# Fuss-Catalan Numbers 

# in Noncommutative Probability 

Wojciech MŁotkowski ${ }^{1}$

Received: January 3, 2010
Communicated by Friedrich Götze


#### Abstract

We prove that if $p, r \in \mathbb{R}, p \geq 1$ and $0 \leq r \leq p$ then the Fuss-Catalan sequence $\binom{m p+r}{m} \frac{r}{m p+r}$ is positive definite. We study the family of the corresponding probability measures $\mu(p, r)$ on $\mathbb{R}$ from the point of view of noncommutative probability. For example, we prove that if $0 \leq 2 r \leq p$ and $r+1 \leq p$ then $\mu(p, r)$ is $\boxplus$-infinitely divisible. As a by-product, we show that the sequence $\frac{m^{m}}{m!}$ is positive definite and the corresponding probability measure is $\boxtimes$-infinitely divisible.

2010 Mathematics Subject Classification: Primary 46L54; Secondary 44A60, 60C05 Keywords and Phrases: Fuss-Catalan numbers, free, boolean and monotonic convolution


## 1. Introduction

For natural numbers $m, p, r$ let $A_{m}(p, r)$ denote the number of all sequences $\left(a_{1}, a_{2}, \ldots, a_{m p+r}\right)$ such that: (1) $a_{i} \in\{1,1-p\}$, (2) $a_{1}+a_{2}+\ldots+a_{s}>0$ for all $s$ such that $1 \leq s \leq m p+r$ and (3) $a_{1}+a_{2}+\ldots+a_{m p+r}=r$. It turns out that this is given by the two-parameter Fuss-Catalan numbers (2.1) (see $[5,13])$. Note that the right hand side of (2.1) allows us to define $A_{m}(p, r)$ for all real parameters $p$ and $r$. In particular, the Catalan numbers $A_{m}(2,1)$ are known as moments of the Marchenko-Pastur distribution:

$$
\begin{equation*}
d \widetilde{\pi}(x)=\frac{1}{2 \pi} \sqrt{\frac{4-x}{x}} d x \quad \text { on }[0,4], \tag{1.1}
\end{equation*}
$$

which in the free probability theory plays the role of the Poisson measure. In this paper we are going to study the question for which parameters $p, r \in \mathbb{R}$

[^0]the sequence $\left\{A_{m}(p, r)\right\}_{m=0}^{\infty}$ is positive definite, i.e. is the moment sequence of some probability measure (which we will denote $\mu(p, r)$ ). Recently T. Banica, S. T. Belinschi, M. Capitaine and B. Collins [1] showed that if $p>1$ then $\left\{A_{m}(p, 1)\right\}_{m=0}^{\infty}$ is the moment sequence of a probability measure which can be expressed as the multiplicative free power $\widetilde{\pi}^{\boxtimes p-1}$.
We are going to prove that if $p, r \in \mathbb{R}, p \geq 1$ and $0 \leq r \leq p$ then $\left\{A_{m}(p, r)\right\}_{m=0}^{\infty}$ is the moment sequence of a unique probability measure $\mu(p, r)$ which has compact support contained in $[0, \infty)$. Moreover, if $0 \leq 2 r \leq p$ and $r+1 \leq p$ then $\mu(p, r)$ is infinitely divisible with respect to the free convolution $\boxplus$. In some particular cases we are able to determine the multiplicative free convolution, the boolean power and the monotonic convolution of the measures $\mu(p, r)$. We will also prove that if $0 \leq r \leq p-1$ then the sequence $\left\{\binom{m p+r}{m}\right\}_{m=0}^{\infty}$ is positive definite and the corresponding probability measure can be expressed as $\mu(p-r, 1)^{\uplus p} \triangleright \mu(p, r)$, where $\uplus$ and $\triangleright$ denote the boolean and the monotonic convolution, respectively.
The paper is organized as follows. In Section 2 we prove three combinatorial identities. Then we use them to derive some formulas for the generating functions. In Section 4 we regard the numbers $A_{m}(p, r)$ as moments of a probability quasi-measure $\mu(p, r)$ (by this we mean a linear functional $\mu: \mathbb{R}[x] \rightarrow \mathbb{R}$ satisfying $\mu(1)=1)$. On the class of probability quasi-measures one can introduce the free, boolean and monotonic convolutions in combinatorial way. The class of compactly supported probability measures on $\mathbb{R}$, regarded as a subclass of the former, is closed under these operations. We prove some formulas involving the probability quasi measures $\mu(p, r)$, for example we find the free $R$ - and $S$-transforms (4.8), (4.11), the boolean powers $\mu(p, 1)^{\uplus t}$ (4.18) and, in special cases, the multiplicative free (4.12), (4.13), (4.14) and the monotonic convolution (4.20) of the measures $\mu(p, r)$.
In Section 5 we prove that if $p \geq 1$ and $0 \leq r \leq p$ then $\mu(p, r)$ is a measure (we conjecture that this condition is also necessary for $p, r>0$ ). The proof involves the multiplicative free convolution $\boxtimes$. Moreover, we show that if $0 \leq 2 r \leq p$ and $r+1 \leq p$ then $\mu(p, r)$ is $\boxplus$-infinitely divisible.
In the final part we extend our results to the dilations of the measures $\mu(p, r)$, with parameter $h>0$. Taking the limit with $h \rightarrow 0$ we prove in particular that the sequence $\left\{\frac{m^{m}}{m!}\right\}_{m=0}^{\infty}$ is positive definite and the corresponding probability measure $\nu_{0}$ is $\boxtimes$-infinitely divisible.

## 2. Some combinatorial identities

We will work with the two-parameter Fuss-Catalan numbers (see [5, 13]) defined by: $A_{0}(p, r):=1$ and

$$
\begin{equation*}
A_{m}(p, r):=\frac{r}{m!} \prod_{i=1}^{m-1}(m p+r-i) \tag{2.1}
\end{equation*}
$$

for $m \geq 1$, where $p, r$ are real parameters. Note that (2.1) can be written as $\binom{m p+r}{m} \frac{r}{m p+r}$, unless $m p+r=0$. One can check that for $m \geq 0$

$$
\begin{equation*}
A_{m}(p, r)=A_{m}(p, r-1)+A_{m-1}(p, p+r-1) \tag{2.2}
\end{equation*}
$$

under convention that $A_{-1}(p, r):=0$, and

$$
\begin{equation*}
A_{m}(p, p)=A_{m+1}(p, 1) \tag{2.3}
\end{equation*}
$$

It is also known (see [13]) that

$$
\begin{equation*}
\sum_{k=0}^{m} A_{k}(p, r) A_{m-k}(p, s)=A_{m}(p, r+s) \tag{2.4}
\end{equation*}
$$

Now we are going to prove three identities, valid for $c, d, p, r, t \in \mathbb{R}$, which will be needed later on.

## Proposition 2.1.

$$
\begin{equation*}
\sum_{k=0}^{m} A_{k}(p-r, c) A_{m-k}(p, k r+d)=A_{m}(p, c+d) \tag{2.5}
\end{equation*}
$$

Proof. It is easy to check that the formula is true for $m=0$ and $m=1$. Denoting the left hand side by $S_{m}(p, r, c, d)$ we have from (2.2):

$$
\begin{aligned}
& S_{m}(p, r, c, d)=\sum_{k=0}^{m} A_{k}(p-r, c) A_{m-k}(p, k r+d) \\
& =\sum_{k=0}^{m}\left[A_{k}(p-r, c-1)+A_{k-1}(p-r, p-r+c-1)\right] A_{m-k}(p, k r+d) \\
& =\sum_{k=0}^{m} A_{k}(p-r, c-1) A_{m-k}(p, k r+d) \\
& \quad \quad+\sum_{k=1}^{m} A_{k-1}(p-r, p-r+c-1) A_{m-k}(p, k r+d) \\
& =S_{m}(p, r, c-1, d)+\sum_{k=0}^{m-1} A_{k}(p-r, p-r+c-1) A_{m-1-k}(p, k r+r+d) \\
& =S_{m}(p, r, c-1, d)+S_{m-1}(p, r, p-r+c-1, r+d)
\end{aligned}
$$

so that we have

$$
S_{m}(p, r, c, d)=S_{m}(p, r, c-1, d)+S_{m-1}(p, r, p-r+c-1, r+d)
$$

Fix $m$ and assume that (2.5) holds for $m-1$. Now we prove that for $m$ it holds for every natural $c$. Indeed, it holds for $c=0$ and if it does for $c-1$ then, by assumption and by (2.2):

$$
\begin{aligned}
S_{m}(p, r, c, d) & =S_{m}(p, r, c-1, d)+S_{m-1}(p, r, p-r+c-1, r+d) \\
& =A_{m}(p, c+d-1)+A_{m-1}(p, p+c+d-1)=A_{m}(p, c+d)
\end{aligned}
$$

which proves that the statement is true for $c$. Therefore it holds for all natural $c$. Now we note that both sides of (2.5) are polynomials on $c$ of order $m$, therefore the formula holds for all $c \in \mathbb{R}$, which completes the inductive step.

## Proposition 2.2.

$$
\begin{align*}
(1-t) \sum_{l=0}^{m} A_{l}(p, 1) & \sum_{j=0}^{m-l} A_{m-l-j}(p, j(p-1)+r) t^{j}  \tag{2.6}\\
& +t \sum_{j=0}^{m} A_{m-j}(p, j(p-1)+r) t^{j}=A_{m}(p, r+1)
\end{align*}
$$

Proof. Using first (2.4) and then (2.2) we obtain:

$$
\begin{aligned}
& \quad t \sum_{j=0}^{m} A_{m-j}(p, j(p-1)+r) t^{j} \\
& \\
& \quad+(1-t) \sum_{l=0}^{m} A_{l}(p, 1) \sum_{j=0}^{m-l} A_{m-l-j}(p, j(p-1)+r) t^{j} \\
& = \\
& t \sum_{j=0}^{m} A_{m-j}(p, j(p-1)+r) t^{j} \\
& \\
& \quad+(1-t) \sum_{j=0}^{m} \sum_{l=0}^{m-j} A_{l}(p, 1) A_{m-j-l}(p, j(p-1)+r) t^{j} \\
& = \\
& \quad \sum_{j=0}^{m} A_{m-j}(p, j(p-1)+r) t^{j} \\
& =
\end{aligned}
$$

Proposition 2.3.

$$
\begin{equation*}
\sum_{k=0}^{m} A_{m-k}(p, k(p-1)+r) p^{k}=\binom{m p+r}{m} \tag{2.7}
\end{equation*}
$$

Proof. Denoting the left hand side by $T_{m}(p, r)$ we use (2.2) and get

$$
\begin{aligned}
& T_{m}(p, r)= \\
& \quad=\sum_{k=0}^{m} A_{m-k}(p, k(p-1)+r) p^{k} \\
& \quad=\sum_{k=0}^{m}\left[A_{m-k}(p, k(p-1)+r-1)+A_{m-1-k}(p, k(p-1)+p+r-1)\right] p^{k} \\
& \quad=T_{m}(p, r-1)+T_{m-1}(p, p+r-1) .
\end{aligned}
$$

Now we proceed as in the proof of (2.5), using the binomial identity

$$
\binom{m p+r}{m}=\binom{m p+r-1}{m}+\binom{m p+r-1}{m-1}
$$

## 3. Generating functions

In this part we are going to study the generating functions

$$
\begin{equation*}
\mathcal{B}_{p}(z):=\sum_{m=0}^{\infty} A_{m}(p, 1) z^{m} \tag{3.1}
\end{equation*}
$$

which are convergent in some neighborhood of 0 (to observe this one can use the inequality

$$
\left|A_{m}(p, r)\right| \leq|r|[m(|p|+1)+|r|]^{m-1} / m!
$$

and apply the Cauchy's radical test). From (2.4) and (2.3) we have

$$
\begin{equation*}
\mathcal{B}_{p}(z)^{r}=\sum_{m=0}^{\infty} A_{m}(p, r) z^{m} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{B}_{p}(z)=1+z \mathcal{B}_{p}(z)^{p} . \tag{3.3}
\end{equation*}
$$

Indeed, denoting the right hand side of (3.2) by $\mathcal{A}_{p, r}(z)$ we have $\mathcal{A}_{p, 1}(z)=\mathcal{B}_{p}(z)$ and, by (2.4), $\mathcal{A}_{p, r}(z) \cdot \mathcal{A}_{p, s}(z)=\mathcal{A}_{p, r+s}(z)$, which implies that $\mathcal{A}_{p, r}(z)=$ $\mathcal{B}_{p}(z)^{r}$. Taking $r=p$ and applying (2.3) we get (3.3).
Now we are going to interpret formulas (2.5), (2.6), (2.7) in terms of these generating functions.

Proposition 3.1. For any real parameters $p, r$ we have

$$
\begin{equation*}
\mathcal{B}_{p-r}\left(z \mathcal{B}_{p}(z)^{r}\right)=\mathcal{B}_{p}(z) \tag{3.4}
\end{equation*}
$$

Proof. First we note that if $A(z)=\sum_{m=0}^{\infty} a_{m} z^{m}, B(z)=\sum_{n=1}^{\infty} b_{n} z^{n}$ then

$$
\begin{equation*}
A(B(z))=a_{0}+\sum_{m=1}^{\infty} z^{m} \sum_{k=1}^{m} a_{k} \sum_{\substack{i_{1}, i_{2}, \ldots, i_{k} \geq 1 \\ i_{1}+i_{2}+\ldots+i_{k}=m}} b_{i_{1}} b_{i_{2}} \ldots b_{i_{k}} \tag{3.5}
\end{equation*}
$$

Putting $b_{i}:=A_{i-1}(p, r)$ for fixed $k, m$ we have:

$$
\sum_{\substack{i_{1}, i_{2}, \ldots, i_{k} \geq 1 \\ i_{1}+i_{2}+\ldots+i_{k}=m}} b_{i_{1}} b_{i_{2}} \ldots b_{i_{k}}=\sum_{\substack{j_{1}, j_{2}, \ldots, j_{k} \geq 0 \\ j_{1}+j_{2}+\ldots+j_{k}=m-k}} A_{j_{1}}(p, r) A_{j_{2}}(p, r) \ldots A_{j_{k}}(p, r)
$$

the coefficient of $\mathcal{B}_{p}(z)^{k r}$ at $z^{m-k}$. Now we put $a_{k}:=A_{k}(p-r, 1)$ and applying (2.5), with $c=1, d=0$, we get

$$
\begin{align*}
\sum_{k=1}^{m} a_{k} \sum_{\substack{i_{1}, i_{2}, \ldots, i_{k} \geq 1 \\
i_{1}+i_{2}+\ldots+i_{k}=m}} & b_{i_{1}} b_{i_{2}} \ldots b_{i_{k}}  \tag{3.6}\\
& =\sum_{k=0}^{m} A_{k}(p-r, 1) A_{m-k}(p, k r)=A_{m}(p, 1)
\end{align*}
$$

as $A_{m}(p, 0)=0$ for $m \geq 1$, which completes the proof.
Note that in the proof we applied (2.5) only with $c=1$ and $d=0$.
For $p, r, t \in \mathbb{R}$ we denote

$$
\begin{equation*}
\mathcal{D}_{p, r, t}(z):=\frac{\mathcal{B}_{p}(z)^{1+r}}{(1-t) \mathcal{B}_{p}(z)+t} \tag{3.7}
\end{equation*}
$$

Proposition 3.2. For $p, r, t \in \mathbb{R}$ we have

$$
\begin{equation*}
\mathcal{D}_{p, r, t}(z)=\sum_{m=0}^{\infty} z^{m} \sum_{k=0}^{m} A_{m-k}(p, k(p-1)+r) t^{k} \tag{3.8}
\end{equation*}
$$

in particular:

$$
\begin{equation*}
\mathcal{D}_{p, r, p}(z)=\sum_{m=0}^{\infty}\binom{m p+r}{m} z^{m} \tag{3.9}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
\mathcal{D}_{p-r, s, t}\left(z \mathcal{B}_{p}(z)^{r}\right) \mathcal{B}_{p}(z)^{r}=\mathcal{D}_{p, r+s, t}(z) \tag{3.10}
\end{equation*}
$$

Proof. Using (2.6) we can verify that

$$
\left[(1-t) \mathcal{B}_{p}(z)+t\right] \cdot\left[\sum_{m=0}^{\infty} z^{m} \sum_{k=0}^{m} A_{m-k}(p, k(p-1)+r) t^{k}\right]=\mathcal{B}_{p}(z)^{1+r}
$$

which proves (3.8). Formulas (3.9) and (3.10) are consequences of (2.7) and (3.4).

Proposition 3.3. In some neighborhood of 0 we have

$$
\begin{equation*}
\mathcal{B}_{p}\left(z(1+z)^{-p}\right)=1+z \tag{3.11}
\end{equation*}
$$

and more generally, for $r \neq 0$ we have

$$
\begin{equation*}
\mathcal{B}_{p}\left(\left((1+z)^{\frac{1}{r}}-1\right)(1+z)^{\frac{-p}{r}}\right)^{r}=1+z \tag{3.12}
\end{equation*}
$$

Proof. Since we have $\mathcal{B}_{p}(0)=1$ and $\mathcal{B}_{p}^{\prime}(0)=1$, there is a function $f_{p}$ defined on a neighborhood of 0 such that $f_{p}(0)=0$ and $\mathcal{B}\left(f_{p}(z)\right)=1+z$. Substituting $z \mapsto$ $f_{p}(z)$ in (3.3) we obtain $f_{p}(z)=z(1+z)^{-p}$. Now we put $z \mapsto(1+w)^{1 / r}-1$ to (3.11) and taking the $r$-th power we obtain (3.12).

Remark. Note that (3.11) leads to an analytic proof of (3.4). Namely, substituting in (3.4) $z \mapsto z(1+z)^{-p}$ we get

$$
\begin{aligned}
\mathcal{B}_{p-r}\left(z(1+z)^{-p} \mathcal{B}_{p}\left(z(1+z)^{-p}\right)^{r}\right) & =\mathcal{B}_{p-r}\left(z(1+z)^{-p}(1+z)^{r}\right) \\
& =1+z=\mathcal{B}_{p}\left(z(1+z)^{-p}\right)
\end{aligned}
$$

Finally we note a symmetry possessed by our generating functions.
Proposition 3.4. For $p, r, t \in \mathbb{R}$ we have

$$
\begin{align*}
\mathcal{B}_{p}(-z)^{r} & =\mathcal{B}_{1-p}(z)^{-r}  \tag{3.13}\\
\mathcal{D}_{p, r, t}(-z) & =\mathcal{D}_{1-p,-1-r, 1-t}(z) \tag{3.14}
\end{align*}
$$

Proof. One can check that $(-1)^{m} A_{m}(p, r)=A_{m}(1-p,-r)$, which proves (3.13), and by the definition (3.7), (3.13) implies (3.14).

## 4. Relations with noncommutative probability

By a probability quasi-measure we will mean a linear functional $\mu$ on the set $\mathbb{R}[x]$ of polynomials with real coefficients, satisfying $\mu(1)=1$. In the case when $\mu$ is given by $\mu(P)=\int P(t) d \widetilde{\mu}(t)$ for some probability measure $\widetilde{\mu}$ on $\mathbb{R}$ we will identify $\mu$ with $\widetilde{\mu}$ and say that $\mu$ is proper or is just a probability measure. A probability quasi-measure $\mu$ is uniquely determined by its moment sequence $\left\{\mu\left(x^{m}\right)\right\}_{m=0}^{\infty}$. It is proper if and only if its moment sequence is positive definite, i.e. if

$$
\sum_{i, j=0}^{\infty} \mu\left(x^{i+j}\right) \alpha_{i} \alpha_{j} \geq 0
$$

holds for every sequence $\left\{\alpha_{i}\right\}_{i=0}^{\infty}$ of real numbers, with only finitely many nonzero entries. All probability measures encountered in this paper are compactly supported and therefore uniquely determined by their moment sequences. For a probability quasi-measure $\mu$ we define its moment generating function, which is the (at least formal) power series

$$
M_{\mu}(z):=\sum_{m=0}^{\infty} \mu\left(x^{m}\right) z^{m}
$$

and its reflection $\widehat{\mu}$ by $\widehat{\mu}\left(x^{m}\right):=(-1)^{m} \mu\left(x^{m}\right)$ or, equivalently, $M_{\widehat{\mu}}(z):=$ $M_{\mu}(-z)$. If $\mu$ is a probability measure then so is $\widehat{\mu}$ and then we have $\widehat{\mu}(X)=\mu(-X)$ for every Borel subset of $\mathbb{R}$.

For $p, r, t \in \mathbb{R}$ we define probability quasi-measures $\mu(p, r)$ and $\nu(p, r, t)$ by

$$
\begin{align*}
\mu(p, r)\left(x^{m}\right) & :=A_{m}(p, r),  \tag{4.1}\\
\nu(p, r, t)\left(x^{m}\right) & :=\sum_{k=0}^{m} A_{m-k}(p, k(p-1)+r) t^{k} \tag{4.2}
\end{align*}
$$

in particular, by (2.7),

$$
\begin{equation*}
\nu(p, r, p)\left(x^{m}\right)=\binom{m p+r}{m} \tag{4.3}
\end{equation*}
$$

For example, $\mu(1,1)=\nu(1,0,1)=\delta_{1}$ and for every $p \in \mathbb{R}$ we have $\mu(p, 0)=$ $\nu(0,0,0)=\delta_{0}$. Note that $\nu(p, r, 0)=\mu(p, r)$ so that the class of probability quasi-measures $\mu(p, r)$ is contained in that of $\nu(p, r, t)$, we will be interested however mainly in the former.
First we note that Proposition 3.4 leads to
Proposition 4.1.

$$
\begin{align*}
\widehat{\mu(p, r)} & =\mu(1-p,-r)  \tag{4.4}\\
\nu \widehat{(p, r, t}) & =\nu(1-p,-1-r, 1-t) \tag{4.5}
\end{align*}
$$

There are several convolutions of probability quasi-measures, apart from the classical one: $(\mu * \nu)\left(x^{n}\right):=\sum_{k=0}^{n}\binom{n}{k} \mu\left(x^{k}\right) \nu\left(x^{n-k}\right)$, which are related to various notions of independence (namely, the free, boolean and the monotonic independence) in noncommutative probability.

1. Free convolution (see $[2,15,11]$ ) is defined in the following way. For a probability quasi-measure $\mu$ we define its free $R$-transform (or the additive free transform) $R_{\mu}(z)$ by the formula:

$$
\begin{equation*}
M_{\mu}(z)=R_{\mu}\left(z M_{\mu}(z)\right)+1 \tag{4.6}
\end{equation*}
$$

The free cumulants $r_{m}(\mu)$ are defined as the coefficients of the Taylor expansion $R_{\mu}(z)=\sum_{k=1}^{\infty} r_{k}(\mu) z^{k}$ (combinatorial relation between moments and free cumulants is described in [11] and [4]). Then the free convolution $\mu \boxplus \nu$ can be defined as the unique probability quasi-measure which satisfies

$$
\begin{equation*}
R_{\mu \boxplus \nu}(z)=R_{\mu}(z)+R_{\nu}(z) . \tag{4.7}
\end{equation*}
$$

We also define free power $\mu^{\boxplus t}, t>0$, by $R_{\mu^{\boxplus t}}(z):=t R_{\mu}(z)$.
As a consequence of (4.6) and (3.4) we obtain:
Proposition 4.2. For the free additive transform of $\mu(p, r)$ we have

$$
\begin{equation*}
R_{\mu(p, r)}(z)=\mathcal{B}_{p-r}(z)^{r}-1 \tag{4.8}
\end{equation*}
$$

so that for the free cumulants we have $r_{m}(\mu(p, r))=A_{m}(p-r, r), m \geq 1$.
The free $S$-transform (or the free multiplicative transform) of a quasi-measure $\mu$, with $\mu\left(x^{1}\right) \neq 0$, is defined by the relation

$$
\begin{equation*}
R_{\mu}\left(z S_{\mu}(z)\right)=z \quad \text { or, equivalently, } \quad M_{\mu}\left(z(1+z)^{-1} S_{\mu}(z)\right)=1+z \tag{4.9}
\end{equation*}
$$

Then the multiplicative free convolution $\mu_{1} \boxtimes \mu_{2}$ and the multiplicative free power $\mu^{\boxtimes t}, t>0$, are defined by

$$
\begin{equation*}
S_{\mu_{1} \boxtimes \mu_{2}}(z):=S_{\mu_{1}}(z) S_{\mu_{2}}(z) \quad \text { and } \quad S_{\mu^{\boxtimes t}}(z):=S_{\mu}(z)^{t} . \tag{4.10}
\end{equation*}
$$

Proposition 4.3. For $r \neq 0$ the $S$-transform of the measure $\mu(p, r)$ is equal to

$$
\begin{equation*}
S_{\mu(p, r)}(z)=\frac{(1+z)^{\frac{1}{r}}-1}{z}(1+z)^{\frac{r-p}{r}} \tag{4.11}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
\mu\left(1+p_{1}, 1\right) \boxtimes \mu\left(1+p_{2}, 1\right)=\mu\left(1+p_{1}+p_{2}, 1\right) \tag{4.12}
\end{equation*}
$$

and more generally

$$
\begin{equation*}
\mu\left(p_{1}, r\right) \boxtimes \mu\left(1+p_{2}, 1\right)=\mu\left(p_{1}+r p_{2}, r\right) . \tag{4.13}
\end{equation*}
$$

We have also

$$
\begin{equation*}
\mu(1+p, 1)^{\boxtimes t}=\mu(1+t p, 1) . \tag{4.14}
\end{equation*}
$$

Proof. Formula (4.11) is a consequence of (3.12). In particular

$$
\begin{equation*}
S_{\mu(1+p, 1)}(z)=(1+z)^{-p} \tag{4.15}
\end{equation*}
$$

which leads to (4.12), (4.13) and (4.14).
2. The boolean convolution $\mu_{1} \uplus \mu_{2}$ and the boolean power $\mu^{\uplus t}, t>0$, (see $[14,3]$ ) can be defined by putting

$$
\begin{align*}
\frac{1}{M_{\mu_{1} \uplus \mu_{2}}(z)} & =\frac{1}{M_{\mu_{1}}(z)}+\frac{1}{M_{\mu_{2}}(z)}-1,  \tag{4.16}\\
M_{\mu^{\uplus t}}(z) & =\frac{M_{\mu}(z)}{(1-t) M_{\mu}(z)+t} . \tag{4.17}
\end{align*}
$$

Comparing this with definition (3.7) we get
Proposition 4.4. For $p, t \in \mathbb{R}$ we have

$$
\begin{equation*}
\mu(p, 1)^{\uplus t}=\nu(p, 0, t) . \tag{4.18}
\end{equation*}
$$

3. Monotonic convolution (see [10]) is an associative, noncommuting operation $\triangleright$ which is defined by: $\mu_{1} \triangleright \mu_{2}=\mu$ iff

$$
\begin{equation*}
M_{\mu}(z)=M_{\mu_{1}}\left(z M_{\mu_{2}}(z)\right) \cdot M_{\mu_{2}}(z) \tag{4.19}
\end{equation*}
$$

Then (3.4) and (3.10) yield
Proposition 4.5. For any parameters $a, b, r, t \in \mathbb{R}$ we have

$$
\begin{align*}
\mu(a, b) \triangleright \mu(a+r, r) & =\mu(a+r, b+r),  \tag{4.20}\\
\nu(a, b, t) \triangleright \mu(a+r, r) & =\nu(a+r, b+r, t) . \tag{4.21}
\end{align*}
$$

In the next section we are going to study which of the probability quasimeasures $\mu(p, r)$ and $\nu(p, r, t)$ are actually probability measures. For this purpose we will use some of the the following facts, which are available in literature (see $[15,11,14,10,6,7]$ ): The class of all compactly supported probability measures on $\mathbb{R}$ is closed under the free, boolean, and monotonic convolution and also under taking the powers $\mu^{\boxplus s}, \mu^{\uplus t}$, for $s \geq 1, t>0$. Moreover, the class of probability measures with compact support contained in $[0, \infty)$ is closed under the free, multiplicative free, boolean and monotonic convolution and also under taking the powers $\mu^{\boxplus s}, \mu^{\boxtimes s}$ and $\mu^{\uplus t}$ for $s \geq 1$ and $t>0$.
A probability measure $\mu$ on $\mathbb{R}$ (resp. on $[0, \infty)$ ) is called $\boxplus$-infinitely divisible (resp. $\boxtimes$-infinitely divisible) if $\mu^{\boxplus t}$ (resp. $\mu^{\boxtimes t}$ ) is a probability measure for every $t>0$. If $\mu$ has compact support and $r_{m}(\mu)$ are its free cumulants then $\mu$ is $\boxplus$-infinitely divisible if and only if the sequence $\left\{r_{m+2}(\mu)\right\}_{m=0}^{\infty}$ is positive definite.

## 5. Positivity

The aim of this section is to study which of the quasi measures $\mu(p, r)$ and $\nu(p, r, t)$ are actually measures, i.e. for which parameters $p, r, t \in \mathbb{R}$ the corresponding sequence is positive definite. We start with

Theorem 5.1. If $p \geq 1,0 \leq r \leq p$ then $\left\{A_{m}(p, r)\right\}_{m=0}^{\infty}$ is the moment sequence of a probability measure $\mu(p, r)$ with a compact support contained in $[0, \infty)$. If $p \leq 0, p-1 \leq r \leq 0$ then $\mu(p, r)$ is a probability measure which is the reflection of $\mu(1-p,-r)$.

Proof. We know already that $\widetilde{\pi}=\mu(2,1)$ is the free Poisson law (1.1). Then, as was noted in [1], $\widetilde{\pi}$ is $\boxtimes$-infinitely divisible and for $s>0$ we have $\pi^{\boxtimes s}=$ $\mu(1+s, 1)$. Hence if $p \geq 1$ then $\mu(p, 1)$ is a probability measure with a compact support contained in $[0, \infty)$. By (2.3) it implies that the sequence $A_{m}(p, p)=$ $A_{m+1}(p, 1)$ is also positive definite, namely we have

$$
\int_{\mathbb{R}} f(x) d \mu(p, p)(x)=\int_{\mathbb{R}} f(x) x d \mu(p, 1)(x)
$$

for any continuous function $f$ on $\mathbb{R}$. Hence $\mu(p, p), p \geq 1$, is a probability measure with a compact support contained in $[0, \infty)$. For $1 \leq r \leq p$ we apply (4.13) to obtain:

$$
\mu(p, r)=\mu(r, r) \boxtimes \mu(p / r, 1)
$$

which proves the first statement for the sector $1 \leq r \leq p$.
For $r \in(0,1)$ the measure $\mu(1, r)$ is related to the Euler beta function

$$
\begin{equation*}
B(a, b):=\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x \tag{5.1}
\end{equation*}
$$

We will use its well known properties: $B(a, 1-a)=\frac{\pi}{\sin a \pi}$ and $B(a, b)=$ $\frac{a-1}{a+b-1} B(a-1, b)$. If we define probability measure

$$
\begin{equation*}
\mu_{r}:=\frac{\sin \pi r}{\pi} x^{r-1}(1-x)^{-r} d x \tag{5.2}
\end{equation*}
$$

on $[0,1]$ then we have

$$
\int_{\mathbb{R}} x^{m} d \mu_{r}(x)=\frac{\sin \pi r}{\pi} B(m+r, 1-r)=\prod_{k=1}^{m} \frac{r+i-1}{i}=A_{m}(1, r) .
$$

which means that $\mu(1, r)=\mu_{r}$. Now for $s \geq 0$ we have

$$
\mu(1+r s, r)=\mu(1, r) \boxtimes \mu(1+s, 1),
$$

which proves the first statement for $(p, r) \in[1,+\infty) \times(0,1)$. It remains to note that $\mu(p, 0)=\delta_{0}$ for every $p \in \mathbb{R}$.
The second statement is a consequence of (4.4).
We conjecture that the last theorem fully characterizes the set of parameters $p, r \in \mathbb{R}$ for which $\mu(p, r)$ is a measure (apart from the trivial case $\mu(p, 0)=\delta_{0}$ ). It is easy to check that $A_{0}(p, r) A_{2}(p, r)-A_{1}(p, r)^{2}=r(2 p-1-r) / 2$, hence a necessary condition for positive definiteness of the sequence $A_{m}(p, r)$ is that $r(2 p-1-r) \geq 0$.

Remark. According to Penson and Solomon [12]:

$$
\begin{equation*}
\mu(3,1)=\frac{\sqrt[6]{108}\left[2^{1 / 3}(27+3 \sqrt{81-12 x})^{2 / 3}-6 x^{1 / 3}\right]}{12 \pi x^{2 / 3}(27+3 \sqrt{81-12 x})^{1 / 3}} d x \tag{5.3}
\end{equation*}
$$

on $[0,27 / 4]$. More generally, for $\mu(p, 1)$ with $p \in \mathbb{N}$ we refer to [8].
Corollary 5.1. If either $0 \leq 2 r \leq p, r+1 \leq p$ or $p \leq 2 r+1, p \leq r \leq 0$ then $\mu(p, r)$ is $\boxplus$-infinitely divisible.

Proof. By Theorem 13.16 in [11], a compactly supported probability measure $\mu$, with free cumulants $r_{m}(\mu)$, is $\boxplus$-infinitely divisible if and only if the sequence $\left\{r_{m+2}(\mu)\right\}_{m=0}^{\infty}$ is positive definite. Then it is sufficient to refer to (4.8) and to note that the numbers $A_{m+2}(p-r, r)$ are the moments of the measure $x^{2} d \mu(p-r, r)(x)$.

Corollary 5.2. If $0 \leq r \leq p-1, t>0$ then $\nu(p, r, t)$ is a probability measure with a compact support contained in $[0,+\infty)$. If $p \leq 1+r \leq 0, t<1$ then $\nu(p, r, t)$ is a probability measure which is the reflection of $\nu(1-p,-1-r, 1-t)$. In particular, if either $0 \leq r \leq p-1$ or $p \leq 1+r \leq 0$ then the sequence $\left\{\binom{m p+r}{m}\right\}_{m=0}^{\infty}$ is positive definite.
Proof. For $0 \leq r \leq p-1, t>0$ we apply (4.21) and (4.18):

$$
\nu(p, r, t)=\nu(p-r, 0, t) \triangleright \mu(p, r)=\mu(p-r, 1)^{\uplus t} \triangleright \mu(p, r)
$$

and Theorem 5.1. Then we use (4.5).
A measure $\nu$ on $\mathbb{R}$ is called symmetric if $\widehat{\nu}=\nu$. For a probability quasi-measure $\mu$ define its symmetrization $\mu^{\mathrm{s}}$ by $M_{\mu^{\mathrm{s}}}(z):=M_{\mu}\left(z^{2}\right)$. If $\mu$ is a probability measure with support contained in $[0, \infty)$ then $\mu^{\mathrm{s}}$ is a symmetric measure on $\mathbb{R}$, which satisfies $\int_{\mathbb{R}} f\left(t^{2}\right) d \mu^{\mathrm{s}}(t)=\int_{\mathbb{R}} f(t) d \mu(t)$ for every compactly supported continuous function on $\mathbb{R}$. Denote by $\mu^{\mathrm{s}}(p, r)$ and $\nu^{\mathrm{s}}(p, r, t)$ the symmetrization
of $\mu(p, r)$ and $\nu(p, r, t)$. Then, by (3.4) and (4.9), for the free additive transform we have

$$
\begin{equation*}
R_{\mu^{\mathrm{s}}(p, r)}(z)=\mathcal{B}_{p-2 r}\left(z^{2}\right)^{r}-1 \tag{5.4}
\end{equation*}
$$

In the same way as Corollary 5.2 one can prove
Corollary 5.3. If $p \geq 1,0 \leq r \leq p$ then $\mu^{\mathrm{s}}(p, r)$ is a symmetric probability measure on $\mathbb{R}$. Moreover, if $p-2 r \geq 1$ and $0 \leq 3 r \leq p$ then $\mu^{\mathrm{s}}(p, r)$ is $\boxplus$-infinitely divisible.
Let us record some formulas:

$$
\begin{align*}
\mu^{\mathrm{s}}(p, 1)^{\uplus t} & =\nu^{\mathrm{s}}(p, 0, t),  \tag{5.5}\\
\mu^{\mathrm{s}}(a, b) \triangleright \mu^{\mathrm{s}}(a+2 r, r) & =\mu^{\mathrm{s}}(a+2 r, b+r),  \tag{5.6}\\
\nu^{\mathrm{s}}(a, b, t) \triangleright \mu^{\mathrm{s}}(a+2 r, r) & =\nu^{\mathrm{s}}(a+2 r, b+r, t) . \tag{5.7}
\end{align*}
$$

5.1. Picture for $\mu(p, r)$.


Here we illustrate the main results concerning the measures $\mu(p, r)$.
(1) If $\mu(p, r)$ is a probability measure then $r(2 p-1-r) \geq 0$ (the right-top and left-bottom sector between the $p$-axis and the line $r=2 p-1$ ),
(2) $\Sigma_{+}\left(\right.$including $\Sigma_{+}^{\boxplus \infty}$ and $\left.\Sigma_{\mathrm{s}}^{\boxplus \infty}\right): \mu(p, r)$ is a probability measure with a compact support contained in $[0, \infty)$,
(3) $\Sigma_{-}$(including $\left.\Sigma_{-}^{\boxplus \infty}\right): \mu(p, r)$ is a probability measure, the reflection of $\mu(1-p,-r)$,
(4) $\Sigma_{+}^{\boxplus \infty} \cup \Sigma_{-}^{\boxplus \infty}$ (including $\Sigma_{\mathrm{s}}^{\boxplus \infty}$ ): $\mu(p, r)$ is $\boxplus$-infinitely divisible,
(5) $\Sigma_{\mathrm{s}}^{\boxplus \infty}$ : the symmetrization of $\mu(p, r)$ is $\boxplus$-infinitely divisible.

## 6. Dilations

For a probability quasi-measure $\mu$ we define its dilation with parameter $c>0$ by $\left(\mathrm{D}_{c} \mu\right)\left(x^{m}\right):=c^{m} \mu\left(x^{m}\right)$. Then for the moment generating function we have: $M_{\mathrm{D}_{c} \mu}(z)=M_{\mu}(c z)$ and similarly for the free $R$-transform: $R_{\mathrm{D}_{c} \mu}(z)=R_{\mu}(c z)$, while for the $S$-transform we have $S_{\mathrm{D}_{c} \mu}(z)=\frac{1}{c} S_{\mu}(z)$. If $\mu$ is proper then we have $\left(\mathrm{D}_{c} \mu\right)(X)=\mu\left(\frac{1}{c} X\right)$ for every Borel subset $X$ of $\mathbb{R}$. In this part we are going to study dilations of the measures $\mu(p, r)$ and $\nu(p, r, t)$ and their limits as the parameter goes to 0 .
For $h \geq 0$ and $a, p, r \in \mathbb{R}$ define sequences

$$
\begin{align*}
\binom{a}{m}_{h} & :=\frac{1}{m!} \prod_{i=0}^{m-1}(a-i h)  \tag{6.1}\\
A_{m}(p, r, h) & :=\frac{r}{m!} \prod_{i=1}^{m-1}(m p+r-i h) \tag{6.2}
\end{align*}
$$

with $A_{0}(p, r, h):=1$. In particular $A_{m}(p, r, h)=\frac{r}{m p+r}\binom{m p+r}{m}_{h}$ whenever $m p+$ $r \neq 0$. Then, for $h \geq 0$ and $p, r, t \in \mathbb{R}$ define probability quasi-measures:

$$
\begin{align*}
\mu(p, r, h)\left(x^{m}\right) & :=A_{m}(p, r, h),  \tag{6.3}\\
\nu(p, r, t, h)\left(x^{m}\right) & :=\sum_{k=0}^{m} A_{m-k}(p, k(p-h)+r, h) t^{k} . \tag{6.4}
\end{align*}
$$

and their moment generating functions $\mathcal{B}_{p, r, h}(z)$ and $\mathcal{D}_{p, r, t, h}(z)$ respectively. Note that if $h>0$ then $A_{m}(p, r, h)=h^{m} A_{m}(p / h, r / h)$ and hence these probability quasi measures can be represented as dilations:

$$
\begin{align*}
\mu(p, r, h) & =\mathrm{D}_{h} \mu(p / h, r / h),  \tag{6.5}\\
\nu(p, r, t, h) & =\mathrm{D}_{h} \nu(p / h, r / h, t / h) . \tag{6.6}
\end{align*}
$$

Therefore the corresponding moment generating functions are

$$
\begin{align*}
\mathcal{B}_{p, r, h}(z) & =\mathcal{B}_{p / h}(h z)^{r / h}  \tag{6.7}\\
\mathcal{D}_{p, r, t, h}(z) & =\mathcal{D}_{p / h, r / h, t / h}(h z)=\frac{h \mathcal{B}_{p, h+r, h}(z)}{(h-t) \mathcal{B}_{p, h, h}(z)+t} \tag{6.8}
\end{align*}
$$

These formulas allow us to derive properties of the probability quasi-measures $\mu(p, r, h)$ and $\nu(p, r, t, h)$ directly from our previous results when $h>0$, and, after taking the limit with $h \rightarrow 0$, for $h=0$.

Proposition 6.1. For $h>0$ and $p, r, t \in \mathbb{R}$

$$
\begin{align*}
\mathcal{B}_{p, h, h}(z) & =1+z h \mathcal{B}_{p, p, h}(z),  \tag{6.9}\\
\log \left(\mathcal{B}_{p, 1,0}(z)\right) & =z \mathcal{B}_{p, p, 0}(z)  \tag{6.10}\\
\mathcal{D}_{p, r, t, 0}(z) & =\frac{\mathcal{B}_{p, r, 0}(z)}{1-z t \mathcal{B}_{p, p, 0}(z)} . \tag{6.11}
\end{align*}
$$

Proof. First formula is a consequence of (3.3) and (6.7). Then we have

$$
\frac{\mathcal{B}_{p, 1, h}(z)^{h}-1}{h}=\frac{\mathcal{B}_{p, h, h}(z)-1}{h}=z \mathcal{B}_{p, p, h}(z)
$$

Taking the limit with $h \rightarrow 0$ we obtain (6.10).
For (6.11) we write use (6.8) and (6.9) to get

$$
\frac{1}{h}\left[(h-t) \mathcal{B}_{p, h, h}(z)+t\right]=1-(t-h) \frac{\mathcal{B}_{p, h, h}(z)-1}{h}=1-(t-h) z \mathcal{B}_{p, p, h}(z)
$$

and then we take limit with $h \rightarrow 0$.
Proposition 6.2. For $h \geq 0$ and $p, r, s \in \mathbb{R}$ we have

$$
\begin{equation*}
\mathcal{B}_{p-r, s, h}\left(z \mathcal{B}_{p, r, h}(z)\right)=\mathcal{B}_{p, s, h}(z) \tag{6.12}
\end{equation*}
$$

Proposition 6.3. For $h \geq 0$ and $p, r \in \mathbb{R}$ we have

$$
\begin{equation*}
\nu(p, r, p, h)\left(x^{m}\right)=\binom{m p+r}{m}_{h} \tag{6.13}
\end{equation*}
$$

Proof. For $h>0$ the formula is a consequence of (6.6). Then we take limit with $h \rightarrow 0$.

Proposition 6.4. For $h \geq 0$ and $p, r, t \in \mathbb{R}$ we have

$$
\begin{align*}
\mu(\overline{p, r, h}) & =\mu(h-p,-r, h),  \tag{6.14}\\
\nu(\widehat{p, r, t, h}) & =\nu(h-p,-h-r, h-t, h) . \tag{6.15}
\end{align*}
$$

Proof. First we note that $A_{m}(p, r, h)(-1)^{m}=A_{m}(h-p,-r, h)$ and then we apply (6.8) and (3.14).

Proposition 6.5. For the free transforms we have

$$
\begin{align*}
R_{\mu(p, r, h)}(z) & =\mathcal{B}_{p-r, r, h}(z)-1  \tag{6.16}\\
S_{\mu(p, r, h)}(z) & =\frac{(1+z)^{h / r}-1}{h z}(1+z)^{(r-p) / r} \quad \text { for } h>0  \tag{6.17}\\
S_{\mu(p, r, 0)}(z) & =\frac{\log (1+z)}{r z}(1+z)^{(r-p) / r}  \tag{6.18}\\
S_{\nu(p, 0, t, 0)}(z) & =\frac{1}{t} e^{\frac{-p z}{t(1+z)}} . \tag{6.19}
\end{align*}
$$

In particular $\nu(p, 0, t, 0)=\mathrm{D}_{t}\left(\nu(1,0,1,0)^{\boxtimes p / t}\right)$.
Proof. Formulas (6.16), (6.17) are consequences of (6.7), (4.11) and (6.12). Therefore, for $h>0$ we have

$$
\begin{equation*}
\mathcal{B}_{p, r, h}\left(\frac{(1+z)^{h / r}-1}{h}(1+z)^{-p / r}\right)=1+z, \tag{6.20}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
\mathcal{B}_{p, r, 0}\left(\frac{\log (1+z)}{r(1+z)^{p / r}}\right)=1+z \tag{6.21}
\end{equation*}
$$

and to (6.18). In particular, substituting $(1+z) \mapsto e^{\frac{p z}{t(1+z)}}$, we have

$$
\begin{equation*}
\mathcal{B}_{p, p, 0}\left(\frac{z}{t(1+z)} e^{\frac{-p z}{t(1+z)}}\right)=e^{\frac{p z}{t(1+z)}} \tag{6.22}
\end{equation*}
$$

which, combined with (6.11) gives

$$
\begin{equation*}
\mathcal{D}_{p, 0, t, 0}\left(\frac{z}{t(1+z)} e^{\frac{-p z}{t(1+z)}}\right)=\frac{1}{1-\frac{z}{1+z}}=1+z \tag{6.23}
\end{equation*}
$$

Proposition 6.6. For $h>0$ and $p, t \in \mathbb{R}$ we have

$$
\begin{align*}
\mu(p, h, h)^{\uplus t} & =\nu(p, 0, t h, h),  \tag{6.24}\\
\nu(p, 0,1,0)^{\uplus t} & =\nu(p, 0, t, 0) . \tag{6.25}
\end{align*}
$$

Proof. Since $\mathcal{B}_{p, 0,0}(z)=1$, formula (6.25) is a consequence of (6.11).
Proposition 6.7. For $h \geq 0, t>0, a, b \in \mathbb{R}$ we have

$$
\begin{align*}
\mu(a, b, h) \triangleright \mu(a+r, r, h) & =\mu(a+r, b+r, h),  \tag{6.26}\\
\nu(a, b, t, h) \triangleright \mu(a+r, r, h) & =\nu(a+r, b+r, t, h) . \tag{6.27}
\end{align*}
$$

Proposition 6.8. Assume that $h \geq 0$.

1. If $p \geq h$ and $0 \leq r \leq p$ then $\mu(p, r, h)$ is a probability measure with support contained in $[0, \infty)$. If $p \leq 0, p-h \leq r \leq 0$ then $\mu(p, r, h)$ is a probability measure which is the reflection of $\mu(h-p,-r, h)$.
2. If either $0 \leq 2 r \leq p, r+h \leq p$ or $p \leq 2 r+h, p \leq r \leq 0$ then $\mu(p, r, h)$ is $\boxplus$-infinitely divisible.
3. If $0 \leq r \leq p-h, t>0$ then $\nu(p, r, t, h)$ is a probability measure with a compact support contained in $[0,+\infty)$. If $p \leq h+r \leq 0, t<h$ then $\nu(p, r, t, h)$ is a probability measure which is the reflection of $\nu(h-p,-h-r, h-t, h)$
In particular, if either $0 \leq r \leq p-h$ or $p \leq h+r \leq 0$ then the sequence $\left\{\binom{m p+r}{m}_{h}\right\}_{m=0}^{\infty}$ is positive definite.
We conclude with some remarks on the probability measure $\nu_{0}:=\nu(1,0,1,0)$, for which the moments are $\nu_{0}\left(x^{m}\right)=\binom{m}{m}_{0}=\frac{m^{m}}{m!}$. From (4.9), (6.19) we have

$$
\begin{align*}
S_{\nu_{0}}(z) & =e^{\frac{-z}{1+z}}  \tag{6.28}\\
R_{\nu_{0}}\left(z e^{\frac{-z}{1+z}}\right) & =z  \tag{6.29}\\
M_{\nu_{0}}\left(\frac{z}{1+z} e^{\frac{-z}{1+z}}\right) & =1+z \tag{6.30}
\end{align*}
$$

Theorem 6.1. The sequence $\left\{\frac{m^{m}}{m!}\right\}_{m=0}^{\infty}$ is positive definite and the corresponding probability measure $\nu_{0}$ has compact support contained in $[0, e]$. Moreover, $\nu_{0}$ is $\boxtimes$-infinitely divisible.
Proof. First observe that $\lim _{m \rightarrow \infty} \sqrt[m]{\frac{m^{m}}{m!}}=e$, which implies that the support of $\nu_{0}$ is contained in $[0, e]$. Now we recall (see Theorem 3.7.3 in [2]) that a probability measure $\mu$ with support contained in $[0, \infty)$ is $\boxtimes$-infinite divisible if and only if the function $\Sigma_{\mu}(z):=S_{\mu}\left(z(1-z)^{-1}\right)$ can be expressed as $\Sigma_{\mu}(z)=$
$e^{v(z)}$, where $v: \mathbb{C} \backslash[0, \infty) \mapsto \mathbb{C}$ is analytic, satisfies $v(\bar{z})=\overline{v(z)}$ and maps the upper half-plane $\mathbb{C}^{+}$into the lower half-plane $\mathbb{C}^{-}$. In our case $\Sigma_{\nu_{0}}(z)=e^{-z}$ and the function $v(z)=-z$ does satisfy these assumptions.

Let us briefly reconstruct the way we have obtained the measure $\nu_{0}$. We started with $\widetilde{\pi}=\mu(2,1,1)$, the free Poisson measure. Then

$$
\mu(p, h, h)=\mathrm{D}_{h} \mu(p / h, 1,1)=\mathrm{D}_{h}\left(\tilde{\pi}^{\boxtimes \frac{p}{h}-1}\right)
$$

so putting $h=1 / n, p=1$ and using (6.24) with $t=1 / h=n$ we have

$$
\begin{equation*}
\left(\mathrm{D}_{\frac{1}{n}}\left(\widetilde{\pi}^{\boxtimes n-1}\right)\right)^{\uplus n} \longrightarrow \nu_{0}, \quad \text { with } n \rightarrow \infty \tag{6.31}
\end{equation*}
$$

where the convergence here means that the $m$-th moment of $\left(\mathrm{D}_{\frac{1}{n}}\left(\widetilde{\pi}^{\boxtimes n-1}\right)\right)^{\uplus n}$ tends to $\frac{m^{m}}{m!}$. Note also that from (6.29) one can calculate free cumulants of $\nu_{0}: r_{1}=1, r_{2}=1, r_{3}=\frac{1}{2}, r_{4}=\frac{-1}{3}$. Since $r_{4}<0$, the measure $\nu_{0}$ is not $\boxplus$-infinitely divisible.

## References

[1] T. Banica, S. T. Belinschi, M. Capitaine, B. Collins, Free Bessel laws, to appear in Canadian J. Math.
[2] H. Bercovici, D. V. Voiculescu, Free convolutions of measures with unbounded support, Indiana Univ. Math. J. 42 (1993). 733-773.
[3] M. Bożejko, J. Wysoczański, Remarks on t-transformations of measures and convolutions, Annales Institute Henri Poincaré, 37/6 (2001) 737-761.
[4] D. Callan, Sets, lists and noncrossing partitions, Journal of Integer Sequences, 11 (2008), Art. 08.1.3.
[5] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics, Addison-Wesley 1994.
[6] T. Hasebe, On monotone convolution and momotone infinite divisibility, arXiv:1002.3430v2.
[7] T. Hasebe, Monotone convolution semigroups, Studia Math. 200 (2010), 175-199.
[8] D.-Z. Liu, C. Song, Z.-D. Wang, On explicit probability densities associated with Fuss-Catalan numbers, arXiv:1008.0271v1.
[9] N. Muraki, Monotonic convolution and monotonic Levy-Hincin formula, preprint 2000.
[10] N. Muraki, Monotonic independence, monotonic central limit theorem and monotonic law of small numbers, Inf. Dim. Anal. Quantum Probab. Rel. Topics 4 (2001) 39-58.
[11] A. Nica, R. Speicher, Lectures on the Combinatorics of Free Probability, Cambridge University Press, 2006.
[12] K. A. Penson, A. I. Solomon, Coherent states from combinatorial sequences, Quantum theory and symmetries, Kraków 2001, World Sci.Publ., River Edge, NJ, 2002, 527-530.
[13] J. Riordan, Combinatorial identities, Willey 1968.
[14] R. Speicher, R. Woroudi, Boolean convolution, Fields Institute Communications 12 (1997), 267-279.
[15] D. V. Voiculescu, K. J. Dykema, A. Nica, Free random variables, CRM 1992.

Wojciech Młotkowski<br>Mathematical Institute<br>University of Wrocław<br>Pl. Grunwaldzki 2/4<br>50-384 Wrocław<br>Poland<br>mlotkow@math.uni.wroc.pl


[^0]:    ${ }^{1}$ Research supported by MNiSW: N N201 364436, by ToK: MTKD-CT-2004-013389, by 7010 POLONIUM project: "Non-Commutative Harmonic Analysis with Applications to Operator Spaces, Operator Algebras and Probability" and by joint PAN-JSPS project: "Noncommutative harmonic analysis on discrete structures with applications to quantum probability".

