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Let X = (V,E) be a tree with the set V of vertices and the set E of
edges. - For any =z € V we will denote by N(x) the neighbourhood of z, i.e.
the set {v € V : d(v,z) £ 1}. Suppose that for any z € V we have a fixed
positive definite matrix A(z) = (a(v,z,w))y,weN(z) such that a(v,z,v) =1 for
any v € N(z). We define the kernel ¢ : V x V — C in the following way: if
2,y €V and [z,y] = {z9 = z,21,22,...,2n =y} C V is the geodesic from z to
y, then we put

¢(1‘ y) = Ha' -77:—1,931, z+1)

=0

Let us also define the additional kernel

B(z,y) = H a(Ti-1,%i, Tit1)

B(z,z) = 1, which will help us in computations. Note that for any
1€{0,1,2,...,n} we have

d(z,y) = Bz, z:)a(zio1, Ti, 2ig1) By, z3) . (1)

We are going to prove:
THEOREM. ¢ is a positive definite kernel on V.
We start with the following

EMMA. For any positive definite matrix A = (a(2,7))i,jer, for any fixed ip € I
d for any finitely supported complex function s on I,

Za(i,io)s(i), < a(ioaia) Z a(t,])s(z)m :
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where, by definition, z_; = z¢ =z and zp41 =z, =y. In particular ¢(z,z) =1.



Proof. Let {.,.) be the scmidefinite positive scalar product given by the matrix
A. Then, by the Cauchy - Schwarz inequality,

2
Yoaliyio)s@)| = I(s, 8i,)1F < (s,9)(6,,65,)
el

= a(ie,io) ¥ a(i,5)s(i)s(j) - O

i,7€l

Proof of the Theorem. For any z,v € V satisfying d(z,v) < 1 we define the set
z ifv==z
Vw2 { ) ‘
{z eV :d(zx,z) = d(z,v)+ 1} otherwise.
Then for any z € V we have the pairwise disjoint decomposition V =
Usen(s) V(2,v). Morcover, for any z, z' such that d(z,2) =1 we also have the
partition V(z,z') = UvEN(:')\{:} V(z',v).

We shall prove by induction the following statement: for any » € V and
for any finitely supported complex function f on V satisfying f(z) = 0 when
d(z,z) >n, we have

> bl ) f)fly)

z,yeV

> Y avzw) | Y Bl 2)f(x) > B ) f(w)
v, wEN(z) reV(z,v) YyEV(z,w)
For n = 0 the statement is obvious. Assume that it is proved for n; we shall
prove it for fixed z € V and for n+ 1. Note that, by (1), if z € [z,y] then

the coefficients of f(z)f(y) on the left and on the right hand side are equal.
Therefore, by (1), we only need to prove that, for any z' € N(z)\{z}:

Y eley)f(@)f(y)

2y€V(z,2)

> >0 Bla2)f(a) Y Bwafw) ]

reV(z,z") yEV(z,2

(recall that a(z',z,z') =1). Let us compute the right hand side of the inequality:

(2 swarn)| T swanw

zeV(z,z) yeV(z,2")

=1 >, Alaf@)

reVi(z,z’)

=l > > Bl a)f(a)f

vEN(z)\{:z} zeV(z',v)

Z a(v,2',z2) Z Bz, ") f(=)

Il

veEN(z)\{=) €V (z',v)
= | Z a(v, 2, 2)S)?
vEN(z)\{=}
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where S(v)= > B(z,Z')f(z).

z€V(2',v)
Applying the induction assumption to 2/ and to fxv(s,.) (Where xv(; . is

the characteristic function of the set V(z,2')) and using the Lemma we get

Y M@

z,y€V(z,7')

> Z a(v,z',w)( Z ﬂ(x,z’)f(x))( Z ﬂ(y,z’)f(y))

v,wEN(2')\{2} EV(z',v) yEV(2',w)

= Y a@Z,w)S@Sw) 2| Y. ab2,2)SE)}, O

v, wEN(z")\{z} vEN(2')\{z}

which concludes the proof.

. Now, suppose that for any z € V we have a fixed negative definite matrix
C(z) = (c(v,z,w))y,weN(z) such that c(v,z,v) = 0 for any v € N(z). We
define the kernel ¢ : VXV — C in the following way: if z,y € V and
[z,y] = {0 = z,21,22,...,2, =y} C V is the geodesic from z to y then we put

n

¥(z,y) = Y e(zi-1,%i,zi41)

i=0

where, as before, z_; = x9 =z and Tn41 = z, =y. In particular ¥(z,z) = 0.

COROLLARY 1. ¢ is a negative definite kernel on V.

Proof. Let t be a fixed positive number and define ¢,(z,y) = exp(—ty(z,y)).
Then ¢y(z,y) = [] azi-1,z:,zit1), where, for any z € V, the matrix

1
Alz) = (a(v,z,w))p,wen(z) is given by a¢(v,z,w) = exp(—tc(v,z,w)). By
Schoenberg’s theorem all matrices A;(x) are positive definite, so ¢; is a positive
definite kernel for any ¢ > 0. Applying Schoenberg’s theorem again, we infer that
¥ is a negative definite kernel. O

As a corollary we obtain a result of A. Valette (cf. [2]).

COROLLARY 2. Let f be any real valued function on V satisfying f(z) < ?.Egl(_z)
and define a kernel ¢ on V by

s =1, yemy
T, Y)= z .
d(o,y) - LEHE i gty

2

Then v is negative definite on V.
Proof. For any z € V. we define the matrix C(z) = (¢(v,z,w))y wen(z) In the

following way: c(v,z,0) = 0 for v € N(z), ¢(v,2,2) = c(z,z,v) = 22L& for
v € N(z)\{z} and c(v,z,w) =1 for v,w € N(2)\{z}, v # w. We shall prove
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that C(z) is negative definite. By (1, Lemma 3.2.1] it is enough to show that
the matrix B = (b(v,10))y wen(r) With bd(v,w) = (v, z,z) + c(w,z,z) — c(v,z,w)
is positive definite. We have
0 if v=zorw=z
blv,w)=<¢ 1— f(z) if v=w#z
—f(z) if v#Fw, v#¢z, w#z .

By [2, Proposition 1] the matrix B is positive definite, so C(z) is negative
definite.

Now, let ¢ be the negative definite kernel given by the system of matrices
(C(z))rev. Then c(x,z) =0 and for z # y we have

1— f(x 1-—-
vol(r,y) = ——,)ﬁ—l +d(z,y) -1+ ——Tf(—y—) = ¥(r,y) . U
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