Positive Definite Radial Functions on Free Product of Groups.

WOJCIECH MŁOTKOWSKI

Sunto. – Si presentano alcune classi di funzioni radiali definite positive su prodotto libero di gruppi. Si dà la caratterizzazione di tutte le funzioni sferiche definite positive sul gruppo libero prodotto $\mathbf{Z}_k \circ \mathbf{Z}_k \circ ... \circ \mathbf{Z}_k$ (N volte) introdotto da Λ . Iozzi e M. Picardello.

0. - Introduction.

For fixed integer N > 2 let $G_1, G_2, ..., G_N$ be arbitrary discrete groups. We shall consider their free product $G = G_1 \circ G_2 \circ ... \circ G_N$. Every element $x \in G \setminus \{e\}$ has the unique representation as a reduced word

$$x = g_1 g_2 \dots g_n,$$

where $g_k \in G_{i_k} \setminus \{e\}$ and $i_k \neq i_{k+1}$. We define on G the block lenght function $x \mapsto \|x\|$, putting $\|x\| = n$ for x as above and $\|e\| = 0$. In [2] M. Bozejko has proved, that the function $P_r(x) = r^{\|x\|}$ is positive definite for $0 < r \le 1$. In this paper we shall show that the function P_r is in the Fourier-Stieltjes algebra of the group G for $(-1)/(N-1) < r \le 1$. Next observe that for 0 < r < 1 P_r is not irreducible positive definite function.

In case when $G_1 = G_2 = ... = G_N = \mathbb{Z}_k$ we obtain complete description of the positive definite spherical functions on the free product group $G_{k,N} = \mathbb{Z}_k \circ \mathbb{Z}_k \circ ... \circ \mathbb{Z}_k$ (N-times). These results improve some theorems of A. Iozzi and M. Picardello [7].

1. - Preliminaries.

Let G be arbitrary discrete group. We say that a function φ_1 on G is *positive definite* if

for every finitely supported function f, where $f^*(x) = \overline{f(x^{-1})}$, $\langle u, v \rangle = \sum_{x \in G} u(x)v(x)$, $(u * v)(x) = \sum_{v \in G} u(xy^{-1})v(y)$. We say that a function φ_2 is negative definite if

$$\langle \varphi_2, f^* * f \rangle \leq 0$$

for every f with finite support and such that $\sum_{x \in G} f(x) = 0$ (see [1]).

By B(G) we denote the space of linear combinations of positive definite functions on G. B(G) is an algebra under pointvise multiplication, called the *Fourier-Stieltjes algebra* of the group G. For the basic definitions and theorems concerning B(G) we refer to the paper of Eymard [4].

From now on let G be a free product group $G_1 \circ G_2 \circ ... \circ G_N$. A function f on G is called *radial* when f(x) depends only on ||x|| for every $x \in G$. For a natural number $k \leq N$ we define the set

 $S_k = \{x \in G \setminus \{e\}: \text{ the first letter of the reduced word } x \text{ belong to } G_k\}.$

For a function $f: G \to C$ let $f_k = f \cdot \mathcal{X}_{S_k}$, where \mathcal{X}_A denotes the characteristic function of a set $A \subseteq G$. Then we have

$$f = f_1 + f_2 + ... + f_N + f(e) \delta_e$$
.

2. - The theorem.

For $r \neq 0$ we define the function ψ_r on $G = G_1 \circ G_2 \circ ... \circ G_N$ as follows:

$$\psi_r(x) = \begin{cases} 1 & \text{for } x = e \\ \alpha r^{\|x\|} & \text{for } x \neq e \end{cases}$$

where

$$\alpha = \alpha(r) = \frac{(N-1)r + 1}{Nr}.$$

For r = 0 we put

$$\psi_0 = rac{1}{N} \sum_{k=1}^N \chi_{\mathcal{G}_k}$$
 .

Let us note, that for $r \neq 0$

$$\psi_r(x) = \alpha r^{||x||} + (1 - \alpha) \, \delta_e(x) \; .$$

We shall use following simple facts:

For
$$(-1)/(N-1) < r \le 1$$
, $r \ne 0$

$$(1) 0 \leq \alpha(r) r \leq 1,$$

(2)
$$1 + (N-2)r - (N-1)r^2 \geqslant 0,$$

$$(3) \qquad \frac{\alpha(r)-1}{\alpha(r)} > 0 ,$$

and for $r \neq 0$, (-1)/(N-1)

(4)
$$1 + (N-1) \frac{\alpha(r) - 1}{\alpha(r)} = \frac{1}{r\alpha(r)}.$$

LEMMA 1. – Let $G=G_1\circ G_2\circ...\circ G_N$ and let a function $f\colon G\to \mathbf{C}$ has a finite support contained in some $S_{k_0}\left(k_0\leqslant N\right)$. Then

$$\langle \psi_r, f^* * f \rangle > \frac{1}{r\alpha(r)} |\langle \psi_r, f \rangle|^2$$

for
$$r \in ((-1)/(N-1), 0) \cup (0, 1]$$
.

PROOF. – We will write α and ψ instead of $\alpha(r)$ and ψ_r respectively. We shall prove the inequality (*) by induction with respect to maximal length of word in the support of function f.

First let us assume, that supp $f \subseteq \widetilde{G}_{k_0} = G_{k_0} \setminus \{e\}$. Using the fact (1) we get

$$\langle \psi, f^* * f \rangle - \frac{1}{\alpha r} |\langle \psi, f \rangle|^2 = (1 - \alpha r) \sum_x |f|(x)|^2 \geqslant 0$$
.

Now assume that $||x|| \le n+1$ for every $x \in \text{supp } (f)$. We can represent f in the following form:

$$f = \sum_{a \in \tilde{G}_{k_0}} \delta_a * g_{(a)},$$

where supp $(g_{(a)}) \subseteq (\bigcup_{l \neq k_0} S_l) \cup \{e\}$ and $||x|| \leqslant n$ for each $x \in \text{supp } (g_{(a)})$. Then

$$egin{aligned} \langle \psi, f^* st f
angle - rac{1}{lpha r} |\langle \psi, f
angle |^2 &= \sum_{a,b \in ilde{G}_{k_o}} igg((\langle \psi, g_{(b)}^* st \delta_{b^{-1}} st \delta_a st g_{(a)}
angle - \ &- rac{1}{lpha r} \langle \psi, \delta_a st g_{(a)}
angle \, \overline{\langle \psi, \delta_b st g_{(b)}
angle} igg) = \ &= \sum_{a \in ilde{G}_{k_o}} igg(\langle \psi, g_{(a)}^* st g_{(a)}
angle - rac{1}{lpha r} |\langle \psi, \delta_a st g_{(a)}
angle |^2 igg). \end{aligned}$$

Fix $a \in \widetilde{G}_{k_o}$ and write g instead of $g_{(a)}$. We have the following decomposition of g:

$$g = \sum_{k=1}^{N} g_k + c \delta_{\epsilon}$$
,

where supp $(g_k) \subseteq S_k$ and $c \in \mathbb{C}$. Note that $g_{k_{\bullet}} = 0$. Then the following equation holds:

$$\begin{split} S &= \langle \psi, g^* * g \rangle - \frac{1}{\alpha r} \, |\langle \psi, \delta_a * g \rangle|^2 = \\ &= \sum_{k,l} \left(\langle \psi, g_k^* * g_l \rangle - \frac{r}{\alpha} \, \overline{\langle \psi, g_k \rangle} \, \langle \psi, g_l \rangle \right) + \\ &+ (1-r) \sum_k \left(\overline{c} \langle \psi, g_k \rangle + c \overline{\langle \psi, g_k \rangle} \right) + (1-\alpha r) |c|^2 \, . \end{split}$$

Let us observe that for $k \neq l$

$$\langle \psi, f_k^* * f_l \rangle = \frac{1}{\alpha} \overline{\langle \psi, f_k \rangle} \langle \psi, f_l \rangle.$$

If $0 < r \le 1$ then $\alpha > 0$, $(1-r)/\alpha > 0$. It follows readily that in this case

$$\begin{split} S &= \frac{1-r}{\alpha} \bigg| \sum_{k \neq k_0} \langle \psi, g_k \rangle + \frac{\alpha r}{1+r} \, c \, \bigg|^2 + \\ &\quad + \frac{1-r}{\alpha r} \sum_{k \neq k_0} \bigg| \langle \psi, g_k \rangle + \frac{\alpha r}{1+r} \, c \, \bigg|^2 + \\ &\quad + \sum_{k \neq k_0} \bigg[\langle \psi, g_k^* * g_k \rangle - \frac{1}{\alpha r} \, |\langle \psi, g_k \rangle|^2 \bigg] + \frac{1-r}{1+r} \cdot \frac{N-2}{N} \, |c|^2 \, . \end{split}$$

If $r \in ((-1)/(N-1), 0)$ then $\alpha < 0$ and $(1-r)/\alpha < 0$. Therefore we obtain

$$\begin{split} S &= -\frac{1-r}{\alpha} \sum_{\substack{k < l \\ k, l \neq k_0}} |\langle \psi, g_k \rangle - \langle \psi, g_l \rangle|^2 + \frac{1+(N-2)r-(N-1)r^2}{\alpha r} \cdot \\ & \cdot \sum_{\substack{k \neq k_0 }} |\langle \psi, g_k \rangle + \frac{\alpha r(1-r)}{1+(N-2)r-(N-1)r^2} c \, \Big|^2 + \\ & + \sum_{\substack{k \neq k_0 }} \left[\langle \psi, g_k^* * g_k \rangle - \frac{1}{\alpha r} \, |\langle \psi, g_k \rangle|^2 \right] + \frac{(1-r)(N-2)}{N} \, |c|^2 \, . \end{split}$$

By the two last chains, (2) and the induction assumption $S \geqslant 0$. The proof is finished.

THEOREM 1. – Let $G = G_1 \circ G_2 \circ ... \circ G_N$: If $r \in [(-1)/(N-1), 1]$ then the function ψ_r is positive definite on G.

PROOF. – We shall prove that for every function f on G with a finite support the following inequality holds:

$$\langle \psi_r, f^* * f \rangle \gg |\langle \psi_r, f \rangle|^2$$
.

First we observe that $\langle \psi_r, f^* * f \rangle - |\langle \psi_r, f \rangle|^2 = \langle \psi_r, f_0^* * f_0 \rangle - |\langle \psi_r, f_0 \rangle|^2$, where $f_0(x) = f(x)$ for $x \neq e$ and $f_0(e) = 0$. Therefore we can assume, that f(e) = 0. We have

$$f = f_1 + f_2 + ... + f_N$$

where supp $(f_k) \subseteq S_k$. As before we shall write ψ and α instead of ψ_r and $\alpha(r)$. Using Lemma 1 and facts (3) and (4) one readily obtains for each $r \in ((-1)/(N-1), 0) \cup (0, 1]$

$$\begin{split} \langle \psi, f^* * f \rangle &= \sum_{k,l} \langle \psi, f_k^* * f_l \rangle = \sum_k \langle \psi, f_k^* * f_k \rangle + \\ &+ \sum_{k \neq l} \frac{1}{\alpha} \overline{\langle \psi, f_k \rangle} \langle \psi, f_l \rangle \geqslant \frac{1}{\alpha r} \sum_k |\langle \psi, f_k \rangle|^2 + \frac{1}{\alpha} \sum_{k \neq l} \overline{\langle \psi, f_k \rangle} \langle \psi, f_l \rangle = \\ &= \Big| \sum_k \langle \psi, f_k \rangle \Big|^2 + \frac{\alpha - 1}{\alpha} \sum_{k \leq l} |\langle \psi, f_k \rangle - \langle \psi, f_l \rangle|^2 = \\ &= |\langle \psi, f \rangle|^2 + \frac{\alpha - 1}{\alpha} \sum_{k \leq l} |\langle \psi, f_k - f_l \rangle|^2 \geqslant |\langle \psi, f \rangle|^2 \,. \end{split}$$

Since the eases r = (-1)/(N-1) and r = 0 are trivial the proof of Theorem 1 is complete.

COROLLARY 1. – Let $G = G_1 \circ G_2 \circ ... \circ G_N$: The positive definite function $G \in x \mapsto P_r(x) = r^{\|x\|}$ is not irreducible for 0 < r < 1 i.e. P_r is a convex combination of different positive definite functions. Namely

$$P_r = rac{1}{lpha(r)} \, \psi_r + \left(1 - rac{1}{lpha(r)}
ight) \delta_e \; .$$

COBOLLARY 2. – For $(-1)/(N-1) < r \le 1$ the function P_r belongs to the Fourier-Stieltjes algebra of G.

COROLLARY 3. – (a) The function $\varrho(x) = ||x|| - 1/N$ for $x \neq e$, $\varrho(e) = 0$ is negative definite on the group $G = G_1 \circ G_2 \circ ... \circ G_N$.

(b) The function $\tilde{d}(x, y) = d(x, y) - 1/N$ for $x \neq y$ and $\tilde{d}(x, x) = 0$ is negative definite on a homogeneous tree T of degree N, where d denotes the usual distance on T.

For basic facts about trees see book of J.-P. Serre [9], and for main properties of negative definite functions see C. Berg, G. Forst [1].

PROOFS. - Corollaries 1 and 2 follow directly from Theorem 1. To get Corollary 3 (a) it is sufficient to calculate, that

$$\varrho(x) = \lim_{r \to 1^-} \frac{1 - \psi_r(x)}{1 - r}.$$

For the proof of (b) one should consider the natural homogeneous tree of degree N connected with the product group $G = \mathbb{Z}_2 \circ \mathbb{Z}_2 \circ ... \circ \mathbb{Z}_2$ (N-copies).

REMARK. – Corollary 3 (b) is a generalisation of the result of P. Julg and A. Valette ([8], Lemma 2.3) which says that kernel $(x, y) \mapsto d(x, y)$ is a negative definite function on a tree.

3. - The case
$$G_1 = G_2 = ... = G_N = \mathbf{Z}_k$$
.

This part is connected with the paper [7] of A. Iozzi and Ml Picardello. They have introduced and studied so called spherica. functions on the group $G_{k,N} = \mathbf{Z}_k \circ \mathbf{Z}_k \circ ... \circ \mathbf{Z}_k$ (N-times), where \mathbf{Z}_k denotes the cyclic group of order k. In Proposition 4 (page 359 in [7]) the autors have written, that a spherical function φ is positive definite if and only if

$$\varphi(x) \in \left\lceil \frac{2(k-2)}{(k-1)N} - 1, 1 \right\rceil$$
 for $||x|| = 1$.

However this is not correct in full generality. We shall give the complete characterisation of positive definite spherical functions on the group $G_{k,N}$.

DEFINITION. – A radial function φ on $G_{k,N}$ is called *spherical* if the functional $Lf = \langle f, \varphi \rangle$ is multiplicative on the convolution algebra of radial, finite supported functions on $G_{k,N}$.

A spherical function φ , being radial, depends only on ||x||. Therefore it is convenient, for simplicity, to use the notation $\varphi(n)$ to denote the value of a spherical function φ at a word of length n. Let us recall, that φ is a spherical function if and only if there exists a complex number z such, that $\varphi(n) = P_n(z)$, where P_n are polynomials defined by the formulas:

$$P_0(z)=1$$
, $P_1(z)=z$

and

$$zP_{n}(z) = \frac{1}{(k-1)N} P_{n-1}(z) + \frac{k-2}{(k-1)N} P_{n}(z) + \frac{N-1}{N} P_{n+1}(z)$$

for $n \ge 1$ (see [7]).

We have the natural projection E from functions on $G_{k,N}$ onto radial functions on $G_{k,N}$ defined as follows

$$(Ef)(x) = \frac{1}{\# W_n} \sum_{y \in W_n} f(y)$$

where n = ||x|| and $W_n = \{y \in G_{k,N} : ||y|| = n\}$ (see [7] page 351). Since the proof of the Lemma 2 in [7] is not clear for us we present our version of the proof using ideas of the U. Haagerup paper [6].

Theorem 2. -E maps positive definite functions into positive definite functions.

To prove Theorem 2 it is convenient to consider $G_{k,N}$ as the set of vertices of a graph $\tilde{G}_{k,N}$ where $\{x,y\}$ is an edge if and only if $\|y^{-1}x\|=1$. Let us observe, that for any $x,y\in G_{k,N},\|y^{-1}x\|$ is the minimal length of paths from y to x (see [9]). It is sufficient to see it for y=e because the group $G_{k,N}$ acts on $\tilde{G}_{k,N}$ by left multiplication as a group of isomorfisms. Therefore each isomorfism of $\tilde{G}_{k,N}$ must be an isometry in the metric $d(x,y)=\|y^{-1}x\|$. Let I_0 be the group of all isomorfisms σ of the graph $\tilde{G}_{k,N}$ such that $\sigma(e)=e$. I_0 is a subgroup of the infinite product

$$H = \prod_{n=0}^{\infty} S(W_n)$$

of the permutation groups $S(W_n)$ of W_n . Since H is compact in the product topology and since the topology coincides with the topology of pointvise convergence in $G_{k,N} = \bigcup_{n=0}^{\infty} W_n$, I_0 is a closed subgroup of H. Therefore I_0 is compact.

LEMMA 2. – Consider the action of I_0 on $G_{k,N} \times G_{k,N}$ given by

$$\sigma(x, y) = (\sigma(x), \sigma(y)), \quad x, y \in G_{k,N}.$$

Then Io acts transitively on each of the sets

$$E_{k,m,l} = \{(x,y) \in G_{k,N} \times G_{k,N} : ||x|| = n, ||y|| = m, ||y^{-1}x|| = l\}.$$

PROOF. – It is clear, that each $E_{n,m,l}$ is a finite set invariant under the action of I_0 .

Let us note, that we can identify the graph $\widetilde{G}_{k,N}$ with a set X defined bellow:

$$X = \{\omega \colon \omega = \big((i_1,\,k_1),\ldots,\,(i_\eta,\,k_\eta)\big),\,\eta \geqslant 0,\,1 \leqslant i_1 \leqslant N,\,1 \leqslant i_p \leqslant N-1$$
 for $p > 1$ and $1 \leqslant k_p \leqslant k-1$ for $p \geqslant 1\}$,

in which are two following kinds of connections:

$$((i_1, k_1), ..., (i_{\eta}, k_{\eta}))$$
 with $((i_1, k_1), ..., (i_{\eta}, k_{\eta}), (i_{\eta+1}, k_{\eta+1}))$

for $\eta \geqslant 0$ and

$$((i_1, k_1), \dots, (i_n, k_n))$$
 with $((i_1, k_1), \dots, (i_{n-1}, k_{n-1}), (i_n, k'_n))$

for $\eta > 0$.

Let now (x, y), (s, t) be two elements of $E_{n,m,t}$: We shall look for $\tau \in I_0$ such that $\tau(x, y) = (s, t)$. Let

$$\begin{split} x &= \left((i'_1, \, k'_1), \, \dots, \, (i'_n, \, k'_n) \right) \,, \\ y &= \left((i''_1, \, k''_1), \, \dots, \, (i''_m, \, k''_m) \right) \,, \\ s &= \left((j'_1, \, l'_1), \, \dots, \, (j'_n, \, l'_n) \right) \,, \\ t &= \left((j''_1, \, l''_1), \, \dots, \, (j''_m, \, l''_m) \right) \,. \end{split}$$

Observe, that for any $\omega_0 = ((i_1, k_1), ..., (i_{\eta}, k_{\eta})) \in X$, any i $(i \leq N)$ if $\omega_0 = e$ and $i \leq N-1$ if $\omega_0 \neq e$, and any permutation $\tilde{\sigma}$ of the set $\{1, 2, ..., k-1\}$ the map

$$\sigma(\omega) = \begin{cases} \left((i_1, \, k_1), \, \dots, \, (i_{\eta}, \, k_{\eta}), \, (i_{\eta+1}, \, \tilde{\sigma}(k_{\eta+1})) \, , \, (i_{\eta+2}, \, k_{\eta+2}), \, \dots, \, (i_{\mu}, \, k_{\mu}) \right) \\ \text{when} \quad \omega = \left((i_1, \, k_1), \, \dots, \, (i_{\mu}, \, k_{\mu}) \right), \, \mu > \eta \, \text{ and } \, i_{\eta+1} = i \, , \\ \omega \, \text{ otherwise} \end{cases}$$

is in I_0 . Therefore we can assume, that

$$k_1' = l_1', ..., k_n' = l_n',$$

 $k_1'' = l_1'', ..., k_m'' = l_m''.$

Now assume, that n+m-l is even and let p=(n+m-l)/2+1. Then we have

$$egin{aligned} i_1' &= i_1'',\; ...,\; i_{p-1}' &= i_{p-1}'',\; i_p'
eq i_p'',\ j_1' &= j_1'',\; ...,\; j_{p-1}' &= j_{p-1}'',\; j_p'
eq j_p'',\ k_1' &= k_1'',\; ...,\; k_{p-1}' &= k_{p-1}''. \end{aligned}$$

Using a map

$$((i_{1}, k_{1}), ..., (i_{\eta}, k_{\eta})) \mapsto \\ \mapsto ((\sigma_{1}(i_{1}), k_{1}), ..., (\sigma_{p}(i_{p}), k_{p}), (i_{p+1}, k_{p+1}), ..., (i_{\eta}, k_{\eta}))$$

where $\sigma_2, ..., \sigma_n$ are permutations of the set $\{1, 2, ..., N-1\}$, σ_1 is permutation of the set $\{1, 2, ..., N\}$, we can assume, that

$$i_1' = j_1', i_2' = j_2', ..., i_p' = j_p'$$
 and $i_p'' = j_p''$.

Now let $\sigma_{p+1}, \ldots, \sigma_n, \tilde{\sigma}_{p+1}, \ldots, \tilde{\sigma}_m$ are permutations such, that

We define $\tau \in I_0$ putting for $\omega = ((i_1, k_1), ..., (i_n, k_n)),$

$$\tau(\omega) = ((j_1, k_1), \ldots, (j_\eta, k_\eta))$$

where

- a) if $i_p = i_p'$ then $j_q = \sigma_q(i_q)$ for $p + 1 \leqslant q \leqslant n$ and $j_q = i_q$ otherwise;
- b) if $i_p = i_p''$ then $j_q = \tilde{\sigma}_q(i)$ for $p + 1 \le q \le m$ and $j_q = i_\sigma$ otherwise;
- c) if $i_p \neq i'_p$, i''_p then $j_q = i_q$ for each $q \leqslant \eta$.

In the case when n+m-l is odd let p=(n+m-l+1)/2.

Then we have

$$i'_1 = i''_1, \dots, i'_{p-1} = i''_{p-1}, \quad i'_p = i''_p,$$

$$j'_1 = j''_1, \dots, j'_{p-1} = j''_{p-1}, \quad j'_p = j''_p,$$

$$k'_1 = k''_1, \dots, k'_{p-1} = k''_{p-1}, \quad k'_n \neq k''_n.$$

Simillary as before we can assume, that

$$i_1' = j_1', \, ..., \, j_p' = j_p'$$

Now let $\sigma_{p+1}, \ldots, \sigma_n, \tilde{\sigma}_{p+1}, \ldots, \tilde{\sigma}_m$ are permutations as before. Then we put

$$\tau(\omega) = ((j_1, k_1), \ldots, (j_n, k_n))$$

where

- a) if $k_p = k'_p$ then $j_q = \sigma_q(i_q)$ for $p + 1 \leqslant q \leqslant n$ and $j_q = i_q$ otherwise;
- b) if $k_p = k_p''$ then $j_q = \tilde{\sigma}_q(i_q)$ for $p+1 \leqslant q \leqslant m$ and $j_q = i_q$ otherwise;
- c) if $i_p \neq i'_p$, i''_p then $j_q = i_q$ for each $q \leqslant \eta$.

In the both cases we have $\tau(x, y) = (s, t)$ and Lemma 2 is proved.

PROOF OF THEOREM 2. – For any complex function f on $G_{k,N}$ we shall prove the following formula

$$(**) \qquad (Ef)(y^{-1}x) = \int_{\Im_0} f(\sigma(y)^{-1}\sigma(x)) \ d\mu(\sigma)$$

for all $x, y \in G_{k,N}$, where μ denotes the normalised Haar measure on $I_{\mathfrak{d}}$.

Fix $x, y \in G_{k,N}$ and let ||x|| = n, ||y|| = m, $||y^{-1}x|| = l$. By Lemma 2 all subsets of I_0 given by

$$\mathcal{F}_{s,t} = \left\{ \sigma \in I \colon \sigma(x_0, y) = (s, t) \right\}, \quad (s, t) \in E_{n,m,l}$$

have the same measure in I_0 . Therefore

$$\mu(\mathcal{F}_{s,t}) = \frac{1}{\#(E_{n,m,t})}, \qquad (s,t) \in E_{n,m,t}.$$

Hence

$$\int\limits_{\bf T} \! f\!\left(\sigma(y)^{-1}\sigma(x)\right) \, d\mu(\sigma) = \frac{1}{\# \left(E_{n,m,1}\right)} \sum_{(s,t) \in E_{n,m,1}} \! f(t^{-1}s) \; .$$

For each z of lenght l the number of pairs (s,t) in $E_{n,m,l}$ for which $t^{-1}s = z$ is equal to $(\chi_m * \chi_n)(z)$, where χ_n, χ_m are the characteristic functions of W_n , W_m respectively. Recall, that convolution of two radial functions is again radial (see [7]). Therefore the value $(\chi_m * \chi_n)(z)$ depends only on ||z||. Hence we have

$$\#(W_i) \cdot (\chi_m * \chi_n)(z) = \#(E_{n,m,i})$$

and

$$\frac{1}{\# (E_{n,m,l})} \sum_{(s,t) \in E_{n,m,l}} f(t^{-1}s) = \frac{1}{\# (E_{n,m,l})} \sum_{z \in W_l} (\chi_m * \chi_n)(z) f(z) =$$

$$= \frac{1}{\# (W_l)} \sum_{z \in W_l} f(z) = (Ef)(z) = (Ef)(y^{-1}x).$$

This way we have proved (**) and Theorem 2 follows directly from (**).

LEMMA 3. – If φ is real valued spherical function on $G_{k,N}$ and if φ belongs to Fourier-Stieltjes algebra $B(G_{k,N})$ then φ is positive definite.

PROOF. – Let f be any finite supported function. Because φ is radial then we have

$$\langle \varphi, f^* * f \rangle = \langle \varphi, E(f^* * f) \rangle$$
.

By Theorem 2 the function $E(f^***f)$ is positive definite and $E(f^***f)$ belongs to $C^*_{\rm rad}(G_{k,N})$ the closure of algebra of finite supported radial functions in full C^* -algebra $C^*(G_{k,N})$. Hence we have $E(f^***f) = g^***g$ for some $g \in C^*_{\rm rad}(G_{k,N})$ (see [3].

Let us take a sequence $\{h_n\}$ of finite supported radial functions tending to g in $C^*_{rad}(G_{k,N})$. Since by the assumption φ is real valued and φ is a multiplicative functional on radial, finite supported functions, we obtain

$$\langle \varphi, g^* * g \rangle = \lim_{n \to \infty} \langle \varphi, h_n^* * h_n \rangle = \lim_{n \to \infty} (\overline{\langle \varphi, h_n \rangle} \langle \varphi, h_n \rangle) \geqslant 0$$
.

Here we have used the fact, that B(G) is the dual of the full C^* -algebra $C^*(G)$. This completes the proof.

THEOREM 3. – Let φ be a spherical function on $G_{k,N}$. Then φ is positive definite if and only if $\varphi(1) \in [(-1)/(k-1), 1]$.

PROOF. - At the beginning let us observe, that the function

$$w_r(x) = \begin{cases} 1 & \text{for } x = e \\ r & \text{for } x \neq e \end{cases}$$

is positive definite on the cyclic group Z_k if and only if $r \in (-1)/(k-1), 1$. Therefore we get «only if ».

In [7], Theorem 2, page 357 the authors have showed, that if $z \neq \frac{1}{2} + m\pi i / \ln q$ then

$$\varphi_z(x) = c_z q^{-z||x||} + c_{1-z} q^{(z-1)||x||},$$

where q = (N-1)(k-1), c_z , c_{1-z} are some constances and φ_z is the spherical function for which

$$(***) \qquad \varphi_z(1) = \frac{\sqrt{q}}{N(k-1)} \left(q^{-\frac{1}{2}+z} + q^{\frac{1}{2}-z} + \frac{k-2}{\sqrt{q}} \right).$$

By Lemma 2 it is sufficient to show, that the functions $q^{-z||x||}$, $q^{(z-1)||x||}$ are both in the Fourier-Stieltjes algebra $B(G_{k,N})$.

First assume, that k > N. By Corollary 2 the function $P_r(x) = r^{\|x\|}$ is in $B(G_{k,N})$ for $(-1)/(N-1) < r \le 1$. Hence φ_z is positive definite when

$$q^{-z+\frac{1}{2}},\,q^{z-\frac{1}{2}}\hspace{-0.1cm}\in\hspace{-0.1cm}\left(\hspace{-0.1cm}\frac{-\sqrt{q}}{N-1},\,\sqrt{q}\right).$$

It occurs if and only if

$$q^{-z+\frac{1}{2}} \!\in \! \left(\!\!-\frac{\sqrt{q}}{N-1}, -\frac{N-1}{\sqrt{q}}\right) \!\cup \left[\!\!\! \frac{1}{\sqrt{q}}, \sqrt{q}\right]$$

and both of the intervals are nonempty. One can check, that the image of

$$\left(\!-\frac{\sqrt{q}}{N-1},-\frac{N-1}{\sqrt{q}}\!\right)\!\cup\!\left[\!\frac{1}{\sqrt{q}},\sqrt{q}\right]$$

by the function $s \mapsto s + 1/s$ is exactly the set

$$\left(-rac{N+k-2}{\sqrt{q}},-2
ight)\cup\left[2,rac{q+1}{\sqrt{q}}
ight].$$

Using (***) we infer, that if

$$\varphi(1) \in \left(\frac{-1}{k-1}, \, \frac{k-2-2\sqrt{q}}{(k-1)N}\right] \cup \left[\frac{k-2+2\sqrt{q}}{(k-1)N}, \, 1\right],$$

then φ is positive definite.

Now let $k \leqslant N$. If $(-1)/(k-1) \leqslant r \leqslant 1$ then the function w_r defined before is positive definite on the cyclic group \mathbf{Z}_k . Using the fact, that the function P_r on $G_{k,N}$ is a free product of w_r (see [2]) and using Bozejko Theorem in [2] stating, that free product of positive definite functions is again positive definite, we obtain, that P_r is positive definite for $(-1)/(k-1) \leqslant r \leqslant 1$. Therefore φ_z is positive definite when

$$q^{-z+\frac{1}{2}}, q^{z-\frac{1}{2}} \in \left[\frac{-\sqrt{q}}{k-1}, 1\right].$$

We infer as before, that φ is positive definite when

$$\varphi(1) \in \left[\frac{-1}{k-1}, \frac{k-2-2\sqrt{q}}{(k-1)N} \right] \cup \left[\frac{k-2+2\sqrt{q}}{(k-1)N}, 1 \right].$$

Recall, tha the interval

$$\left[\frac{k-2-2\sqrt{q}}{(k-1)N}, \frac{k-2+2\sqrt{q}}{(k-1)N}\right]$$

corresponds to the principal series of unitary representations (see [7]). Since pointvise limit of positive definite functions is again positive definite we have Theorem 2.

REMARK. - This result was know in the case k=2 (see for example [5], Lemma 3.2.).

Acknowledgement. – I would like to thank to professor Marek Bozejko for highly informative discussions and many valuable suggestions.

REFERENCES

 C. Berg - G. Forst, Potential theory on locally compact abelian groups, Ergebnisse der Mathematik 87, Berlin-Heidelberg-New York, Springer, 1975.

- [2] M. BOZEJKO, Positive definite functions on the free group and the noncommutative Riesz product, Boll. Un. Mat. Ital., (6) 5-A (1986), 13-21.
- [3] J. DIXMIER, Les C*-algèbres et leurs representations, Gauthier-Villars, Paris, 1969.
- [4] P. EYMARD, L'algèbre de Fourier d'un groupe localment compact, Bull. Soc. Math. France, 92 (1964), 181-236.
- [5] A. FIGA-TALAMANCA M. PICARDELLO, Harmonic analysis on free groups, Lecture Notes in Pure and Applied Mathematics, New York, 1983.
- [6] U. HAAGERUP, $M_0A(G)$ -functions, which are not coefficients of uniformly bounded representations, Unpublished manuscript.
- [7] A. Iozzi M. Picardello, Spherical functions on simmetric graphs, Lecture Notes in Mathematics 992, Proceedings, Cortona, Italy, 1982.
- [8] P. Julg A. Valette, K-theoretic amenability for $SL_2(Q_p)$ and the action on the associated tree, J. Funct. Anal., **58** (1984), 194-215.
- [9] J.-P. Serre, Arbres, amalgames, SL_2 , Asterisque, 46 (1977).

Mathematical Institute of Polish Academy of Science 51-617 Wrocław, Poland

Pervenuta in Redazione il 16 gennaio 1987