COLLOQUIUM MATHEMATICUM

VOL. LXIX

IRREDUCIBLE REPRESENTATIONS OF FREE PRODUCTS OF INFINITE GROUPS

BY

WOJCIECH MŁOTKOWSKI (WROCŁAW)

1. Introduction. Let I be a nonempty index set and let $\{G_i\}_{i \in I}$ be a family of discrete groups. Then we can consider the *free product group* $G = \underset{i \in I}{\star} G_i$ in which each element x can be uniquely represented as a *reduced word*

(1) $x = g_1 g_2 \dots g_n , \quad n \ge 0, \ g_k \in G_{i_k} \setminus \{e\}, \ i_1 \ne \dots \ne i_n.$

For such an element x we define its type as the formal word $t(x) = i_1 i_2 \dots i_n$ and its *length* to be |x| = n, as introduced by J.-P. Serre in his book [Se]. A function f on G whose value f(x) depends only on the type (resp. the length) of x will be called type-dependent (resp. radial).

Note in passing that if all G_i 's are isomorphic to the group \mathbb{Z} of integers then G can be regarded as the free group with I as the set of generators. In this case we can define another length putting $\ell(x) = |g_1| + \ldots + |g_n|$, where $|g_k|$ denotes the absolute value of the integer g_k . Then one can study radial functions and spherical functions with respect to ℓ as it was done in [FP1, 2 and PS].

Now let $\{P_i\}_{i \in I}$ be an arbitrary family of (not necessarily orthogonal) bounded projections on a Hilbert space H_0 . We construct a representation π of G acting on a Hilbert space H containing H_0 in such a way that for every $x \in G$ the restriction of $\pi(x)$ to H_0 is $P_{i_1} \ldots P_{i_n}$, where $i_1 \ldots i_n = t(x)$. Therefore if we pick a vector ζ_0 lying in H_0 then the corresponding coefficient $x \mapsto \langle \pi(x)\zeta_0, \zeta_0 \rangle$ of π is a type-dependent function. The construction is presented in Section 2 where we also establish some relations between certain properties of the family $\{P_i\}_{i \in I}$ and those of π . In particular, if all P_i 's are orthogonal then π turns out to be unitary. The construction gains in interest in view of Theorem 3.3 which, together with Proposition 3.1, says that if all G_i 's are infinite then every type-dependent positive definite function on Gis a coefficient of such a representation π .

¹⁹⁹¹ Mathematics Subject Classification: 43A65, 43A35.

In [M3] we have described the class of all type-dependent positive definite functions on G in the following way. For $i \in I$ define $\tau(i) = 1/(|G_i| - 1)$. Then we endow the linear space of finitely supported functions on the set of types $S(I) = \{i_1 \dots i_n : n \geq 0, i_k \in I \text{ and } i_1 \neq \dots \neq i_n\}$ with a τ -convolution defined by

(i)
$$\delta_i *_{\tau} \delta_i = (1 - \tau(i))\delta_i + \tau(i)\delta_e,$$

where e denotes the empty word in S(I) and

(ii)
$$\delta_{i_1} *_{\tau} \dots *_{\tau} \delta_{i_n} = \delta_{i_1 \dots i_n}$$
 for $n \ge 2, i_k \in I, i_1 \ne \dots i_n$,

and with an involution $f^*(i_1 \ldots i_n) := \overline{f(i_n \ldots i_1)}$, thus obtaining a *-algebra $\mathcal{A}(\tau)$. A complex function ϕ on S(I) is said to be τ -positive definite if $\sum_{u \in S(I)} \phi(u)(f^* *_{\tau} f)(u) \geq 0$ for any $f \in \mathcal{A}(\tau)$. In particular, if all G_i 's are infinite then $\tau \equiv 0$ and this notion coincides with the positive definiteness on S(I) regarded as the free *-semigroup generated by I and defined by the relations $ii = i^* = i$ for $i \in I$ (cf. [BCR]). It was proved in [M3] that a type-dependent function (which obviously can be uniquely expressed as composition of a function ϕ on S(I) and the type t), $t \circ \phi$, is positive definiteness of 1) spherical functions on the free product $\mathbb{Z}_k * \ldots * \mathbb{Z}_k$ of cyclic groups of the same order [M3, Theorem 5.8] (see [IP]) and 2) spherical functions on the free product $\mathbb{Z}_r * \mathbb{Z}_s$ of two cyclic groups [M3, Theorem 4.5] (see [CS]). The proofs use the fact that, having the index set I fixed, all the algebras $\mathcal{A}(\tau)$ are mutually isomorphic.

In this paper we prove that if all G_i 's are infinite and ϕ is an extreme point in the convex cone of *type-dependent* positive definite functions on $G = \bigstar_{i \in I} G_i$ then, in fact, ϕ is an extreme point in the convex cone of *all* positive definite functions on G, unless $\phi = c\delta_e$, c > 0 (Theorem 3.3). The same question without the assumption that all G_i 's are infinite presents a more delicate problem (because the representations involved are more complicated) and will be studied in a forthcoming paper.

In Section 4 we construct a family π_z , $z \in \mathbb{C}$, of representations of $G = G_1 * \ldots * G_N$, $N \geq 2$, related to a family $\{\zeta_i(z) \otimes \zeta_i(\overline{z})\}_{i=1}^N$ of onedimensional projections on \mathbb{C}^N . The radial function ϕ_z defined by

$$\phi_z(x) = \begin{cases} 1 & \text{for } x = e \\ z \left(\frac{Nz - 1}{N - 1} \right)^{|x| - 1} & \text{for } x \neq e, \end{cases}$$

turns out to be a coefficient of π_w if $w^2 = z$. This function ϕ_z can be viewed as a spherical function on a free product $G = G_1 * \ldots * G_N$ of infinite groups. Namely, let $G^k = G_1^k * \ldots * G_N^k$ be the free product of finite groups

of order k. Then a radial function ϕ_z^k is said to be *spherical* with eigenvalue z if $\phi_z^k(e) = 1$ and $\phi_z^k * \mu_1 = z\phi_z^k$, where μ_1 denotes the probability measure equidistributed over the set $W_1^k = \{x \in G_k : |x| = 1\}$ (see [IP]). Such a function is unique and given by $\phi_z^k(x) = P_{|x|}(z;k,N)$, where $P_n(\cdot;k,N)$ is a polynomial of degree n defined in [M2]. Now taking k to be infinite we cannot define spherical functions in the same way since the set W_1^∞ is also infinite. But putting

$$\phi_z^{\infty}(x) = \lim_{k \to \infty} P_{|x|}(z;k,N)$$

we get the function ϕ_z . For finite k the related representations were studied by Iozzi and Picardello [IP] and for $k = \infty$ by Wysoczański [W2] (see also Szwarc [Sz1]), whose construction was based on the ideas of Pytlik and Szwarc [PS] (cf. also [B1, FP1, FP2, Va and Sz2]). In the last section we prove that our representations π_z are topologically equivalent to those constructed by Wysoczański [W2].

2. The construction. Assume that $\{G_i\}_{i\in I}$ is a family of discrete groups, $G = \bigotimes_{i\in I} G_i$, and $\{P_i\}_{i\in I}$ is a family of bounded (not necessarily orthogonal) projections in a fixed Hilbert space H_0 . If $x \in G \setminus \{e\}$ is as in (1) then we put $i(x) = i_n$. Define

$$H = \left\{ f: G \to H_0 : \sum_{w \in G} \|f(w)\|^2 < \infty \text{ and} \right.$$

if $w \in G \setminus \{e\}$ then $f(w) \in \operatorname{Ker} P_{i(w)}$

For any $w \in G$ and any vector $\xi \in H_0$ lying in Ker $P_{i(w)}$ whenever $w \neq e$, we denote by (w,ξ) the function in H which has the value ξ at w and 0 elsewhere. H_w will stand for the space of all functions in H vanishing outside $\{w\}$, i.e. the set of all admissible pairs (w,ξ) . Then we have $H = \bigoplus_{w \in G} H_w$. By abuse of notation we shall identify H_0 with $H_e \subseteq H$.

Now we are going to define a representation π of G acting on H. To do that, for every $i \in I$, $g \in G_i \setminus \{e\}$ and $f \in H$, we define

(2a)
$$(\pi_i(g)f)(w) = \begin{cases} f(g^{-1}) + P_i f(e) & \text{if } w = e, \\ (\mathrm{Id} - P_i)f(e) & \text{if } w = g, \\ f(g^{-1}w) & \text{otherwise,} \end{cases}$$

or, in terms of the vectors (w, ξ) ,

(2a')
$$\pi_i(g)(w,\xi) = \begin{cases} (e, P_i\xi) + (g, (\mathrm{Id} - P_i)\xi) & \text{if } w = e, \\ (gw,\xi) & \text{otherwise.} \end{cases}$$

Note in particular that $\|\pi_i(g)\| \leq \|P_i\| + \|\mathrm{Id} - P_i\|$. Putting $\pi_i(e) = \mathrm{Id}$ it is easy to see that π_i is a representation of the group G_i . More precisely, let P_0 denote the orthogonal projection of H onto $H_e = H_0$ and set $T_i = P_i P_0$

 $(T_i \text{ is a projection of } H \text{ onto } \operatorname{Im} P_i)$. Then the operator $\pi_i(g)$ acts as the identity on $\operatorname{Im} T_i = \operatorname{Im} P_i$ and $\pi_i(g)$ acts in $\operatorname{Ker} T_i = (\operatorname{Ker} P_i) \oplus \bigoplus_{w \neq e} H_w$ as a multiple of the regular representation. Moreover, if P_i is orthogonal then the direct decomposition $H = \operatorname{Im} T_i + \operatorname{Ker} T_i$ is also orthogonal and the representation π_i of G_i is unitary.

In this way for every $i \in I$ we have defined a representation π_i of G_i . By the definition of the free product of groups (see [Se]) the π_i 's extend uniquely to a representation π of G. Namely,

(2b)
$$\pi(x) = \pi_{i_1}(g_1) \dots \pi_{i_n}(g_n)$$

if x is as in (1). Note that if all the projections P_i are orthogonal then we have $\pi(x)^* = \pi_{i_n}(g_n)^* \dots \pi_{i_1}(g_1)^* = \pi_{i_n}(g_n^{-1}) \dots \pi_{i_1}(g_1^{-1}) = \pi(x^{-1})$ so π is unitary.

LEMMA 2.1. If x is as in (1) and $\xi \in H_0$, then

$$\pi(x)(e,\xi) = (e, P_{i_1} \dots P_{i_n}\xi) + \sum_{k=1}^n (g_1 \dots g_k, (\mathrm{Id} - P_{i_k})P_{i_{k+1}} \dots P_{i_n}\xi).$$

Proof. If n = 0 then the formula is obvious. Assume that it holds for elements of length n and pick x as in (1). We shall consider an element g_0x of length n + 1 with $g_0 \in G_{i_0} \setminus \{e\}$, $i_0 \neq i_1$. By our assumption and (2) we have

$$\pi(g_0 x)(e,\xi) = \pi(g_0)(e, P_{i_1} \dots P_{i_n}\xi) + \sum_{k=1}^n (g_0 g_1 \dots g_k, (\mathrm{Id} - P_{i_k}) P_{i_{k+1}} \dots P_{i_n}\xi) = (e, P_{i_0} P_{i_1} \dots P_{i_n}\xi) + \sum_{k=0}^n (g_0 g_1 \dots g_k, (\mathrm{Id} - P_{i_k}) P_{i_{k+1}} \dots P_{i_n}\xi),$$

which completes the proof.

Let \mathcal{A} be a family of bounded operators on some Hilbert space. A closed subspace M is called *invariant* for \mathcal{A} if $AM \subseteq M$ for each $A \in \mathcal{A}$. Note that if M is invariant for \mathcal{A} then M^{\perp} is invariant for $\mathcal{A}^* = \{A^* : A \in \mathcal{A}\}$. The family \mathcal{A} is called *topologically irreducible* (cf. [Di]) if there is no nontrivial closed invariant subspace for \mathcal{A} . Hence if \mathcal{A} is irreducible then so is \mathcal{A}^* .

THEOREM 2.2. Let $\{P_i\}_{i \in I}$ be a family of bounded projections in a fixed Hilbert space H_0 and let π be the representation of $G = \underset{i \in I}{\bigstar} G_i$ defined by (2). Then (i) if all P_i are orthogonal then π is unitary;

(ii) if $x \in G$, $t(x) = i_1 \dots i_n$ and $\xi \in H_0$ then $P_0 \pi(x)\xi = P_{i_1} \dots P_{i_n}\xi$, where P_0 denotes the orthogonal projection of H onto H_0 ;

(iii) if the family $\{P_i\}_{i \in I}$ is nontrivial (i.e. $P_i \neq 0$ for some $i \in I$) and topologically irreducible (on H_0) then π is also topologically irreducible (on H) provided that all G_i 's are infinite;

(iv) assume that $\|(\mathrm{Id} - P_{i_0})P_{i_1} \dots P_{i_n}\| \leq a_n \text{ and } \|P_{i_1} \dots P_{i_n}\| \leq a_n \text{ for}$ any $n \geq 0$ and any sequence $i_0, i_1, \dots, i_n \in I$ satisfying $i_0 \neq i_1 \neq \dots \neq i_n$; then

(3)
$$\|\pi(x)\| \le \sum_{s=0}^{|x|} a_s.$$

In particular, if the series $\sum a_n$ is convergent then π is uniformly bounded.

Proof. We have already noted statement (i). Moreover, (ii) is a consequence of Lemma 2.1. Assume that the family of projections $\{P_i\}_{i \in I}$ on H_0 is nontrivial and irreducible and that all G_i 's are infinite. For each $i \in I$ let $\{g_{k,i}\}_{k=1}^{\infty}$ be a sequence of distinct elements of the group G_i . For any $i \in I$ and a natural number n define the operator $T_{n,i}$ on H by

$$T_{n,i} = \frac{1}{n} \sum_{k=1}^{n} \pi(g_{k,i}).$$

Then $||T_{n,i}|| \leq ||P_i|| + ||\mathrm{Id} - P_i||$. Moreover, for $\xi \in H_0$,

$$T_{n,i}(e,\xi) = (e, P_i\xi) + \frac{1}{n} \sum_{k=1}^n (g_{k,i}, (\mathrm{Id} - P_i)\xi)$$

and for any $w \neq e$ and any $(w, \xi) \in H_w$,

$$T_{n,i}(w,\xi) = \frac{1}{n} \sum_{k=1}^{n} (g_{k,i}w,\xi).$$

Now, fix $f \in H$, $\varepsilon > 0$ and decompose $G = B_0 \dot{\cup} B_1 \dot{\cup} B_2$ and $f = f_0 + f_1 + f_2$, supp $f_s \subseteq B_s$, in such a way that $B_0 = \{e\}$, B_1 is finite and $||f_2|| \leq \varepsilon (2||P_i|| + 2||\mathrm{Id} - P_i||)^{-1}$. We obtain

$$\begin{aligned} \|T_{n,i}f - (e, P_i f(e))\| \\ &\leq \|T_{n,i}(e, (\mathrm{Id} - P_i)f(e))\| + \sum_{w \in B_1} \|T_{n,i}(w, f(w))\| + \|T_{n,i}f_2\| \\ &\leq \frac{1}{\sqrt{n}} \|(\mathrm{Id} - P_i)f(e)\| + \frac{1}{\sqrt{n}} \sum_{w \in B_1} \|f(w)\| + \frac{\varepsilon}{2} \leq \varepsilon \end{aligned}$$

for n sufficiently large. Therefore the sequence $T_{n,i}$ is strongly convergent to the operator $T_i = P_i P_0$. Let M be a closed subspace invariant for the representation π . Then $T_{n,i}M \subseteq M$ for all natural numbers n and so $T_iM \subseteq M$ for all $i \in I$. If $T_iM \neq \{0\}$ for some $i \in I$ then $M \cap H_0$ is a nonzero invariant subspace for the family $\{P_i\}_{i \in I}$ (as T_i restricted to H_0 is just P_i) so $M \cap H_0 = H_0$ and $H_0 \subseteq M$. Then for any $x \in G$ and $(x,\xi) \in H_x$ we have $(x,\xi) = \pi(x)(e,\xi) \in M$ (as M is invariant). This implies $H_x \subseteq M$ for all $x \in G$ and so M = H.

Assume that $T_iM = \{0\}$ for all $i \in I$ and let $m : G \to H_0$ be any function in $M \subseteq H$. Then we have $0 = T_im = P_iP_0m = P_im(e)$ for all $i \in I$. Since the subspace $\bigcap_{i \in I} \operatorname{Ker} P_i$ of H_0 is invariant for $\{P_i\}_{i \in I}$ and the family is nontrivial we have m(e) = 0. We are going to prove that m(w) = 0 for all $w \in G$. Assume that this holds for all $m \in M$ and all $w \in G$ such that $|w| < n \ (n \ge 1)$. Take x as in (1). As m(e) = 0 and M is invariant we have $m(x) = (\pi(g_1^{-1})m)(g_2 \dots g_n) = 0$.

We now turn to (iv). Let x be a fixed element as in (1) and for $1 \le r \le n$ put $w_r = x^{-1}g_1 \dots g_r = (g_{r+1} \dots g_n)^{-1}$. By Lemma 2.1 we have

$$\pi(x)(w_r,\xi) = \pi(g_1 \dots g_r)(e,\xi)$$

= $(e, P_{i_1} \dots P_{i_r}\xi) + \sum_{k=1}^r (g_1 \dots g_k, (\mathrm{Id} - P_{i_k})P_{i_{k+1}} \dots P_{i_r}\xi)$

and if w is none of w_r , $1 \le r \le n$, then $\pi(x)(w,\xi) = (xw,\xi)$. Hence

$$(\pi(x)f)(w) = \begin{cases} f(x^{-1}) + \sum_{r=1}^{n} P_{i_1} \dots P_{i_r} f(w_r) & \text{if } w = e, \\ \sum_{\substack{n \\ r=k \\ f(x^{-1}w)}}^{n} (\text{Id} - P_{i_k}) P_{i_{k+1}} \dots P_{i_r} f(w_r) & \text{if } w = g_1 \dots g_k, \ 1 \le k \le n, \end{cases}$$

For $0 \leq s \leq n$ define the operator A_s acting on H in the following way:

$$(A_0 f)(w) = \begin{cases} (\mathrm{Id} - P_{i_k})f(w_k) & \text{if } w = g_1 \dots g_k, \ 1 \le k \le n \\ f(x^{-1}w) & \text{otherwise,} \end{cases}$$

and if $1 \leq s \leq n$ then we put

$$(A_s f)(w) = \begin{cases} P_{i_1} P_{i_2} \dots P_{i_s} f(w_s) & \text{if } w = e, \\ (\mathrm{Id} - P_{i_k}) P_{i_{k+1}} \dots P_{i_{k+s}} f(w_{k+s}) & \text{if } w = g_1 \dots g_k, \ 1 \le k \le n-s, \\ 0 & \text{otherwise} \end{cases}$$

(in particular, $(A_n f)(e) = P_{i_1} \dots P_{i_n} f(e)$, and for $w \neq e$, $(A_n f)(w) = 0$). Then $||A_s|| \leq a_s$ and by (4), $\pi(x) = \sum_{s=0}^n A_s$, which gives us (3) and completes the proof.

(4)

R e m a r k. Note that if $P_i = 0$ for every $i \in I$ and $H_0 = \mathbb{C}$ then π is just the regular representation of G, so the first assumption in (iii) is essential.

COROLLARY 2.3. Let $G = \underset{i \in I}{*} G_i$ and let $\{P_i\}_{i \in I}$ be a family of orthogonal projections in a Hilbert space H_0 . Then

(a) the operator-valued function U on G given by U(e) = Id and $U(x) = P_{i_1} \dots P_{i_n}$ for x as in (1) is positive definite;

(b) for any vector $\xi_0 \in H_0$ the complex-valued function $x \mapsto \langle \xi_0, P_{i_1} \dots P_{i_n} \xi_0 \rangle$ for x as in (1) is positive definite.

Proof. The statement (a) is an obvious consequence of (i) and (ii) in Theorem 2.2 (see [NF, Theorem 7.1]) and it easily entails (b).

Remark. Let us note that the operator-valued function U is a free product function (see [Bo2]). Hence Corollary 2.4 can also be obtained as a consequence of [Bo2, Theorem 7.1].

3. The *-semigroup S(I) and free product of infinite groups. Let I be a set and let S(I) denote the set of all formal words of the form

(5)
$$u = i_1 \dots i_n$$
, where $n \ge 0, i_k \in I, i_1 \ne \dots \ne i_n$

We shall regard S(I) as a unital *-semigroup generated by I with the empty word e as unit and defined by the following relations:

$$ii = i^* = i$$
 for any $i \in I$.

In particular, if $u = i_1 \dots i_n$ and $v = j_1 \dots j_m$ then $u^* = i_n \dots i_1$ and $uv = i_1 \dots i_n j_2 \dots j_m$ provided $n \neq 0 \neq m$ and $i_n = j_1$; otherwise $uv = i_1 \dots i_n j_1 \dots j_m$.

PROPOSITION 3.1. Let ϕ be a complex function on S(I). Then ϕ is positive definite if and only if there exists a family $\{P_i\}_{i \in I}$ of orthogonal projections on some Hilbert space H_0 and a vector $\zeta_0 \in H_0$ such that for any $u = i_1 \dots i_n \in S(I)$,

$$\phi(u) = \langle \zeta_0, P_{i_1} P_{i_2} \dots P_{i_n} \zeta_0 \rangle.$$

Proof. By [BCR, Theorem 4.1.14] it is enough to prove that if ϕ is positive definite then $|\phi(u)| \leq \phi(e)$ for any $u \in S(I)$. Let ϕ be a positive definite function on S(I) and let $u = i_1 \dots i_n \in S(I)$. Then we set $u_k = i_{k+1} \dots i_n$, $0 \leq k \leq n$. By [BCR, Remark 4.1.6] for any $u, v \in$ S(I) we have $\phi(u^*u) \geq 0$ and $\phi(v^*u)\phi(u^*v) \leq \phi(v^*v)\phi(u^*u)$. Therefore $\phi(u^*_{k+1}u_k)\phi(u^*_ku_{k+1}) \leq \phi(u^*_{k+1}u_{k+1})\phi(u^*_ku_k)$ for $0 \leq k \leq n$. But $u^*_ku_{k+1} =$ $u^*_{k+1}u_k = u^*_ku_k$, hence $0 \leq \phi(u^*_ku_k) \leq \phi(u^*_{k+1}u_{k+1})$. Since $u_n = e$ and $u_0 =$ u we get $\phi(u^*u) \leq \phi(e)$. So $|\phi(u)|^2 = \phi(e^*u)\phi(u^*e) \leq \phi(e)\phi(u^*u) \leq \phi^2(e)$.

COROLLARY 3.2. Let $\{G_i\}_{i \in I}$ be any family of groups, $G = \underset{i \in I}{\bigstar} G_i$ and let ϕ be a positive (resp. negative) definite function on the *-semigroup S(I). Then the composite function $\phi \circ t$ (i.e. $\phi \circ t(x) = \phi(t(x))$) is positive (resp. negative) definite on G.

Proof. If ϕ is a positive definite function then by Corollary 2.3(b) so is $\phi \circ t$. Suppose that ϕ is negative definite on S(I). Then, by Schoenberg's theorem (see [BCR, Theorem 3.2.2]) for any positive λ the function $\phi_{\lambda} = \exp(-\lambda\phi)$ is positive definite on S(I). Hence $\phi_{\lambda} \circ t$ is positive definite on G. Applying Schoenberg's theorem to $\phi_{\lambda} \circ t$ we see that $\phi \circ t$ is negative definite on G.

We conclude with the following theorem stating the correspondence between the class of positive definite functions on a free product of infinite groups and the class of positive definite functions on the *-semigroup S(I). The first statement is in fact a special case of [M3, Theorem 3.2.]. Note that each type-dependent function on $G = \bigstar_{i \in I} G_i$ can be uniquely expressed as a composition of the form $\phi \circ t$.

THEOREM 3.3. Let $\{G_i\}_{i \in I}$ be any family of infinite groups, $G = \underset{i \in I}{*} G_i$, and let ϕ be any complex function on S(I). Then

(i) $\phi \circ t$ is positive (resp. negative) definite on G if and only if ϕ is positive (resp. negative) definite on S(I);

(ii) if ϕ is an extreme point in the convex cone of positive definite functions on S(I) and ϕ is not of the form $c\delta_e$, c > 0, then $\phi \circ t$ is an extreme point in the convex cone of all positive definite functions on G.

Proof. (i) By the last corollary we need to show only one implication. Suppose that $\phi \circ t$ is positive definite. For any $i \in I$ and any natural number p we choose a subset A(i,p) of $G_i \setminus \{e\}$ of cardinality p (recall that G_i 's are infinite). If $u = i_1 \dots i_n \in S(I)$ then we put

$$A(u,p) = \{g_1 \dots g_n \in G : g_k \in A(i_k,p)\}.$$

Note that $\operatorname{Card} A(u,p) = p^{|u|}$, where |u| denotes the length of u. We are going to prove that for any $u, v \in S(I)$,

(6)
$$S_p(u,v) := \sum_{\substack{x \in A(u,p) \\ y \in A(v,p)}} \phi(t(y^{-1}x))p^{-|u|} p^{-|v|} \to \phi(v^*u)$$

as $p \to \infty$. First of all, note that if x and y have the first letters distinct (though they may be of the same type) then $t(y^{-1}x) = t(y)^*t(x)$. Therefore if u and v have the first letters distinct or one of them is e then $S_p(u, v) = \phi(v^*u)$. Suppose that $u = i_1 \dots i_n \neq e$, $v = j_1 \dots j_m \neq e$ and $i_1 = j_1$ and let C denote the set of all pairs $(x, y) \in A(u, p) \times A(v, p)$ such that the first letters of x and y are the same. It is clear that $\operatorname{Card} C = p^{|u|+|v|-1}$. Then $\phi(t(y^{-1}x)) = \phi(v^*u) \text{ for } (x,y) \in A(u,p) \times A(v,p) \setminus C. \text{ Hence}$

$$\begin{aligned} \left| \phi(v^*u) - \sum_{\substack{x \in A(u,p) \\ y \in A(v,p)}} \phi(t(y^{-1}x))p^{-|u|}p^{-|v|} \right| \\ &= \left| p^{-1}\phi(v^*u) - \sum_{(x,y) \in C} \phi(t(y^{-1}x))p^{-|u|}p^{-|v|} \right| \\ &\leq p^{-1} |\phi(v^*u)| + \sum_{(x,y) \in C} |\phi(t(y^{-1}x))|p^{-|u|}p^{-|v|} \leq 2p^{-1}\phi(e) \end{aligned}$$

(the last inequality holds because $|\phi(u)| \leq \phi(e)$ for any $u \in S(I)$, as $\phi \circ t$ is positive definite on G). This proves (6).

Now let u_1, \ldots, u_m be any distinct elements of S(I) and let $\alpha_1, \ldots, \alpha_m$ be any complex numbers. We have to prove that

$$\sum_{r,s=1}^{m} \phi(u_s^* u_r) \alpha_r \overline{\alpha}_s \ge 0.$$

For any natural number p we define the function f_p on G by

$$f_p(x) = \begin{cases} \alpha_r p^{-|x|} & \text{if } x \in A(u_r, p) \text{ for some } 1 \le r \le m, \\ 0 & \text{otherwise.} \end{cases}$$

The function $\phi \circ t$ is positive definite on G and so using (6) we get

$$0 \leq \sum_{x,y \in G} \phi(t(y^{-1}x))f_p(x)\overline{f_p(y)}$$
$$= \sum_{r,s=1}^m S_p(u_r, u_s) \alpha_r \overline{\alpha}_s \to \sum_{r,s=1}^m \phi(u_s^* u_r) \alpha_r \overline{\alpha}_s$$

as $p \to \infty$ and so ϕ is positive definite on S(I). In the case of a negative definite function we can apply Schoenberg's theorem as in the proof of Corollary 4.2.

Now suppose that ϕ is an extreme point in the convex cone of all positive definite functions on S(I). Then ϕ is a matrix coefficient of an irreducible *-representation (H_0, π) of S(I). Hence for $u = i_1 \dots i_n$,

$$\phi(u) = \langle \zeta_0, P_{i_1} \dots P_{i_n} \zeta_0 \rangle,$$

where $P_i = \pi(i)$ and $\{P_i\}_{i \in I}$ is an irreducible family of orthogonal projections on H_0 , $\zeta_0 \in H_0$. Since ϕ is not of the form $c\delta_e$ the family is nontrivial. By Theorem 2.2(i), (ii), $\phi \circ t$ is a coefficient of an irreducible unitary representation of G, which concludes the proof.

R e m a r k. Note that the function δ_e is extreme on the *-semigroup S(I) being its character but obviously δ_e is not extreme on G.

4. One-dimensional projections. In this section we will be concerned only with the case of one-dimensional projections. Let us start with the following

PROPOSITION 4.1. Let H_0 be a Hilbert space and for every $i \in I$ let P_i be a one-dimensional projection on H_0 , i.e. $P_i(\xi) = (\zeta_i \otimes \eta_i)\xi = \langle \xi, \eta_i \rangle \zeta_i$, for some vectors ζ_i, η_i satisfying $\langle \zeta_i, \eta_i \rangle = 1$. Then

(i) the family $\{P_i\}_{i\in I}$ is irreducible if and only if both the subsets $\{\zeta_i\}_{i\in I}$ and $\{\eta_i\}_{i\in I}$ are linearly dense and there is no nontrivial partition $I = I_1 \cup I_2$ such that $\{\zeta_i : i \in I_1\} \perp \{\eta_i : i \in I_2\}$;

(ii) for any $\zeta_0, \eta_0 \in H_0$ and $i_1, i_2, \ldots, i_n \in I$,

 $\langle \eta_0, P_{i_1} P_{i_2} \dots P_{i_n} \zeta_0 \rangle = \langle \eta_0, \zeta_{i_1} \rangle \langle \eta_{i_1}, \zeta_{i_2} \rangle \langle \eta_{i_2}, \zeta_{i_3} \rangle \dots \langle \eta_{i_n}, \zeta_0 \rangle;$

(iii) for any $i_1, i_2, \ldots, i_n \in I$,

$$\|P_{i_1}P_{i_2}\dots P_{i_n}\| = \|\zeta_{i_1}\| \cdot |\langle \eta_{i_1}, \zeta_{i_2}\rangle\langle \eta_{i_2}, \zeta_{i_3}\rangle \dots \langle \eta_{i_{n-1}}, \zeta_{i_n}\rangle| \cdot \|\eta_{i_n}\|$$

Proof. To see (i) we note that if one of the conditions is not satisfied then one of the invariant subspaces

$$M_1 = \langle \zeta_i : i \in I \rangle, \quad M_2 = \langle \eta_i : i \in I \rangle^{\perp}, \quad M_3 = \langle \zeta_i : i \in I_1 \rangle$$

is nontrivial (for $A \subseteq H_0$, $\langle A \rangle$ denotes the closed subspace generated by A). Suppose that the conditions are satisfied and that M is a closed invariant subspace. Put $I_1 = \{i \in I : P_i M \neq \{0\}\}, I_2 = I \setminus I_1$. Then $\{\zeta_i : i \in I_1\} \subseteq M$ and $\{\eta_i : i \in I_2\} \perp M$ so one of I_1, I_2 is empty and the subspace M must be trivial. By induction on n one can prove (ii), and (iii) is a consequence of (ii).

Combining Theorem 2.2 and Proposition 4.1 we obtain the following generalization of [Sz1, Corollary 1] (see [M3, Example 2.3.2])

COROLLARY 4.2. Let $\{v_i\}_{i\in I\cup\{0\}}$ be a family of unit vectors in a Hilbert space H_0 and let $a_{ij} = \langle v_i, v_j \rangle$, $i, j \in I \cup \{0\}$, $G = *_{i\in I} G_i$. Then the function ϕ on G given by

$$\phi(x) = a_{0i_1}a_{i_1i_2}a_{i_2i_3}\dots a_{i_n0} \quad \text{for } x \text{ as in } (1),$$

 $\phi(e) = 1$, is positive definite. Moreover, if the family $\{v_i\}_{i \in I}$ is linearly dense in H_0 , $\langle v_i, v_j \rangle \neq 0$ for $i, j \in I$ and all G_i 's are infinite then ϕ is extreme.

From now on we restrict our attention to the following case. Let $I = \{1, \ldots, N\}, N \ge 2$, and let ξ_1, \ldots, ξ_N be an orthonormal basis in $H_0 = \mathbb{C}^N$. Then we put

$$\zeta_0 = \frac{1}{\sqrt{N}} (\xi_1 + \ldots + \xi_N)$$

and for $1 \leq i \leq N$,

$$\zeta_i = \sqrt{\frac{N-1}{N}} \xi_i - \frac{1}{\sqrt{N(N-1)}} \sum_{\substack{j=1\\ j \neq i}}^N \xi_j.$$

It is easy to check that

(7)
$$\langle \zeta_i, \zeta_j \rangle = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i = 0 \text{ or } j = 0 \text{ and } i \neq j, \\ -1/(N-1) & \text{if } i \neq j, 1 \le i, j \le N \end{cases}$$

(in particular $\zeta_1 + \ldots + \zeta_N = 0$). For $1 \le i \le N$ and for any fixed complex number z define

$$\zeta_i(z) = z\zeta_0 + \sqrt{1 - z^2}\zeta_i$$

(to avoid dealing with square roots of complex numbers one can substitute $z = \cos \alpha$ and $\sqrt{1 - z^2} = \sin \alpha$, $\alpha \in \mathbb{C}$). Then, by (7), $\langle \zeta_i(z), \zeta_i(\overline{z}) \rangle = 1$ and for $i \neq j$,

(8)
$$\langle \zeta_i(z), \zeta_j(\overline{z}) \rangle = z^2 - \frac{1-z^2}{N-1} = \frac{Nz^2 - 1}{N-1}$$

In particular, $P_i = \zeta_i(z) \otimes \zeta_i(\overline{z})$ is a projection. Applying Theorem 2.2 and Proposition 4.1 we easily obtain

THEOREM 4.3. Let $G = G_1 * \ldots * G_N$ be a free product of arbitrary groups, $z \in \mathbb{C}$, and let π_z be the representation of G in \mathbb{C}^N given by the family $\{P_i = \zeta_i(z) \otimes \zeta_i(\overline{z})\}_{i=1}^N$ and defined by (2). Then

(i) if
$$z \in [-1, 1]$$
 then π_z is unitary;
(ii) $\langle \pi_z(x)\zeta_0, \zeta_0 \rangle = \begin{cases} 1 & \text{if } x = e, \\ z^2 \left(\frac{Nz^2 - 1}{N - 1}\right)^{|x| - 1} & \text{if } x \neq e; \end{cases}$

(iii) if all G_i are infinite, $z \in \mathbb{C}$ and $z^2 \neq 0, 1, 1/N$ then π_z is topologically irreducible;

(iv) if $z \in \mathbb{C}$ and $|Nz^2 - 1| < N - 1$ then π_z is uniformly bounded and for any $x \in G$,

$$\|\pi_z(x)\| \le (|z^2| + |1 - z^2|) \left(1 + \frac{|z^2| + |1 - z^2|}{1 - \left|\frac{Nz^2 - 1}{N - 1}\right|}\right).$$

In particular, for $z \in [0,1]$ the function ϕ_z given by

$$\phi_z(x) = \begin{cases} 1 & \text{for } x = e, \\ z \left(\frac{Nz - 1}{N - 1}\right)^{|x| - 1} & \text{for } x \neq e, \end{cases}$$

is a positive definite function on $G = G_1 * \ldots * G_N$; it is an extreme positive definite function provided $z \neq 0, 1/N$ and all G_i 's are infinite.

Proof. If $z \in [-1, 1]$ then P_i 's are orthogonal, which gives us (i). Both (ii) and (iii) are consequences of (8) because $\{\zeta_i(z)\}_{i=1}^N$ is a linear basis of H_0 unless z = 0, 1 or -1. Finally, by (8),

$$||P_{i_1} \dots P_{i_n}|| = (|z^2| + |1 - z^2|) \left| \frac{Nz^2 - 1}{N - 1} \right|^{n-1}$$
 for $n \ge 1$ and $i_1 \ne \dots \ne i_n$.

Moreover, one can easily check that if P is a one-dimensional projection on a Hilbert space then $\|\operatorname{Id} - P\| = \|P\|$. Therefore, in the notation of Theorem 2.2(iv), $a_0 = |z^2| + |1 - z^2|$ and

$$a_n \le (|z^2| + |1 - z^2|)^2 \left| \frac{Nz^2 - 1}{N - 1} \right|^{n-1}$$
 for $n \ge 1$,

which leads to (iv) and completes the proof.

Let us change our parameter putting

$$u = \frac{Nz^2 - 1}{N - 1}$$
, i.e. $z^2 = \frac{(N - 1)u + 1}{N}$

(this parametrization was used in [M1, Sz1, W1 and W2]). Writing $\Pi_u = \pi_z$ we can rephrase the last theorem as follows:

THEOREM 4.3'. (i') If
$$u \in [-1/(N-1), 1]$$
 then Π_u is unitary;
(ii') $\langle \Pi_u(x)\zeta_0, \zeta_0 \rangle = \begin{cases} 1 & \text{if } x = e, \\ \frac{(N-1)u+1}{N} u^{|x|-1} & \text{if } x \neq e; \end{cases}$

(iii') if all G_i are infinite, $u \in \mathbb{C}$ and $u \neq 0, 1, -1/(N-1)$, then Π_u is irreducible;

(iv') if |u| < 1 then Π_u is uniformly bounded and for any $x \in G$

$$\|\Pi_u(x)\| \le \frac{|(N-1)u+1| + (N-1)|1-u|}{N} \times \left(1 + \frac{|(N-1)u+1| + (N-1)|1-u|}{N(1-|u|)}\right)$$

In particular, for $u \in [-1/(N-1), 1]$ the function ψ_u given by

$$\psi_u(x) = \begin{cases} 1 & \text{for } x = e, \\ \frac{(N-1)u + 1}{N} u^{n-1} & \text{for } x \neq e, \ |x| = n. \end{cases}$$

is a positive definite function on $G = G_1 * \ldots * G_N$; it is an extreme positive definite function provided $z \neq -1/(N-1), 0$ and all G_i 's are infinite.

R e m a r k s. (a) The positive definiteness of ψ_u , $u \in [-1/(N-1), 1]$, was first proved in [M1] and the fact that for $u \neq -1/(N-1), 0$ the function ψ_u is extreme is due to Szwarc [Sz1]. An analytic series of representations giving ψ_u 's as coefficients was constructed by Wysoczański [W1, W2]. In the next section we will show that our series π_z is topologically equivalent to his.

(b) Let us mention that Wysoczański [W1] has proved that if $G=G_1*\ldots*G_N$ and |u|<1 then

(9)
$$\|\psi_u\|_{B_2} \leq \frac{N-1}{N} |1-u| + \frac{|[(N-1)u+1](1-u)|}{N(1-|u^2|)} \left\{ \left| u + \frac{1}{N-1} \right| + \frac{N-2}{N-1} \right\}$$

 $(\|\cdot\|_{B_2}$ denotes the norm in the algebra of Herz–Schur multipliers—see [BF] for instance) and that the equality holds provided all G_i are infinite.

5. Relation to Wysoczański's construction. In this section we prove that the representations π_z of $G = G_1 * \ldots * G_N$ are equivalent to those studied by Wysoczański [W2]. Firstly we present a brief exposition of his construction. We will, however, change the parameter by substituting $(Nz^2 - 1)/(N - 1)$ instead of z in all formulas of [W2] indicating this by a tilde, so that $\tilde{\pi}_z$ will stand for π_u of [W2], $u = (Nz^2 - 1)/(N - 1)$, while (π_z, H) will denote the representations defined in the previous section. Let

$$X_1 = \{(x, j) : x \in G, j \in I \text{ and if } x \neq e \text{ then } j \neq i(x)\}$$

(recall that for $x \neq e$ as in (1) we have defined $i(x) = i_n$; here and subsequently $I = \{1, \ldots, N\}, N \geq 2$). Then, for every $z \in \mathbb{C}, i \in I$, we define a representation $\widetilde{A}_z(g)$ of G_i acting on $\ell^2(X_1)$ putting $\widetilde{A}_z(e) = \text{Id}$ and for $g \in G_i \setminus \{e\}$,

(10a)
$$\widetilde{A}_z(g)(e,i) = (e,i),$$

(10b)
$$\widetilde{A}_{z}(g)(e,j) = \frac{Nz^{2}-1}{N-1}(e,i) + (g,j) \quad \text{if } j \neq i,$$

(10c)
$$\widetilde{A}_z(g)(g^{-1},j) = (e,j) - \frac{Nz^2 - 1}{N-1}(e,i)$$

(10d)
$$\widehat{A}_z(g)(x,j) = (gx,j)$$
 if $x \neq e, g^{-1}$

(we will identify X_1 with the natural orthonormal basis of $\ell^2(X_1)$). By the definition of the free product \widetilde{A}_z extends uniquely to the whole of G. From now on we assume that $z \neq 0, 1, -1$. We define an operator \widetilde{V}_z acting on $\ell^2(X_1)$ by putting for $j \in I$,

(11a)
$$\widetilde{V}_z(e,j) = (e,j) + \left(\frac{-1}{N} + \frac{1}{Nz}\sqrt{\frac{1-z^2}{N-1}}\right) \sum_{k=1}^N (e,k),$$

and for $x \neq e$ such that $t(x) = i_1 \dots i_n$, and $j \neq i_n$,

(11b)
$$\widetilde{V}_z(x,j) = (x,j) + \left(\frac{-1}{N-1} + \frac{1}{(N-1)z\sqrt{N}}\right) \sum_{k \neq i_n} (x,k).$$

This operator is bounded, invertible [W2, Lemma 10] and

(12a)
$$\widetilde{V}_z^{-1}(e,j) = (e,j) + \left(\frac{-1}{N} + \frac{z}{N}\sqrt{\frac{N-1}{1-z^2}}\right) \sum_{k=1}^N (e,k)$$

(12b)
$$\widetilde{V}_z^{-1}(x,j) = (x,j) + \left(\frac{-1}{N-1} + \frac{z\sqrt{N}}{N-1}\right) \sum_{k \neq i_n} (x,k).$$

Now Wysoczański's family of representations of G is given by

$$\widetilde{\pi}_z(x) = \widetilde{V}_z^{-1} \widetilde{A}_z(x) \widetilde{V}_z$$

(see [W2, Theorem 11]). We are in a position to formulate the main result of this section stating that this construction is topologically equivalent to that presented in the previous section.

THEOREM 5.1. Let $z \in \mathbb{C} \setminus \{0, 1, -1\}$. Then there exists a bounded, invertible operator $T_z : \ell^2(X_1) \to H$ intertwining $\tilde{\pi}_z$ and π_z . This operator satisfies $||T_z|| = \sqrt{|z^2| + |1 - z^2|}, ||T_z^{-1}|| = 1$ and is an isometry for $z \in (-1, 0) \cup (0, 1)$.

Proof. Fix $z \in \mathbb{C} \setminus \{0, 1, -1\}$. For any $i \in I, j \in I \setminus \{i\}$ we define a vector in $H_0 = \mathbb{C}^N$ by

(13a)
$$\eta_j^{(i)}(z) = \frac{1 - z\sqrt{N}}{\sqrt{(N-1)(1-z^2)}} (\zeta_0 - z\zeta_i(z)) + \sqrt{\frac{N-1}{N(1-z^2)}} \left(\zeta_j(z) - \frac{Nz^2 - 1}{N-1}\zeta_i(z)\right).$$

By the definition of $\zeta_i(z)$, $\zeta_j(z)$ we have

(13b)
$$\eta_j^{(i)}(z) = \sqrt{\frac{1-z^2}{N-1}}\zeta_0 + \frac{1-z\sqrt{N}}{\sqrt{N(N-1)}}\zeta_i + \sqrt{\frac{N-1}{N}}\zeta_j,$$

or, more explicitly,

$$\eta_j^{(i)}(z) = \left(\sqrt{\frac{1-z^2}{N(N-1)}} - \frac{z}{\sqrt{N}}\right)\xi_i + \left(\sqrt{\frac{1-z^2}{N(N-1)}} + \frac{z}{(N-1)\sqrt{N}} + \frac{N-2}{N-1}\right)\xi_j$$

$$+\left(\sqrt{\frac{1-z^2}{N(N-1)}} + \frac{z}{(N-1)\sqrt{N}} - \frac{1}{N-1}\right)\sum_{k\neq i,j}\xi_k$$

By (7), (8) and (13a) we have $\langle \eta_j^{(i)}(z), \zeta_i(\overline{z}) \rangle = 0$. Moreover,

(14a)
$$\langle \eta_j^{(i)}(z), \eta_j^{(i)}(z) \rangle = \frac{|z^2| + |1 - z^2| - 1}{N - 1} + 1,$$

and, if $N \ge 3$, $j, k \in I \setminus \{i\}$, $j \ne k$, then

(14b)
$$\langle \eta_j^{(i)}(z), \eta_k^{(i)}(z) \rangle = \frac{|z^2| + |1 - z^2| - 1}{N - 1}$$

(to see this one can use (7) and (13b)). Therefore for any linear combination $u = \sum_{i \neq i} \alpha_j \eta_i^{(i)}(z)$ we have

(15a)
$$\langle u, u \rangle = \sum_{j \neq i} |\alpha_j|^2 + \frac{|z^2| + |1 - z^2| - 1}{N - 1} \Big| \sum_{j \neq i} \alpha_j \Big|^2.$$

In particular, $\{\eta_j^{(i)}(z)\}_{j\neq i}$ is a linear basis of Ker P_i and for $z^2 \in (0, 1)$ this is an orthonormal basis. Using the Schwarz inequality we get

(15b)
$$\langle u, u \rangle \le (|z^2| + |1 - z^2|) \sum_{j \ne i} |\alpha_i|^2.$$

Fix $i \in I = \{1, \ldots, N\}$ and define $T_i : \ell^2(I \setminus \{i\}) \to \text{Ker } P_i$ by putting $T_i(j) = \eta_j^{(i)}(z)$. By (15b) we have $||T_i|| \leq \sqrt{|z^2| + |1 - z^2|}$ and by (15a), T_i is invertible and $||T_i^{-1}|| \leq 1$. It is easy to verify that both estimates are sharp. Now we define $T_z : \ell^2(X_1) \to H$ by

(16a)
$$T_z(e,i) = (e,\xi_i)$$

(recall that $\{\xi_1, \ldots, \xi_N\}$ is the orthonormal basis of $H_0 = \mathbb{C}^N$) and for $x \neq e$, $t(x) = i_1 \ldots i_n$ and $j \neq i_n$,

(16b)
$$T_z(x,j) = (x,\eta_j^{(i_n)}(z)).$$

Fix $x \neq e$ and assume that $t(x) = i_1 \dots i_n$. Then T_z maps $\ell^2(\{(x, j) : j \in I \setminus \{i_n\}\})$ onto $H_x \cong \operatorname{Ker} P_{i_n}$ so that the restriction of T_z to $\ell^2(\{(x, j) : j \in I \setminus \{i_n\}\})$ can be identified with T_{i_n} . Therefore $||T_z|| = \sqrt{|z^2| + |1 - z^2|}$, T_z is invertible, $||T_z^{-1}|| = 1$ and for $z \in (0, 1)$, T_z is an isometry.

Now we are going to prove that T_z intertwines $\tilde{\pi}_z$ with π_z , i.e. $T_z \tilde{\pi}_z(x) = \pi_z(x)T_z$ for any $x \in G$. All we have to do is to check that for any $i \in I$, $g \in G_i \setminus \{e\}$ and $(x, j) \in X_1$,

(17)
$$T_z \tilde{V}_z^{-1} \tilde{A}_z(g)(x,j) = \pi_z(g) T_z \tilde{V}_z^{-1}(x,j).$$

We will need the following two formulas (cf. (12)):

(18)
$$\xi_i + \left(\frac{-1}{N} + \frac{z}{N}\sqrt{\frac{N-1}{1-z^2}}\right)\sum_{k=1}^N \xi_k = \sqrt{\frac{N-1}{N(1-z^2)}}\zeta_i(z),$$

 $i \in I$, and, for $j \neq i$,

(19)
$$\eta_j^{(i)}(z) + \left(\frac{-1}{N-1} + \frac{z\sqrt{N}}{N-1}\right) \sum_{k \neq i} \eta_k^{(i)}(z) = \sqrt{\frac{N-1}{N(1-z^2)}} (\operatorname{Id} - P_i)\zeta_j(z).$$

The first formula is easy to check. To prove the second one recall that $\sum_{j=1}^{N} \zeta_j = 0$. Hence, by (13b),

$$\sum_{k \neq i} \eta_k^{(i)}(z) = \sqrt{(N-1)(1-z^2)}\zeta_0 - z\sqrt{N-1}\zeta_i = \sqrt{\frac{N-1}{1-z^2}}(\zeta_0 - z\zeta_i(z)),$$

which, upon using (13a), easily leads to (19). Therefore for $j \in I$ we have

(20)
$$T_z \widetilde{V}_z^{-1}(e,j) = \sqrt{\frac{N-1}{N(1-z^2)}} (e,\zeta_j(z));$$

and for $x \neq e$ as in (1) and $j \neq i_n$,

(21)
$$T_z \tilde{V}_z^{-1}(x, j) = \sqrt{\frac{N-1}{N(1-z^2)}} (x, (\mathrm{Id} - P_{i_n})\zeta_j(z)).$$

Now we can prove (17). If x = e, j = i then

$$T_z \tilde{V}_z^{-1} \tilde{A}_z(g)(e,i) = T_z \tilde{V}_z^{-1}(e,i) = \sqrt{\frac{N-1}{N(1-z^2)}} (e,\zeta_i(z))$$
$$= \sqrt{\frac{N-1}{N(1-z^2)}} \pi_z(g)(e,\zeta_i(z)) = \pi_z(g) T_z \tilde{V}_z^{-1}(e,i).$$

For $j \neq i$ we get

$$\begin{split} T_z \widetilde{V}_z^{-1} \widetilde{A}_z(g)(e,j) \\ &= T_z \widetilde{V}_z^{-1} \left(\frac{N z^2 - 1}{N - 1}(e,i) + (g,j) \right) \\ &= \frac{N z^2 - 1}{N - 1} \sqrt{\frac{N - 1}{N(1 - z^2)}} (e, \zeta_i(z)) + \sqrt{\frac{N - 1}{N(1 - z^2)}} (g, (\mathrm{Id} - P_i)\zeta_j(z)) \\ &= \sqrt{\frac{N - 1}{N(1 - z^2)}} [(e, P_i \zeta_j(z)) + (g, (\mathrm{Id} - P_i)\zeta_j(z))] \end{split}$$

$$= \sqrt{\frac{N-1}{N(1-z^2)}} \pi_z(g)(e,\zeta_j(z)) = \pi_z(g)T_z \widetilde{V}_z^{-1}(e,j)$$

Now take $x = g^{-1}$ and $j \neq i$. Then

$$T_{z}\widetilde{V}_{z}^{-1}\widetilde{A}_{z}(g)(g^{-1},j) = T_{z}\widetilde{V}_{z}^{-1}\left((e,j) - \frac{Nz^{2} - 1}{N - 1}(e,i)\right)$$
$$= \sqrt{\frac{N - 1}{N(1 - z^{2})}}\left(e,\zeta_{j}(z) - \frac{Nz^{2} - 1}{N - 1}\zeta_{i}(z)\right)$$
$$= \sqrt{\frac{N - 1}{N(1 - z^{2})}}(e,(\mathrm{Id} - P_{i})\zeta_{j}(z))$$
$$= \pi_{z}(g)T_{z}\widetilde{V}_{z}^{-1}(g^{-1},j).$$

Finally, if $x \neq e, g^{-1}$ is as in (1) then

$$\begin{split} T_z \widetilde{V}_z^{-1} \widetilde{A}_z(g)(x,j) &= T_z \widetilde{V}_z^{-1}(gx,j) \\ &= \sqrt{\frac{N-1}{N(1-z^2)}} (gx, (\mathrm{Id} - P_{i_n})\zeta_j(z)) \\ &= \sqrt{\frac{N-1}{N(1-z^2)}} \pi_z(g)(x, (\mathrm{Id} - P_{i_n})\zeta_j(z)) \\ &= \pi_z(g) T_z \widetilde{V}_z^{-1}(x,j), \end{split}$$

which finishes the proof.

R e m a r k s. 1) We have obtained the family $\pi_z, z \in \mathbb{C}$, of representations of the group $G = G_1 * \ldots * G_N$ as a special case of the construction presented in Section 2. We could do this a little bit more generally taking for example $\{\zeta_i(z_i) \otimes \zeta_i(\overline{z}_i)\}_{i=1}^N, z_i \in \mathbb{C}$, as the initial family of projections, with z_i 's not necessarily all equal.

2) In view of Theorem 5.1 and Theorem 4.3 (iv) we have, for any complex z satisfying $|Nz^2-1|\,<\,N-1,$ the following estimate of Wysoczański's representation:

$$\|\widetilde{\pi}_{z}(x)\| \leq (|z^{2}| + |1 - z^{2}|)^{3/2} \left(1 + \frac{|z^{2}| + |1 - z^{2}|}{1 - |\frac{Nz^{2} - 1}{N - 1}|}\right).$$

Therefore, coming back to his parametrization, for $u \in \mathbb{C}$, |u| < 1, the right hand side of [W2, Theorem 11] can be replaced by

$$\left(\frac{|(N-1)u+1| + (N-1)|1-u|}{N} \right)^{3/2} \times \left(1 + \frac{|(N-1)u+1| + (N-1)|1-u|}{N(1-|u|)} \right)$$

as $|(N-1)u+1| \le N|u| + |1-u|$, by

or,

$$(|u|+|1-u|)^{3/2}\frac{1+|1-u|}{1-|u|},$$

which no longer depends on N.

REFERENCES

- [BCR] C. Berg, J. P. R. Christensen and P. Ressel, Harmonic Analysis on Semigroups, Springer, 1984.
 - [B1] M. Bożejko, Uniformly bounded representations of free groups, J. Reine Angew. Math. 377 (1987), 170-186.
 - [B2] -, Positive-definite kernels, length functions on groups and a noncommutative von Neumann inequality, Studia Math. 95 (1989), 107-118.
 - [BF] M. Bożejko and G. Fendler, Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Boll. Un. Mat. Ital. D (6) 3-A (1984), 297-302.
 - [CS]D. I. Cartwright and P. M. Soardi, Harmonic analysis on the free product of two cyclic groups, J. Funct. Anal. 65 (1986), 147-171.
- J. Dixmier, C^* -algebras, North-Holland, Amsterdam, 1977. [Di]
- [FP1] A. Figà-Talamanca and M. A. Picardello, Spherical functions and harmonic analysis on free groups, J. Funct. Anal. 47 (1982), 281-304.
- [FP2]-, -, Harmonic Analysis on Free Groups, Lecture Notes in Pure and Appl. Math. 87, Dekker, New York, 1983.
- [IP]A. Iozzi and M. A. Picardello, Spherical functions on symmetric graphs, in: Harmonic Analysis, Proc. Cortona 1982, Lecture Notes in Math. 992, Springer, 1983, 344-387.
- [M1]W. Młotkowski, Positive definite radial functions on free product of groups, Boll. Un. Mat. Ital. (7) 2-B (1988), 53-66.
- [M2]-, Positive definite functions on free product of groups, ibid. (7) 3-B (1989), 343 - 355.
- [M3], Type-dependent positive definite functions on free products of groups, Colloq. Math. 64 (1993), 41-54.
- [NF] B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North-Holland, 1970.
- [PS]T. Pytlik and R. Szwarc, An analytic family of uniformly bounded representations of free groups, Acta Math. 157 (1986), 286–309.
- J.-P. Serre, Trees, Springer, Berlin, 1980. [Se]
- R. Szwarc, Matrix coefficients of irreducible representations of free products of [Sz1]groups, Studia Math. 94 (1989), 179-185.
- [Sz2], Groups acting on trees and approximation properties of the Fourier algebra, J. Funct. Anal. 95 (1991), 320-343.

- [Va] A. Valette, Cocycles d'arbres et représentations uniformément bornées, C. R. Acad. Sci. Paris Sér. I 310 (1990), 703–708.
- [W1] J. Wysoczański, Herz-Schur multipliers and uniformly bounded representations of free products of discrete groups, Ph.D. Thesis, Uniwersytet Wrocławski, 1990.
- [W2] —, An analytic family of uniformly bounded representations of a free product of discrete groups, Pacific J. Math. 157 (1993), 373–387.

MATHEMATICAL INSTITUTE UNIVERSITY OF WROCLAW PL. GRUNWALDZKI 2/4 50-384 WROCLAW, POLAND E-mail: MLOTKOW@MATH.UNI.WROC.PL

> Reçu par la Rédaction le 6.5.1994; en version modifiée le 21.11.1994