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MULTIPLICATIVE FREE SQUARE
OF THE FREE POISSON MEASURE

AND EXAMPLES OF FREE SYMMETRIZATION

BY

MELANIE HINZ and WOJCIECH MŁOTKOWSKI (Wrocław)

Abstract. We compute the moments and free cumulants of the measure ρt := πt �πt,
where πt denotes the free Poisson law with parameter t > 0. We also compute free cu-
mulants of the symmetrization of ρt. Finally, we introduce the free symmetrization of a
probability measure on R and provide some examples.

1. Introduction. Free convolution is a binary operation on the class
M of probability measures on R, which corresponds to the notion of free
independence in noncommutative probability (see [2, 7, 5]). Namely, if X,Y
are free noncommuting random variables with distributions µ, ν ∈ M re-
spectively, then the (additive) free convolution µ � ν is the distribution of
the sum X + Y . Similarly, if moreover X ≥ 0 then the multiplicative free
convolution µ�ν can be defined as the distribution of the product

√
XY
√
X.

For the sake of this paper we can confine ourselves to the class Mc of
compactly supported measures inM. Then these operations can be described
in the following way. For µ ∈Mc we define its moment generating function

(1) Mµ(z) :=
∞∑
m=0

sm(µ)zm,

defined in some neighborhood of 0, where

(2) sm(µ) :=
�

R
xm dµ(x)

is the mth moment of µ. Then we define its R-transform Rµ(z) by the
equation

(3) Mµ(z) = Rµ(zMµ(z)) + 1.

If Rµ(z) =
∑∞

m=1 rm(µ)zm then the numbers rm(µ) are called the free cu-
mulants of µ. For µ, ν ∈ Mc their free convolution µ � ν can be defined as
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the unique measure inMc satisfying

(4) Rµ�ν(z) = Rµ(z) +Rν(z).

The free S-transform (see [6]) of µ ∈Mc is defined by the relation

(5) Rµ(zSµ(z)) = z or Mµ

(
z(1 + z)−1Sµ(z)

)
= 1 + z.

If µ, ν ∈ Mc and at least one of them has support contained in [0,∞) then
the multiplicative free convolution µ � ν is defined by

(6) Sµ�ν(z) := Sµ(z)Sν(z).

For µ ∈ M concentrated on [0,∞), we define its symmetrization µs by	
R f(x2) dµs(x) =

	
R f(x) dµ(x) for every compactly supported continuous

function f : R → R. If Mµ(z) is the moment generating function of µ then
the moment generating function of µs is Mµs(z) = Mµ(z2) (which means
that s2m(µs) = sm(µ) and sn(µs) = 0 if n is odd).

The aim of this paper is to compute the moments and free cumulants
of the measure ρt := πt � πt, where πt denotes the free Poisson measure.
We also compute the free cumulants of the symmetric measure ρst . Finally,
we introduce and study the notion of free symmetrization, which can be
considered as a free analog of the map µ 7→ µs, and provide a one-parameter
family of examples.

2. A family of sequences. For real parameters t, r we define a sequence
{cm(t, r)}∞m=0 by putting c0(t, r) := 1 and for m ≥ 1,

(7) cm(t, r) :=
m∑
k=1

(
2m
m+ k

)(
m+ r − 1
k − 1

)
rtk

m
,

where
(
a
m

)
:= a(a−1)(a−2)...(a−m+1)

m! denotes the generalized binomial coef-
ficient. By convention we also put c−1(t, r) := 0. For example, using the
Cauchy–Vandermonde convolution formula (see formula (5.22) in [3]) one
can see that for m ≥ 1,

cm(1, r) =
(

3m− 1 + r

m− 1

)
r

m
.

Proposition 2.1. For m ≥ 0,

t · cm(t, r) = cm−1(t, r + 2) + 2(t− 1)cm−1(t, r + 1)(8)

+ (t− 1)2cm−1(t, r) + t · cm(t, r − 1).

Proof. First we note that

(9) cm(t, r)− cm(t, r − 1)

=
m∑
k=1

(
2m
m+ k

)[(
m+ r − 2
k − 2

)
r +

(
m+ r − 2
k − 1

)]
tk

m
.



FREE POISSON MEASURE 129

Now we observe that (8) can be written as

(10) t[cm(t, r)− cm(t, r − 1)]

= [cm−1(t, r + 2)− cm−1(t, r + 1)]− [cm−1(t, r + 1)− cm−1(t, r)]

+ 2t[cm−1(t, r + 1)− cm−1(t, r)] + t2cm−1(t, r).

Applying (9) and the binomial identity
(
a−1
b−1

)
+
(
a−1
b

)
=
(
a
b

)
to the right

hand side of (10) we obtain

m−1∑
k=1

(
2m− 2
m+ k − 1

)[(
m+ r − 1
k − 2

)
(r + 2) +

(
m+ r − 1
k − 1

)]
tk

m− 1

−
m−1∑
k=1

(
2m− 2
m+ k − 1

)[(
m+ r − 2
k − 2

)
(r + 1) +

(
m+ r − 2
k − 1

)]
tk

m− 1

+ 2
m−1∑
k=1

(
2m− 2
m+ k − 1

)[(
m+ r − 2
k − 2

)
(r + 1) +

(
m+ r − 2
k − 1

)]
tk+1

m− 1

+
m−1∑
k=1

(
2m− 2
m+ k − 1

)(
m+ r − 2
k − 1

)
r
tk+2

m− 1

=
m−1∑
k=1

(
2m− 2
m+ k − 1

)[(
m+ r − 2
k − 3

)
r + 2

(
m+ r − 1
k − 2

)]
tk

m− 1

+ 2
m−1∑
k=1

(
2m− 2
m+ k − 1

)[(
m+ r − 2
k − 2

)
r +

(
m+ r − 1
k − 1

)]
tk+1

m− 1

+
m−1∑
k=1

(
2m− 2
m+ k − 1

)(
m+ r − 2
k − 1

)
rtk+2

m− 1
.

Now we substitute k′ := k − 1 in the first sum and k′′ := k + 1 in the last
one, obtaining

m−2∑
k=0

(
2m− 2
m+ k

)[(
m+ r − 2
k − 2

)
r + 2

(
m+ r − 1
k − 1

)]
tk+1

m− 1

+ 2
m−1∑
k=1

(
2m− 2
m+ k − 1

)[(
m+ r − 2
k − 2

)
r +

(
m+ r − 1
k − 1

)]
tk+1

m− 1

+
m∑
k=2

(
2m− 2
m+ k − 2

)(
m+ r − 2
k − 2

)
rtk+1

m− 1
.

Note that each sum can be taken from k = 1 to k = m. Applying the
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binomial identity we finally get
m∑
k=1

[(
2m
m+ k

)(
m+ r − 2
k − 2

)
r + 2

(
2m− 1
m+ k

)(
m+ r − 1
k − 1

)]
tk+1

m− 1
.

To see that this is equal to the left hand side of (10) we use the identity(
2m−1
m+k

)
=
(

2m
m+k

)
m−k
2m , so it remains to check that(

m+ r − 2
k − 2

)
r

m− 1
+
(
m+ r − 1
k − 1

)
m− k

m(m− 1)

=
(
m+ r − 2
k − 2

)
r

m
+
(
m+ r − 2
k − 1

)
1
m
.

Proposition 2.2. For every r, s, t ∈ R and every m ≥ 0,

(11)
m∑
k=0

cm−k(t, r)ck(t, s) = cm(t, r + s).

Proof. It is easy to check that (11) is true for m = 0, 1. Assume this
holds for m − 1 and for all r, s, t ∈ R. To prove that it holds for m we use
induction on r. For r = 0 it is clear. Assume it holds for r − 1. Then using
(8), the inductive assumpion and (8) again, we get

t ·
m∑
k=0

cm−k(t, r)ck(t, s) =
m∑
k=0

[
cm−k−1(t, r + 2) + 2(t− 1)cm−k−1(t, r + 1)

+ (t− 1)2cm−k−1(t, r) + t · cm−k(t, r − 1)
]
ck(t, s)

= cm−1(t, r + s+ 2) + 2(t− 1)cm−1(t, r + s+ 1)

+ (t− 1)2cm−1(t, r + s) + t · cm(t, r + s− 1)
= t · cm(t, r + s).

In this way we prove that (11) holds for all natural r. Since each side of (11)
is a polynomial in r, the equality holds for all r ∈ R.

Denote by Ct(z) the generating function for the sequence {cm(t, 1)}∞m=0:

(12) Ct(z) :=
∞∑
m=0

cm(t, 1)zm.

Since
(

2m
m+k

)
≤ 4m, we have

|cm(t, 1)| ≤ 4m

m

m∑
k=1

(
m− 1
k − 1

)
|t|k =

|t|4m(1 + |t|)m−1

m
,

so Ct(z) is defined in some neighborhood of 0. Moreover, since Ct(0) = 1, the
powers Ct(z)r, r ∈ R, are well defined on a (possibly smaller) neighborhood
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of 0. Then (11) implies that

(13) Ct(z)r :=
∞∑
m=0

cm(t, r)zm.

Proposition 2.3. For fixed t ∈ R the function Ct satisfies the equation

(14) t(Ct(z)− 1) = zCt(z)(Ct(z)− 1 + t)2

for z belonging to some neighborhood of 0.

Proof. It is sufficient to multiply both sides of (8) by zm, take
∑∞

m=0
putting r = 1, and then apply (13).

3. Multiplicative square of the free Poisson measure. For t > 0
let πt denote the free Poisson measure with parameter t:

(15) πt = max{1− t, 0}δ0 +

√
4t− (x− 1− t)2

2πx
dx,

with the absolutely continuous part supported on [(1−
√
t)2, (1+

√
t)2]. Then

Mπt(z) =
2

1 + (1− t)z +
√

(1− (1 + t)z)2 − 4tz2
(16)

= 1 +
∞∑
m=1

zm
m∑
k=1

(
m

k

)(
m

k − 1

)
tk

m
,(17)

Rπt(z) =
tz

1− z
, Sπt(z) =

1
t+ z

.(18)

From now on we are going to study the multiplicative free square ρt :=
πt � πt. Note that ρ1 corresponds to π2,1 in [1].

Theorem 3.1. For the moment generating function and the free R-
transform of ρt we have

Mρt(z) = 1 +
∞∑
m=1

zm
m∑
k=1

(
2m
m+ k

)(
m

k − 1

)
tm+k

m
,(19)

Rρt(z) =
1− 2tz −

√
1− 4tz

2z
= t

∞∑
m=1

(
2m+ 1
m

)
(tz)m

2m+ 1
.(20)

Proof. Since Sρt(z) = (t+z)−2, the functionMρt(z) satisfies the equation

(21) Mρt

(
z

(1 + z)(t+ z)2

)
= 1 + z,

which means that Mρt(z) − 1 is the composition inverse of the function
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z 7→ z
(1+z)(t+z)2

. Therefore

(22)
Mρt(z)− 1

Mρt(z)(Mρt(z)− 1 + t)2
= z,

or equivalently

(23) Mρt(z)− 1 = zMρt(z)(Mρt(z)− 1 + t)2.

Comparing (23) with (14) we see that Mρt(z) = Ct(tz).
For the R-transform we have Rρt

(
z

(t+z)2

)
= z, which is equivalent to

(24)
Rρt(z)

(t+Rρt(z))2
= z.

Solving this equation we get

(25) Rρt(z) =
1− 2tz −

√
1− 4tz

2z
=

2t2z
1− 2tz +

√
1− 4tz

.

For c ∈ R\{0} and µ ∈M we define the dilation Dcµ ∈M by Dcµ(X) :=
µ(c−1X) for a Borel subset of R. Then we have MDcµ(z) = Mµ(cz) and
RDcµ(z) = Rµ(cz).

Corollary 3.2. Put ρ̃t := Dt−1ρt. Then {ρ̃t}t>0 is a �-semigroup, i.e.
we have ρ̃s � ρ̃t = ρ̃s+t whenever s, t > 0.

Proof. This is a direct consequence of (20).

4. Free symmetrization. Let µ be a probability measure on R with
support contained in [0,∞). Then its symmetrization µs is defined as the
symmetric measure satisfying

(26)
�

R
f(x2) dµs(x) =

�

R
f(x) dµ(x)

for every compactly supported continuous function on R. If Mµ(z) is the
moment generating function of µ then the moment generating function of µs

is Mµs(z) = Mµ(z2). For example,

(27) πs
t = max{1− t, 0}δ0 +

√
4t− (x2 − 1− t)2

π|x|
dx,

where the absolutely continuous part is supported on[
−1−

√
t,−|1−

√
t|
]
∪
[
|1−

√
t|, 1 +

√
t
]
.

It is known (see Corollary 3.2 together with the remark in [4]) that πs
t is

not �-infinitely divisible, except the case t = 1, i.e. of the Wigner measure:
πs

1 = 1
π

√
4− x2 · χ[−2,2] dx.

Let us now consider the symmetrization ρst of the measure ρt, so that

(28) Rρst (zMρt(z
2)) + 1 = Mρt(z

2).



FREE POISSON MEASURE 133

Proposition 4.1. For the R-transform of ρst we have

Rρst (z) =
2tz2 − 1 +

√
1 + 4tz2(t− 1)

2(1− z2)
(29)

=
∞∑
m=1

z2m
m∑
k=1

(
2m
m+ k

)(
m+ k − 1

m

)
(−1)k−1tm+k

m+ k − 1
.(30)

Proof. Put Rt := Rρst . Then

(31) Rt(zMρt(z
2)) + 1 = Mρt(z

2).

To prove (29) we note that Rt satisfies the quadratic equation

(32) Rt(z)(1 +Rt(z)) = z2(Rt(z) + t)2.

Indeed, it is sufficient to substitute z 7→ zMρt(z2) and use (31) and (23).
For (30) we apply the Taylor expansion to (29):

Rt(z) =
1
2

[
2tz2 − 1 +

∞∑
k=0

(
1/2
k

)
(4tz2(t− 1))k

] ∞∑
l=0

z2l

=
1
2

[
2t2z2 +

∞∑
k=2

(
1/2
k

)
(4tz2(t− 1))k

] ∞∑
l=0

z2l.

Now we note that

(33)
1
2
4k
(

1/2
k

)
= − (−1)k

2k − 1

(
2k − 1
k − 1

)
,

so that for the coefficient r2m at z2m we have

(34) r2m = t2 −
m∑
k=2

(
2k − 1
k − 1

)(
t(1− t)

)k
2k − 1

, m ≥ 2.

Now it remains to prove that

(35) t2 −
m∑
k=2

(
2k − 1
k − 1

)(
t(1− t)

)k
2k − 1

=
m∑
k=1

(
2m
m+ k

)(
m+ k − 1

m

)
(−1)k−1tm+k

m+ k − 1
.

Denoting the left (resp. right) hand side of (35) by LHS(m) (resp. RHS(m))
we have LHS(1) = RHS(1) = t2 and for m ≥ 1,

RHS(m− 1)− RHS(m) =
m−1∑
k=1

(
2m− 2
m+ k − 1

)(
m+ k − 2
m− 1

)
(−1)k−1tm+k−1

m+ k − 2

−
m∑
k=1

(
2m
m+ k

)(
m+ k − 1

m

)
(−1)k−1tm+k

m+ k − 1
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=
m−2∑
k=0

(
2m− 2
m+ k

)(
m+ k − 1
m− 1

)
(−1)ktm+k

m+ k − 1

+
m∑
k=1

(
2m
m+ k

)(
m+ k − 1

m

)
(−1)ktm+k

m+ k − 1

=
m∑
k=0

(
2m− 1
m− 1

)(
m

k

)
(−t)k

2m− 1
tm

=
(

2m− 1
m− 1

)
tm(1− t)m

2m− 1
= LHS(m− 1)− LHS(m).

Now we can conclude by induction.

One can check that if X,Y are independent random variables with dis-
tributions µ and 1

2(δ−1 + δ1) respectively and with X ≥ 0 then µs is the
distribution of the product Y

√
X. Let √µ denote the distribution of

√
X,

so that

(36)
�

R
f(x) d

√
µ(x) :=

�

R
f
(√
x
)
dµ(x)

for every continuous compactly supported function f : R → R. Similarly,
we define the free symmetrization of a probability measure µ with suppµ ⊆
[0,∞) by µfs := ν0 �

√
µ, where ν0 := 1

2(δ−1 + δ1). It is easy to check that
Sν0(z) =

√
(1 + z)/z, so that Sµfs(z) =

√
(1 + z)/z Sµ(z).

Proposition 4.2. If µ is a probability measure with support contained
in [0,∞) then

(37) µfs = (
√
µ �
√
µ)s.

Moreover, if µ�1/2 exists then

(38) µs = ν0 � µ�1/2.

Proof. We have

1 + z = Mµfs

(
z

1 + z
Sµfs(z)

)
= Mµfs

(√
z

1 + z
S√µ(z)

)
and, on the other hand,

M(
√
µ�
√
µ)s

(√
z

1 + z
S√µ(z)

)
= M√µ�

√
µ

(
z

1 + z
S√µ(z)2

)
= 1 + z,

which means that Mµfs = M(
√
µ�
√
µ)s and consequently µfs = (

√
µ �
√
µ)s.

For the second statement we note that

Mµ(z(1 + z)−1Sµ(z)) = 1 + z = Mµs(z(1 + z)−1Sµs(z))

= Mµ(z2(1 + z)−2Sµs(z)2),
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which implies that

(39) Sµs(z) =

√
1 + z

z
·
√
Sµ(z).

Example. For t > 0 define

(40) µt := max{1− t, 0}δ0 +

√
4t− (

√
x− 1− t)2

4πx
dx,

with the absolutely continuous part supported on [|1 −
√
t|, 1 +

√
t]. Then

we have πt =
√
µt and therefore µfs

t = (πt � πt)s = ρst .

Final remarks. Denote byMs (resp.M+) the class of probability mea-
sures on R which are symmetric (resp. have support in [0,∞)). Then it is
easy to see from (26) that the symmetrization M+ 3 µ 7→ µs ∈ Ms is a
bijection. On the other hand, in view of (37) the free symmetrization is a
well defined map M+ → Ms which is one-to-one but not onto. Indeed, if
ν ∈ Ms is the free symmetrization of some measure µ ∈ M+ then ν is of
the form ηs for η ∈M+ such that there exists the multiplicative free power
η

1
2

�.
Let us finally mention that it is also possible to investigate other free

versions of classical symmetrization, e.g. M 3 µ 7→ µ � µ̃ ∈ Ms, where
µ̃ := D−1(µ) denotes the reflection of µ, or M+ 3 µ 7→ 1

2(δ−1 + δ1) � µ =
(µ � µ)s ∈ Ms, where the last equality can be proved in the same way as
Proposition 4.2.
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