IRREDUCIBLE REPRESENTATIONS OF FREE PRODUCTS
 OF INFINITE GROUPS

BY

WOJCIECH MŁOTKOWSKI (WROCŁAW)

1. Introduction. Let I be a nonempty index set and let $\left\{G_{i}\right\}_{i \in I}$ be a family of discrete groups. Then we can consider the free product group $G=*_{i \in I} G_{i}$ in which each element x can be uniquely represented as a reduced word

$$
\begin{equation*}
x=g_{1} g_{2} \ldots g_{n}, \quad n \geq 0, g_{k} \in G_{i_{k}} \backslash\{e\}, i_{1} \neq \ldots \neq i_{n} \tag{1}
\end{equation*}
$$

For such an element x we define its type as the formal word $t(x)=i_{1} i_{2} \ldots i_{n}$ and its length to be $|x|=n$, as introduced by J.-P. Serre in his book [Se]. A function f on G whose value $f(x)$ depends only on the type (resp. the length) of x will be called type-dependent (resp. radial).

Note in passing that if all G_{i} 's are isomorphic to the group \mathbb{Z} of integers then G can be regarded as the free group with I as the set of generators. In this case we can define another length putting $\ell(x)=\left|g_{1}\right|+\ldots+\left|g_{n}\right|$, where $\left|g_{k}\right|$ denotes the absolute value of the integer g_{k}. Then one can study radial functions and spherical functions with respect to ℓ as it was done in [FP1, 2 and PS].

Now let $\left\{P_{i}\right\}_{i \in I}$ be an arbitrary family of (not necessarily orthogonal) bounded projections on a Hilbert space H_{0}. We construct a representation π of G acting on a Hilbert space H containing H_{0} in such a way that for every $x \in G$ the restriction of $\pi(x)$ to H_{0} is $P_{i_{1}} \ldots P_{i_{n}}$, where $i_{1} \ldots i_{n}=t(x)$. Therefore if we pick a vector ζ_{0} lying in H_{0} then the corresponding coefficient $x \mapsto\left\langle\pi(x) \zeta_{0}, \zeta_{0}\right\rangle$ of π is a type-dependent function. The construction is presented in Section 2 where we also establish some relations between certain properties of the family $\left\{P_{i}\right\}_{i \in I}$ and those of π. In particular, if all P_{i} 's are orthogonal then π turns out to be unitary. The construction gains in interest in view of Theorem 3.3 which, together with Proposition 3.1, says that if all G_{i} 's are infinite then every type-dependent positive definite function on G is a coefficient of such a representation π.

[^0]In [M3] we have described the class of all type-dependent positive definite functions on G in the following way. For $i \in I$ define $\tau(i)=1 /\left(\left|G_{i}\right|-1\right)$. Then we endow the linear space of finitely supported functions on the set of types $S(I)=\left\{i_{1} \ldots i_{n}: n \geq 0, i_{k} \in I\right.$ and $\left.i_{1} \neq \ldots \neq i_{n}\right\}$ with a τ-convolution defined by

$$
\begin{equation*}
\delta_{i} *_{\tau} \delta_{i}=(1-\tau(i)) \delta_{i}+\tau(i) \delta_{e} \tag{i}
\end{equation*}
$$

where e denotes the empty word in $S(I)$ and

$$
\begin{equation*}
\delta_{i_{1}} *_{\tau} \ldots *_{\tau} \delta_{i_{n}}=\delta_{i_{1} \ldots i_{n}} \quad \text { for } n \geq 2, i_{k} \in I, i_{1} \neq \ldots i_{n} \tag{ii}
\end{equation*}
$$

and with an involution $f^{*}\left(i_{1} \ldots i_{n}\right):=\overline{f\left(i_{n} \ldots i_{1}\right)}$, thus obtaining a $*$-algebra $\mathcal{A}(\tau)$. A complex function ϕ on $S(I)$ is said to be τ-positive definite if $\sum_{u \in S(I)} \phi(u)\left(f^{*} *_{\tau} f\right)(u) \geq 0$ for any $f \in \mathcal{A}(\tau)$. In particular, if all G_{i} 's are infinite then $\tau \equiv 0$ and this notion coincides with the positive definiteness on $S(I)$ regarded as the free $*$-semigroup generated by I and defined by the relations $i i=i^{*}=i$ for $i \in I$ (cf. [BCR]). It was proved in [M3] that a type-dependent function (which obviously can be uniquely expressed as composition of a function ϕ on $S(I)$ and the type t), $t \circ \phi$, is positive definite on G if and only if ϕ is τ-positive definite on $S(I)$. This allows us to study functions on $S(I)$ instead of on G, in particular to prove positive definiteness of 1) spherical functions on the free product $\mathbb{Z}_{k} * \ldots * \mathbb{Z}_{k}$ of cyclic groups of the same order [M3, Theorem 5.8] (see [IP]) and 2) spherical functions on the free product $\mathbb{Z}_{r} * \mathbb{Z}_{s}$ of two cyclic groups [M3, Theorem 4.5] (see [CS]). The proofs use the fact that, having the index set I fixed, all the algebras $\mathcal{A}(\tau)$ are mutually isomorphic.

In this paper we prove that if all G_{i} 's are infinite and ϕ is an extreme point in the convex cone of type-dependent positive definite functions on $G=*_{i \in I} G_{i}$ then, in fact, ϕ is an extreme point in the convex cone of all positive definite functions on G, unless $\phi=c \delta_{e}, c>0$ (Theorem 3.3). The same question without the assumption that all G_{i} 's are infinite presents a more delicate problem (because the representations involved are more complicated) and will be studied in a forthcoming paper.

In Section 4 we construct a family $\pi_{z}, z \in \mathbb{C}$, of representations of $G=G_{1} * \ldots * G_{N}, N \geq 2$, related to a family $\left\{\zeta_{i}(z) \otimes \zeta_{i}(\bar{z})\right\}_{i=1}^{N}$ of onedimensional projections on \mathbb{C}^{N}. The radial function ϕ_{z} defined by

$$
\phi_{z}(x)= \begin{cases}1 & \text { for } x=e \\ z\left(\frac{N z-1}{N-1}\right)^{|x|-1} & \text { for } x \neq e\end{cases}
$$

turns out to be a coefficient of π_{w} if $w^{2}=z$. This function ϕ_{z} can be viewed as a spherical function on a free product $G=G_{1} * \ldots * G_{N}$ of infinite groups. Namely, let $G^{k}=G_{1}^{k} * \ldots * G_{N}^{k}$ be the free product of finite groups
of order k. Then a radial function ϕ_{z}^{k} is said to be spherical with eigenvalue z if $\phi_{z}^{k}(e)=1$ and $\phi_{z}^{k} * \mu_{1}=z \phi_{z}^{k}$, where μ_{1} denotes the probability measure equidistributed over the set $W_{1}^{k}=\left\{x \in G_{k}:|x|=1\right\}$ (see [IP]). Such a function is unique and given by $\phi_{z}^{k}(x)=P_{|x|}(z ; k, N)$, where $P_{n}(\cdot ; k, N)$ is a polynomial of degree n defined in [M2]. Now taking k to be infinite we cannot define spherical functions in the same way since the set W_{1}^{∞} is also infinite. But putting

$$
\phi_{z}^{\infty}(x)=\lim _{k \rightarrow \infty} P_{|x|}(z ; k, N)
$$

we get the function ϕ_{z}. For finite k the related representations were studied by Iozzi and Picardello [IP] and for $k=\infty$ by Wysoczański [W2] (see also Szwarc [Sz1]), whose construction was based on the ideas of Pytlik and Szwarc [PS] (cf. also [B1, FP1, FP2, Va and Sz2]). In the last section we prove that our representations π_{z} are topologically equivalent to those constructed by Wysoczański [W2].
2. The construction. Assume that $\left\{G_{i}\right\}_{i \in I}$ is a family of discrete groups, $G=*_{i \in I} G_{i}$, and $\left\{P_{i}\right\}_{i \in I}$ is a family of bounded (not necessarily orthogonal) projections in a fixed Hilbert space H_{0}. If $x \in G \backslash\{e\}$ is as in
(1) then we put $i(x)=i_{n}$. Define

$$
\begin{aligned}
& H=\left\{f: G \rightarrow H_{0}: \sum_{w \in G}\|f(w)\|^{2}<\infty\right. \text { and } \\
& \left.\qquad \quad \text { if } w \in G \backslash\{e\} \text { then } f(w) \in \operatorname{Ker} P_{i(w)}\right\} .
\end{aligned}
$$

For any $w \in G$ and any vector $\xi \in H_{0}$ lying in $\operatorname{Ker} P_{i(w)}$ whenever $w \neq e$, we denote by (w, ξ) the function in H which has the value ξ at w and 0 elsewhere. H_{w} will stand for the space of all functions in H vanishing outside $\{w\}$, i.e. the set of all admissible pairs (w, ξ). Then we have $H=\bigoplus_{w \in G} H_{w}$. By abuse of notation we shall identify H_{0} with $H_{e} \subseteq H$.

Now we are going to define a representation π of G acting on H. To do that, for every $i \in I, g \in G_{i} \backslash\{e\}$ and $f \in H$, we define

$$
\left(\pi_{i}(g) f\right)(w)= \begin{cases}f\left(g^{-1}\right)+P_{i} f(e) & \text { if } w=e \tag{2a}\\ \left(\operatorname{Id}-P_{i}\right) f(e) & \text { if } w=g \\ f\left(g^{-1} w\right) & \text { otherwise }\end{cases}
$$

or, in terms of the vectors (w, ξ),

$$
\pi_{i}(g)(w, \xi)= \begin{cases}\left(e, P_{i} \xi\right)+\left(g,\left(\operatorname{Id}-P_{i}\right) \xi\right) & \text { if } w=e \\ (g w, \xi) & \text { otherwise }\end{cases}
$$

Note in particular that $\left\|\pi_{i}(g)\right\| \leq\left\|P_{i}\right\|+\left\|\mathrm{Id}-P_{i}\right\|$. Putting $\pi_{i}(e)=\mathrm{Id}$ it is easy to see that π_{i} is a representation of the group G_{i}. More precisely, let P_{0} denote the orthogonal projection of H onto $H_{e}=H_{0}$ and set $T_{i}=P_{i} P_{0}$
(T_{i} is a projection of H onto $\operatorname{Im} P_{i}$). Then the operator $\pi_{i}(g)$ acts as the identity on $\operatorname{Im} T_{i}=\operatorname{Im} P_{i}$ and $\pi_{i}(g)$ acts in $\operatorname{Ker} T_{i}=\left(\operatorname{Ker} P_{i}\right) \oplus \bigoplus_{w \neq e} H_{w}$ as a multiple of the regular representation. Moreover, if P_{i} is orthogonal then the direct decomposition $H=\operatorname{Im} T_{i}+\operatorname{Ker} T_{i}$ is also orthogonal and the representation π_{i} of G_{i} is unitary.

In this way for every $i \in I$ we have defined a representation π_{i} of G_{i}. By the definition of the free product of groups (see [Se]) the π_{i} 's extend uniquely to a representation π of G. Namely,

$$
\begin{equation*}
\pi(x)=\pi_{i_{1}}\left(g_{1}\right) \ldots \pi_{i_{n}}\left(g_{n}\right) \tag{2b}
\end{equation*}
$$

if x is as in (1). Note that if all the projections P_{i} are orthogonal then we have $\pi(x)^{*}=\pi_{i_{n}}\left(g_{n}\right)^{*} \ldots \pi_{i_{1}}\left(g_{1}\right)^{*}=\pi_{i_{n}}\left(g_{n}^{-1}\right) \ldots \pi_{i_{1}}\left(g_{1}^{-1}\right)=\pi\left(x^{-1}\right)$ so π is unitary.

Lemma 2.1. If x is as in (1) and $\xi \in H_{0}$, then

$$
\pi(x)(e, \xi)=\left(e, P_{i_{1}} \ldots P_{i_{n}} \xi\right)+\sum_{k=1}^{n}\left(g_{1} \ldots g_{k},\left(\operatorname{Id}-P_{i_{k}}\right) P_{i_{k+1}} \ldots P_{i_{n}} \xi\right)
$$

Proof. If $n=0$ then the formula is obvious. Assume that it holds for elements of length n and pick x as in (1). We shall consider an element $g_{0} x$ of length $n+1$ with $g_{0} \in G_{i_{0}} \backslash\{e\}, i_{0} \neq i_{1}$. By our assumption and (2) we have

$$
\begin{aligned}
\pi\left(g_{0} x\right)(e, \xi)= & \pi\left(g_{0}\right)\left(e, P_{i_{1}} \ldots P_{i_{n}} \xi\right) \\
& +\sum_{k=1}^{n}\left(g_{0} g_{1} \ldots g_{k},\left(\operatorname{Id}-P_{i_{k}}\right) P_{i_{k+1}} \ldots P_{i_{n}} \xi\right) \\
= & \left(e, P_{i_{0}} P_{i_{1}} \ldots P_{i_{n}} \xi\right) \\
& +\sum_{k=0}^{n}\left(g_{0} g_{1} \ldots g_{k},\left(\operatorname{Id}-P_{i_{k}}\right) P_{i_{k+1}} \ldots P_{i_{n}} \xi\right)
\end{aligned}
$$

which completes the proof.
Let \mathcal{A} be a family of bounded operators on some Hilbert space. A closed subspace M is called invariant for \mathcal{A} if $A M \subseteq M$ for each $A \in \mathcal{A}$. Note that if M is invariant for \mathcal{A} then M^{\perp} is invariant for $\mathcal{A}^{*}=\left\{A^{*}: A \in \mathcal{A}\right\}$. The family \mathcal{A} is called topologically irreducible (cf. [Di]) if there is no nontrivial closed invariant subspace for \mathcal{A}. Hence if \mathcal{A} is irreducible then so is \mathcal{A}^{*}.

ThEOREM 2.2. Let $\left\{P_{i}\right\}_{i \in I}$ be a family of bounded projections in a fixed Hilbert space H_{0} and let π be the representation of $G=*_{i \in I} G_{i}$ defined by (2). Then
(i) if all P_{i} are orthogonal then π is unitary;
(ii) if $x \in G, t(x)=i_{1} \ldots i_{n}$ and $\xi \in H_{0}$ then $P_{0} \pi(x) \xi=P_{i_{1}} \ldots P_{i_{n}} \xi$, where P_{0} denotes the orthogonal projection of H onto H_{0};
(iii) if the family $\left\{P_{i}\right\}_{i \in I}$ is nontrivial (i.e. $P_{i} \neq 0$ for some $i \in I$) and topologically irreducible (on H_{0}) then π is also topologically irreducible (on $H)$ provided that all G_{i} 's are infinite;
(iv) assume that $\left\|\left(\operatorname{Id}-P_{i_{0}}\right) P_{i_{1}} \ldots P_{i_{n}}\right\| \leq a_{n}$ and $\left\|P_{i_{1}} \ldots P_{i_{n}}\right\| \leq a_{n}$ for any $n \geq 0$ and any sequence $i_{0}, i_{1}, \ldots, i_{n} \in I$ satisfying $i_{0} \neq i_{1} \neq \ldots \neq i_{n}$; then

$$
\begin{equation*}
\|\pi(x)\| \leq \sum_{s=0}^{|x|} a_{s} \tag{3}
\end{equation*}
$$

In particular, if the series $\sum a_{n}$ is convergent then π is uniformly bounded.
Proof. We have already noted statement (i). Moreover, (ii) is a consequence of Lemma 2.1. Assume that the family of projections $\left\{P_{i}\right\}_{i \in I}$ on H_{0} is nontrivial and irreducible and that all G_{i} 's are infinite. For each $i \in I$ let $\left\{g_{k, i}\right\}_{k=1}^{\infty}$ be a sequence of distinct elements of the group G_{i}. For any $i \in I$ and a natural number n define the operator $T_{n, i}$ on H by

$$
T_{n, i}=\frac{1}{n} \sum_{k=1}^{n} \pi\left(g_{k, i}\right)
$$

Then $\left\|T_{n, i}\right\| \leq\left\|P_{i}\right\|+\left\|\mathrm{Id}-P_{i}\right\|$. Moreover, for $\xi \in H_{0}$,

$$
T_{n, i}(e, \xi)=\left(e, P_{i} \xi\right)+\frac{1}{n} \sum_{k=1}^{n}\left(g_{k, i},\left(\operatorname{Id}-P_{i}\right) \xi\right)
$$

and for any $w \neq e$ and any $(w, \xi) \in H_{w}$,

$$
T_{n, i}(w, \xi)=\frac{1}{n} \sum_{k=1}^{n}\left(g_{k, i} w, \xi\right)
$$

Now, fix $f \in H, \varepsilon>0$ and decompose $G=B_{0} \dot{\cup} B_{1} \dot{\cup} B_{2}$ and $f=f_{0}+f_{1}+f_{2}$, $\operatorname{supp} f_{s} \subseteq B_{s}$, in such a way that $B_{0}=\{e\}, B_{1}$ is finite and $\left\|f_{2}\right\| \leq \varepsilon\left(2\left\|P_{i}\right\|+\right.$ $\left.2\left\|\operatorname{Id}-P_{i}\right\|\right)^{-1}$. We obtain

$$
\begin{aligned}
\| T_{n, i} f- & \left(e, P_{i} f(e)\right) \| \\
& \leq\left\|T_{n, i}\left(e,\left(\operatorname{Id}-P_{i}\right) f(e)\right)\right\|+\sum_{w \in B_{1}}\left\|T_{n, i}(w, f(w))\right\|+\left\|T_{n, i} f_{2}\right\| \\
& \leq \frac{1}{\sqrt{n}}\left\|\left(\operatorname{Id}-P_{i}\right) f(e)\right\|+\frac{1}{\sqrt{n}} \sum_{w \in B_{1}}\|f(w)\|+\frac{\varepsilon}{2} \leq \varepsilon
\end{aligned}
$$

for n sufficiently large. Therefore the sequence $T_{n, i}$ is strongly convergent to the operator $T_{i}=P_{i} P_{0}$.

Let M be a closed subspace invariant for the representation π. Then $T_{n, i} M \subseteq M$ for all natural numbers n and so $T_{i} M \subseteq M$ for all $i \in I$. If $T_{i} M \neq\{0\}$ for some $i \in I$ then $M \cap H_{0}$ is a nonzero invariant subspace for the family $\left\{P_{i}\right\}_{i \in I}$ (as T_{i} restricted to H_{0} is just P_{i}) so $M \cap H_{0}=H_{0}$ and $H_{0} \subseteq M$. Then for any $x \in G$ and $(x, \xi) \in H_{x}$ we have $(x, \xi)=\pi(x)(e, \xi) \in$ M (as M is invariant). This implies $H_{x} \subseteq M$ for all $x \in G$ and so $M=H$.

Assume that $T_{i} M=\{0\}$ for all $i \in I$ and let $m: G \rightarrow H_{0}$ be any function in $M \subseteq H$. Then we have $0=T_{i} m=P_{i} P_{0} m=P_{i} m(e)$ for all $i \in I$. Since the subspace $\bigcap_{i \in I} \operatorname{Ker} P_{i}$ of H_{0} is invariant for $\left\{P_{i}\right\}_{i \in I}$ and the family is nontrivial we have $m(e)=0$. We are going to prove that $m(w)=0$ for all $w \in G$. Assume that this holds for all $m \in M$ and all $w \in G$ such that $|w|<n(n \geq 1)$. Take x as in (1). As $m(e)=0$ and M is invariant we have $m(x)=\left(\pi\left(g_{1}^{-1}\right) m\right)\left(g_{2} \ldots g_{n}\right)=0$.

We now turn to (iv). Let x be a fixed element as in (1) and for $1 \leq r \leq n$ put $w_{r}=x^{-1} g_{1} \ldots g_{r}=\left(g_{r+1} \ldots g_{n}\right)^{-1}$. By Lemma 2.1 we have

$$
\begin{aligned}
\pi(x)\left(w_{r}, \xi\right) & =\pi\left(g_{1} \ldots g_{r}\right)(e, \xi) \\
& =\left(e, P_{i_{1}} \ldots P_{i_{r}} \xi\right)+\sum_{k=1}^{r}\left(g_{1} \ldots g_{k},\left(\operatorname{Id}-P_{i_{k}}\right) P_{i_{k+1}} \ldots P_{i_{r}} \xi\right)
\end{aligned}
$$

and if w is none of $w_{r}, 1 \leq r \leq n$, then $\pi(x)(w, \xi)=(x w, \xi)$. Hence

$$
\begin{align*}
& (\pi(x) f)(w) \tag{4}\\
& \quad= \begin{cases}f\left(x^{-1}\right)+\sum_{r=1}^{n} P_{i_{1}} \ldots P_{i_{r}} f\left(w_{r}\right) & \text { if } w=e \\
\sum_{r=k}^{n}\left(\operatorname{Id}-P_{i_{k}}\right) P_{i_{k+1}} \ldots P_{i_{r}} f\left(w_{r}\right) & \text { if } w=g_{1} \ldots g_{k}, 1 \leq k \leq n, \\
f\left(x^{-1} w\right) & \text { otherwise. }\end{cases}
\end{align*}
$$

For $0 \leq s \leq n$ define the operator A_{s} acting on H in the following way:

$$
\left(A_{0} f\right)(w)= \begin{cases}\left(\operatorname{Id}-P_{i_{k}}\right) f\left(w_{k}\right) & \text { if } w=g_{1} \ldots g_{k}, 1 \leq k \leq n \\ f\left(x^{-1} w\right) & \text { otherwise }\end{cases}
$$

and if $1 \leq s \leq n$ then we put

$$
\begin{aligned}
& \left(A_{s} f\right)(w) \\
& \quad= \begin{cases}P_{i_{1}} P_{i_{2}} \ldots P_{i_{s}} f\left(w_{s}\right) & \text { if } w=e \\
\left(\operatorname{Id}-P_{i_{k}}\right) P_{i_{k+1}} \ldots P_{i_{k+s}} f\left(w_{k+s}\right) & \text { if } w=g_{1} \ldots g_{k}, 1 \leq k \leq n-s \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

(in particular, $\left(A_{n} f\right)(e)=P_{i_{1}} \ldots P_{i_{n}} f(e)$, and for $\left.w \neq e,\left(A_{n} f\right)(w)=0\right)$. Then $\left\|A_{s}\right\| \leq a_{s}$ and by (4), $\pi(x)=\sum_{s=0}^{n} A_{s}$, which gives us (3) and completes the proof.

Remark. Note that if $P_{i}=0$ for every $i \in I$ and $H_{0}=\mathbb{C}$ then π is just the regular representation of G, so the first assumption in (iii) is essential.

Corollary 2.3. Let $G=*_{i \in I} G_{i}$ and let $\left\{P_{i}\right\}_{i \in I}$ be a family of orthogonal projections in a Hilbert space H_{0}. Then
(a) the operator-valued function U on G given by $U(e)=\operatorname{Id}$ and $U(x)=$ $P_{i_{1}} \ldots P_{i_{n}}$ for x as in (1) is positive definite;
(b) for any vector $\xi_{0} \in H_{0}$ the complex-valued function $x \mapsto$ $\left\langle\xi_{0}, P_{i_{1}} \ldots P_{i_{n}} \xi_{0}\right\rangle$ for x as in (1) is positive definite.

Proof. The statement (a) is an obvious consequence of (i) and (ii) in Theorem 2.2 (see [NF, Theorem 7.1]) and it easily entails (b).

Remark. Let us note that the operator-valued function U is a free product function (see [Bo2]). Hence Corollary 2.4 can also be obtained as a consequence of [Bo2, Theorem 7.1].
3. The *-semigroup $S(I)$ and free product of infinite groups. Let I be a set and let $S(I)$ denote the set of all formal words of the form

$$
\begin{equation*}
u=i_{1} \ldots i_{n}, \quad \text { where } n \geq 0, i_{k} \in I, i_{1} \neq \ldots \neq i_{n} \tag{5}
\end{equation*}
$$

We shall regard $S(I)$ as a unital $*$-semigroup generated by I with the empty word e as unit and defined by the following relations:

$$
i i=i^{*}=i \quad \text { for any } i \in I
$$

In particular, if $u=i_{1} \ldots i_{n}$ and $v=j_{1} \ldots j_{m}$ then $u^{*}=i_{n} \ldots i_{1}$ and $u v=i_{1} \ldots i_{n} j_{2} \ldots j_{m}$ provided $n \neq 0 \neq m$ and $i_{n}=j_{1}$; otherwise $u v=$ $i_{1} \ldots i_{n} j_{1} \ldots j_{m}$.

Proposition 3.1. Let ϕ be a complex function on $S(I)$. Then ϕ is positive definite if and only if there exists a family $\left\{P_{i}\right\}_{i \in I}$ of orthogonal projections on some Hilbert space H_{0} and a vector $\zeta_{0} \in H_{0}$ such that for any $u=i_{1} \ldots i_{n} \in S(I)$,

$$
\phi(u)=\left\langle\zeta_{0}, P_{i_{1}} P_{i_{2}} \ldots P_{i_{n}} \zeta_{0}\right\rangle
$$

Proof. By [BCR, Theorem 4.1.14] it is enough to prove that if ϕ is positive definite then $|\phi(u)| \leq \phi(e)$ for any $u \in S(I)$. Let ϕ be a positive definite function on $S(I)$ and let $u=i_{1} \ldots i_{n} \in S(I)$. Then we set $u_{k}=i_{k+1} \ldots i_{n}, 0 \leq k \leq n$. By [BCR, Remark 4.1.6] for any $u, v \in$ $S(I)$ we have $\phi\left(u^{*} u\right) \geq 0$ and $\phi\left(v^{*} u\right) \phi\left(u^{*} v\right) \leq \phi\left(v^{*} v\right) \phi\left(u^{*} u\right)$. Therefore $\phi\left(u_{k+1}^{*} u_{k}\right) \phi\left(u_{k}^{*} u_{k+1}\right) \leq \phi\left(u_{k+1}^{*} u_{k+1}\right) \phi\left(u_{k}^{*} u_{k}\right)$ for $0 \leq k \leq n$. But $u_{k}^{*} u_{k+1}=$ $u_{k+1}^{*} u_{k}=u_{k}^{*} u_{k}$, hence $0 \leq \phi\left(u_{k}^{*} u_{k}\right) \leq \phi\left(u_{k+1}^{*} u_{k+1}\right)$. Since $u_{n}=e$ and $u_{0}=$ u we get $\phi\left(u^{*} u\right) \leq \phi(e)$. So $|\phi(u)|^{2}=\phi\left(e^{*} u\right) \phi\left(u^{*} e\right) \leq \phi(e) \phi\left(u^{*} u\right) \leq \phi^{2}(e)$.

Corollary 3.2. Let $\left\{G_{i}\right\}_{i \in I}$ be any family of groups, $G=*_{i \in I} G_{i}$ and let ϕ be a positive (resp. negative) definite function on the $*$-semigroup
$S(I)$. Then the composite function $\phi \circ t$ (i.e. $\phi \circ t(x)=\phi(t(x)))$ is positive (resp. negative) definite on G.

Proof. If ϕ is a positive definite function then by Corollary 2.3(b) so is $\phi \circ t$. Suppose that ϕ is negative definite on $S(I)$. Then, by Schoenberg's theorem (see [BCR, Theorem 3.2.2]) for any positive λ the function $\phi_{\lambda}=$ $\exp (-\lambda \phi)$ is positive definite on $S(I)$. Hence $\phi_{\lambda} \circ t$ is positive definite on G. Applying Schoenberg's theorem to $\phi_{\lambda} \circ t$ we see that $\phi \circ t$ is negative definite on G.

We conclude with the following theorem stating the correspondence between the class of positive definite functions on a free product of infinite groups and the class of positive definite functions on the $*$-semigroup $S(I)$. The first statement is in fact a special case of [M3, Theorem 3.2.]. Note that each type-dependent function on $G=\star_{i \in I} G_{i}$ can be uniquely expressed as a composition of the form $\phi \circ t$.

THEOREM 3.3. Let $\left\{G_{i}\right\}_{i \in I}$ be any family of infinite groups, $G=*_{i \in I} G_{i}$, and let ϕ be any complex function on $S(I)$. Then
(i) $\phi \circ t$ is positive (resp. negative) definite on G if and only if ϕ is positive (resp. negative) definite on $S(I)$;
(ii) if ϕ is an extreme point in the convex cone of positive definite functions on $S(I)$ and ϕ is not of the form $c \delta_{e}, c>0$, then $\phi \circ t$ is an extreme point in the convex cone of all positive definite functions on G.

Proof. (i) By the last corollary we need to show only one implication. Suppose that $\phi \circ t$ is positive definite. For any $i \in I$ and any natural number p we choose a subset $A(i, p)$ of $G_{i} \backslash\{e\}$ of cardinality p (recall that G_{i} 's are infinite). If $u=i_{1} \ldots i_{n} \in S(I)$ then we put

$$
A(u, p)=\left\{g_{1} \ldots g_{n} \in G: g_{k} \in A\left(i_{k}, p\right)\right\} .
$$

Note that $\operatorname{Card} A(u, p)=p^{|u|}$, where $|u|$ denotes the length of u. We are going to prove that for any $u, v \in S(I)$

$$
\begin{equation*}
S_{p}(u, v):=\sum_{\substack{x \in A(u, p) \\ y \in A(v, p)}} \phi\left(t\left(y^{-1} x\right)\right) p^{-|u|} p^{-|v|} \rightarrow \phi\left(v^{*} u\right) \tag{6}
\end{equation*}
$$

as $p \rightarrow \infty$. First of all, note that if x and y have the first letters distinct (though they may be of the same type) then $t\left(y^{-1} x\right)=t(y)^{*} t(x)$. Therefore if u and v have the first letters distinct or one of them is e then $S_{p}(u, v)=$ $\phi\left(v^{*} u\right)$. Suppose that $u=i_{1} \ldots i_{n} \neq e, v=j_{1} \ldots j_{m} \neq e$ and $i_{1}=j_{1}$ and let C denote the set of all pairs $(x, y) \in A(u, p) \times A(v, p)$ such that the first letters of x and y are the same. It is clear that $\operatorname{Card} C=p^{|u|+|v|-1}$. Then

$$
\begin{aligned}
\phi\left(t\left(y^{-1} x\right)\right)= & \phi\left(v^{*} u\right) \text { for }(x, y) \in A(u, p) \times A(v, p) \backslash C . \text { Hence } \\
\mid \phi\left(v^{*} u\right)- & \sum_{\substack{x \in A(u, p) \\
y \in A(v, p)}} \phi\left(t\left(y^{-1} x\right)\right) p^{-|u|} p^{-|v|} \mid \\
& =\left|p^{-1} \phi\left(v^{*} u\right)-\sum_{(x, y) \in C} \phi\left(t\left(y^{-1} x\right)\right) p^{-|u|} p^{-|v|}\right| \\
& \leq p^{-1}\left|\phi\left(v^{*} u\right)\right|+\sum_{(x, y) \in C}\left|\phi\left(t\left(y^{-1} x\right)\right)\right| p^{-|u|} p^{-|v|} \leq 2 p^{-1} \phi(e)
\end{aligned}
$$

(the last inequality holds because $|\phi(u)| \leq \phi(e)$ for any $u \in S(I)$, as $\phi \circ t$ is positive definite on G). This proves (6).

Now let u_{1}, \ldots, u_{m} be any distinct elements of $S(I)$ and let $\alpha_{1}, \ldots, \alpha_{m}$ be any complex numbers. We have to prove that

$$
\sum_{r, s=1}^{m} \phi\left(u_{s}^{*} u_{r}\right) \alpha_{r} \bar{\alpha}_{s} \geq 0 .
$$

For any natural number p we define the function f_{p} on G by

$$
f_{p}(x)= \begin{cases}\alpha_{r} p^{-|x|} & \text { if } x \in A\left(u_{r}, p\right) \text { for some } 1 \leq r \leq m \\ 0 & \text { otherwise }\end{cases}
$$

The function $\phi \circ t$ is positive definite on G and so using (6) we get

$$
\begin{aligned}
0 & \leq \sum_{x, y \in G} \phi\left(t\left(y^{-1} x\right)\right) f_{p}(x) \overline{f_{p}(y)} \\
& =\sum_{r, s=1}^{m} S_{p}\left(u_{r}, u_{s}\right) \alpha_{r} \bar{\alpha}_{s} \rightarrow \sum_{r, s=1}^{m} \phi\left(u_{s}^{*} u_{r}\right) \alpha_{r} \bar{\alpha}_{s}
\end{aligned}
$$

as $p \rightarrow \infty$ and so ϕ is positive definite on $S(I)$. In the case of a negative definite function we can apply Schoenberg's theorem as in the proof of Corollary 4.2.

Now suppose that ϕ is an extreme point in the convex cone of all positive definite functions on $S(I)$. Then ϕ is a matrix coefficient of an irreducible *-representation $\left(H_{0}, \pi\right)$ of $S(I)$. Hence for $u=i_{1} \ldots i_{n}$,

$$
\phi(u)=\left\langle\zeta_{0}, P_{i_{1}} \ldots P_{i_{n}} \zeta_{0}\right\rangle
$$

where $P_{i}=\pi(i)$ and $\left\{P_{i}\right\}_{i \in I}$ is an irreducible family of orthogonal projections on $H_{0}, \zeta_{0} \in H_{0}$. Since ϕ is not of the form $c \delta_{e}$ the family is nontrivial. By Theorem 2.2(i), (ii), $\phi \circ t$ is a coefficient of an irreducible unitary representation of G, which concludes the proof.

Remark. Note that the function δ_{e} is extreme on the $*$-semigroup $S(I)$ being its character but obviously δ_{e} is not extreme on G.
4. One-dimensional projections. In this section we will be concerned only with the case of one-dimensional projections. Let us start with the following

Proposition 4.1. Let H_{0} be a Hilbert space and for every $i \in I$ let P_{i} be a one-dimensional projection on H_{0}, i.e. $P_{i}(\xi)=\left(\zeta_{i} \otimes \eta_{i}\right) \xi=\left\langle\xi, \eta_{i}\right\rangle \zeta_{i}$, for some vectors ζ_{i}, η_{i} satisfying $\left\langle\zeta_{i}, \eta_{i}\right\rangle=1$. Then
(i) the family $\left\{P_{i}\right\}_{i \in I}$ is irreducible if and only if both the subsets $\left\{\zeta_{i}\right\}_{i \in I}$ and $\left\{\eta_{i}\right\}_{i \in I}$ are linearly dense and there is no nontrivial partition $I=I_{1} \cup I_{2}$ such that $\left\{\zeta_{i}: i \in I_{1}\right\} \perp\left\{\eta_{i}: i \in I_{2}\right\}$;
(ii) for any $\zeta_{0}, \eta_{0} \in H_{0}$ and $i_{1}, i_{2}, \ldots, i_{n} \in I$,

$$
\left\langle\eta_{0}, P_{i_{1}} P_{i_{2}} \ldots P_{i_{n}} \zeta_{0}\right\rangle=\left\langle\eta_{0}, \zeta_{i_{1}}\right\rangle\left\langle\eta_{i_{1}}, \zeta_{i_{2}}\right\rangle\left\langle\eta_{i_{2}}, \zeta_{i_{3}}\right\rangle \ldots\left\langle\eta_{i_{n}}, \zeta_{0}\right\rangle ;
$$

(iii) for any $i_{1}, i_{2}, \ldots, i_{n} \in I$,

$$
\left\|P_{i_{1}} P_{i_{2}} \ldots P_{i_{n}}\right\|=\left\|\zeta_{i_{1}}\right\| \cdot\left|\left\langle\eta_{i_{1}}, \zeta_{i_{2}}\right\rangle\left\langle\eta_{i_{2}}, \zeta_{i_{3}}\right\rangle \ldots\left\langle\eta_{i_{n-1}}, \zeta_{i_{n}}\right\rangle\right| \cdot\left\|\eta_{i_{n}}\right\| .
$$

Proof. To see (i) we note that if one of the conditions is not satisfied then one of the invariant subspaces

$$
M_{1}=\left\langle\zeta_{i}: i \in I\right\rangle, \quad M_{2}=\left\langle\eta_{i}: i \in I\right\rangle^{\perp}, \quad M_{3}=\left\langle\zeta_{i}: i \in I_{1}\right\rangle
$$

is nontrivial (for $A \subseteq H_{0},\langle A\rangle$ denotes the closed subspace generated by A). Suppose that the conditions are satisfied and that M is a closed invariant subspace. Put $I_{1}=\left\{i \in I: P_{i} M \neq\{0\}\right\}, I_{2}=I \backslash I_{1}$. Then $\left\{\zeta_{i}: i \in I_{1}\right\} \subseteq M$ and $\left\{\eta_{i}: i \in I_{2}\right\} \perp M$ so one of I_{1}, I_{2} is empty and the subspace M must be trivial. By induction on n one can prove (ii), and (iii) is a consequence of (ii).

Combining Theorem 2.2 and Proposition 4.1 we obtain the following generalization of [Sz1, Corollary 1] (see [M3, Example 2.3.2])

Corollary 4.2. Let $\left\{v_{i}\right\}_{i \in I \cup\{0\}}$ be a family of unit vectors in a Hilbert space H_{0} and let $a_{i j}=\left\langle v_{i}, v_{j}\right\rangle, i, j \in I \cup\{0\}, G=*_{i \in I} G_{i}$. Then the function ϕ on G given by

$$
\phi(x)=a_{0 i_{1}} a_{i_{1} i_{2}} a_{i_{2} i_{3}} \ldots a_{i_{n} 0} \quad \text { for } x \text { as in (1), }
$$

$\phi(e)=1$, is positive definite. Moreover, if the family $\left\{v_{i}\right\}_{i \in I}$ is linearly dense in $H_{0},\left\langle v_{i}, v_{j}\right\rangle \neq 0$ for $i, j \in I$ and all G_{i} 's are infinite then ϕ is extreme.

From now on we restrict our attention to the following case. Let $I=$ $\{1, \ldots, N\}, N \geq 2$, and let ξ_{1}, \ldots, ξ_{N} be an orthonormal basis in $H_{0}=\mathbb{C}^{N}$. Then we put

$$
\zeta_{0}=\frac{1}{\sqrt{N}}\left(\xi_{1}+\ldots+\xi_{N}\right)
$$

and for $1 \leq i \leq N$,

$$
\zeta_{i}=\sqrt{\frac{N-1}{N}} \xi_{i}-\frac{1}{\sqrt{N(N-1)}} \sum_{\substack{j=1 \\ j \neq i}}^{N} \xi_{j} .
$$

It is easy to check that

$$
\left\langle\zeta_{i}, \zeta_{j}\right\rangle= \begin{cases}1 & \text { if } i=j \tag{7}\\ 0 & \text { if } i=0 \text { or } j=0 \text { and } i \neq j \\ -1 /(N-1) & \text { if } i \neq j, 1 \leq i, j \leq N\end{cases}
$$

(in particular $\zeta_{1}+\ldots+\zeta_{N}=0$). For $1 \leq i \leq N$ and for any fixed complex number z define

$$
\zeta_{i}(z)=z \zeta_{0}+\sqrt{1-z^{2}} \zeta_{i}
$$

(to avoid dealing with square roots of complex numbers one can substitute $z=\cos \alpha$ and $\left.\sqrt{1-z^{2}}=\sin \alpha, \alpha \in \mathbb{C}\right)$. Then, by $(7),\left\langle\zeta_{i}(z), \zeta_{i}(\bar{z})\right\rangle=1$ and for $i \neq j$,

$$
\begin{equation*}
\left\langle\zeta_{i}(z), \zeta_{j}(\bar{z})\right\rangle=z^{2}-\frac{1-z^{2}}{N-1}=\frac{N z^{2}-1}{N-1} \tag{8}
\end{equation*}
$$

In particular, $P_{i}=\zeta_{i}(z) \otimes \zeta_{i}(\bar{z})$ is a projection. Applying Theorem 2.2 and Proposition 4.1 we easily obtain

Theorem 4.3. Let $G=G_{1} * \ldots * G_{N}$ be a free product of arbitrary groups, $z \in \mathbb{C}$, and let π_{z} be the representation of G in \mathbb{C}^{N} given by the family $\left\{P_{i}=\zeta_{i}(z) \otimes \zeta_{i}(\bar{z})\right\}_{i=1}^{N}$ and defined by (2). Then
(i) if $z \in[-1,1]$ then π_{z} is unitary;
(ii) $\left\langle\pi_{z}(x) \zeta_{0}, \zeta_{0}\right\rangle= \begin{cases}1 & \text { if } x=e, \\ z^{2}\left(\frac{N z^{2}-1}{N-1}\right)^{|x|-1} & \text { if } x \neq e ;\end{cases}$
(iii) if all G_{i} are infinite, $z \in \mathbb{C}$ and $z^{2} \neq 0,1,1 / N$ then π_{z} is topologically irreducible;
(iv) if $z \in \mathbb{C}$ and $\left|N z^{2}-1\right|<N-1$ then π_{z} is uniformly bounded and for any $x \in G$,

$$
\left\|\pi_{z}(x)\right\| \leq\left(\left|z^{2}\right|+\left|1-z^{2}\right|\right)\left(1+\frac{\left|z^{2}\right|+\left|1-z^{2}\right|}{1-\left|\frac{N z^{2}-1}{N-1}\right|}\right)
$$

In particular, for $z \in[0,1]$ the function ϕ_{z} given by

$$
\phi_{z}(x)= \begin{cases}1 & \text { for } x=e \\ z\left(\frac{N z-1}{N-1}\right)^{|x|-1} & \text { for } x \neq e\end{cases}
$$

is a positive definite function on $G=G_{1} * \ldots * G_{N}$; it is an extreme positive definite function provided $z \neq 0,1 / N$ and all G_{i} 's are infinite.

Proof. If $z \in[-1,1]$ then P_{i} 's are orthogonal, which gives us (i). Both (ii) and (iii) are consequences of (8) because $\left\{\zeta_{i}(z)\right\}_{i=1}^{N}$ is a linear basis of H_{0} unless $z=0,1$ or -1 . Finally, by (8),
$\left\|P_{i_{1}} \ldots P_{i_{n}}\right\|=\left(\left|z^{2}\right|+\left|1-z^{2}\right|\right)\left|\frac{N z^{2}-1}{N-1}\right|^{n-1} \quad$ for $n \geq 1$ and $i_{1} \neq \ldots \neq i_{n}$.
Moreover, one can easily check that if P is a one-dimensional projection on a Hilbert space then $\|\mathrm{Id}-P\|=\|P\|$. Therefore, in the notation of Theorem $2.2(\mathrm{iv}), a_{0}=\left|z^{2}\right|+\left|1-z^{2}\right|$ and

$$
a_{n} \leq\left(\left|z^{2}\right|+\left|1-z^{2}\right|\right)^{2}\left|\frac{N z^{2}-1}{N-1}\right|^{n-1} \quad \text { for } n \geq 1
$$

which leads to (iv) and completes the proof.
Let us change our parameter putting

$$
u=\frac{N z^{2}-1}{N-1}, \quad \text { i.e. } \quad z^{2}=\frac{(N-1) u+1}{N}
$$

(this parametrization was used in [M1, Sz1, W1 and W2]). Writing $\Pi_{u}=\pi_{z}$ we can rephrase the last theorem as follows:

Theorem 4.3'. (i') If $u \in[-1 /(N-1), 1]$ then Π_{u} is unitary;
(ii') $\left\langle\Pi_{u}(x) \zeta_{0}, \zeta_{0}\right\rangle= \begin{cases}1 & \text { if } x=e, \\ \frac{(N-1) u+1}{N} u^{|x|-1} & \text { if } x \neq e ;\end{cases}$
(iii') if all G_{i} are infinite, $u \in \mathbb{C}$ and $u \neq 0,1,-1 /(N-1)$, then Π_{u} is irreducible;
(iv') if $|u|<1$ then Π_{u} is uniformly bounded and for any $x \in G$

$$
\begin{aligned}
\left\|\Pi_{u}(x)\right\| \leq & \frac{|(N-1) u+1|+(N-1)|1-u|}{N} \\
& \times\left(1+\frac{|(N-1) u+1|+(N-1)|1-u|}{N(1-|u|)}\right) .
\end{aligned}
$$

In particular, for $u \in[-1 /(N-1), 1]$ the function ψ_{u} given by

$$
\psi_{u}(x)= \begin{cases}1 & \text { for } x=e \\ \frac{(N-1) u+1}{N} u^{n-1} & \text { for } x \neq e,|x|=n\end{cases}
$$

is a positive definite function on $G=G_{1} * \ldots * G_{N}$; it is an extreme positive definite function provided $z \neq-1 /(N-1), 0$ and all G_{i} 's are infinite.

Remarks. (a) The positive definiteness of $\psi_{u}, u \in[-1 /(N-1), 1]$, was first proved in [M1] and the fact that for $u \neq-1 /(N-1), 0$ the function ψ_{u} is extreme is due to Szwarc [Sz1]. An analytic series of representations giving ψ_{u} 's as coefficients was constructed by Wysoczański [W1, W2]. In
the next section we will show that our series π_{z} is topologically equivalent to his.
(b) Let us mention that Wysoczański [W1] has proved that if $G=G_{1} *$ $\ldots * G_{N}$ and $|u|<1$ then

$$
\begin{align*}
\left\|\psi_{u}\right\|_{B_{2}} \leq & \frac{N-1}{N}|1-u| \tag{9}\\
& +\frac{|[(N-1) u+1](1-u)|}{N\left(1-\left|u^{2}\right|\right)}\left\{\left|u+\frac{1}{N-1}\right|+\frac{N-2}{N-1}\right\}
\end{align*}
$$

$\left(\|\cdot\|_{B_{2}}\right.$ denotes the norm in the algebra of Herz-Schur multipliers-see [BF] for instance) and that the equality holds provided all G_{i} are infinite.
5. Relation to Wysoczański's construction. In this section we prove that the representations π_{z} of $G=G_{1} * \ldots * G_{N}$ are equivalent to those studied by Wysoczański [W2]. Firstly we present a brief exposition of his construction. We will, however, change the parameter by substituting $\left(N z^{2}-1\right) /(N-1)$ instead of z in all formulas of [W2] indicating this by a tilde, so that $\widetilde{\pi}_{z}$ will stand for π_{u} of [W2], $u=\left(N z^{2}-1\right) /(N-1)$, while $\left(\pi_{z}, H\right)$ will denote the representations defined in the previous section.

Let

$$
X_{1}=\{(x, j): x \in G, j \in I \text { and if } x \neq e \text { then } j \neq i(x)\}
$$

(recall that for $x \neq e$ as in (1) we have defined $i(x)=i_{n}$; here and subsequently $I=\{1, \ldots, N\}, N \geq 2$). Then, for every $z \in \mathbb{C}, i \in I$, we define a representation $\widetilde{A}_{z}(g)$ of G_{i} acting on $\ell^{2}\left(X_{1}\right)$ putting $\widetilde{A}_{z}(e)=\mathrm{Id}$ and for $g \in G_{i} \backslash\{e\}$,

$$
\begin{align*}
& \widetilde{A}_{z}(g)(e, i)=(e, i), \tag{10a}\\
& \widetilde{A}_{z}(g)(e, j)=\frac{N z^{2}-1}{N-1}(e, i)+(g, j) \quad \text { if } j \neq i, \tag{10b}\\
& \widetilde{A}_{z}(g)\left(g^{-1}, j\right)=(e, j)-\frac{N z^{2}-1}{N-1}(e, i), \tag{10c}\\
& \widetilde{A}_{z}(g)(x, j)=(g x, j) \quad \text { if } x \neq e, g^{-1} \tag{10d}
\end{align*}
$$

(we will identify X_{1} with the natural orthonormal basis of $\ell^{2}\left(X_{1}\right)$). By the definition of the free product \widetilde{A}_{z} extends uniquely to the whole of G. From now on we assume that $z \neq 0,1,-1$. We define an operator \widetilde{V}_{z} acting on $\ell^{2}\left(X_{1}\right)$ by putting for $j \in I$,

$$
\begin{equation*}
\widetilde{V}_{z}(e, j)=(e, j)+\left(\frac{-1}{N}+\frac{1}{N z} \sqrt{\frac{1-z^{2}}{N-1}}\right) \sum_{k=1}^{N}(e, k) \tag{11a}
\end{equation*}
$$

and for $x \neq e$ such that $t(x)=i_{1} \ldots i_{n}$, and $j \neq i_{n}$,

$$
\begin{equation*}
\widetilde{V}_{z}(x, j)=(x, j)+\left(\frac{-1}{N-1}+\frac{1}{(N-1) z \sqrt{N}}\right) \sum_{k \neq i_{n}}(x, k) . \tag{11b}
\end{equation*}
$$

This operator is bounded, invertible [W2, Lemma 10] and

$$
\begin{align*}
& \widetilde{V}_{z}^{-1}(e, j)=(e, j)+\left(\frac{-1}{N}+\frac{z}{N} \sqrt{\frac{N-1}{1-z^{2}}}\right) \sum_{k=1}^{N}(e, k), \tag{12a}\\
& \widetilde{V}_{z}^{-1}(x, j)=(x, j)+\left(\frac{-1}{N-1}+\frac{z \sqrt{N}}{N-1}\right) \sum_{k \neq i_{n}}(x, k) . \tag{12b}
\end{align*}
$$

Now Wysoczański's family of representations of G is given by

$$
\widetilde{\pi}_{z}(x)=\widetilde{V}_{z}^{-1} \widetilde{A}_{z}(x) \widetilde{V}_{z}
$$

(see [W2, Theorem 11]). We are in a position to formulate the main result of this section stating that this construction is topologically equivalent to that presented in the previous section.

Theorem 5.1. Let $z \in \mathbb{C} \backslash\{0,1,-1\}$. Then there exists a bounded, invertible operator $T_{z}: \ell^{2}\left(X_{1}\right) \rightarrow H$ intertwining $\widetilde{\pi}_{z}$ and π_{z}. This operator satisfies $\left\|T_{z}\right\|=\sqrt{\left|z^{2}\right|+\left|1-z^{2}\right|},\left\|T_{z}^{-1}\right\|=1$ and is an isometry for $z \in$ $(-1,0) \cup(0,1)$.

Proof. Fix $z \in \mathbb{C} \backslash\{0,1,-1\}$. For any $i \in I, j \in I \backslash\{i\}$ we define a vector in $H_{0}=\mathbb{C}^{N}$ by

$$
\begin{align*}
\eta_{j}^{(i)}(z)= & \frac{1-z \sqrt{N}}{\sqrt{(N-1)\left(1-z^{2}\right)}}\left(\zeta_{0}-z \zeta_{i}(z)\right) \tag{13a}\\
& +\sqrt{\frac{N-1}{N\left(1-z^{2}\right)}}\left(\zeta_{j}(z)-\frac{N z^{2}-1}{N-1} \zeta_{i}(z)\right)
\end{align*}
$$

By the definition of $\zeta_{i}(z), \zeta_{j}(z)$ we have

$$
\begin{equation*}
\eta_{j}^{(i)}(z)=\sqrt{\frac{1-z^{2}}{N-1}} \zeta_{0}+\frac{1-z \sqrt{N}}{\sqrt{N(N-1)}} \zeta_{i}+\sqrt{\frac{N-1}{N}} \zeta_{j}, \tag{13b}
\end{equation*}
$$

or, more explicitly,

$$
\begin{aligned}
\eta_{j}^{(i)}(z)= & \left(\sqrt{\frac{1-z^{2}}{N(N-1)}}-\frac{z}{\sqrt{N}}\right) \xi_{i} \\
& +\left(\sqrt{\frac{1-z^{2}}{N(N-1)}}+\frac{z}{(N-1) \sqrt{N}}+\frac{N-2}{N-1}\right) \xi_{j}
\end{aligned}
$$

$$
+\left(\sqrt{\frac{1-z^{2}}{N(N-1)}}+\frac{z}{(N-1) \sqrt{N}}-\frac{1}{N-1}\right) \sum_{k \neq i, j} \xi_{k}
$$

By (7), (8) and (13a) we have $\left\langle\eta_{j}^{(i)}(z), \zeta_{i}(\bar{z})\right\rangle=0$. Moreover,

$$
\begin{equation*}
\left\langle\eta_{j}^{(i)}(z), \eta_{j}^{(i)}(z)\right\rangle=\frac{\left|z^{2}\right|+\left|1-z^{2}\right|-1}{N-1}+1 \tag{14a}
\end{equation*}
$$

and, if $N \geq 3, j, k \in I \backslash\{i\}, j \neq k$, then

$$
\begin{equation*}
\left\langle\eta_{j}^{(i)}(z), \eta_{k}^{(i)}(z)\right\rangle=\frac{\left|z^{2}\right|+\left|1-z^{2}\right|-1}{N-1} \tag{14b}
\end{equation*}
$$

(to see this one can use (7) and (13b)). Therefore for any linear combination $u=\sum_{j \neq i} \alpha_{j} \eta_{j}^{(i)}(z)$ we have

$$
\begin{equation*}
\langle u, u\rangle=\sum_{j \neq i}\left|\alpha_{j}\right|^{2}+\frac{\left|z^{2}\right|+\left|1-z^{2}\right|-1}{N-1}\left|\sum_{j \neq i} \alpha_{j}\right|^{2} \tag{15a}
\end{equation*}
$$

In particular, $\left\{\eta_{j}^{(i)}(z)\right\}_{j \neq i}$ is a linear basis of $\operatorname{Ker} P_{i}$ and for $z^{2} \in(0,1)$ this is an orthonormal basis. Using the Schwarz inequality we get

$$
\begin{equation*}
\langle u, u\rangle \leq\left(\left|z^{2}\right|+\left|1-z^{2}\right|\right) \sum_{j \neq i}\left|\alpha_{i}\right|^{2} \tag{15b}
\end{equation*}
$$

Fix $i \in I=\{1, \ldots, N\}$ and define $T_{i}: \ell^{2}(I \backslash\{i\}) \rightarrow \operatorname{Ker} P_{i}$ by putting $T_{i}(j)=\eta_{j}^{(i)}(z)$. By (15b) we have $\left\|T_{i}\right\| \leq \sqrt{\left|z^{2}\right|+\left|1-z^{2}\right|}$ and by (15a), T_{i} is invertible and $\left\|T_{i}^{-1}\right\| \leq 1$. It is easy to verify that both estimates are sharp. Now we define $T_{z}: \ell^{2}\left(X_{1}\right) \rightarrow H$ by

$$
\begin{equation*}
T_{z}(e, i)=\left(e, \xi_{i}\right) \tag{16a}
\end{equation*}
$$

(recall that $\left\{\xi_{1}, \ldots, \xi_{N}\right\}$ is the orthonormal basis of $H_{0}=\mathbb{C}^{N}$) and for $x \neq e$, $t(x)=i_{1} \ldots i_{n}$ and $j \neq i_{n}$,

$$
\begin{equation*}
T_{z}(x, j)=\left(x, \eta_{j}^{\left(i_{n}\right)}(z)\right) \tag{16b}
\end{equation*}
$$

Fix $x \neq e$ and assume that $t(x)=i_{1} \ldots i_{n}$. Then T_{z} maps $\ell^{2}(\{(x, j): j \in$ $\left.I \backslash\left\{i_{n}\right\}\right\}$ onto $H_{x} \cong \operatorname{Ker} P_{i_{n}}$ so that the restriction of T_{z} to $\ell^{2}(\{(x, j): j \in$ $\left.I \backslash\left\{i_{n}\right\}\right\}$ can be identified with $T_{i_{n}}$. Therefore $\left\|T_{z}\right\|=\sqrt{\left|z^{2}\right|+\left|1-z^{2}\right|}, T_{z}$ is invertible, $\left\|T_{z}^{-1}\right\|=1$ and for $z \in(0,1), T_{z}$ is an isometry.

Now we are going to prove that T_{z} intertwines $\widetilde{\pi}_{z}$ with π_{z}, i.e. $T_{z} \widetilde{\pi}_{z}(x)=$ $\pi_{z}(x) T_{z}$ for any $x \in G$. All we have to do is to check that for any $i \in I$, $g \in G_{i} \backslash\{e\}$ and $(x, j) \in X_{1}$,

$$
\begin{equation*}
T_{z} \widetilde{V}_{z}^{-1} \widetilde{A}_{z}(g)(x, j)=\pi_{z}(g) T_{z} \widetilde{V}_{z}^{-1}(x, j) \tag{17}
\end{equation*}
$$

We will need the following two formulas (cf. (12)):

$$
\begin{equation*}
\xi_{i}+\left(\frac{-1}{N}+\frac{z}{N} \sqrt{\frac{N-1}{1-z^{2}}}\right) \sum_{k=1}^{N} \xi_{k}=\sqrt{\frac{N-1}{N\left(1-z^{2}\right)}} \zeta_{i}(z) \tag{18}
\end{equation*}
$$

$i \in I$, and, for $j \neq i$,
(19) $\quad \eta_{j}^{(i)}(z)+\left(\frac{-1}{N-1}+\frac{z \sqrt{N}}{N-1}\right) \sum_{k \neq i} \eta_{k}^{(i)}(z)=\sqrt{\frac{N-1}{N\left(1-z^{2}\right)}}\left(\operatorname{Id}-P_{i}\right) \zeta_{j}(z)$.

The first formula is easy to check. To prove the second one recall that $\sum_{j=1}^{N} \zeta_{j}=0$. Hence, by (13b),

$$
\sum_{k \neq i} \eta_{k}^{(i)}(z)=\sqrt{(N-1)\left(1-z^{2}\right)} \zeta_{0}-z \sqrt{N-1} \zeta_{i}=\sqrt{\frac{N-1}{1-z^{2}}}\left(\zeta_{0}-z \zeta_{i}(z)\right)
$$

which, upon using (13a), easily leads to (19). Therefore for $j \in I$ we have

$$
\begin{equation*}
T_{z} \widetilde{V}_{z}^{-1}(e, j)=\sqrt{\frac{N-1}{N\left(1-z^{2}\right)}}\left(e, \zeta_{j}(z)\right) \tag{20}
\end{equation*}
$$

and for $x \neq e$ as in (1) and $j \neq i_{n}$,

$$
\begin{equation*}
T_{z} \tilde{V}_{z}^{-1}(x, j)=\sqrt{\frac{N-1}{N\left(1-z^{2}\right)}}\left(x,\left(\operatorname{Id}-P_{i_{n}}\right) \zeta_{j}(z)\right) \tag{21}
\end{equation*}
$$

Now we can prove (17). If $x=e, j=i$ then

$$
\begin{aligned}
T_{z} \widetilde{V}_{z}^{-1} \widetilde{A}_{z}(g)(e, i) & =T_{z} \widetilde{V}_{z}^{-1}(e, i)=\sqrt{\frac{N-1}{N\left(1-z^{2}\right)}}\left(e, \zeta_{i}(z)\right) \\
& =\sqrt{\frac{N-1}{N\left(1-z^{2}\right)}} \pi_{z}(g)\left(e, \zeta_{i}(z)\right)=\pi_{z}(g) T_{z} \widetilde{V}_{z}^{-1}(e, i)
\end{aligned}
$$

For $j \neq i$ we get

$$
\begin{aligned}
& T_{z} \widetilde{V}_{z}^{-1} \widetilde{A}_{z}(g)(e, j) \\
& \quad=T_{z} \widetilde{V}_{z}^{-1}\left(\frac{N z^{2}-1}{N-1}(e, i)+(g, j)\right) \\
& \quad=\frac{N z^{2}-1}{N-1} \sqrt{\frac{N-1}{N\left(1-z^{2}\right)}}\left(e, \zeta_{i}(z)\right)+\sqrt{\frac{N-1}{N\left(1-z^{2}\right)}}\left(g,\left(\operatorname{Id}-P_{i}\right) \zeta_{j}(z)\right) \\
& \quad=\sqrt{\frac{N-1}{N\left(1-z^{2}\right)}}\left[\left(e, P_{i} \zeta_{j}(z)\right)+\left(g,\left(\operatorname{Id}-P_{i}\right) \zeta_{j}(z)\right)\right]
\end{aligned}
$$

$$
=\sqrt{\frac{N-1}{N\left(1-z^{2}\right)}} \pi_{z}(g)\left(e, \zeta_{j}(z)\right)=\pi_{z}(g) T_{z} \widetilde{V}_{z}^{-1}(e, j) .
$$

Now take $x=g^{-1}$ and $j \neq i$. Then

$$
\begin{aligned}
T_{z} \widetilde{V}_{z}^{-1} \widetilde{A}_{z}(g)\left(g^{-1}, j\right) & =T_{z} \widetilde{V}_{z}^{-1}\left((e, j)-\frac{N z^{2}-1}{N-1}(e, i)\right) \\
& =\sqrt{\frac{N-1}{N\left(1-z^{2}\right)}}\left(e, \zeta_{j}(z)-\frac{N z^{2}-1}{N-1} \zeta_{i}(z)\right) \\
& =\sqrt{\frac{N-1}{N\left(1-z^{2}\right)}}\left(e,\left(\operatorname{Id}-P_{i}\right) \zeta_{j}(z)\right) \\
& =\pi_{z}(g) T_{z} \widetilde{V}_{z}^{-1}\left(g^{-1}, j\right)
\end{aligned}
$$

Finally, if $x \neq e, g^{-1}$ is as in (1) then

$$
\begin{aligned}
T_{z} \widetilde{V}_{z}^{-1} \widetilde{A}_{z}(g)(x, j) & =T_{z} \widetilde{V}_{z}^{-1}(g x, j) \\
& =\sqrt{\frac{N-1}{N\left(1-z^{2}\right)}}\left(g x,\left(\operatorname{Id}-P_{i_{n}}\right) \zeta_{j}(z)\right) \\
& =\sqrt{\frac{N-1}{N\left(1-z^{2}\right)}} \pi_{z}(g)\left(x,\left(\operatorname{Id}-P_{i_{n}}\right) \zeta_{j}(z)\right) \\
& =\pi_{z}(g) T_{z} \widetilde{V}_{z}^{-1}(x, j)
\end{aligned}
$$

which finishes the proof.
Remarks. 1) We have obtained the family $\pi_{z}, z \in \mathbb{C}$, of representations of the group $G=G_{1} * \ldots * G_{N}$ as a special case of the construction presented in Section 2. We could do this a little bit more generally taking for example $\left\{\zeta_{i}\left(z_{i}\right) \otimes \zeta_{i}\left(\bar{z}_{i}\right)\right\}_{i=1}^{N}, z_{i} \in \mathbb{C}$, as the initial family of projections, with z_{i} 's not necessarily all equal.
2) In view of Theorem 5.1 and Theorem $4.3(i v)$ we have, for any complex z satisfying $\left|N z^{2}-1\right|<N-1$, the following estimate of Wysoczański's representation:

$$
\left\|\widetilde{\pi}_{z}(x)\right\| \leq\left(\left|z^{2}\right|+\left|1-z^{2}\right|\right)^{3 / 2}\left(1+\frac{\left|z^{2}\right|+\left|1-z^{2}\right|}{1-\left|\frac{N z^{2}-1}{N-1}\right|}\right)
$$

Therefore, coming back to his parametrization, for $u \in \mathbb{C},|u|<1$, the right hand side of [W2, Theorem 11] can be replaced by

$$
\begin{aligned}
& \left(\frac{|(N-1) u+1|+(N-1)|1-u|}{N}\right)^{3 / 2} \\
& \quad \times\left(1+\frac{|(N-1) u+1|+(N-1)|1-u|}{N(1-|u|)}\right)
\end{aligned}
$$

or, as $|(N-1) u+1| \leq N|u|+|1-u|$, by

$$
(|u|+|1-u|)^{3 / 2} \frac{1+|1-u|}{1-|u|}
$$

which no longer depends on N.

REFERENCES

[BCR] C. Berg, J. P. R. Christensen and P. Ressel, Harmonic Analysis on Semigroups, Springer, 1984.
[B1] M. Bożejko, Uniformly bounded representations of free groups, J. Reine Angew. Math. 377 (1987), 170-186.
[B2] -, Positive-definite kernels, length functions on groups and a noncommutative von Neumann inequality, Studia Math. 95 (1989), 107-118.
[BF] M. Bożejko and G. Fendler, Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Boll. Un. Mat. Ital. D (6) 3-A (1984), 297-302.
[CS] D. I. Cartwright and P. M. Soardi, Harmonic analysis on the free product of two cyclic groups, J. Funct. Anal. 65 (1986), 147-171.
[Di] J. Dixmier, C ${ }^{*}$-algebras, North-Holland, Amsterdam, 1977.
[FP1] A. Figà-Talamanca and M. A. Picardello, Spherical functions and harmonic analysis on free groups, J. Funct. Anal. 47 (1982), 281-304.
[FP2] -, -, Harmonic Analysis on Free Groups, Lecture Notes in Pure and Appl. Math. 87, Dekker, New York, 1983.
[IP] A. Iozzi and M. A. Picardello, Spherical functions on symmetric graphs, in: Harmonic Analysis, Proc. Cortona 1982, Lecture Notes in Math. 992, Springer, 1983, 344-387.
[M1] W. Młotkowski, Positive definite radial functions on free product of groups, Boll. Un. Mat. Ital. (7) 2-B (1988), 53-66.
[M2] -, Positive definite functions on free product of groups, ibid. (7) 3-B (1989), 343-355.
[M3] -, Type-dependent positive definite functions on free products of groups, Colloq. Math. 64 (1993), 41-54.
[NF] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland, 1970.
[PS] T. Pytlik and R. Szwarc, An analytic family of uniformly bounded representations of free groups, Acta Math. 157 (1986), 286-309.
[Se] J.-P. Serre, Trees, Springer, Berlin, 1980.
[Sz1] R. Szwarc, Matrix coefficients of irreducible representations of free products of groups, Studia Math. 94 (1989), 179-185.
[Sz2] -, Groups acting on trees and approximation properties of the Fourier algebra, J. Funct. Anal. 95 (1991), 320-343.
[Va] A. Valette, Cocycles d'arbres et représentations uniformément bornées, C. R. Acad. Sci. Paris Sér. I 310 (1990), 703-708.
[W1] J. Wysoczański, Herz-Schur multipliers and uniformly bounded representations of free products of discrete groups, Ph.D. Thesis, Uniwersytet Wrocławski, 1990.
[W2] -, An analytic family of uniformly bounded representations of a free product of discrete groups, Pacific J. Math. 157 (1993), 373-387.

MATHEMATICAL INSTITUTE
UNIVERSITY OF WROCŁAW
PL. GRUNWALDZKI 2/4
50-384 WROCEAW, POLAND
E-mail: MLOTKOW@MATH.UNI.WROC.PL

Reçu par la Rédaction le 6.5.1994;
en version modifiée le 21.11.1994

[^0]: 1991 Mathematics Subject Classification: 43A65, 43A35.

