = (su s2, s3) e 5 and s' = (s\, s'2, s^) e 5,
then hS' = hs if and only if (s[,s2, s'j) = (saU sa2, sai) for some permutation o
of {1,2, 3}.

Let z,w e C We wish to solve the equations

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

Po.o =

ZPm.n =

wpm.n =

ZPm,0 =

=

Po.o = 1. Pi,o = z> Po.\ = w

'Tfi-\- 1,/j i " r fn — i,«~r 1 ' r m,n — 1

q2+q + l
(m,n >

Pm.n+l + qPm+\,n-\ + Pm-l.n , , .
— (m,n>\)

+ 1
q2

(q2
 + q)Pm,+Pm-,o ( m ^ }

(3.6) zpo,n = " r " " " ; " ' - ' (n > 1)

/ a ~ q P0,n+\
(3.7) iopo,» = :

Writing z' = {q2 + q + \)z/q, w' = (q2 + q + \)w/q and p'mn = qm+npm,n,
these equations become

q2z' , q2w'
(3.1') P o , o = l , Pl.o=iq2+q + ly Po.r={q2+q +

(3.2') z'p'mn = p'm+Un + p'm_Un+l + p ' m n _ x (m,n > 1)

(3.3') w'p'mn = p ' m n + , + p ' m + h n _ , + / > : _ , , „ ( m , n > \ )

(3-4') z'p'mfi = p ' m + u o + ^P'm-u (m > 1)

(3.5') w'p'mfi = ^-P'm,i + / C . o (m > 1)

(3.6') ^Po.n = ^P[,n + Po.n-i ( « > D

(3.7) u;'pOiI1 = po,B



[15] Harmonic analysis for groups acting on triangle buildings 359

Using 3.4' and 3.5', we see that p'm 0 satisfies the relation

(3-8) P'm+2,o ~ Z'P'M + w'p'm<0 - p'm_ifi = 0 (m > 1).

Consider the cubic equation

(3.9) X3 - z'X2 + w'X-l=0.

Assume that the roots of (3.9) are distinct, and denote them by st, i = 1, 2, 3.
Then the solution of (3.8) is

(3.10) p'm0 = Auos? + A2,0s? + Axos™ (m > 0)

where A,o, i = 1, 2, 3, are the unique numbers satisfying (3.10) for m = 0 , 1, 2.
Solving, one finds that

n m A {Siq ~ Si')iStq ~v) r i - 1 2 ^
(J 5)(5 5 ) ( ^ 2 + 9 + 1)

where /', /" denote the numbers in {1, 2, 3} other than /.
We see from 3.4' that

P'm,\ =

where

Si(z' - Sj)Aii0 = ——-( 1 )A,-,0
q + Ws s/

4i,i

q + \
(with the same meaning for /' and /"). Using 3.2', with m + 1 in place of m, we
see that
(3.12) p'mn = AUns? + A2,ns? + AXns™ (m > 0)

where
(3.13) Al > +i = Si(z' - Si)AUn - SiAUn-\ (n > 1).

Now the roots of the quadratic equation

X2 - Si(z' - si)X + si = 0

are X = l/sr and X = \/sv,. Thus

(3.14) A,, = ^ + ^ (i, > 0)
S S
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where C,,,' and C,,,» are the unique numbers such that (3.14) holds for n = 0, 1.
It follows that

(3-15) P ' m , n =

When we solve (3.14) for n = 0, 1, we find that

C = c(saU sa2,

for a permutation a = atj of {1, 2, 3}, where

c(sus2, s3) = FT — =
i<j !>' SJ

Indeed, aU2 = (2, 3), aU3 = id, CT2,I = (1, 2, 3), a2,3 = (1, 2), a3il = (1, 3) and
cr3 2 = (1, 3, 2). Moreover, if we take integers ni, n2 and n3 so that m — n\—n2

and n = n2 — n3, we find that s,m/s" = ^[S^25^3 for a — a,j. Notice that
«i > «2 >: «3, and that s"\s"2

2s^3 is unchanged if we replace (nun2,n3) by
(«i + ^, «2 + ^, «3 + k) for any integer ^ (because Sis2s3 = 1).

If, conversely, the p'm n are given by (3.15) for these C,; , then it is routine to
check that they satisfy conditions 3.1'—3.7' above.

We have therefore proved the following result:

PROPOSITION 3.1. Suppose that

(3.16) z = — r ( s i+5 2 + 53) and w =
q2 + q + l\si s2

where S\S2Sj, = 1. Suppose that s\, s2 and s3 are distinct. Then, writing Sifor
the group of permutations of {1,2, 3},

(3.17) pm,(z, u,) =

/or a«y integers nx, n2, n3 such that m = nx — n2 and n = n2 — «3.

REMARKS. Let &/0 be the subalgebra of srf denned in Proposition 2.5. Con-
sider the restriction h]t^0 of h = hZiW to &/0. If h' = hz>tW>, then h\^a = h^^
if and only if (z\ u/) = (z, u;), (&>z, a>~lw) or (a)"'z, ww), where co = e2ni/3.
Indeed, if h\^ = hWo, then (z')3 = fc'((A+)3) = /J((A+)3) = z3, (u;')3 =
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h'((A~)3) = h((A~)3) = w3 and z'w' = h'(A+A~) = h(A+A~) = zw, so that
(z\ w') = (z, w), (<yz, (o~lw) or (o>~'z, cow). The reverse implication follows
from, for example, the identity pmn((t)z,u>^lw) — com~"pmin(z, w), which is
easily proved by induction.

Each multiplicative functional h0 on sf0 is the restriction of a multiplicative
functional h on si'. For we can let z be a cube root of ho((A

+)3) and w a cube
root of ho((A)3) so that zw = ho(A

+A~). Then h = hzw agrees with h0 on
{A+)3, (A)3 and A+A~, and hence on s/0.

Formula (3.17) coincides with the formula in [7, p. 52] except that there
n\ + n2 + «3 = 0 and sus2 and s3 do not satisfy Sis2s3 = 1» and are determined
only up to a common factor. Note that natural numbers m and n may be expressed
m = n\—n2 and « = n2 — «3 where « i + « 2 + n 3 = 0if and only if m — n = 0
(mod 3). Thus the formula in [7, p. 52] agrees with our formula for hle/0.

The singular cases In the 'singular cases', that is, when the numbers Sj
are not distinct, we can solve the recurrence relations (3.T-3.7') by appropriate
modifications of the methods used above. However, it is quicker to appeal to
the fact that pmn must be a polynomial in the Sj 's and their inverses, and obtain
the desired formula by taking limits of the 'nonsingular formula'.

PROPOSITION 3.2. Suppose that s2 — s3 ^ $,. Then for each m, n > 0, pmn

is given by

pm,n{z, w) =
(q + 1)(<72 + q + 1) qm+"

X I (̂— j^2 "T" ^ i 2 ' 1 / 2 '" v 2,1 ~r ^ 9

(3.18) +(C2 2 + -

c ^ v ^ , . / v - ^ -s2y c , _{q- Y)(slq-s2y

= (̂  + l ) ( ^ ^ , )

te-*)2, , 2''
_ ? ( ? + l)(52+52

2) - 2(g
3 + l)^52 _

( * 5 ) 2 2 ' 2 "

PROOF. Consider formula (3.17). Combining the terms corresponding to
a = /dander = (2 3),letting^ -»• *2, and using \imy^,x{xkyl—x'yk)/(x—y) =
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(k — l)xk+l~l, we obtain the terms in jf /s% in (3.18). Similarly, combining the
terms corresponding to a = (1 3) and a = (1 2 3), we obtain the terms in
s%/s" in (3.18). The terms in s%~" are obtained in the same way by combining
the remaining two terms in (3.17), though this case is a little more complicated.

PROPOSITION 3.3. //(z, w) and (sus2, s3) are as in (3.16), with S\ — s2 = s3,
then

m-n ,

pm,n{z, w) —
2{q+\)(q2+q+\)qm+n

x \{q - l)3mn(m + n) + (q- l)2(q+I)(m2+4mn + n2)

+ 3(q- \){q+ \)\m + n) + 2(q+ \)(q2+q+ 1))

say.

PROOF. This can most easily be obtained from the formula in Proposition 3.2,
letting s2 -*• 5i and applying l'Hopital's rule.

Spherical functions The multiplicative functionals on si can be expressed
in terms of {zonal) spherical functions in a well known way. Fix a vertex o e f .
A function <p on Y is called spherical if

(i) <p is biradial with respect to o;
(ii) <p(o) = l;

(iii) For each A e i there is a number cA such that A<p — cA(p.

PROPOSITION 3.4. Let <p be a biradial function on Y. Then <p is spherical if
and only if
(3.19)

defines a multiplicative functional on si. Moreover, each multiplicative func-
tional on si arises in this way.

PROOF. Let <p be spherical, and define h : si -> C by (3.19). Then

(3.20) cA = (A<p)(o) = h(A).

Also, if A, B e si, then

h(AB) = (AB(p)(o) = (AcB<p)(o) = cBh(A) = h(A)h(B).



[19] Harmonic analysis for groups acting on triangle buildings 363

If now <p is biradial and if (3.19) defines a multiplicative functional on si,
then for A e si and x e Sm<n(o) we have

(A<p)(x) = (Sx, A<p) = (<?<5,, A<p)

( Xm,n

Iym,n

= (An<m8o, Atp) = (So, Am,nA<p)

- (So, Am,n<p)(8o, A<p) = (&8X, <p)(80, A<p)

- cA<p{x) for cA = (So, A<p).

Also, <p(o) = h(l) = 1, and so <p is spherical.
Finally, if h is any multiplicative functional on si, if we set <p(x) = h(Am „)

for any x € Smin(o), a similar calculation shows that cp is a spherical function
satisfying (3.19).

The spherical function associated with hlw = hs is

(3.21) <Pz,w =<Ps=
m,n=O

We ment ion also that the spherical functions on "f may be characterized by
being the nonzero functions satisfying, for each u e f and each m, n e N ,

<p(w) = <p(u)<p(v) ifv€Sm,n(o).
Nm,n _

If G is a subgroup of Aut^A) which acts transitively on "V, then this condition
is equivalent to

"')<?) = <p(go)<p

As we have already mentioned when calculating pm „ in the singular cases,
we can express pmn as a polynomial in the Sj 's and their inverses, and therefore
(as S1S2S3 = 1) as a polynomial in the Sj's alone. In fact, we can do this so that
all the coefficients are positive (compare [7, (3.3.8')]):

PROPOSITION 3.5. Let x G 5m,n. Then we can write

<Ps(x) = / 1
cm,n;kslls2lsj> ((^1' S2' si) G S)

k
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where the sum is over a finite set of triples k — (k\, k2, k3) of positive integers,
and where the coefficients cmn;k are nonnegative. Consequently,

\<P,(x)\ <

where \s\ - (\s{\, \s2\, \s3\).

PROOF. Consider the generating function
oo

F(X, y)=J2 4m+nPm
m,n=Q

Using Proposition 3.1, with nx — m + n,n2
 = n and n3 = 0, we see that

F{x,y) = —7.yc(saUsa2,sa3) [ - I I I.
(q+l)(q2+q+l)^3 \l-salxj \l-saiSa2yJ

Now let a, = stx/(l - s(x) (/ = 1, 2, 3),
, -L-3J , ~i~3j , sis2y

O\ = Do = O3 =
1 - s2s3y I -

and r0 = (q + l)(q2 + q + 1), r, = ^2(^ + 1), r2 = (9 - 1)^(^ + 1),
r3 = (q- l)q(2q + l ) /3 , r4 = ^3, r5 = (q - l)2(q + 1), r6 = (q - 1)?(4? -
l)/6, r7 = (q - l)q2, rs = 2{q - l)2q/3 and rg = (q - l)3 /3. Then the
proposition is immediate from the fact that the following expression, divided by
(q + 1)(<?2 + q + 1), equals F(x, v):

uaj + bib))

ibj + r5{ala2a3 + bxb2b3)

r6 ^{aiOjibi + bj) + (a, + ay)6,-fy) + o ( ^ (a,-ay

r8

An alternative proof can be found by writing q3 l^aeS3 ^ i^2
2^3

3 C ^ L sa2, sa3)
as a sum x0 + xx{q — 1) + x2(o — I)2 + x3(^ — I)3, where the X) are rational
functions of the Sj % and by repeated use ofak — bk — (a — b)(ak~x -\ h bk~')
showing that each Xj is actually a polynomial with positive integer coefficients
in the Sj's.
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4. The spectrum £

Each A e s/ maps I2{f) into 12(V), and we let ||A||2,2 denote the cor-
responding operator norm. Let s?2 denote the closure of srf in the space of
bounded operators on the complex Hilbert space £.2(T) (with the usual inner
product (/, g) = (/, g)). The adjoint (A+)* of A+ with respect to this inner
product is A , so that sf2 is a commutative C*-algebra. In this section we find
its spectrum S. At this point we thank Tim Steger for providing the elegant
proof below, which is much shorter than our original proof, of the next important
lemma, in which we estimate \\Amtn \\2t2. As we shall see in Corollary 4.6 below,
this estimate is sharp.

LEMMA 4.1. Letm,n € N. Then ||Amjn||2,2 < Q(m,n)/qm+n where Q(m,n)
is the symmetric cubic polynomial appearing in Proposition 3.3.

PROOF. Let <pi be the spherical function defined in (3.21) for s = (1,1,1)
(corresponding to the multiplicative functional h\). Then by (3.20) and Pro-
position 3.3, Am,n^i = hi{Amin)<px — C(px for C - Q{m,n)/qm+n. Also,
A*m n<pi — An<m<p\ = C<p\ for the same C, because Q(m, n) is symmetric. Pro-
position 3.3 shows that <p{ is strictly positive on "f, and so the Schur Test (see
[8, p. 102], for example) implies the result.

LEMMA 4.2. Let z,w e C and let (pz>w be the spherical function defined
in (3.21). Then <pz,w <£ W

PROOF. Let(.S!,.^, 53), w h e r e S ^ ^ = 1, satisfy (3.16). Writingpm-n(z, w) =

(4 .1 ) OO > \\<pZtW\\2
2 =2 =

m,n€H

In particular, p'm n is bounded asm,n —> 00. Let us show that this implies
that \st\ = 1 for each /. If su s2 and 53 are equal, then obviously |s,-| = 1 for
each /. If s\, s2 and s3 are distinct, then by (3.10) p'm 0 = ^=1 ^-tfisT c a n onty
be bounded if |5,| < 1 for each /. For if, say, |5]| < \s2\ < \s3\, then (3.11)
shows that AXo ^ 0. If, say, sx ^ s2 — s3, then by Proposition 3.2, we can write
p'mQ = Ais^ + (A2 + mA3)s2

n. lf\si\ < \s2\, then \s2\ > 1, we find that A3 ^ 0
and so p'm 0 is unbounded. If |J2 | < \s\\, then |^i| > 1 and we find that Ax ^ 0,
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and so again p'm 0 is unbounded. Thus \st | < 1 for / = 1,2. Similarly, p'On being
bounded implies that l/\s,• | < 1 in each case.

Suppose then that \st\ = 1 for each i. Then (4.1) implies that p'm0 -> 0 as
m —>• oo. This is impossible if the 5, are distinct, because p^05fm —> Ai0 ^ Oin
the Cesaro sense. If, say, Si ^ s2 = s3, then p'm0 = A\s" + (A2 + w/43)s^ is not
even bounded. If the s, are all equal, then by Proposition 3.3, \p'mn \ — Q(m,n),
which is unbounded. This proves the result.

NOTATION. Let us denote by £ the set of points z e C o f the form

(4.2) z = —— (Sl + s2 + s3)
q2 + q + 1

where \si\ — \s2\ = |53| = 1 a n d s ^ s ^ = 1.

LEMMA 4.3. For 0 < e < 1 andz €T,,let

<P\=m.neN

If z is as in (4.2) with S\, s2 and s3 distinct, then for each m, n > 0 there is a
number Mm_n>z such that

(4.3) \\Am,H<p\ - pm,n{z, z)<p\\\2 < Mm,n,z

for each e e (0, 1/2). As € - • 0, \\<p< \\2
2 - • oo.

PROOF. We shall prove this by induction onm + n, and start by proving that
|| A+<p(

z — z(p\ ||2 is bounded. Writing pm „ for /?„,,„ (z, z), and using formulas (3 .1 -
7), Proposition 2.3, and the fact that for A e srf and a biradial function

I — / , &m,nXm,n>

A / = ^^ m , n Xm,» for £„,,„ = ( / , AMBi(B«o),

we find that

2 t X

= l
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From (3.15) we see that \pm<n\ < Cz/q
m+n for anumber Cz depending'only on z.

Thus

/ °°
|| A>,e - z<p% < €2C2[MX + M2

+ M3 5^(1 - e)

n=\

OO

2 m

m=l m,n—\

for numbers M\, M2, Af3 and M4 depending only on <?. It follows that || A + ^ —
ztpl ||2 is bounded. One can show that | |A"^ — z.(p\ ||2 is bounded similarly or by
using (A+)* = A~, (<p*z)* = <pl2, Formula (2.2), and what we have just proved.
The rest of the proof of 4.3 is a routine induction onm+n, using (3.1M3.7) and
the formulas in Proposition 2.3. The last statement follows immediately from
Lemma 4.2.

PROPOSITION 4.4. Let z,w € <C. The multiplicative functional hZtW on srf is
continuous for the i.2 operator norm on si if and only if w = z and z e S.
The map z h> hZii is thus a homeomorphism of E onto the spectrum of the
C* -algebra s/2-

PROOF. Suppose that hz discontinuous for the norm ||A||2,2. Then|/jzlu(Am,,)|
< H^m,Jl2,2 for each m,n > 0. Hence, by Lemma 4.1, \pm,n(z, w)\ <
Q(m, n)/qm+n. Let {s\, s2, S3) e C3, satisfying Sis2s3 = 1, be related to (z, w)
as in (3.16). Writing p'mn = qm+npm<n(z, w), the condition \p'mn\ < Q(m, n)
for each m, n > 0 implies, as in the proof of Lemma 4.2, that |,y,-1 = 1 for each /,
so that w = z and z e E. Of course, w = z is also an immediate consequence
of A~ = (A+)* and the assumed continuity of hZiW.

Conversely, suppose that z e E is as in (4.2) with the Sj 's distinct. Then by
Lemma 4.3,

| | A > * - z ^ | | 2 ?

1111
which implies that z is in the spectrum a(A+) of A+ on € 2 (^) . As this spectrum
is closed, and coincides with the set of values h(A+), where h is a continuous
multiplicative functional, the result follows.

Let us now describe the set £ explicitly.
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PROPOSITION 4.5. The set S is a hypocycloid with three cusps and its interior
(see Figure 4). It is the set of points z e Cfor which

4q(q2 + q + 1 ) V + z3) - (q2 +q + l ) V z 2 - I8q2(q2+q + l)2zz +27<?4 > 0.

PROOF. Firstly, E is the set Eo, dilated by the factor q/(q2 + q + I), where

So = {si + 5 2 + 53 : \sx\ = \s2\ = |53| = 1 and5,5253 = 1}.

The Jacobian of the transformation

x = cos(0i) + cos(62) + cos(0! + 92)

y = sin(0i) + sin(02) - sin(0! + 02)

is, writing 03 for —0] — 02,

1

Thus

J = -(eie> - eie

2i

\J\2 = 4(z3 + z3) - z2z2 - 18zz + 27 if z = e'*1 + eift + *'

(see Formula (5.5) below). The boundary of Eo is given by the vanishing of / ,
and so is the set of points Si + s2 + s3, where \sx \ — \s2\ = \s3\ = 1, sis2s3 — 1,
and the 5, 's are not distinct. But if s, = Sj, with i ^ j , we get a hypocycloid.

Z0CO

Z0CO

FIGURE 4
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COROLLARY 4.6. For each m,n > 0 we have, in the notation of Proposi-
tion 33, \\AmJ\2,2= Q(m,n)/qm+n.

PROOF. By Proposition 4.4, the multiplicative functional h i corresponding to
s = (1,1,1) is continuous for the £.2 operator norm on #/. Thus ||-Am>J|2,2 >
l^i(^m,n)l = Q(m, n)/qm+n. The reverse inequality is just Lemma 4.1.

REMARKS. Each A e £/ also maps l\V) into ll{V). If UAH^ is the
corresponding operator norm and if st\ is the closure of srf in the space of
bounded operators on £' (>0, we can also calculate the spectrum of this Banach
algebra. Indeed, let z, w e C and let s = (su s2, s3) e 5 be related as in (3.16).
Then hzw is continuous for the norm \\A || ̂  if and only if the spherical function
<Pz,w — <Ps is bounded, and this holds if and only if

(4.4) -<\Si\<q (* = 1,2,3).
q

The first statement holds because | |Am,n||u = 1 for each m, n, and the second
is proved as in Lemma 4.2. Condition (4.4) may be expressed geometrically:
it holds if and only if (log \s{ |, log \s2\, log \s3\) lies in the hexagon whose six
vertices are (log q, 0, — log<jO and its permutations. Thus the above statement
is essentially a very special case of [7, Theorem 4.7.1].

PROPOSITION 4.7. Let z e £ . Define kz : V x V ->• C by kz(u, v) =
pm,n(z, z) if v G Smn(u). Then kz is a positive definite kernel, that is, for any
integer n > 1 and any vu ..., vn e ~f, the matrix (j, k) H> kz(Vj, vk) is positive
definite. If g 6 Aut,,.(A), then kz(gu, gv) = kz(u, v), and so g i-> <pz^(go) =
kz(o, go) is positive definite on Auttr(A).

PROOF. Let z be given by (4.2), where su s2 and s3 are distinct. Observe
that kz(u, v) = (^"j)(u), where, for any (o-)biradial function / , we define the
M-biradial function / " by

if f = «(o)-

Notice that (/", g") = (/, g) for biradial / , g e t2^). If Sv is the natural
projection onto the space of v-biradial functions, we have, for any o-biradial
function / ,
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Indeed, if / = Ans80 = XssAo)/Nr,s, then / " = Xss,re>)/Nr,s = Ar,sSu. Because
£v, like £", commutes with each A e srf, we have

Svf = SvArJu = Ar,s<?v8u = Ar,sXs.,mW/Nm.H = ArsAmJv = AmJ\

If u i->- /„ is any map "V -> I2(f), (u, v) i->- (/„, /„) is a positive definite
kernel. So it is sufficient to prove that, in the notation of Lemma 4.3,

2 ( , )
But if v € 5m,n(«),

-Pm A

and, by Lemma 4.3, in modulus this is at most Mm_na \\q>(
z \\i.

If z is given by (4.2) but the s, are not distinct, kz is still positive definite,
being the pointwise limit of kZj for a sequence (z7) of 'nonsingular' Z; e E.

5. The spherical Plancherel formula

Let A \-> A, where A(z) = hz-z{A), be the Gelfand isomorphism. The
Plancherel measure /x on E is determined by the condition that

i fm=«=0
0 otherwise.

(5.1) f Am,n(z) dfx(z) = {

The following theorem is essentially a special case of [7, Theorem 5.1.2]:

PROPOSITION 5.1. Let Sx = {(su s2,s3) e T3 : 5^253 = 1}, let ds denote
normalizedHaar measure on Su and let ^ : Si ->• £ be the map (st, s2, 53) h->
q{s\ + s2 + 53)/ (q2 + q + 1). Then the Plancherel measure /x is the image under
\jr of the following measure on S\:

oiK (q + lKq+q + l) 1 A

(5.2) — ——— ds.
6q3 \c(s)\2
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PROOF, (cf. [7, pp. 65-67]) We verify that (5.1) holds for the measure pu
on £ which is the image under \jf of the measure on 5i given by (5.2). Using
Proposition 3.1, continuity of Am<n{z), and the fact that for 5 = (su s2, s3) € Si,

\c(sal, Sa2, Sa3)\2 = c(saUSa2,

does not depend on the permutation a, we have, writing M = (q + \){q2 + q

[ Am,n(z) dn(z) = [ Am,n
M A

| N | ? ds

g l a 2 a 3 — ds

where «! > n2 > n3 are integers, with m — nx — n2 and n — n2— «3. Now

So replacing (s\, s2, S3) by (5CTi, 5CT2, ^3) and multiplying out the product, the last
integrand in (5.3) may be expanded in an absolutely and uniformly convergent
series of integrals
CS A\ I r"l+*l+*2_»2+*3-*lc«3-*2-*3 J_
p.4j 1 sal sa2 sa3 as

Js,
where ku k2, k.3 > 0. Remembering that ri\ > n2 > n3, we see that the three
exponents «i + &i + k2, n2 + k3 — kx and n3 — k2 — /:3 cannot be equal unless
kx = k2 = k3 = 0 and «[ = n2 = n3. Thus all the integrals (5.4) are zero unless
£ , = £ 2 = ^3 = 0 and ni = n2 = n3, so that / E Am n(z) rf/x(z) = 0 unless
m — n — 0, in which case this integral reduces to

This completes the proof.

Let us now work out a more explicit formula for the measure /x. Using the
identity

1(9*1 -s2)(qsi -S3)(qs2-s3)\
2
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for (si, s2, s3) e Si and z\ — si + s2 + s3, we find that if z = rfr(s) G £ , then

1

\c(s)\2

4z2z2 - I8q2(q2+q+l)2zz

a*
a(\ls(s)), say.(q2 + q + 1)

Thus / E / (z) dn(z) = Ml JT g(z) dn'{z), where Mx = (q + l)/6(q2 + q +1)2,
g(z) = /(z)a(z), and [x! is the image under xfr of the normalized Haar measure
on Si. Now

g(z) dii'(z) = [ g(f(s)) ds

= ^ f f g{f{eie\e^, «--'•<**»)) d6ld92.

The Jacobian of the transformation
n

x = — (cos(^i) + cos(#2) + cos (0i

qy= 2 x (sin^O

is, writing 63 for —6\ — 62,

J = j 2~(e' ' ~

Thus, by (5.5) again,

J2 = U\2

- 1 Sq2(q2 +q +1 )2zz + 21qA

Applying the change of variable formula, we have

g(z) dn'(z) = (q +
2l2

+l) J j dxdy
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for

y/4q(q2+q-\-l)3(z3-\-z3) — (<72+<7 + l)4z2z2 —18<

Combining the above calculations, we have therefore proved:

PROPOSITION 5.2. The Plancherel measure on E is given by

[ f(z) dfi(z) = ^ ± 1 f f f(z)R(z) dxdy

where dx dy denotes Lebesgue measure on K2 = C, and where

_
(<7 + l)2(z3+z3) - (<72+<7 + l)z2z2 - (q2+4q + l)z

Now suppose that G is a closed subgroup of Auttr(A). Let X be the regular
representation of G on £2(y): A.(g)/(w) — f(g~lu). Then we obtain direct
integral decompositions 12(Y) — ® / £ Jf?z d(i(z) and A. = © / E nz d[i{z) in
the usual way. We omit the details, referring the reader to [6] or [9], for example,
except to say that one starts by denning (/,, / 2 ) z = J2u,v€y Mu)f2(v)k2(u, v)
for finitely supported f\, f2 on V, with kz as in Proposition 4.7.

EXAMPLES.

(a) Suppose that G acts transitively on Y, and that K = {g e G : go — o]
acts transitively on each 5mn(o). Then (G, K) is a Gelfand pair (Proposi-
tion 2.4) and so the representations n2 are irreducible and pairwise inequi-
valent (see, for example, [5, Chapter II, Theorem 5.3]). For example, this
holds when A = AF and G = PGL(3, F).

(b) Let A = A&, and suppose that F'$• embeds as a lattice in PGL(3, F)
for some F. Then by a recent theorem of Cowling and Steger [4], the itz

remain irreducible and pairwise inequivalent.
(c) Let A = A &, and suppose that FV does not embed as a lattice in PGL(3,F)

for any F. Examples of such & appear in [3]. Then all we can currently
say is that almost all of the itz are irreducible. This follows from the fact
that the weak closure of srf in the von Neumann algebra jSf generated
on 12{T&) by the left regular representation is a maximal abelian subal-
gebra of ^f (see [9]). This in turn follows from Theorem 6.1 in the next
section.
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6. The maximal abelian property

In this section we consider the case A = A ^ (see Section 1), in which ef
may be identified with the convolution algebra on T& generated by /x+ and [i~
(see Section 2). Our aim, for reasons explained at the end of Section 5, is to
prove the following result:

THEOREM 6.1. Let f e £2(I"V). ond suppose that f * /x+ = ix+ * f a
* [i~ = [i~ * f. Then f is biradial {with respect to the identity element 1).

NOTATION. For x, y € P, we shall simply write x and y~l for the elements
ax and a~\ respectively, of V>. We know from Proposition 3.2 in [2] that each
g € T & can be written uniquely in the form

'1(6.1) g = x x x 2 - • • x m y 1 " ~ 1 • • • y '

where the xt and j 7 are in P, and there is no 'obvious' way of shortening this
word for g:

(a) m, n > 0 are integers;
(b) xi+i £ x(Xi) for 1 < / < m;
(c) vy <$. A.(jy+i) for 1 < ; < « ;
(d) x m # v , ( i fm ,«> 1).

We shall call this the right normal form of g, and refer to the number m +n as the
length of g, and denote it l(g). This word for g has the geometric interpretation
of the shortest path l = u-*v'^>-v = g between 1 and g (see Figure 1).

We need to know that each element can also be written uniquely with the
inverse generators on the left and no obvious cancellations:

LEMMA 6.2. Each g e FV can be written uniquely in the form

(6.2) g = uf1 •••v~1uiu2---um>

where

(a) m!, n' > 0 are integers;
(b) w,+i ^ M«,) for 1 < / < w';
(C) Vy g A.(Uy+i) /or 1 < 7 < «'/
(d) UB. #« , ( ! / » ! ' , « '>1 ) .



[31] Harmonic analysis for groups acting on triangle buildings 375

Moreover, if g is as in (6.1), then m' = m and n' = n. We call (6.2) the left
normal form of g. Any minimal word for g in the x's and their inverses contains
m x's andn y~l's.

PROOF. TO show the existence of a left normal form for g, take any minimal
word for g in the x's and v~''s. If u, v € P and u ^ v, there is a unique
s e P such that s e X(u) and 5 e X(v). Then there are unique x, y e P
such that (u, s, x) e !7 and (v, s, y) € 3T. Thus auasax = 1 = avasay. So
a~lay = aua~x, or in the more concise notation, uv~l = x~ly. In this way,
inverse generators can be moved from right to left, and after a finite number of
steps we obtain a word for g in left normal form.

If the uniqueness were false, we could pick a g e F having two distinct left
normal forms:

(6.3) g = v ~ l • • • v ~ 1 u l • • • u m > a n d g = l ~ x • • - l ~ x k \ - • - k r

with m' + ri minimal. Thus

l s ••• h v ~ x ••• v ~ l = * ! • • • k r u ~ ! • • • u ~ 1 .

By minimality, if s, ri > 1, then lx ^ vu and if r, m' > 1, then kr ^ um>.
So by the uniqueness of right normal forms, the words ls • • • ZiuJ"1 • • • v~,1 and
k\ • • • kru^} • • • M]"1 must be identical. But this contradicts the hypothesis that
the two words for g in (6.3) are in left normal form.

To see that m' = m and ri = n, just observe that, starting from any minimal
word for g, moving inverse generators from right to left as above to obtain a left
normal form, or moving them from left to right to get a right normal form, we
don't change the number of inverse generators present.

Write Sjtk for 5,-,*(l), where 1 is the identity element of F&. It is not hard to
prove by induction that 5,-,* is just the set of elements g e F& for which m = j
and n = k is the last lemma (one uses the fact that F^- embeds in Autn^A.?-) by
left multiplication).

Let w e Srs, where r, s > 0. Write

(6.4) w = ir---hj;1 • • • j - 1 = l;1 • • • i~% • • • *,

(the right and left normal forms of w). We can re-interpret Lemma 2.1 in the
current context as follows. For example, using the fact that v e Sjtk(u) if and
only if t> = M§ for some £ € S,-,*, the second part of Lemma 2.1 (a) becomes:

Let w € SrtS be as in (6.4), where r, s > 1. Let x e P. Then one of the
following three mutually exclusive possibilities occurs:
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(a) x = ls; then l(xw) = l(w) — 1 and xw e 5rs_i.
(b) x ^ ls but ir e A(x); then l(xw) = l(w) and xw e Sr-\,s+i- This holds for

exactly q JC'S.
(c) ir £ A.(*); then l(xw) = /(to) + 1 and xw € Sr+l s. This holds for exactly

q2x's.

NOTATION. It is convenient to work in the group algebra C(IV) of T&, and
to use the non-normalized convolution operators / i-» x+ * f a nd / i-> X~ * />
where

and x ^

Let K; e 5 r j , where r, s > 0. With notation as in (6.4), if 5 > 1, write

and if r > 1, write

w* = «V-i • • - i iyf1- • • / T 1 m d w** = l;l---lilki---kr_i ( e 5 r . , , s ) .

LEMMA 6.3. Let w e 5r,s, as in (6.4), where r > 0 a/i<i s > 1. Le/ fo

C(rV), and for n > 1 to

j E V '1 £" V
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where the sums are over the Xj's, yt's, Uj's and Vj's in P for which all the terms
in the sums are in normal form, as written. Then for n > 1 we can write

+ (X'(8i+- • -+gn) ~ (gl+- • -+gn)X')

(6.5) q

where /o = 0, and, for r > 1, fr is a linear combination of2q terms of the form
£; — r)i, where §,, ??, e Sr-\,s+i, and where

Vnll

C n = ^ x n + i • • • x i i r - - - i j [ l • • • j ' 1 v ^ 1 ••• i T 1

D» = Yl"«"' • • • " ^ ~ ' • • • l i l k i • • • k r y i • • • y n + i

En = ^ x x u ' 1 • • • u~H;x • • • l~xkx • • • kryx • • • yn

r V

and where again the sums are over the Xj's, yi's, ut's and vt's for which all the
terms in the sums are in normal form, as written, except that in En we sum over
X\ and over the ut's and yi's so that u~l • • • u\lljl • • • /f '&i • • • kry{ • • • yn is in
normal form and xx ^ un, and in Fn, we sum over yx and over the Vi's and xt's
so that xn • • • x\ir • • • i\j\l • • • j^lV[l • • • v~l is in normal form and yi ^ vn.

PROOF. We first derive this formula when n = 1. The calculation is then
slightly different in the cases r = 0 and r > 1, as we shall see. Now

x+/o - fox+ = C , • • • /r'*i • • • *r - iv •

= w'- w" + E0- Fo

(where the sums are over JCI such that X\ ^ ls and over yi such that yi ^ js).
Next,
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and so

+ / i - fiX+

= 2 \q E M ^ / r

«v • • • iji1 • • • j7l ~ ^ E X i i r ' • • '^ ' r 1 • • • irlv

o + ^Cl + D o + ^ 1 - C o - ^ / 7 l - ^ ° - ^ D l ) ' say-
Here the ranges of the sums are as explained above. Some comment is needed
for the sums Po and Qo. Assume that r > 1. Given u\ e P, we have

i{(x2,xl)eP2:(x2,xl,ul)&^ and ir

So the sum f0 is over u\, v\ e f for which /s ^ A.(u!) and u\ ^ ir. If however
r = 0,

tt{Cx2,.Xi) € P2 : (x2,xuui) € & and X! ̂  ji] = \

and so (l/q)P0 must be replaced by

q if«i € A.(;i)

(6.6) -
q,

the sums also extending over vx such that js £ Mt>i). Similarly, the sum in Qo

extends over u\, vx € P for which ui £ X(ls) and v\ ^ kr, but when r = 0,
—(l/?)Qo must be replaced by

(6.7) -1 £ ^ v - z r v - ^ E -rV-TV

the sums also extending over «j such that u\ £ X(ls). Also, when r — 0,

Co = ^ ^ ^iy'i • • • j s
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so that Co = EQ because j \ = ls. Similarly, Do = Fo when r = 0.
Next,

and so, whenr > 1,

X'g\ ~g\X~

2 1 2 > • • • h J i •••Jt yi + - l ^ 1 l ^ J v v

+ - £ «i~V • • • 'r1*1 • • • *'-' + -

= - I F 0 + -A! + -Ro + -Qo- So - -Po -Eo- - f i l l , say.
2i q q q q q q )

When r = 0, (l/q)R0 + (l/<?)2o must be replaced by

(6.8) I E «rV-/.'V + ; E -rV-TV

the sums also extending over U\ e P such that MJ ^ A(4). Also, —
(l/q)Po must be replaced by

(6.9)

the sums also extending over v\ e P such that js i
Suppose that r = 0. We've noted that Co = Eo and Z?o = Fo. Also, the first

parts of (6.6) and (6.9) cancel, as do the first parts of (6.7) and (6.8), and the
second parts of (6.6) and (6.7) cancel, as do the second parts of (6.8) and (6.9).
Combining these facts, we find that

(x+(fo + /i) ~ (/o + f\)X+) + {x~8\ ~ giX~)
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which is (6.5) for n — 1, r — 0 and / 0 = 0.

When r > 1, we obtain (6.5) for n = 1 when we set

fr = X-(E0 - Co) - ^(F o - Do) + ^ ( / ? 0 - So).

Using the Lemma 2.1, as re-interpreted after (6.4), we see that

X I XlW

is a sum of q elements of Sr_1>J+1. Similarly, Fo — Do is a sum of q elements
of Sr-ij+i. Thus fr is a sum of 2q terms c,(£, — ?j,), where c, = 1/2 for q i's,
and c, = l/2q for <? /'s.

One now proves (6.5) by induction on n, using the formula, valid if n > 1 for
any r > 0,

+ {X'gn + l ~ gn + \X~)

(B« - A") + 2^r(^- - cn + Fn - Em)

+ 2q2n+l (A"+l B"+i^ + 2q

which is derived by calculations similar to those for x+f\ ~ f\X+ a nd X~g\ ~g\X~-

LEMMA 6.4. Let r, s > 0, and let V (respectively, V*) denote the linear span
(in the group algebra) of the set of elements of the form w' — w" (respectively,
w* — w**), where w e 5r>J+i (respectively, w € Sr+i,j) (using the notation
defined before Lemma 6.3). Lett,,I, e Sr,s. Then ij - f is in V + V*.

PROOF. Write

and

Now the left normal form l~x • • • /f lk\ • • -kr of | is obtained from the right
normal form by 'passing the ./""s from right to left'. After v steps, where
0 < v < s, we have

S — ls ls-v+llr M ./i>+l Js
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and i<°> • • • if" = ir • • • M and / « • • • i{s) =k{---kr. N o w let j[~l • • • j ' s ~ l e 50>,

with y'j ^ Hj'i)- Consider

w = ir--- ziy'r1 • • • 7 7 ' y r 1 e 5r,s+i.

Then u; = l;li™ • • • i f ' V • • • J7l j[~\ and so

Repeating this, we find that

«vw)---irv---rtr1---^"1-^)-"'r^---rt
for v = 1 , . . . , 5. Adding, we have

(6. io) iv • • • i.y,-1 • • • y,-1 -*,••• ^ y r 1 • • • y r 1 e v .

Now suppose that £, | e 5 r j are as above, where s > 1, and that A;i • • • kr =
kx • •• kr. Pick j ' ~ l • • • j ' ~ l € S0>i with ; , , Js <£ k(j[), and we obtain (6.10) and
also
(6. i i ) ir • • • hKl • • • j ; 1 - * ! • • • Kf-X • • • y;-1

 € v .

Subtracting (6.11) from (6.10), we get £ — f e V". This, in particular, proves
the lemma when r = 0.

By an entirely analogous argument, one shows that if r > 1 and l~l • • • /J~' =
/" ' • • • / j " 1 , then f — f 6 V*, proving the lemma when 5 = 0, in particular. Now
if r, 5 > 1, pick k[ • • • k'r € 5r>0 such that kx ^ luli. Then the elements

and / ; ' • • • Vx
xk\ •••k'r-l;

1--- l^k\ • • • k'r are in V*, V* and V, respectively,

so their sum £ — £ is in V + V*.

PROOF OF THEOREM 6.1. Let / e / 2 ( I V ) be real valued and satisfy / * x+ =
X* * f and f * x — X~ * f- We must show that / is constant on each set
5 r j . Let | , | e 5 r i . We must show that (£ — f, / ) = 0. By the last lemma, we
may suppose that £ — f = u/ — u/', where u> e 5 r j + i , or £ — f = IU* — w**,
where u> e Sr+i,s- Because / * x+ = X+ * f and f * x~ = X~ * f •> where
/ ( JC) = / ( J C " 1 ) , and because (W1)* — (w")~l and (u>~')** = (w')~l, we may
suppose £ — f = w' — w", where w; e 5r,J+i. So let w; e 5r ; r , where s > 1, we
show that f(w') = f(.w").
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If we consider the inner product of / with both sides of (6.5), we see, using
(h, g) = h* f(e) = / * h(e), f * x+ = X+ * f and / * x~ = X~ * / , that

Now An, regarded as a function on T$-, is the characteristic function of a set
of q4" distinct elements in SV+n-i.s+n+i {{q2 + q)q2(2n~X) elements when r = 0).
Thus ||AJ|2 <jq2 + qq2n-\ and so

• ^ I /Wr -»• 0 as«-»oo
xeSr+n-l,,+. + l

Similarly, the terms involving Bn, Cn and Dn tend to 0. The terms in En and Fn

are slightly different. We can write En — XLtl€/> X\EXun, where

•••lilki---kryl---yn

the sum being over the «,'s and yt\ so that the terms are in normal form as
written and un ^ X\. Then

Because En is a linear combination of terms in Sr+n+iiS+n U 5r+n_i,J+n+i,
| (-sr^n^ / ) I —*• 0 as n -> oo. We can similarly deal with the term involving Fn.

V e thus obtain 0 = f(w') - f(w") + (fr, f) When r = 0, fQ = 0 and we
have / (u / ) = f(w"), so that we have proved that for any s > 0, if £i, £2 e S0,5,
then /(^i) = f(£i). Assume that r > 1 and that it has been proved that for
any n > 0 and for any £,, £2 € 5r_,,«, / ( f , ) = / (&) holds. Then {/r, / ) = 0
because of the form of fr. This completes the proof.

References

[1] K. S. Brown, Buildings (Springer, New York, 1989).
[2] D. I. Cartwright, A. M. Mantero, T. Steger and A. Zappa, 'Groups acting simply transitively

on the vertices of a building of type A2 V, Geom. Ded. 47 (1993), 143-166.
[3] , 'Groups acting simply transitively on the vertices of a building of type A2 II: the

cases q = 2 and q = 3' , Geom. Ded. 47 (1993), 167-223.



[39] Harmonic analysis for groups acting on triangle buildings 383

[4] M. G. Cowling and T. Steger, 'The irreducibility of restrictions of unitary representations
to lattices', J. Reine Angew. Math. 420 (1991), 85-98.

[5] A. Figa-Talamanca and C. Nebbia, Harmonic analysis and representation theory for groups
acting on homogeneous trees, London Math. Soc. Lecture Note Ser. 162 (Cambridge
University Press, Cambridge, 1991).

[6] A. Figa-Talamanca and M. A. Picardello, Harmonic analysis on free groups, Lect. Notes
Pure Appl. Math. 87 (Marcel Dekker, New York, 1983).

[7] I. G. Macdonald, Spherical functions on a group of p-adic type, Ramanujan Inst. Publica-
tions 2 (University of Madras, 1971).

[8] G. K. Pedersen, Analysis now, Graduate Texts in Math. 118 (Springer, New York, 1989).
[9] T. Pytlik, 'Radial functions on free groups and a decomposition of the regular representation

into irreducible components', / . Reine Angew. Math. 326 (1981), 124-135.
[10] M. Ronan, Lectures on Buildings, Perspect. in Math. 7 (Academic Press, New York, 1989).
[11] J-P. Serre, Trees (Springer-Verlag, New York, 1980).
[12] J. Tits, 'Spheres of radius 2 in triangle buildings. I', in: Finite geometries, buildings, and

related topics (eds. W. Kantor et al.) (Clarendon Press, Oxford, 1990) pp. 17-28.

School of Mathematics and Statistics Institute of Mathematics
The University of Sydney The University of Wroclaw
NSW 2006 pi. Grunwaldzki 2/4
Australia 50-384 Wroclaw

Poland


