FREE POWERS OF THE FREE POISSON MEASURE
 BY MELANIE HINZ and WOJCIECH MŁOTKOWSKI (Wrocław)

Abstract

We compute moments of the measures $\left(\varpi^{\boxtimes p}\right)^{\boxplus t}$, where ϖ denotes the free Poisson law, and \boxplus and \boxtimes are the additive and multiplicative free convolutions. These moments are expressed in terms of the Fuss-Narayana numbers.

1. Introduction. Free convolution is a binary operation on the class \mathcal{M} of probability measures on \mathbb{R}, which corresponds to the notion of free independence in noncommutative probability (see [3, [8, 12]). Namely, if X, Y are free noncommuting random variables, with distributions $\mu, \nu \in \mathcal{M}$ respectively, then the additive free convolution $\mu \boxplus \nu$ is the distribution of the sum $X+Y$. Similarly, if moreover $X \geq 0$ then the multiplicative free convolution $\mu \boxtimes \nu$ can be defined as the distribution of the product $\sqrt{X} Y \sqrt{X}$.

Here we can confine ourselves to the class $\mathcal{M}^{\mathbf{c}}$ of compactly supported measures in \mathcal{M}. Let $\mathcal{M}_{+}^{\mathbf{c}}$ denote the class of those $\mu \in \mathcal{M}^{\mathbf{c}} \backslash\left\{\delta_{0}\right\}$ with support in $[0, \infty)$. For $\mu \in \mathcal{M}^{\mathbf{c}}$ we define its moment generating function

$$
\begin{equation*}
M_{\mu}(z):=\sum_{m=0}^{\infty} s_{m}(\mu) z^{m} \tag{1}
\end{equation*}
$$

defined in some neighborhood of 0 , where

$$
\begin{equation*}
s_{m}(\mu):=\int_{\mathbb{R}} x^{m} d \mu(x) \tag{2}
\end{equation*}
$$

is the m th moment of μ. Then we define its R-transform $R_{\mu}(z)$ by the equation

$$
\begin{equation*}
M_{\mu}(z)=R_{\mu}\left(z M_{\mu}(z)\right)+1 \tag{3}
\end{equation*}
$$

If $R_{\mu}(z)=\sum_{m=1}^{\infty} r_{m}(\mu) z^{m}$ then the numbers $r_{m}(\mu)$ are called the free cumulants of μ. For $\mu, \nu \in \mathcal{M}^{\mathbf{c}}$ we define the additive free convolution $\mu \boxplus \nu$ and the additive free power $\mu^{\boxplus t}$ by

$$
\begin{equation*}
R_{\mu \boxplus \nu}(z)=R_{\mu}(z)+R_{\nu}(z) \quad \text { and } \quad R_{\mu^{\boxplus t}}(z)=t R_{\mu}(z) \tag{4}
\end{equation*}
$$

The latter is well defined at least for $t \geq 1$.

[^0]The free S-transform (see [11) of $\mu \in \mathcal{M}_{+}^{\mathbf{c}}$ is defined by the relation

$$
\begin{equation*}
R_{\mu}\left(z S_{\mu}(z)\right)=z \quad \text { or } \quad M_{\mu}\left(z(1+z)^{-1} S_{\mu}(z)\right)=1+z . \tag{5}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
S_{\mu^{\boxplus t}}(z)=\frac{1}{t} S_{\mu}\left(\frac{z}{t}\right) . \tag{6}
\end{equation*}
$$

If $\mu, \nu \in \mathcal{M}^{\mathbf{c}}$ and μ has support contained in $[0, \infty)$ then the multiplicative free convolution $\mu \boxtimes \nu$ and the multiplicative free powers $\mu^{\boxtimes p}$ are defined by

$$
\begin{equation*}
S_{\mu \boxtimes \nu}(z):=S_{\mu}(z) S_{\nu}(z) \quad \text { and } \quad S_{\mu^{\boxtimes p}}(z)=S_{\mu}(z)^{p} . \tag{7}
\end{equation*}
$$

The powers are well defined at least for $p \geq 1$.
For $c \in \mathbb{R}, c \neq 0$, and $\mu \in \mathcal{M}$ we define the dilation $\mathbf{D}_{c} \mu \in \mathcal{M}$ by $\mathbf{D}_{c} \mu(X):=\mu\left(c^{-1} X\right)$ for every Borel subset X of \mathbb{R}. Then we have

$$
\begin{equation*}
M_{\mathbf{D}_{c} \mu}(z)=M_{\mu}(c z), \quad R_{\mathbf{D}_{c \mu} \mu}(z)=R_{\mu}(c z), \quad S_{\mathbf{D}_{c} \mu}(z)=\frac{1}{c} S_{\mu}(z) . \tag{8}
\end{equation*}
$$

The last formula, together with (6), leads to
Proposition 1.1. Assume that $\mu \in \mathcal{M}_{+}^{\mathbf{c}}, p, t>0$ and both the measures $\left(\mu^{\boxplus t}\right)^{\boxtimes p}$ and $\left(\mu^{\boxtimes p}\right)^{\boxplus t}$ exist. Then

$$
\mathbf{D}_{t^{p-1}}\left(\mu^{\boxtimes p}\right)^{\boxplus t}=\left(\mu^{\boxplus t}\right)^{\boxtimes p} .
$$

Proof. If $S_{\mu}(z)$ is the free S-transform of μ then

$$
\frac{1}{t} S_{\mu}\left(\frac{z}{t}\right)^{p} \quad \text { and } \quad \frac{1}{t^{p}} S_{\mu}\left(\frac{z}{t}\right)^{p}
$$

are the free S-transforms of $\left(\mu^{\boxtimes p}\right)^{\boxplus t}$ and $\left(\mu^{\boxplus t}\right)^{\boxtimes p}$ respectively.
2. The free Poisson measure. Our aim is to study the additive and multiplicative free powers of the free Poisson measure

$$
\varpi:=\frac{1}{2 \pi} \sqrt{\frac{4-x}{x}} d x \quad \text { on }[0,4] .
$$

It is known that $\varpi^{\boxplus t}$ is \boxtimes-infinitely divisible for $t \geq 1$ and $\varpi^{\boxtimes p}$ is \boxplus-infinitely divisible for $p \geq 1$ (see [12, 8, 2, 7]). Therefore the double powers $\left(\varpi^{\boxplus t}\right)^{\boxtimes p}$ and $\left(\varpi^{\boxtimes p}\right)^{\boxplus t}$ exist whenever $p, t>0$ and $\max \{p, t\} \geq 1$.

The additive free powers $\varpi^{\boxplus t}, t>0$, are well known:

$$
\begin{equation*}
\varpi^{\boxplus t}=\max \{1-t, 0\} \delta_{0}+\frac{\sqrt{4 t-(x-1-t)^{2}}}{2 \pi x} d x \tag{9}
\end{equation*}
$$

with the absolutely continuous part supported on $\left[(1-\sqrt{t})^{2},(1+\sqrt{t})^{2}\right]$, as
well as the corresponding functions:

$$
\begin{align*}
M_{\varpi \boxplus t}(z) & =\frac{2}{1+(1-t) z+\sqrt{(1-(1+t) z)^{2}-4 t z^{2}}} \tag{10}\\
& =1+\sum_{m=1}^{\infty} z^{m} \sum_{k=1}^{m}\binom{m}{k}\binom{m}{k-1} \frac{t^{k}}{m}, \\
R_{\varpi \boxplus t}(z) & =\frac{t z}{1-z}, \quad S_{\varpi \boxplus t}(z)=\frac{1}{t+z} . \tag{11}
\end{align*}
$$

For the multiplicative free powers $\varpi^{\boxtimes p}, p>0$, it is known [2, 7] that

$$
\begin{align*}
& M_{\varpi^{\boxtimes p}}(z)=\sum_{m=0}^{\infty}\binom{m(p+1)+1}{m} \frac{z^{m}}{m(p+1)+1}, \tag{12}\\
& R_{\varpi^{\boxtimes p}}(z)=\sum_{m=1}^{\infty}\binom{m p+1}{m} \frac{z^{m}}{m p+1} . \tag{13}
\end{align*}
$$

Explicit formulas for the measures $\varpi^{\boxtimes p}$ are known only for natural p [9, 10.
Our aim now is to study the measures

$$
\varpi(p, t):=\left(\varpi^{\boxtimes p}\right)^{\boxplus t},
$$

where $p, t>0$ and $\max \{p, t\} \geq 1$. First observe that

$$
\begin{equation*}
R_{\varpi(p, t)}(z)=t \sum_{m=1}^{\infty}\binom{m p+1}{m} \frac{z^{m}}{m p+1} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{\varpi(p, t)}(z)=t^{p-1}(t+z)^{-p} \tag{15}
\end{equation*}
$$

Our previous remarks lead to the following
Proposition 2.1. Assume that $p, t>0$ and $\max \{p, t\} \geq 1$.

- If $p \geq 1$ then $\varpi(p, t)$ is \boxplus-infinitely divisible.
- If $t \geq 1$ then $\varpi(p, t)$ is \boxtimes-infinitely divisible.

In order to compute moments of $\varpi(p, t)$ we will use the Lagrange inversion formula which says that if a function $z=f(w)$ is analytic at the point $w=a$ and $f^{\prime}(a) \neq 0, f(a)=: b$, then for the inverse function $w=g(z)$ we have

$$
\begin{equation*}
g(z)=a+\left.\sum_{m=1}^{\infty} \frac{d^{m-1}}{d w^{m-1}}\left(\frac{w-a}{f(w)-b}\right)^{m}\right|_{w=a} \frac{(z-b)^{m}}{m!} . \tag{16}
\end{equation*}
$$

Now we are ready to prove (see [6] for the special case $p=2$)

Theorem 2.2. For $p, t>0$ with $\max \{p, t\} \geq 1$, define $\varpi(p, t):=$ $\left(\varpi^{\boxtimes p}\right)^{\boxplus t}$. Then

$$
\begin{equation*}
M_{\varpi(p, t)}(z)=1+\sum_{m=1}^{\infty} z^{m} \sum_{k=1}^{m}\binom{m}{k-1}\binom{m p}{m-k} \frac{t^{k}}{m} \tag{17}
\end{equation*}
$$

Proof. Putting in (16)

$$
f(w):=t^{p-1} w(1+w)^{-1}(t+w)^{-p}
$$

and $a=b=0$ we have, in view of (5) and 15), $M_{\varpi(p, t)}(z)=1+g(z)$. Therefore

$$
M_{\varpi(p, t)}(z)=1+\left.\sum_{m=1}^{\infty} \frac{d^{m-1}}{d w^{m-1}}\left(t^{m(1-p)}(1+w)^{m}(t+w)^{m p}\right)\right|_{w=0} \frac{z^{m}}{m!}
$$

But now

$$
\begin{aligned}
(1+w)^{m}(t+w)^{m p} & =t^{m p}\left(\sum_{k=0}^{m}\binom{m}{k} w^{k}\right)\left(\sum_{k=0}^{\infty}\binom{m p}{k}\left(\frac{w}{t}\right)^{k}\right) \\
& =t^{m p} \sum_{k=0}^{\infty} w^{k} \sum_{i=0}^{k}\binom{m}{i}\binom{m p}{k-i} t^{i-k}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left.\frac{d^{m-1}}{d w^{m-1}}\left((1+w)^{m}(t+w)^{m p}\right)\right|_{w=0} & =t^{m p}(m-1)!\sum_{i=0}^{m-1}\binom{m}{i}\binom{m p}{m-1-i} t^{i-m+1} \\
& =t^{m p}(m-1)!\sum_{k=1}^{m}\binom{m}{k-1}\binom{m p}{m-k} t^{k-m}
\end{aligned}
$$

which leads to our statement.
Note that in view of Proposition 1.1 there is no point to study powers like

$$
\left(\left(\left(\varpi^{\boxtimes p_{1}}\right)^{\boxplus t_{1}}\right)^{\boxtimes p_{2}}\right)^{\boxplus t_{2} \ldots}
$$

because all of them are dilations of some of $\varpi(p, t)$.
It would be interesting to verify the following
Conjecture. Assume that $p, t>0$. Then the sequence $\left\{s_{m}(p, t)\right\}_{m=0}^{\infty}$ defined by: $s_{0}(p, t):=1$ and

$$
s_{m}(p, t):=\sum_{k=1}^{m}\binom{m}{k-1}\binom{m p}{m-k} \frac{t^{k}}{m}
$$

for $m \geq 1$, is positive definite if and only if $\max \{p, t\} \geq 1$.
The coefficients at 12 and (17) have a remarkable combinatorial meaning, which was found by Edelman [4]. Namely, fix $m, p \in \mathbb{N}$ and let $\mathrm{NC}^{(p)}(m)$
denote the set of all noncrossing partitions π of $\{1, \ldots, m p\}$ such that p divides the cardinality of every block of π. Then the cardinality of $\mathrm{NC}^{(p)}(m)$ is expressed as the Fuss-Catalan number:

$$
\left|\mathrm{NC}^{(p)}(m)\right|=\binom{m(p+1)+1}{m} \frac{1}{m(p+1)+1}
$$

For other applications of these numbers we refer to [5].
For $\pi \in \mathrm{NC}^{(p)}(m)$ we define its $\operatorname{rank} \operatorname{rk}(\pi):=m-|\pi|$. The elements of fixed rank are counted by the Fuss-Narayana numbers:

$$
\left|\left\{\pi \in \mathrm{NC}^{(p)}(m): \operatorname{rk}(\pi)=k-1\right\}\right|=\binom{m}{k-1}\binom{m p}{m-k} \frac{1}{m}
$$

There is a natural partial order on $\mathrm{NC}^{(p)}(m)$. Namely, we say that $\pi \in$ $\mathrm{NC}^{(p)}(m)$ is finer than $\sigma \in \mathrm{NC}^{(p)}(m)$, and write $\pi \preceq \sigma$, if every block of π is contained in a block of σ. Then $\mathrm{NC}^{(p)}(m)$ equipped with \preceq and rk becomes a graded partially ordered set (which means that for any $\pi, \sigma \in \mathrm{NC}^{(p)}(m)$ with $\pi \preceq \sigma$, every unrefinable chain $\pi=\pi_{0} \prec \pi_{1} \prec \cdots \prec \pi_{r}=\sigma$ from π to σ has the same length $r=\operatorname{rk}(\sigma)-\operatorname{rk}(\pi))$ and a join-semilattice (i.e. any two elements in $\mathrm{NC}^{(p)}(m)$ have a least upper bound).

More general structures, noncrossing partitions on Coxeter groups, were studied in [1].
3. Symmetrization of $\left(\varpi^{\boxtimes p}\right)^{\boxplus t}$. For $\mu \in \mathcal{M}$ concentrated on $[0, \infty)$, we define its symmetrization $\mu^{\mathbf{s}}$ by $\int_{\mathbb{R}} f\left(x^{2}\right) d \mu^{\mathbf{s}}(x)=\int_{\mathbb{R}} f(x) d \mu(x)$ for every compactly supported continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$. If $M_{\mu}(z)$ is the moment generating function of μ then $M_{\mu^{\mathbf{s}}}(z)=M_{\mu}\left(z^{2}\right)$, which means that $s_{2 m}\left(\mu^{\mathbf{s}}\right)=$ $s_{m}(\mu)$ and odd moments of $\mu^{\mathbf{s}}$ are zero.

Now we will compute the free cumulants for the symmetrization of $\varpi(p, t)$.
Theorem 3.1. Assume that $p, t>0$ with $\max \{p, t\} \geq 1$. Then for the symmetrization $\varpi(p, t)$ s of $\varpi(p, t)$ we have

$$
\begin{align*}
R_{\varpi(p, t)^{\mathbf{s}}}(z) & =\sum_{m=1}^{\infty} z^{2 m} \sum_{k=1}^{m}\binom{-m}{k-1}\binom{m p}{m-k} \frac{t^{k}}{m} \tag{18}\\
& =-\sum_{m=1}^{\infty} z^{2 m} \sum_{k=1}^{m}\binom{m+k-2}{k-1}\binom{m p}{m-k} \frac{(-t)^{k}}{m} .
\end{align*}
$$

Proof. The cumulant generating function $R(z)$ for $\varpi(p, t)^{\mathbf{s}}$ satisfies

$$
\begin{equation*}
t^{p-1} R(z)(1+R(z))=z^{2}(R(z)+t)^{p} \tag{19}
\end{equation*}
$$

To check this, it is sufficient to substitute $z \mapsto z M\left(z^{2}\right)$ and compare with (5) and (15). Therefore $R(z)=R_{0}\left(z^{2}\right)$, where R_{0} satisfies

$$
\begin{equation*}
t^{p-1} R_{0}(z)\left(1+R_{0}(z)\right)=z\left(R_{0}(z)+t\right)^{p} \tag{20}
\end{equation*}
$$

To conclude, we use the Lagrange inversion formula as in the proof of Theorem 2.2 putting $f(w):=t^{p-1} w(1+w)(t+w)^{-p}, a=b=0$ to get $R_{0}(z)=g(z)$.

Acknowledgments. This research was supported by MNiSW grant N N201 364436.

REFERENCES

[1] D. Armstrong, Generalized noncrossing partitions and combinatorics of Coxeter groups, Mem. Amer. Math. Soc. 202 (2009), no. 949.
[2] T. Banica, S. T. Belinschi, M. Capitaine and B. Collins, Free Bessel laws, Canad. J. Math. 63 (2011), 3-37.
[3] H. Bercovici and D. V. Voiculescu, Free convolutions of measures with unbounded support, Indiana Univ. Math. J. 42 (1993), 733-773.
[4] P. H. Edelman, Chain enumeration and non-crossing partitions, Discrete Math. 31 (1980), 171-180.
[5] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, AddisonWesley, 1994.
[6] M. Hinz and W. Młotkowski, Multiplicative free square of the free Poisson measure and examples of free symmetrization, Colloq. Math. 119 (2010), 127-136.
[7] W. Młotkowski, Fuss-Catalan numbers in noncommutative probability, Doc. Math. 15 (2010), 939-955.
[8] A. Nica and R. Speicher, Lectures on the Combinatorics of Free Probability, Cambridge Univ. Press, 2006.
[9] K. A. Penson and A. I. Solomon, Coherent states from combinatorial sequences, in: Quantum Theory and Symmetries (Kraków, 2001), World Sci., River Edge, NJ, 2002, 527-530.
[10] K. A. Penson and K. Życzkowski, Product of Ginibre matrices: Fuss-Catalan and Raney distributions, preprint.
[11] N. R. Rao and R. Speicher, Multiplication of free random variables and the S transform for vanishing mean, Electron. Comm. Probab. 12 (2007), 248-258.
[12] D. V. Voiculescu, K. J. Dykema and A. Nica, Free Random Variables, CRM, 1992.
Melanie Hinz, Wojciech Młotkowski
Mathematical Institute
University of Wrocław
Pl. Grunwaldzki 2/4
50-384 Wrocław, Poland
E-mail: hinz@math.uni.wroc.pl
mlotkow@math.uni.wroc.pl

[^0]: 2010 Mathematics Subject Classification: Primary 46L54; Secondary 44A60, 60C05.
 Key words and phrases: additive and multiplicative free convolution, free Poisson distribution.

