VOL. 123

2011

NO. 2

FREE POWERS OF THE FREE POISSON MEASURE

ВY

MELANIE HINZ and WOJCIECH MŁOTKOWSKI (Wrocław)

Abstract. We compute moments of the measures $(\varpi^{\boxtimes p})^{\boxplus t}$, where ϖ denotes the free Poisson law, and \boxplus and \boxtimes are the additive and multiplicative free convolutions. These moments are expressed in terms of the Fuss–Narayana numbers.

1. Introduction. Free convolution is a binary operation on the class \mathcal{M} of probability measures on \mathbb{R} , which corresponds to the notion of free independence in noncommutative probability (see [3, 8, 12]). Namely, if X, Y are free noncommuting random variables, with distributions $\mu, \nu \in \mathcal{M}$ respectively, then the additive free convolution $\mu \boxplus \nu$ is the distribution of the sum X + Y. Similarly, if moreover $X \ge 0$ then the multiplicative free convolution $\mu \boxtimes \nu$ can be defined as the distribution of the product $\sqrt{X}Y\sqrt{X}$.

Here we can confine ourselves to the class $\mathcal{M}^{\mathbf{c}}$ of compactly supported measures in \mathcal{M} . Let $\mathcal{M}^{\mathbf{c}}_+$ denote the class of those $\mu \in \mathcal{M}^{\mathbf{c}} \setminus \{\delta_0\}$ with support in $[0, \infty)$. For $\mu \in \mathcal{M}^{\mathbf{c}}$ we define its moment generating function

(1)
$$M_{\mu}(z) := \sum_{m=0}^{\infty} s_m(\mu) z^m,$$

defined in some neighborhood of 0, where

(2)
$$s_m(\mu) := \int_{\mathbb{R}} x^m \, d\mu(x)$$

is the *m*th moment of μ . Then we define its *R*-transform $R_{\mu}(z)$ by the equation

(3)
$$M_{\mu}(z) = R_{\mu}(zM_{\mu}(z)) + 1.$$

If $R_{\mu}(z) = \sum_{m=1}^{\infty} r_m(\mu) z^m$ then the numbers $r_m(\mu)$ are called the *free cu*mulants of μ . For $\mu, \nu \in \mathcal{M}^{\mathbf{c}}$ we define the *additive free convolution* $\mu \boxplus \nu$ and the *additive free power* $\mu^{\boxplus t}$ by

(4)
$$R_{\mu \boxplus \nu}(z) = R_{\mu}(z) + R_{\nu}(z)$$
 and $R_{\mu \boxplus t}(z) = tR_{\mu}(z).$

The latter is well defined at least for $t \ge 1$.

²⁰¹⁰ Mathematics Subject Classification: Primary 46L54; Secondary 44A60, 60C05.

Key words and phrases: additive and multiplicative free convolution, free Poisson distribution.

The free S-transform (see [11]) of $\mu \in \mathcal{M}^{\mathbf{c}}_{+}$ is defined by the relation

(5)
$$R_{\mu}(zS_{\mu}(z)) = z$$
 or $M_{\mu}(z(1+z)^{-1}S_{\mu}(z)) = 1+z.$

Observe that

(6)
$$S_{\mu^{\boxplus t}}(z) = \frac{1}{t} S_{\mu}\left(\frac{z}{t}\right).$$

If $\mu, \nu \in \mathcal{M}^{\mathbf{c}}$ and μ has support contained in $[0, \infty)$ then the *multiplicative* free convolution $\mu \boxtimes \nu$ and the multiplicative free powers $\mu^{\boxtimes p}$ are defined by

(7)
$$S_{\mu\boxtimes\nu}(z) := S_{\mu}(z)S_{\nu}(z) \text{ and } S_{\mu\boxtimes\rho}(z) = S_{\mu}(z)^{p}.$$

The powers are well defined at least for $p \ge 1$.

For $c \in \mathbb{R}$, $c \neq 0$, and $\mu \in \mathcal{M}$ we define the *dilation* $\mathbf{D}_c \mu \in \mathcal{M}$ by $\mathbf{D}_c \mu(X) := \mu(c^{-1}X)$ for every Borel subset X of \mathbb{R} . Then we have

(8)
$$M_{\mathbf{D}_c\mu}(z) = M_{\mu}(cz), \quad R_{\mathbf{D}_c\mu}(z) = R_{\mu}(cz), \quad S_{\mathbf{D}_c\mu}(z) = \frac{1}{c}S_{\mu}(z).$$

The last formula, together with (6), leads to

PROPOSITION 1.1. Assume that $\mu \in \mathcal{M}^{\mathbf{c}}_{+}$, p, t > 0 and both the measures $(\mu^{\oplus t})^{\otimes p}$ and $(\mu^{\otimes p})^{\oplus t}$ exist. Then

$$\mathbf{D}_{t^{p-1}}(\mu^{\boxtimes p})^{\boxplus t} = (\mu^{\boxplus t})^{\boxtimes p}.$$

Proof. If $S_{\mu}(z)$ is the free S-transform of μ then

$$\frac{1}{t}S_{\mu}\left(\frac{z}{t}\right)^{p}$$
 and $\frac{1}{t^{p}}S_{\mu}\left(\frac{z}{t}\right)^{p}$

are the free S-transforms of $(\mu^{\boxtimes p})^{\boxplus t}$ and $(\mu^{\boxplus t})^{\boxtimes p}$ respectively.

2. The free Poisson measure. Our aim is to study the additive and multiplicative free powers of the free Poisson measure

$$\varpi := \frac{1}{2\pi} \sqrt{\frac{4-x}{x}} \, dx \quad \text{on } [0,4].$$

It is known that $\varpi^{\oplus t}$ is \boxtimes -infinitely divisible for $t \geq 1$ and $\varpi^{\boxtimes p}$ is \boxplus -infinitely divisible for $p \geq 1$ (see [12, 8, 2, 7]). Therefore the double powers $(\varpi^{\oplus t})^{\boxtimes p}$ and $(\varpi^{\boxtimes p})^{\oplus t}$ exist whenever p, t > 0 and $\max\{p, t\} \geq 1$.

The additive free powers $\varpi^{\boxplus t}$, t > 0, are well known:

(9)
$$\varpi^{\boxplus t} = \max\{1-t,0\}\delta_0 + \frac{\sqrt{4t - (x-1-t)^2}}{2\pi x}dx$$

with the absolutely continuous part supported on $[(1 - \sqrt{t})^2, (1 + \sqrt{t})^2]$, as

well as the corresponding functions:

(10)
$$M_{\varpi^{\boxplus t}}(z) = \frac{2}{1 + (1 - t)z + \sqrt{(1 - (1 + t)z)^2 - 4tz^2}}$$
$$= 1 + \sum_{m=1}^{\infty} z^m \sum_{k=1}^m \binom{m}{k} \binom{m}{k-1} \frac{t^k}{m},$$
(11)
$$R_{\varpi^{\boxplus t}}(z) = \frac{tz}{1-z}, \quad S_{\varpi^{\boxplus t}}(z) = \frac{1}{t+z}.$$

For the multiplicative free powers $\varpi^{\boxtimes p}$, p > 0, it is known [2, 7] that

(12)
$$M_{\varpi^{\boxtimes p}}(z) = \sum_{m=0}^{\infty} \binom{m(p+1)+1}{m} \frac{z^m}{m(p+1)+1},$$

(13)
$$R_{\overline{\omega}^{\boxtimes p}}(z) = \sum_{m=1}^{\infty} \binom{mp+1}{m} \frac{z^m}{mp+1}.$$

Explicit formulas for the measures $\varpi^{\boxtimes p}$ are known only for natural p [9, 10].

Our aim now is to study the measures

$$\varpi(p,t) := (\varpi^{\boxtimes p})^{\boxplus t},$$

where p, t > 0 and $\max\{p, t\} \ge 1$. First observe that

(14)
$$R_{\varpi(p,t)}(z) = t \sum_{m=1}^{\infty} {\binom{mp+1}{m}} \frac{z^m}{mp+1}$$

and

(15)
$$S_{\varpi(p,t)}(z) = t^{p-1}(t+z)^{-p}.$$

Our previous remarks lead to the following

PROPOSITION 2.1. Assume that p, t > 0 and $\max\{p, t\} \ge 1$.

- If $p \ge 1$ then $\varpi(p, t)$ is \boxplus -infinitely divisible.
- If $t \ge 1$ then $\varpi(p,t)$ is \boxtimes -infinitely divisible.

In order to compute moments of $\varpi(p,t)$ we will use the Lagrange inversion formula which says that if a function z = f(w) is analytic at the point w = a and $f'(a) \neq 0$, f(a) =: b, then for the inverse function w = g(z) we have

(16)
$$g(z) = a + \sum_{m=1}^{\infty} \frac{d^{m-1}}{dw^{m-1}} \left(\frac{w-a}{f(w)-b}\right)^m \Big|_{w=a} \frac{(z-b)^m}{m!}.$$

Now we are ready to prove (see [6] for the special case p = 2)

THEOREM 2.2. For p, t > 0 with $\max\{p, t\} \ge 1$, define $\varpi(p, t) := (\varpi^{\boxtimes p})^{\boxplus t}$. Then

(17)
$$M_{\varpi(p,t)}(z) = 1 + \sum_{m=1}^{\infty} z^m \sum_{k=1}^{m} {m \choose k-1} {mp \choose m-k} \frac{t^k}{m}.$$

Proof. Putting in (16)

$$f(w) := t^{p-1}w(1+w)^{-1}(t+w)^{-p}$$

and a = b = 0 we have, in view of (5) and (15), $M_{\varpi(p,t)}(z) = 1 + g(z)$. Therefore

$$M_{\varpi(p,t)}(z) = 1 + \sum_{m=1}^{\infty} \frac{d^{m-1}}{dw^{m-1}} (t^{m(1-p)}(1+w)^m(t+w)^{mp}) \Big|_{w=0} \frac{z^m}{m!}$$

But now

$$(1+w)^m (t+w)^{mp} = t^{mp} \left(\sum_{k=0}^m \binom{m}{k} w^k \right) \left(\sum_{k=0}^\infty \binom{mp}{k} \binom{w}{t}^k \right)^k$$
$$= t^{mp} \sum_{k=0}^\infty w^k \sum_{i=0}^k \binom{m}{i} \binom{mp}{k-i} t^{i-k}.$$

Therefore

$$\begin{aligned} \frac{d^{m-1}}{dw^{m-1}}((1+w)^m(t+w)^{mp}) \Big|_{w=0} &= t^{mp}(m-1)! \sum_{i=0}^{m-1} \binom{m}{i} \binom{mp}{m-1-i} t^{i-m+1} \\ &= t^{mp}(m-1)! \sum_{k=1}^m \binom{m}{k-1} \binom{mp}{m-k} t^{k-m}, \end{aligned}$$

which leads to our statement. \blacksquare

Note that in view of Proposition 1.1 there is no point to study powers like

 $(((\varpi^{\boxtimes p_1})^{\boxplus t_1})^{\boxtimes p_2})^{\boxplus t_2\dots}$

because all of them are dilations of some of $\varpi(p, t)$.

It would be interesting to verify the following

CONJECTURE. Assume that p, t > 0. Then the sequence $\{s_m(p, t)\}_{m=0}^{\infty}$ defined by: $s_0(p, t) := 1$ and

$$s_m(p,t) := \sum_{k=1}^m \binom{m}{k-1} \binom{mp}{m-k} \frac{t^k}{m}$$

for $m \ge 1$, is positive definite if and only if $\max\{p, t\} \ge 1$.

The coefficients at (12) and (17) have a remarkable combinatorial meaning, which was found by Edelman [4]. Namely, fix $m, p \in \mathbb{N}$ and let $\mathrm{NC}^{(p)}(m)$ denote the set of all noncrossing partitions π of $\{1, \ldots, mp\}$ such that p divides the cardinality of every block of π . Then the cardinality of NC^(p)(m) is expressed as the *Fuss-Catalan number*:

$$|\mathrm{NC}^{(p)}(m)| = \binom{m(p+1)+1}{m} \frac{1}{m(p+1)+1}.$$

For other applications of these numbers we refer to [5].

For $\pi \in NC^{(p)}(m)$ we define its rank $rk(\pi) := m - |\pi|$. The elements of fixed rank are counted by the Fuss-Narayana numbers:

$$|\{\pi \in \mathrm{NC}^{(p)}(m) : \mathrm{rk}(\pi) = k - 1\}| = \binom{m}{k - 1}\binom{mp}{m - k}\frac{1}{m}$$

There is a natural partial order on $\mathrm{NC}^{(p)}(m)$. Namely, we say that $\pi \in \mathrm{NC}^{(p)}(m)$ is finer than $\sigma \in \mathrm{NC}^{(p)}(m)$, and write $\pi \preceq \sigma$, if every block of π is contained in a block of σ . Then $\mathrm{NC}^{(p)}(m)$ equipped with \preceq and rk becomes a graded partially ordered set (which means that for any $\pi, \sigma \in \mathrm{NC}^{(p)}(m)$ with $\pi \preceq \sigma$, every unrefinable chain $\pi = \pi_0 \prec \pi_1 \prec \cdots \prec \pi_r = \sigma$ from π to σ has the same length $r = \mathrm{rk}(\sigma) - \mathrm{rk}(\pi)$) and a join-semilattice (i.e. any two elements in $\mathrm{NC}^{(p)}(m)$ have a least upper bound).

More general structures, noncrossing partitions on Coxeter groups, were studied in [1].

3. Symmetrization of $(\varpi^{\boxtimes p})^{\boxplus t}$. For $\mu \in \mathcal{M}$ concentrated on $[0, \infty)$, we define its symmetrization $\mu^{\mathbf{s}}$ by $\int_{\mathbb{R}} f(x^2) d\mu^{\mathbf{s}}(x) = \int_{\mathbb{R}} f(x) d\mu(x)$ for every compactly supported continuous function $f : \mathbb{R} \to \mathbb{R}$. If $M_{\mu}(z)$ is the moment generating function of μ then $M_{\mu^{\mathbf{s}}}(z) = M_{\mu}(z^2)$, which means that $s_{2m}(\mu^{\mathbf{s}}) = s_m(\mu)$ and odd moments of $\mu^{\mathbf{s}}$ are zero.

Now we will compute the free cumulants for the symmetrization of $\varpi(p, t)$.

THEOREM 3.1. Assume that p, t > 0 with $\max\{p, t\} \ge 1$. Then for the symmetrization $\varpi(p, t)^{\mathbf{s}}$ of $\varpi(p, t)$ we have

(18)
$$R_{\varpi(p,t)^{\mathbf{s}}}(z) = \sum_{m=1}^{\infty} z^{2m} \sum_{k=1}^{m} {\binom{-m}{k-1} \binom{mp}{m-k}} \frac{t^{k}}{m}$$
$$= -\sum_{m=1}^{\infty} z^{2m} \sum_{k=1}^{m} {\binom{m+k-2}{k-1} \binom{mp}{m-k}} \frac{(-t)^{k}}{m}.$$

Proof. The cumulant generating function R(z) for $\varpi(p, t)^{\mathbf{s}}$ satisfies

(19)
$$t^{p-1}R(z)(1+R(z)) = z^2(R(z)+t)^p$$

To check this, it is sufficient to substitute $z \mapsto zM(z^2)$ and compare with (5) and (15). Therefore $R(z) = R_0(z^2)$, where R_0 satisfies

(20)
$$t^{p-1}R_0(z)(1+R_0(z)) = z(R_0(z)+t)^p.$$

To conclude, we use the Lagrange inversion formula as in the proof of Theorem 2.2 putting $f(w) := t^{p-1}w(1+w)(t+w)^{-p}$, a = b = 0 to get $R_0(z) = g(z)$.

Acknowledgments. This research was supported by MNiSW grant N N201 364436.

REFERENCES

- D. Armstrong, Generalized noncrossing partitions and combinatorics of Coxeter groups, Mem. Amer. Math. Soc. 202 (2009), no. 949.
- [2] T. Banica, S. T. Belinschi, M. Capitaine and B. Collins, *Free Bessel laws*, Canad. J. Math. 63 (2011), 3–37.
- [3] H. Bercovici and D. V. Voiculescu, Free convolutions of measures with unbounded support, Indiana Univ. Math. J. 42 (1993), 733–773.
- P. H. Edelman, Chain enumeration and non-crossing partitions, Discrete Math. 31 (1980), 171–180.
- [5] R. L. Graham, D. E. Knuth and O. Patashnik, *Concrete Mathematics*, Addison-Wesley, 1994.
- [6] M. Hinz and W. Młotkowski, Multiplicative free square of the free Poisson measure and examples of free symmetrization, Colloq. Math. 119 (2010), 127–136.
- [7] W. Młotkowski, Fuss-Catalan numbers in noncommutative probability, Doc. Math. 15 (2010), 939–955.
- [8] A. Nica and R. Speicher, Lectures on the Combinatorics of Free Probability, Cambridge Univ. Press, 2006.
- K. A. Penson and A. I. Solomon, Coherent states from combinatorial sequences, in: Quantum Theory and Symmetries (Kraków, 2001), World Sci., River Edge, NJ, 2002, 527–530.
- [10] K. A. Penson and K. Zyczkowski, Product of Ginibre matrices: Fuss-Catalan and Raney distributions, preprint.
- [11] N. R. Rao and R. Speicher, Multiplication of free random variables and the Stransform for vanishing mean, Electron. Comm. Probab. 12 (2007), 248–258.
- [12] D. V. Voiculescu, K. J. Dykema and A. Nica, Free Random Variables, CRM, 1992.

Melanie Hinz, Wojciech Młotkowski Mathematical Institute University of Wrocław Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland E-mail: hinz@math.uni.wroc.pl mlotkow@math.uni.wroc.pl

> Received 19 February 2011; revised 29 April 2011

(5470)