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Positive Definite Radial Functions
on Free Product of Groups.

‘WO0OJCIECH MLOTKOWSKI

Sunto. — 8i presentano alcune classi di funzioni radiali definite positive su
prodotte libero di gruppi. Si da la carallerizzazione di tutte le funziont
sferiche definite positive sul gruppo libero prodotto Z,oZ 0...0Z, (N volte)
introdotio da A. Iozzi ¢ M. Picardello.

0. — Introduction.

For fixed integer N>2 let G, G,, ..., Gy be arbitrary discrete
groups. We shall consider their free product G = G0Gyo...0Gy.
Every element x € @\ {e} has the unique representation as a reduced
word

T ="{19s---Gn,

where g€ G, \{e} and 7,5 i,,,. We define on & the bloek lenght
function z — |z|, putting |z == for = as above and [e] = 0.
In (2] M. Bozejko has proved, that the function P,(z) = rl*l is
positive definite for 0 < r<1. In this paper we shall show that the
function P, is in the Fourier-Stieltjes algebra of the group G for
(—1))(N—1)<r<1l. Next observe that for 0 <r<1 P, is not
irreducible positive definite function.

In case when G,= G,=— ... = Gy, = Z, we obtain complete de-
seription of the positive definite spherical functions on the free
product group Gy y= Z,0Z0...0Z, (N-times). These results im-
prove some theorems of A. Iozzi and M. Picardello [7].

1. — Preliminaries.

Let G be arbitrary discrete group. We say that a function ¢,
on @ is positive definite if

{p, % [>>0
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for every finitely supported function f, where f%(z) — f(z~'), {w, v) =
= > u(@)v(x), (u* v)(@) = > ulzy—*)v(y). We say that a function ¢,

weG veq
is negative definite if

{pay ffx ><0

for every f with finite support and such that > f(x) = 0 (see [1]).
xEG
By B(@) we denote the space of linear combinations of positive

definite funetions on &. B(@) is an algebra under pointvise multi-
plication, called the Fourier-Stieltjes algebra of the group G. For
the basic definitions and theorems coneerning B(G) we refer to
the paper of Eymard [4].

From now on let G beé a free produet group GhoG,o...0Gy. A
function f on G is called radial when f(x) depends only on [«] for
every x € . For a natural number k<N we define the set

S.= {m € G\{e}: the first letter of the reduced word z belong to G’;.}.

For a function f: ¢ — C let f, = f- %, , where X, denotes the char-
acteristic function of a set AC G. Then we have

f: f1'f’ fz‘f“ et fN+ f(fx’)ﬁ, .

2. — The theorem.

For r== 0 we define the funetion 3, on @ = G,0G,0...0Gy a8
follows:

1 for x =¢
YL =y el for xo o
where
o = alr) = N —Dr+1 .
Nr
For » — 0 we put
1 &
Y= kél Xe, -

Let us note, that for r= 0

V’r(f’?) = OCTHQC” + (1 —a) (3,((17) g
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We shall use following simple facts:

For (—1)/(N —1)<r<l, 7#0

(1) O<a(r)r<l,

(2) 1+ (N —=2)r—(N—1)r>0,
o ar)—1_

(3) e

and for r+# 0, (—1)/(N —1)

alr)y—1 1

alr) 705(7)

(4) I+ (N —1)

LEMMA 1. — Let G = GQ,0G,o...0Gy and let a function f: G —~C
has a finite support contained in some S, (k,<N). Then

1
(%) Yy ¥ % o> - ({9, 12

for re ((—1)/(¥N —1), 0) U (0, 1].

Proor. - We will write « and v instead of «(r) and v, respec-
tively. We shall prove the inequality (%) by induction with respect
to maximal lenght of word in the support of funection f.

First let us assume, that supp f C &, = @, \{e}. Using the fact
(1) we get

@ 1* % £ — o [ Pl = (L — o) 3 [fl@)]20.

Now assume that |z]|<n + 1 for every xzesupp (f). We can
represent f in the following form:

= Zaa*g(ah

acGx,

where supp (g, C( U 8 ) U {e} and |z <n» for each x € supp (¢()-
Then

<oy Fx f) “‘% <y, Hlr= E, ((<'l’; g(ﬂ;)* Op-1% Og % Ga)) —

abelx,

1 —
— < Oa% iay) <y Op* gu,)>) =

=3 (<«.u, gl o) — - [, Do .q<a)>i2)

(IEGA\:‘7
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Fix aegkn and write g instead of g,. We have the following
decomposition of g:

N
gngk+06,,
k=1

where supp (gx) € 8. and ce C. Note that g, = 0. Then the fol-
lowing equation holds:

1 .
8= {yp, g** g>~&; [y, 0a% g)|2 =
= g (<w, 9% * 9> —gm <y, 90) +

+ (1 —r) ,2.“ (<, 90 + <, 0) + (1 —ar)fef*.
Let us observe that for k%1
1
oy B > = = oy T <oy -

If 0<r<1 then a>0,(1—7r)/a>0. It follows readily that in
this case

1—7r ar 2
S — S :
SR R T T
+120 s g + o]
X kFh, | ¥r 9 1+7
. 1 1—r N—2
* N |2 . 2
‘i‘k;% [<TP, G * Guy or [, gk>;:|+l+r ¥ lef? .

If re((—1)/(N —1),0) then a« <0 and (1 —7)/ax << 0. Therefore
we obtain

1— ) 1 N —2)yr — (N —1)r2
B== ozy 2 Ky g0 — <y, g0 P+ + )t "
k<l ar

kl#k,
) ar{l — 1) E
k;gkn K% gk> 7(‘ 1 _+_ (A’—Z)?’—(.N-—l)?"gc i

. 1 Ll a=—nw—2)
+ 3 | areos — 51w aor| + FEET e



POSITIVE DEFINITE RADIAL FUNCTIONS ETC. 57

By the two last chains, (2) and the induction assumption S§>0.
The proof is finished.

THEOREM 1. — Let G = GyoGyo...0Gy: If re[(—1)/(N —1),1]
then the function w, is positive definite on G.

Proor. — We shall prove that for every function f on G with a
finite support the following inequality holds:

ey PP 0= Ky, DI
First we observe that (y,, [** > — |[<v,, F12= {y,, fexf> —

— |<v,, for|? wWhere fy(x) == f(x) for x5 e and fo(¢) = 0. Therefore
we can assume, that f(e) = 0. We have

f=f1+fz+---+f2va

where supp (fi) € S:. As before we shall write y and « instead
of v, and «fr). Using Lemma 1 and facts (3) and (4) one readily
obtains for each r € ((—1)[(N —1), 0) U (0,1]

<y, f*ef) = ,Z, <y xfo =2y fixfo +

k

S AR s LS K ol LS T T > =
EAIX ar & pEL

o—1

= |3 1o+

A 1 &

kgl ’<1P’ fk/\/ - <1/J, fl>]2 =
= [<Qp, f>r2+ q;l kgl l<'lp, fk—/l>lz> ’<w’ f>,2 .

Since the easés r = (—1)/(N¥N —1) and r = 0 are trivial the proof
of Theorem 1 is complete.

COROLLARY 1. — Let G = G0Gyo...0Gy: The positive definite
funetion G € w — P(x) — ¥ is not irreducible for 0 << r << 1 i.e. P,
8 a convex combination of different positive definite functions. Namely

P, = 1 9, + (1 — L)é, .

x(r) [z(r)

COROLLARY 2. — For (—1)/(N —1) < r<1 the function P, belongs
io the Fourier-Stieltjes algebra of G.
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COROLLARY 3. — (a) The function o(x) = |o| —1/N for x e,
o(e) = 0 is negative definite on the group G = GoGo...0Gy.
(b) The function d( (@, y) = d(x, y)—1|N for x =y andci(w,a;) =90
18 negative definile on a homogencous tree T of degree N, where d
denotes the usual distance on T,

For basic faets about trees see book of J.-P. Serre [9], and for
main properties of negative definite funetions see C. Berg, G.
Forst [1].

ProOFS. — Corollaries 1 and 2 follow directly from Theorem 1.
To get Corollary 3 (a) it is sufficient to calculate, that

1=yt

(x) = lim
o(w) 1—7

r—>1-

For the proof of (b) one should consider the natural homogeneous
tree of degree N connected with the produet group G = Z,0Z,0...0Z,
(N-eopies).

REMARK. — Corollary 3 (b) is a generalisation of the result of
P. Julg and A. Valette ([8], Lemma 2.3) which says that kernel
(%, ) — d(z, y) is a negative definite funetion on & tree.

~ The case G, = G, — ... = Gy = Z,.

This part is connected with the paper [7] of A. Tozzi and Ml
Picardello. They have introduced and studied so called spheriea.
functions on the group G,y = Z,0Z:0...0Z; (N-times), where Z, de-
notes the cyclic group of order k. In Proposition 4 (page 359 in [7])
the autors have written, that a spherical function ¢ is positive
definite if and only if

p(@) € [(1&-:1)?—1, 1] for |x) =1.

However this is not correct in full generality. We shall give the °

complete characterisation of positive definite spherical funetions on
the group 6.

DEFINITION. ~ A radial function ¢ on G, y is called spherical if
the functional Lf = {f,¢> is multiplicative on the convelution
algebra of radial, finite supported functions on G, y.
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A spherical function ¢, being radial, depends only on ||#||. There-
fore it is convenient, for simplicity, to use the notation ¢(n) to
denote the value of a spherical function ¢ at a word of lenght .
Let us recall, that ¢ is a spherical function if and only if there
exists a complex number 2z such, that ¢(n) = P,(z), where P, are
polynomials defined by the formulas:

and

1 k—2
2P () = (T;W P, (=) + (].——1)ﬁ

N -1

_P"(Z) + J\__ npl(z)

for n>1 (see [7]).
We have the natural projection E from functions on G,y onto
radial funections on G, defined as follows

1 ,
(Hf) () = W, WE Hy)

EWn

where n = 2| and W,= {y € G, y: ||y = n} (see [T] page 351).
Since the proof of the Lemma 2 in [7] is not clear for us we present
our version of the proof using ideas of the U. Haagerup paper [6].

THEOREM 2. — F maps positive definite functions into positive
definite functions.

To prove Theorem 2 it is convenient to consider Gy as the
set of vertices of a graph G,.» where {z,y} is an edge if and only
if |y'z] =1. Let us observe, that for any x, y € Gy, [y o is
the minimal lenght of paths from y to @ (see [9]). It is sufficient
to see it for y — e because the group Gy acts on G,y by left
multiplication as a group of isomorfisms. Therefore each isomorfism
of G,y must be an isometry in the metric d(z, y) = [y*lm“. Let I,
be the group of all isomorfisms o of the graph Gy such that
ole) = e. I, is a subgroup of the infinite product

= nEIOS(W,,)

of the permutation groups S(W,) of W,. Since H is compact in
the product topology and since the topology coincides with the

topology of pointvise convergence in G.y= |J W,, I, is a closed
subgroup of H. Therefore I, is compact. *=°
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LeMMA 2. — Consider the action of I, on Gy X Giy given by
o, y) = (o(z),0(%)), @ yebGy.
Then 1, acts transitively on each of the sets
By = {(@,9) € G X Gyt 2 =, [y] = m, [y 2] = 1.

Proor. — It is clear, that each FE,,, is a finite set invariant
under the action of I,.

Let us note, that we can identify the graph G,y with a set X
defined bellow:

X ={w:ro=(0,k),.. (@k)),n>0,1<6,<N,1<i,<N—1

for p>1 and 1<k, <k —1 for p>1},

in which are two following kinds of connections:

((y, %)y ..y (iny kg))  with

((Bay K1)y ey (imy Fon)y (Bmsny Bnmin))
for >0 and

((Bry Ka)y oeey (30, ka))  with

(G, a)y wovs (Enyy Bna)y (iny B))

tor > 0.
Let now (x, 9), (s,t) be two elements of I,,,,: We shall look
for v €I, such that z(x,y) = (s,1). Let

7’17 I"l)y AR (?‘ylu k;m)) 9

H

H

(¢
= (i1, k1) -y (i Bn)) 5
= ((?u R Zr:)) ,
(G0, 1)

(1 s (s b)) -

Observe, that for any w, = ((éy, k1), -.., (in, kn)) € X, any ¢ (i< N if
we=¢ and i< N —1 if w,+ ¢), and any permutation & of the set °
{1, 2, ..., k—1} the map

((il» k1)9 ey (7:777 kﬂ)s (iﬂ-p-ly 6(kﬂ+1)) I (i'n-t»z, kn+2)7 L] (illr ku))
olw) = 1§ when o = ((i1, ky)y ooy (g b))y pp > and ip =1,

w othervise
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is in I,. Therefore we can assume, that
’ ! ’ ’

bBy=1b, k=1,
" " " "

=4, .. k,=1,.

Now assume, that » +m—1liseven and let p = (n -+ m—1)/2 1.
Then we have

7 « 14 ol ./ /A
U =01y ey by g = lyqy BT Yy,

.t _ -/ of . N3 ol of)

1 =09 s Jp—1 = Jp—1s 107 Ju>»
’ s ! s

kEy=1Fyy s by =Fpq.

Using a map

((ixy &y)y oovy (i, ky))
= ((Ul(il)a kl)! cevy (o'p(":p)y kp); (im—u kﬂ+1)’ cey (iﬂy kﬂ))

where o,, ..., 0, are permutations of the set {1, 2,..., N —1}, o, is
permutation of the set {1, 2, ..., N}, we can assume, that

! — o -l__ o] . f . of d o — «ff
N=J1y L=y s HBp=1», al by =1p-
Now let 0pp15..0y Ony Gppay..., G are permutations such, that

«f . 4 o/ _ o/
0p+1(lpr1) = Jps1y -oos Oulln) = Jn s

~ o o/ ~ /4 1
0'1)+1(7’:n+1) = Ip+1s oees o'm(@m) = Im -

We define 7€ I, putting for @ = ((4, k), ..., (in, kn)),
(o) = ((jl; ky)yooey (G, kﬂ))
where

a) if i,= 1, then j,= 0,(4,) for p + 1< q<n and j, = 4, othervise;
b) if i,= 4, then j,= &,(i) for p + 1<g<mand §,= 4, othervise;
¢) if ¢, i,, ¢, then j,— i, for each ¢<7.

In the case when # + m —1 is odd let p = (n +m—1+ 1)/2.
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Then we have

of o 4 of — o/ "._4 1Y/4
U = 8y ey Uy = Uy, = 1p,
o . 1Y/ [¥4 _—_ 14 [%4 . of!
71 =015 vy Jp—1 = Ip—1 =1

k£:k,1’,..., kz,;—-l:'k”—ly ktlﬁé k;,;'
Simillary as before we can assume, that
of 174 of Y4
N=Ty s 1= 1p-
Now let 651, .0y Ouy Gpyay ...y Gy are permutations as before. Then
we put
(@) = ((1s K1)y +ony (Gny b))
where
a) if k,= k, then j, = 0,(¢,) for p -~ L <<g<n and j, = ¢, othervise;
b) if k,= k, then j,= 6,(4,) for p 1< q<m and j,= ¢, othervise;
c) if i, 4,, 1, then j,= ¢, for each g<n.

In the both cases we have t(z, ¥) = (s, t) and Lemma 2 is proved.

Proor orF THEOREM 2. — For any complex function f on G4,y
we shall prove the following formula

(%) (ENe) =[H{ol) (@) du(o)
Jo

for all #, y € G, 5, where yu denotes the normalised Haar measure
on I,.

Fix @, y € Giy and let 2| = n, ||ly]| = m, |y#| =1. By Lem-
ma 2 all subsets of I, given by

3‘-3,!: {Ge I: oz, y) = (s, t)} ’ (8,8) € By

have the same measure in I,. Therefore

1
/"(‘(FS.t) = T (53 t) EEn,m,l .

# (En, m,l) ’
Hence

ff(o(y)-law))dma):#—(iv S i)
30

En,m,l) (8,t)EEn,m.1
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For each 2z of lenght I the number of pairs (s,?) in H,,,,;, for
which #'s = z is equal to (x.* x.)(2), where y.,, ¥. are the charac-
teristic functions of W,, W, respectively. Recall, that convolution
of two radial functions is again radial (see [7]). Therefore the
value (Y% x.)(2) depends only on |2]. Hence we have

FAW)(sgm* 2n)(2) = # (En,m,l)

and

1 f(t-1s) = 1 D (tm* xa)(2)f(2) =

# (En,m,l) (8,1)€En,m,1 # (En,m,l) 2EW1L

= 717 2,10 = ENE) = Ef)ya)

This way we have proved (#=%) and Theorem 2 follows directly
from ().

LemMa 3. - If ¢ is real valued spherical function on Gy and
if @ belongs to Fourier-Stieltjes algebra B(G.y) then ¢ is positive
definite.

Proor. — Let f be any finite supported funetion. Because ¢
is radial then we have

{@, fFx ) = <g, B(f** f)) .

By Theorem 2 the function E(f* * f) is positive definite and E(f** f)
belongs to Chy(G,,) the closure of algebra of finite supported
radial funetions in full C*-algebra C*(G,y). Hence we have
H(f*x f) = g*% g for some ge C%,(G, ) (see [3].

Let us take a sequence {h,} of finite supported radial functions
tending to g in C%,(G, y). Since by the assumption ¢ is real valued
and ¢ is a multiplicative functional on radial, finite supported
funetions, we obtain

{py 9% % 9> =”lim {@y by % hoy = Hm ({@, by {@; hn) >0 .
Here we have used the fact, that B(@) is the dual of the full C*-al-
gebra C%(@). This completes the proof.

THEOREM 3. — Let ¢ be a spherical function on Gy . Then ¢ is
positive definite if and only if (1) € [(—1)/(k —1), 1].
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PRrROOF. — At the beginning let us observe, that the function

1 for z = ¢
w0r() = r for 2=~ e

is positive definite on the cyelic group Z, if and only if re
€ [(—1)/(k —1),1]. Therefore we get «only if ».

In [7], Theorem 2, page 357 the authors have showed, that if
2# } + maifln q¢ then

lpz({])) = czq“z”x“ __{,._ cl_zq(zﬁl)uxll ,

where ¢ = (N —1)(k—1), c,, ¢,_, are some constances and ¢, is the
spherical function for which

—

1 k—
(*%%) @.(1) = Wk—1) (Q_Hz—f‘ ¢ 7@2)

By Lemma 2 it is sufficient to show, that the functions gl
g Vel are both in the Fourier-Stieltjes algebra B(G:y).

First assume, that ¥ > N. By Corollary 2 the function P.(z) =
= rl*l is in B(Gyy) for (—1)/(N —1) <r<1. Hence ¢, is positive
definite when

g7, e (;ﬁ, x/Q')«

It occurs if and only if

el st 27

and both of the intervals are nonempty. One can eheck, that the
image of

NG N—1y [1 ]
( .N . 17 \/q‘ U \/q’ \/q
by the function s +>s -4 1/s is exactly the set

(e
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Using (##%%) we infer, that if

1 k—2—2G] [F—2 4244
(p(l)e(k—]’ k—1)N U{”(k-«l)N ’1]’

then ¢ is positive definite.

Now let k< N. If (—1)/(k—1)<r<1 then the function w, de-
fined before is positive definite on the cyelic group Z,. Using the
fact, that the function P, on Gy is a free product of w, (see [2])
and using Bozejko Theorem in [2] stating, that free product of
positive definite functions is again positive definite, we obtain,
that P, is positive definite for (—1)/(k—1)<r<1. Therefore @, is
positive definite when

qAZJr%a *te [k_—\—/lg’ 1] .

We infer as before, that ¢ is positive definite when

—1 k—2—244q] [k—2+2+Q
<p(1)e[k_1, (k-])Nqu[ k—DN ’1]'

Recall, tha the interval

corresponds to the principal series of unitary representations (see [7]).
Since pointvise limit of positive definite functions is again positive
definite we have Theorem 2.

REMARK. — This result was know in the case k¥ = 2 (see for
example [5], Lemma 3.2.).

Acknowledgement. — 1 would like to thank to professor Marek
Bozejko for highly informative discussions and many valuable
suggestions.
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