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PROBABILITY MEASURES CORRESPONDING TO
AVAL NUMBERS

BY

WOJCIECH MŁOTKOWSKI (Wrocław)

Abstract. We describe the class of probability measures whose moments are given
in terms of the Aval numbers. They are expressed as the multiplicative free convolution
of measures corresponding to the ballot numbers m−k

m+k

(
m+k
m

)
.

Introduction. Aval [3] introduced multivariate Fuss–Catalan numbers
(1.3), which count p-Raney sequences (or, equivalently, Dyck paths or trees)
of a special type. They decompose the Fuss–Catalan numbers in an analogous
way as the ballot numbers B(m, k) := m−k

m+k

(
m+k
k

)
decompose the Catalan

numbers 1
2m+1

(
2m+1
m

)
.

The aim of this paper is to prove that the generating function (2.1) for
these numbers, with nonnegative parameters a0, . . . , ap−1, is the moment
generating function of a certain probability measure µ on R. It turns out
that µ can be represented as the multiplicative free convolution

µ(a0)� µ(a1)� · · ·� µ(ap−1),

where µ(a) is given by (3.4) and corresponds to the classical ballot num-
bers. It is worth mentioning here that for a real parameter p ≥ 1 the
Fuss–Catalan numbers 1

mp+1

(
mp+1
m

)
, m = 0, 1, . . . , constitute the moment

sequence of the probability measure µ(1)�(p−1), the multiplicative free power
of the Marchenko–Pastur distribution (see [4, 9, 10]).

The paper is organized as follows. First we reprove the result of Aval:
the formula (1.3) for the number of elements in the class Fm(k0, . . . , kp−1)
of Raney sequences. Next we find the generating function for these numbers,
with parameters a0, . . . , ap−1 ∈ R (Theorem 2.1). In Section 3 we character-
ize those probability measures which correspond to p = 1, i.e. the case of
the ballot numbers. Finally we briefly recall the notion of multiplicative free
convolution and apply it to the proof of our main theorem.
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1. Raney sequences. Let p ≥ 1 be a fixed integer. A p-Raney sequence
is a sequence x = (x1, . . . , xN ) such that xi ∈ {1,−p} and all the partial
sums Sn(x) = Sn := x1 + · · · + xn, 0 ≤ n ≤ N , are nonnegative. For
0 ≤ n ≤ N define Pn := (n, Sn) ∈ Z2. Then x can be identified with the
path (P0, P1, . . . , PN ).

Denote by F the class of those p-Raney sequences (x1, . . . , xN ) for which
xN = 1 and p divides SN , and by G the class of those for which SN = 0 (in
particular here p + 1 divides N). By convention we assume that the empty
sequence ∅ belongs to F as well as to G, so that F ∩G = {∅}. For x ∈ F ∪G
we have |{k : xk = 1}| = mp for some integer m ≥ 0 and then we put
‖x‖ := m. Define

Fm := {x ∈ F : ‖x‖ = m} and Gm := {y ∈ G : ‖y‖ = m}.

Then the map (x1, . . . , xN ) 7→ (x1, . . . , xM ), where M < N is such that
xM = 1, xM+1 = xM+2 = · · · = xN = −p (for N = 0 we put M = 0)
is a bijection Gm → Fm and elements of these sets are counted by the
Fuss–Catalan numbers:

(1.1) |Fm| = |Gm| =
1

m(p+ 1) + 1

(
m(p+ 1) + 1

m

)
(see [8]). Now we are going to decompose Fm and Gm into smaller sets.

For r ∈ {0, 1, . . . , p− 1} and for a p-Raney sequence x = (x1, . . . , xN ) we
define

|x|r := |{k : xk = −p and p divides Sk − r}|.

We say that x is of type (k0, . . . , kp−1), denoted t(x) := (k0, . . . , kp−1), if
|x|0 = k0, . . . , |x|p−1 = kp−1. By Fm(k0, . . . , kp−1) (resp. Gm(k0, . . . , kp−1))
we will denote the set of all x in Fm (resp. Gm) such that t(x)=(k0, . . . , kp−1).
In particular, if k0 + · · ·+ kp−1 = m ≥ 1 then Fm(k0, . . . , kp−1) = ∅. Hence
we have

F = {∅}
.
∪

.⋃
m≥1

k0,...,kp−1≥0
k0+···+kp−1<m

Fm(k0, . . . , kp−1),

G = {∅}
.
∪

.⋃
m≥1

k0,...,kp−1≥0
k0+···+kp−1=m

Gm(k0, . . . , kp−1).

Now we are going to count the elements in these sets. In particular we
will reprove Proposition 2.4 from [3].

Lemma 1.1. For m ≥ 0 and k0, . . . , kp−1 ≥ 0 with k0+· · ·+kp−1 < m+1,
we have
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|Fm+1(k0, . . . , kp−1)| =
∑

0≤j0≤k0
...

0≤jp−1≤kp−1

|Fm(j0, . . . , jp−1)|.

Proof. For x=(x1, . . . , xN )∈Fm+1(k0, . . . , kp−1) put Tx :=(x1, . . . , xM )
where M is unique such that xM = 1 and |{j : 1 ≤ j ≤ M,xj = 1}| = mp.
For m = 0 put M = 0. Then T is a bijection from Fm+1(k0, . . . , kp−1) onto
the disjoint union of the sets Fm(j0, . . . , jp−1), where 0 ≤ j0 ≤ k0, . . . , 0
≤ jp−1 ≤ kp−1.

We will apply the following elementary identity:

(1.2)
k∑
i=0

(c− i)
(
m− 1 + i

i

)
=

(
c− mk

m+ 1

)(
m+ k

k

)
,

for k ≥ 0, m ≥ 1 and c ∈ R.

Theorem 1.2. For m ≥ 1 and for k0, . . . , kp−1 ≥ 0 with k0 + · · ·+ kp−1
< m, we have

(1.3) |Fm(k0, . . . , kp−1)| =
m−

∑p−1
i=0 ki

m

p−1∏
i=0

(
m− 1 + ki

ki

)
.

Theorem 1.2 was proved in [3] by combinatorial means; here we follow
Remark 2.6 in [3]. Note that for p = 1 we get the classical ballot num-
bers.

Proof. Put e0(0, . . . , 0) := 1, and for m ≥ 1 and k0, . . . , kp−1 ≥ 0 with
k0 + · · ·+ kp−1 ≤ m, define

em(k0, . . . , kp−1) :=
m−

∑p−1
i=0 ki

m

p−1∏
i=0

(
m− 1 + ki

ki

)
.

In view of Lemma 1.1, it is sufficient to prove that if m ≥ 0, k0, . . . , kp−1 ≥ 0
and k0 + · · ·+ kp−1 < m+ 1 then∑

0≤j0≤k0
...

0≤jp−1≤kp−1

em(j0, . . . , jp−1) = em+1(k0, . . . , kp−1).

This is true for m = 0 because

e1(0, . . . , 0) = e0(0, . . . , 0) = 1.

Now assume that m ≥ 1. Applying (1.2) consecutively p times we get
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kp−1∑
jp−1=0

. . .

k0∑
j0=0

em(j0, . . . , jp−1)

=

kp−1∑
jp−1=0

. . .

k1∑
j1=0

m− j1 − . . .− jp−1 − mk0
m+1

m

(
m+ k0
k0

) p−1∏
i=1

(
m− 1 + ji

ji

)

· · · =
m− mk0

m+1 − . . .−
mkp−1

m+1

m

p−1∏
i=0

(
m+ ki
ki

)
= em+1(k0, . . . , kp−1),

which concludes the proof.

Theorem 1.3. For m ≥ 1 and k0, . . . , kp−1 ≥ 0 with k0+· · ·+kp−1 = m,
we have

(1.4) |Gm(k0, k1, . . . , kp−1)| =
1

m

(
m+ k0
k0 − 1

) p−1∏
i=1

(
m+ ki − 1

ki

)
.

Proof. We define Λ : G → F by putting Λ(x1, . . . , xN ) := (x1, . . . , xM )
whenever xM = 1 and xM+1 = xM+2 = · · · = xN = −p. For N = 0 we put
M = 0. Note that for m ≥ 1 and k0, . . . , kp−1 ≥ 0 with k0+k1+ · · ·+kp−1 =
m, Λ establishes a 1-1 correspondence between the class Gm(k0, k1, . . . , kp−1)
and the disjoint union

⋃k0−1
k=0 Fm(k, k1, . . . , kp−1). Now it remains to yoke

(1.2) together with (1.3).

2. Generating functions. Fix parameters a0, . . . , ap−1 ∈ R. The aim
of this section is to describe the generating functions

(2.1) F (z) = 1+
∞∑
m=1

zm
∑

k0,k1,...,kp−1≥0
k0+k1+···+kp−1<m

|Fm(k0, . . . , kp−1)|ak00 a
k1
1 . . . a

kp−1

p−1 ,

(2.2) G(z) = 1+

∞∑
m=1

zm
∑

k0,k1,...,kp−1≥0
k0+k1+···+kp−1=m

|Gm(k0, . . . , kp−1)|ak00 a
k1
1 . . . a

kp−1

p−1 .

We will use ideas from the proof of Proposition 2.7 in [3].
First we introduce some notation. For 0 ≤ r ≤ p− 1 define

a(r) := (ar, ar+1, . . . , ap−1, a0, . . . , ar−1)

and for k = (k0, . . . , kp−1) put

ak(r) := ak0r a
k1
r+1 . . . a

kp−r−1

p−1 a
kp−r

0 . . . a
kp−1

r−1 .

Now define auxiliary functions

(2.3) Gr(z) :=
∑
y∈G

z‖y‖a
t(y)
(r) ,

in particular G0 = G.
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Fix x = (x1, . . . , xN ) ∈ F \ {∅}. For 0 ≤ r ≤ p− 1 we put αr := max{n :
Sn(x) = r}. Then we decompose

x = (x0, 1,x1, 1, . . . , 1,xp)

where
xr := (xαr−1+2, xαr−1+3, . . . , xαr)

under the convention that α−1 := −1, αp := N . Then x0, . . . ,xp−1 ∈ G,
xp ∈ F and we have

‖x‖ = 1 + ‖x0‖+ · · ·+ ‖xp−1‖+ ‖xp‖

and

(2.4) z‖x‖at(x) = z · z‖x0‖a
t(x0)
(0) . . . z‖xp−1‖a

t(xp−1)

(p−1) z‖xp‖a
t(xp)
(0) ,

because the level of a given step of xr in the whole x is equal to its level
within xr plus r, i.e.

Sk(xr) + r = Sαr−1+1+k(x).

Note that the map x 7→ (x0,x1, . . . ,xp) is a bijection from F \ {∅} onto
Gp ×F .

Similarly, we decompose every y ∈ G \ {∅} as y = (y0, 1,y1, 1, . . . , 1,
yp,−p), with y0, . . . ,yp ∈ G, and

(2.5) z‖y‖at(y) = za0 · z‖y0‖a
t(y0)
(0) . . . z‖yp−1‖a

t(yp−1)

(p−1) z‖yp‖a
t(yp)
(0) ,

which leads to a bijection G \ {∅} → Gp+1.
Then (2.4) and (2.5) yield

(2.6) F (z) = 1 +
∑

x∈F\{∅}

z‖x‖a
t(x)
(0) = 1 + zG0(z)G1(z) . . . Gp−1(z)F (z),

(2.7) G(z) = 1 +
∑

y∈G\{∅}

z‖y‖a
t(y)
(0) = 1 + a0zG0(z)G1(z) . . . Gp−1(z)G0(z).

In the same way we can proceed with Gr, obtaining the equations

(2.8) Gr(z) = 1 + arzG0(z)G1(z) . . . Gp−1(z)Gr(z).

Now we are in a position to describe the functions F and G.

Theorem 2.1. In a neighborhood of 0 we have F (z) = 1 + F̃ (z) and
G(z) = 1 + G̃(z), where F̃ is the inverse function of

(2.9) w 7→ w(1 + w − a0w)(1 + w − a1w) . . . (1 + w − ap−1w)
(1 + w)p+1

,

and G̃ is the inverse function of
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(2.10) w 7→ w(a0 + a0w − a1w)(a0 + a0w − a2w) . . . (a0 + a0w − ap−1w)
ap0(1 + w)p+1

in a neighborhood of 0.

Proof. Put H(z) := zG0(z)G1(z) . . . Gp−1(z). Then from (2.8),

Gr(z) =
1

1− arH(z)
.

Taking the product over 0 ≤ r ≤ p− 1 and multiplying by z we get

(2.11) H(z) =
z

(1− a0H(z))(1− a1H(z)) . . . (1− ap−1H(z))
.

Now putting F̃ := F − 1, G̃ := G− 1 we see from (2.6) and (2.7) that

H =
F̃

1 + F̃
, H =

G̃

a0 + a0G̃
.

Substituting to (2.11) we get

z =
F̃ (1 + F̃ − a0F̃ )(1 + F̃ − a1F̃ ) . . . (1 + F̃ − ap−1F̃ )

(1 + F̃ )p+1

and

z =
G̃(a0 + a0G̃− a1G̃)(a0 + a0G̃− a2G̃) . . . (a0 + a0G̃− ap−1G̃)

ap0(1 + G̃)p+1
,

which concludes the proof.

Now it is easy to find F for p = 1:

Corollary 2.2. For p = 1 and a0 := a we have

F (z) =
1− 2a+

√
1− 4az

2(1− a− z)
=

2a

2a− 1 +
√
1− 4az

.

Proof. Here F̃ is the inverse function of w 7→ w(1 + w − aw)(1 + w)−2,
which implies that F (z) = F̃ (z) + 1 satisfies the quadratic equation

(2.12) (F (z)− 1)(F (z)− aF (z) + a) = zF (z)2,

with F (0) = 1, from which we find F (z).

We can also compute the Taylor expansion of the powers F (z)s:

Theorem 2.3. For s ∈ R we have

F (z)s = 1

+

∞∑
m=1

zm

m

m∑
k=1

k

(
s− 1 + k

k

) ∑
k0,...,kp−1≥0

k0+···+kp−1+k=m

p−1∏
i=0

(
m− 1 + ki

ki

)
ak00 a

k1
1 . . . a

kp−1

p−1 .
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Proof. For x ∈ F , with ‖x‖ = m and t(x) = (k0, . . . , kp−1) we define

φ(x) := m− (k0 + · · ·+ kp−1),

in particular φ(∅) = 0. Now we observe that if x1, . . . ,xs ∈ F then the
concatenation x = (x1, . . . ,xs) is also in F and we have t(x) = t(x1)+ · · ·+
t(xs) (as p-vectors), and ‖x‖ = ‖x1‖+ · · ·+ ‖xs‖.

On the other hand, for given x ∈ F and natural s there are exactly(s−1+φ(x)
φ(x)

)
ways of decomposing x into x1, . . . ,xs, with xi ∈ F . Indeed,

the beginning and the end points of the pieces can only be the points γi,
0 ≤ i ≤ φ(x), where

γi := min{j ≥ 0 : if k ≥ j then Sk(x) ≥ ip}

for 0 ≤ i ≤ φ(x) (in particular γ0 = 0), so this is equivalent to the problem
of counting distributions of s− 1 indistinguishable balls into φ(x) + 1 cells.
Therefore for natural s ∈ N we have

F (z)s =
(∑

x∈F
at(x)z‖x‖

)s
=

∑
x1,...,xs∈F

at(x1)+···+t(xs)z‖x1‖+···+‖xs‖

=
∑
x∈F

(
s− 1 + φ(x)

φ(x)

)
at(x)z‖x‖

= 1 +
∞∑
m=1

zm
m∑
k=1

(
s− 1 + k

k

) ∑
x∈Fm
φ(x)=k

at(x),

which, by (1.3), proves the theorem for s ∈ N.
Now for s ∈ R define c0(s) := 1 and for m ≥ 1 put

cm(s) :=

m∑
k=1

k

m

(
s− 1 + k

k

) ∑
k0,...,kp−1≥0

k0+···+kp−1+k=m

p−1∏
i=0

(
m− 1 + ki

ki

)
ak00 a

k1
1 . . . a

kp−1

p−1 .

Then for natural s we have

(2.13) F (z)s =

∞∑
m=0

cm(s)z
m.

This implies that for u, v ∈ N,

(2.14) cm(u+ v) =

m∑
k=0

ck(u)cm−k(v).

Since both sides of (2.14) are polynomials on u and v, (2.14) remains true
for all u, v ∈ R and that in turn proves that (2.13) holds for all s ∈ R.
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3. Probability measures: the case p = 1. Our purpose now is to
prove that if all the parameters aj are nonnegative then F and G are mo-
ment generating functions of certain probability measures. In other words,
if a0, . . . , ap−1 ≥ 0 then both the sequences

fm(a0, . . . , ap−1) :=
∑

k0,k1,...,kp−1≥0
k0+k1+···+kp−1≤m

|Fm(k0, . . . , kp−1)|ak00 a
k1
1 . . . a

kp−1

p−1 ,

gm(a0, . . . , ap−1) :=
∑

k0,k1,...,kp−1≥0
k0+k1+···+kp−1=m

|Gm(k0, . . . , kp−1)|ak00 a
k1
1 . . . a

kp−1

p−1

(in particular: f0(a0, . . . , ap−1) = g0(a0, . . . , ap−1) = 1), m ≥ 0, are positive
definite. We conjecture that this condition is also necessary (apart from the
trivial case gm(0, a1, . . . , ap−1) = δ0,m, ai ∈ R).

First we start with the case p = 1, so that

(3.1) fm(a) =

m∑
k=0

B(m, k)ak,

where B(m, k) := |Fm(k)| are the classical ballot numbers: B(0, 0) := 1
and B(m, k) =

(
m+k
m

)
m−k
m+k for m ≥ 1, 0 ≤ k ≤ m. In particular fm(1) =(

2m
m

)
/(m+1), themth Catalan number. These numbers satisfy the recurrence

B(0, 0) = 1 and

(3.2) B(m+ 1, k) =

k∑
i=0

B(m, i)

for 0 ≤ k ≤ m, B(m + 1,m + 1) = 0, which is equivalent to the following
recurrence for the polynomials fm: f0(a) = 1 and

(3.3) fm+1(a) =
fm(1)a

m+1 − fm(a)
a− 1

for m ≥ 0.
Now define a one-parameter family of measures: µ(0) := δ1 and for a > 0,

(3.4) µ(a) :=

√
4ax− x2

2πx(1− x+ ax)
χ[0,4a]dx+ atom(a)

where

(3.5) atom(a) =


1− 2a

1− a
δ1/(1−a) if 0 < a < 1/2,

0 if a ≥ 1/2.

In particular, µ(1) is called the Marchenko–Pastur distribution.



AVAL NUMBERS 197

Theorem 3.1. For a ≥ 0 the moment sequence of µ(a) is {fm(a)}∞m=0,
i.e. �

R

xm dµ(a)(x) = fm(a), m = 0, 1, 2, . . . .

The proof is based on four elementary lemmas; we will skip the proofs of
two of them.

Lemma 3.2. For n = 0, 1, 2, . . . and c 6= 1 we have

u2

(u2 + 1)n+1(u2 + c)
=

1

(1− c)(u2 + 1)n+1
− c

(1− c)n+1(u2 + c)

+
n−1∑
k=0

c

(1− c)n+1−k(u2 + 1)k+1
.

Lemma 3.3. For n = 0, 1, 2, . . . we have
∞�

0

dx

(x2 + 1)n+1
=

(
2n

n

)
π

2 · 4n
.

Lemma 3.4. For 0 < a 6= 1 and n = 0, 1, 2, . . . we have

4a�

0

xn
√
4ax− x2 dx

2πx(1− x+ ax)

=

(
2n

n

)
an

2(1− a)
− |2a− 1|

2(1− a)n+1
+
n−1∑
k=0

(
2k

k

)
(2a− 1)2ak

2(1− a)n+1−k .

Proof. Using the third substitution of Euler:
√
x(4a− x) =: ux, we get

x = 4a/(u2 + 1), dx = −8au dx/(u2 + 1)2. Putting c := (2a− 1)2, applying
the previous lemmas and the formula

∞�

0

dx

x2 + c
=

π

2
√
c
, c > 0,

we obtain

(3.6)
4a�

0

xn
√
4ax− x2 dx

2πx(1− x+ ax)
=

(4a)n+1

π

∞�

0

u2 du

(u2 + 1)n+1(u2 + (2a− 1)2)

= (4a)n+1

[(
2n

n

)
1

2 · 4n(1− c)
−

√
c

2(1− c)n+1
+

n−1∑
k=0

(
2k

k

)
c

2 · 4k(1− c)n+1−k

]

=

(
2n

n

)
an

2(1− a)
− |2a− 1|

2(1− a)n+1
+
n−1∑
k=0

(
2k

k

)
(2a− 1)2ak

2(1− a)n+1−k .
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Lemma 3.5.(
2n

n

)
an

2(1− a)
− 2a− 1

2(1− a)n+1
+
n−1∑
k=0

(
2k

k

)
(2a− 1)2ak

2(1− a)n+1−k = fn(a).

Proof. We will prove by induction that(
2n

n

)
an(1−a)n−(2a−1)+

n−1∑
k=0

(
2k

k

)
(2a−1)2ak(1−a)k = 2(1−a)n+1fn(a).

It is easy to check this for n = 0. Now suppose it holds for some n. Then the
left hand side for n+ 1 equals

Ln+1 :=

(
2n+ 2

n+ 1

)
an+1(1− a)n+1 − (2a− 1) +

n∑
k=0

(
2k

k

)
(2a− 1)2ak(1− a)k

=

(
2n+ 2

n+ 1

)
an+1(1− a)n+1 +

(
2n

n

)
(2a− 1)2an(1− a)n

−
(
2n

n

)
an(1− a)n + 2(1− a)n+1fn(a)

=

(
2n+ 2

n+ 1

)
an+1(1− a)n+1 − 4

(
2n

n

)
an+1(1− a)n+1 + 2(1− a)n+1fn(a)

=
−2
n+ 1

(
2n

n

)
an+1(1− a)n+1 + 2(1− a)n+1fn(a)

= −2(1− a)n+1(fn(1)a
n+1 − fn(a)) = 2(1− a)n+2fn+1(a) = Pn+1,

which, in view of (3.3), completes the proof.

Proof of Theorem 3.1. Comparing Lemmas 3.4 and 3.5 we see that if
1/2 ≤ a 6= 1 then

4a�

0

xn
√
4ax− x2 dx

2πx(1− x+ ax)
= fn(a),

while for 0 < a < 1/2,
4a�

0

xn
√
4ax− x2 dx

2πx(1− x+ ax)
+

1− 2a

(1− a)n+1
= fn(a).

For the remaining case a = 1 we apply (3.6) and Lemma 3.3:

4�

0

xn
√
4x− x2
2πx

dx =
4n+1

π

∞�

0

u2 du

(u2 + 1)n+2

=
4n+1

π

∞�

0

(u2 + 1)− 1

(u2 + 1)n+2
du = 2

(
2n

n

)
− 1

2

(
2n+ 2

n+ 1

)
=

1

2n+ 1

(
2n+ 1

n

)
.
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We can also find the Jacobi parameters of µ(a):

Theorem 3.6. The monic orthogonal polynomials for µ(a) are given by
the following recurrence: P0(x) = 1 and for m ≥ 0,

xPm(x) = Pm+1(x) + βmPm(x) + γm−1Pm−1(x)

(under the convention that γ−1 = 0 and P−1 = 0), where the Jacobi param-
eters are

βm =

{
1 if m = 0,
2a if m ≥ 1,

γm =

{
a if m = 0,
a2 if m ≥ 1.

Proof. Using the identity
1− 2az −

√
1− 4az

2
=

a2z2

1− 2az −
1− 2az −

√
1− 4az

2

we can express Mµ(a)(z) as a continued fraction:

Mµ(a)(z) =
2a

2a− 1 +
√
1− 4az

=
1

1− z −
1− 2az −

√
1− 4az

2a

=
1

1− z −
az2

1− 2az −
a2z2

1− 2az −
a2z2

1− 2az −
a2z2

. . .

,

which implies our statement (see [14, 7]).

Let us mention that these measures µ(a) belong to the free Meixner
class which consists of those probability measures on R for which the Jacobi
sequences {βn}∞n=0 and {γn}∞n=0 are constant for n ≥ 1 (see [1, 2, 6, 12]).

4. Probability measures: the general case. In this part we will
make use of free probability, introduced by Voiculescu (for details we refer to
[13, 11, 5]). In this theory by a noncommutative probability space we mean
a pair (A, φ), where A is a unital C∗-algebra and φ is a tracial state on A,
i.e. a linear map φ : A → C such that φ(1) = 1 and for every X,Y ∈ A
we have φ(X∗X) ≥ 0 and φ(XY ) = φ(Y X). Every self-adjoint element
X = X∗ ∈ A possesses its distribution µX , which is a compactly supported
probability measure on R whose moments are φ(Xm). If in addition X is
positive (which means that X = Z2 for some Z = Z∗ ∈ A) then this mea-
sure is supported in the positive half-line [0,∞). A family {Ai}i∈I of unital
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subalgebras is said to be freely independent if we have φ(X1 . . . Xm) = 0
whenever X1 ∈ Ai1 , . . . , Xm ∈ Aim , ik ∈ I, i1 6= i2 6= · · · 6= im and
φ(X1) = · · · = φ(Xm) = 0. Elements Y1, . . . , Yn ∈ A are called freely in-
dependent if there are free unital subalgebras A1, . . . ,An such that Yk ∈ Ak
for 1 ≤ k ≤ n.

Now assume that X = X∗, Y = Y ∗ ∈ A are freely independent, with
distributions µX , µY . Then it turns out that the distribution of X + Y de-
pends only on µX and µY and is denoted by µX � µY . If in addition X,Y
are positive, with X = Z2 for some Z = Z∗ ∈ A then the distribution of
ZY Z depends only on µX and µY and is denoted by µX �µY . These opera-
tions can be extended to the whole class of probability measures on R, with
support in the positive half-line in the case of �, and are called additive and
multiplicative free convolution respectively (see [5]). Only the latter will be
used here.

Denote byMc
+ the class of probability measures with compact support

contained in [0,∞), different from δ0. For µ ∈Mc
+, with moments

sm(µ) :=
�

R

tm dµ(t),

and with the moment generating function

Mµ(z) :=
∞∑
m=0

sm(µ)z
m =

�

R

dµ(t)

1− tz
,

we define the S-transform Sµ(z) by the equation

Mµ

(
z

1 + z
Sµ(z)

)
= 1 + z

on a neighborhood of 0. If c > 0 and Dcµ denotes the dilation of µ, i.e.
Dcµ(X) := µ(c−1X), then MDcµ(z) =Mµ(cz) and SDcµ(z) = c−1Sµ(z).

For µ1, µ2 ∈Mc
+ the multiplicative free convolution µ1�µ2 is the unique

µ ∈Mc
+ which satisfies

(4.1) Sµ(z) = Sµ1(z) · Sµ2(z)

(see [13, 5]). The operation � can be regarded as a free analog of the Mellin
convolution (which expresses the distribution of the product of nonnegative
independent random variables), but (just as for�) no direct formula is known
to compute µ1 � µ2 for general µ1, µ2 ∈Mc

+.
Now we can prove

Theorem 4.1. Assume that a0, . . . , ap−1 ≥ 0. Then the function F given
by (2.1) is the moment generating function of the probability measure

(4.2) µ(a0)� µ(a1)� · · ·� µ(ap−1).
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If moreover a0 > 0 then the function G given by (2.2) is the moment gener-
ating function of the probability measure

(4.3) Da0µ(1)� µ(a1/a0)� µ(a2/a0)� · · ·� µ(ap−1/a0).

If a0 = 0 then G(z) = 1 and it is the moment generating function of δ0.

Proof. From Corollary 2.2 we have

Mµ(a)(z) =
1− 2a+

√
1− 4az

2(1− a− z)
and by (2.12) this function satisfies the equation

Mµ(a)

(
z(1 + z − az)

(1 + z)2

)
= 1 + z,

which yields

(4.4) Sµ(a)(z) =
1 + z − az

1 + z
.

Now, coming to the general case, in view of Theorem 2.1 and formula
(4.4) we have

F

(
z

1 + z
Sµ(a0)(z)Sµ(a1)(z) . . . Sµ(ap−1)(z)

)
= 1 + z

and

G

(
z

(1 + z)a0
Sµ(1)(z)Sµ(a1/a0)(z) . . . Sµ(ap−1/a0)(z)

)
= 1 + z,

which leads to the desired statement.

Remark 4.2. One can check (see Theorem 3.7.3 in [13] or Theorem 6.13
in [5]) that for every a ≥ 0 the measure µ(a) is infinitely divisible with
respect to the multiplicative free convolution �, which implies that so are
the measures (4.2) and (4.3).
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