THE PROBABILITY MEASURE CORRESPONDING TO 2-PLANE TREES

BY

WOJCIECH MŁOTKOWSKI* (Wročaw) and KAROL A. PENSON** (PARIS)

Abstract. We study the probability measure μ_{0} for which the moment sequence is $\binom{3 n}{n} \frac{1}{n+1}$. We prove that μ_{0} is absolutely continuous, find the density function and prove that μ_{0} is infinitely divisible with respect to the additive free convolution.

2000 AMS Mathematics Subject Classification: Primary: 44A60; Secondary: 46L54.

Key words and phrases: Beta distribution, additive and multiplicative free convolution, Meijer G-function.

1. INTRODUCTION

A 2-plane tree is a planted plane tree such that each vertex is colored black or white and for each edge at least one of its ends is white. Gu and Prodinger [3] proved that the number of 2-plane trees on $n+1$ vertices with black (white) root is $\binom{3 n+1}{n} \frac{1}{3 n+1}$ (Fuss-Catalan number of order three, sequence A001764 in OEIS [10]) and $\binom{3 n+2}{n} \frac{2}{3 n+2}$ (sequence A006013 in OEIS) respectively (see also [4]). We will study the sequence

$$
\begin{equation*}
\binom{3 n}{n} \frac{2}{n+1}=\binom{3 n+1}{n} \frac{1}{3 n+1}+\binom{3 n+2}{n} \frac{2}{3 n+2} \tag{1.1}
\end{equation*}
$$

which begins with

$$
2,3,10,42,198,1001,5304,29070,163438, \ldots
$$

of total numbers of such trees (A007226 in OEIS).

[^0]Both the sequences on the right-hand side of (1.1) are positive definite (see [5] and [6]), therefore so is the sequence $\binom{3 n}{n} \frac{2}{n+1}$ itself. In this paper we study the corresponding probability measure μ_{0}, i.e. such that the numbers $\binom{3 n}{n} \frac{1}{n+1}$ are moments of μ_{0}. First we prove that μ_{0} is Mellin convolution of two beta distributions, in particular μ_{0} is absolutely continuous. Then we find the density function of μ_{0}. In the last section we prove that μ_{0} can be decomposed as additive free convolution $\mu_{1} \boxplus \mu_{2}$ of two measures μ_{1} and μ_{2}, which are both infinitely divisible with respect to \boxplus and are related to the Marchenko-Pastur distribution. In particular, the measure μ_{0} itself is \boxplus-infinitely divisible.

2. THE GENERATING FUNCTION

Let us consider the generating function

$$
G(z)=\sum_{n=0}^{\infty}\binom{3 n}{n} \frac{2 z^{n}}{n+1}
$$

According to (1.1), G can be represented as a sum of two generating functions. The former is usually denoted by \mathcal{B}_{3},

$$
\mathcal{B}_{3}(z)=\sum_{n=0}^{\infty}\binom{3 n+1}{n} \frac{z^{n}}{3 n+1}
$$

and satisfies the equation

$$
\begin{equation*}
\mathcal{B}_{3}(z)=1+z \cdot \mathcal{B}_{3}(z)^{3} \tag{2.1}
\end{equation*}
$$

Lambert's formula (see (5.60) in [2]) implies that the latter is just square of \mathcal{B}_{3},

$$
\mathcal{B}_{3}(z)^{2}=\sum_{n=0}^{\infty}\binom{3 n+2}{n} \frac{2 z^{n}}{3 n+2}
$$

so we have

$$
\begin{equation*}
G(z)=\mathcal{B}_{3}(z)+\mathcal{B}_{3}(z)^{2} . \tag{2.2}
\end{equation*}
$$

Combining (2.1) and (2.2), we obtain the following equation for G :

$$
\begin{equation*}
2-z-(1+2 z) G(z)+2 z G(z)^{2}-z^{2} G(z)^{3}=0 \tag{2.3}
\end{equation*}
$$

which will be applied later on.
Now we will give a formula for $G(z)$.
Proposition 2.1. For the generating function of the sequence (1.1) we have

$$
\begin{equation*}
G(z)=\frac{12 \cos ^{2} \alpha+6}{\left(4 \cos ^{2} \alpha-1\right)^{2}} \tag{2.4}
\end{equation*}
$$

where $\alpha=\frac{1}{3} \arcsin (\sqrt{27 z / 4})$.

Proof. Defining $(a)_{n}:=a(a+1) \ldots(a+n-1)$ we have

$$
\frac{2(3 n)!}{(n+1)!(2 n)!}=\frac{-2\left(\frac{-2}{3}\right)_{n+1}\left(\frac{-1}{3}\right)_{n+1} 27^{n+1}}{3(n+1)!\left(\frac{-1}{2}\right)_{n+1} 4^{n+1}}
$$

Therefore

$$
G(z)=\frac{2-2 \cdot{ }_{2} F_{1}\left(\frac{-2}{3}, \frac{-1}{3} ; \frac{1}{2} \left\lvert\, \frac{27 z}{4}\right.\right)}{3 z}
$$

Now we apply the formula

$$
\begin{aligned}
{ }_{2} F_{1}\left(\frac{-2}{3}\right. & \left., \frac{-1}{3} ; \left.\frac{-1}{2} \right\rvert\, u\right) \\
& =\frac{1}{3} \sqrt{u} \sin \left(\frac{1}{3} \arcsin (\sqrt{u})\right)+\sqrt{1-u} \cos \left(\frac{1}{3} \arcsin (\sqrt{u})\right)
\end{aligned}
$$

which can be checked by verifying the hypergeometric equation (note that both the functions $w \mapsto w \sin \left(\frac{1}{3} \arcsin (w)\right)$ and $w \mapsto \cos \left(\frac{1}{3} \arcsin (w)\right)$ are even, so the right-hand side is well defined for $|u|<1)$. Putting $\alpha=\frac{1}{3} \arcsin (\sqrt{u}), u=$ $27 z / 4$, we have $\sqrt{u}=\sin 3 \alpha, \sqrt{1-u}=\cos 3 \alpha$, which leads to (2.4).

3. THE MEASURE

Now we want to study the (unique) measure μ_{0} for which $\left\{\binom{3 n}{n} \frac{1}{n+1}\right\}_{n=0}^{\infty}$ is the moment sequence. We will show that μ_{0} can be expressed as the Mellin convolution of two beta distributions. Then we will provide an explicit formula for the density function $V(x)$ of μ_{0}.

Recall (see [1]) that for $\alpha, \beta>0$, the beta distribution $\operatorname{Beta}(\alpha, \beta)$ is the absolutely continuous probability measure defined by the density function

$$
f_{\alpha, \beta}(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \cdot x^{\alpha-1}(1-x)^{\beta-1}
$$

for $x \in(0,1)$. The moments of $\operatorname{Beta}(\alpha, \beta)$ are

$$
\int_{0}^{1} x^{n} f_{\alpha, \beta}(x) d x=\frac{\Gamma(\alpha+\beta) \Gamma(\alpha+n)}{\Gamma(\alpha) \Gamma(\alpha+\beta+n)}=\prod_{i=0}^{n-1} \frac{\alpha+i}{\alpha+\beta+i}
$$

For probability measures ν_{1}, ν_{2} on the positive half-line $[0, \infty)$ the Mellin convolution is defined by

$$
\begin{equation*}
\left(\nu_{1} \circ \nu_{2}\right)(A):=\int_{0}^{\infty} \int_{0}^{\infty} \chi_{A}(x y) d \nu_{1}(x) d \nu_{2}(y) \tag{3.1}
\end{equation*}
$$

for every Borel set $A \subseteq[0, \infty)\left(\chi_{A}\right.$ denotes the indicator function of the set $\left.A\right)$. This is the distribution of the product $X_{1} \cdot X_{2}$ of two independent nonnegative random variables with $X_{i} \sim \nu_{i}$. In particular, if $c>0$ then $\nu \circ \delta_{c}$ is the dilation of the measure ν :

$$
\left(\nu \circ \delta_{c}\right)(A)=\mathbf{D}_{c} \nu(A):=\nu\left(\frac{1}{c} A\right),
$$

where δ_{c} denotes the Dirac delta measure at c.
If both the measures ν_{1}, ν_{2} have all moments

$$
s_{n}\left(\nu_{i}\right):=\int_{0}^{\infty} x^{n} d \nu_{i}(x)
$$

finite, then so has $\nu_{1} \circ \nu_{2}$ and

$$
s_{n}\left(\nu_{1} \circ \nu_{2}\right)=s_{n}\left(\nu_{1}\right) \cdot s_{n}\left(\nu_{2}\right)
$$

for all n. The method of Mellin convolution has been recently applied to a number of related problems, see for example [6] and [8].

From now on we will study the probability measure corresponding to the sequence $\binom{3 n}{n} \frac{1}{n+1}$.

Proposition 3.1. Define μ_{0} as the Mellin convolution:

$$
\begin{equation*}
\mu_{0}=\operatorname{Beta}(1 / 3,1 / 6) \circ \operatorname{Beta}(2 / 3,4 / 3) \circ \delta_{27 / 4} . \tag{3.2}
\end{equation*}
$$

Then the numbers $\binom{3 n}{n} \frac{1}{n+1}$ are moments of μ_{0} :

$$
\int_{0}^{27 / 4} x^{n} d \mu_{0}(x)=\binom{3 n}{n} \frac{1}{n+1} .
$$

Proof. It is sufficient to check that

$$
\frac{(3 n)!}{(n+1)!(2 n)!}=\prod_{i=0}^{n-1} \frac{1 / 3+i}{1 / 2+i} \cdot \prod_{i=0}^{n-1} \frac{2 / 3+i}{2+i} \cdot\left(\frac{27}{4}\right)^{n}
$$

In view of formula (3.2), the measure μ_{0} is absolutely continuous and its support is the interval $[0,27 / 4]$. Now we want to find the density function $V(x)$ of the measure μ_{0}.

Theorem 3.1. Let

$$
\begin{aligned}
V(x)= & \frac{\sqrt{3}}{2^{10 / 3} \pi x^{2 / 3}}(3 \sqrt{1-4 x / 27}-1)(1+\sqrt{1-4 x / 27})^{1 / 3} \\
& +\frac{1}{2^{8 / 3} \pi x^{1 / 3} \sqrt{3}}(3 \sqrt{1-4 x / 27}+1)(1+\sqrt{1-4 x / 27})^{-1 / 3}
\end{aligned}
$$

$x \in(0,27 / 4)$. Then V is the density function of μ_{0}, i.e.

$$
\int_{0}^{27 / 4} x^{n} V(x) d x=\binom{3 n}{n} \frac{1}{n+1}
$$

for $n=0,1,2, \ldots$

Figure 1. The densities of μ_{1}, μ_{2} and $\mu_{0}=\mu_{1} \boxplus \mu_{2}$

The density $V(x)$ of μ_{0} is represented in Figure 1 (b).

Proof. Putting $n=s-1$ and applying the Gauss-Legendre multiplication formula
$\Gamma(m z)=(2 \pi)^{(1-m) / 2} m^{m z-1 / 2} \Gamma(z) \Gamma\left(z+\frac{1}{m}\right) \Gamma\left(z+\frac{2}{m}\right) \ldots \Gamma\left(z+\frac{m-1}{m}\right)$
we obtain

$$
\begin{aligned}
\binom{3 n}{n} \frac{1}{n+1} & =\frac{\Gamma(3 n+1)}{\Gamma(n+2) \Gamma(2 n+1)}=\frac{\Gamma(3 s-2)}{\Gamma(s+1) \Gamma(2 s-1)} \\
& =\frac{2}{27} \sqrt{\frac{3}{\pi}}\left(\frac{27}{4}\right)^{s} \frac{\Gamma(s-2 / 3) \Gamma(s-1 / 3)}{\Gamma(s-1 / 2) \Gamma(s+1)}:=\psi(s)
\end{aligned}
$$

Then ψ can be extended to an analytic function on the complex plane, except for the points $1 / 3-n, 2 / 3-n, n=0,1,2, \ldots$

Now we want to apply a particular type of the Meijer G-function, see [9] for details. Let \widetilde{V} denote the inverse Mellin transform of ψ. Then we have

$$
\begin{aligned}
\tilde{V}(x) & =\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} x^{-s} \psi(s) d s \\
& =\frac{2}{27} \sqrt{\frac{3}{\pi}} \frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{\Gamma(s-2 / 3) \Gamma(s-1 / 3)}{\Gamma(s-1 / 2) \Gamma(s+1)}\left(\frac{4 x}{27}\right)^{-s} d s \\
& =\frac{2}{27} \sqrt{\frac{3}{\pi}} G_{2,2}^{2,0}\left(\frac{4 x}{27} \left\lvert\, \begin{array}{cc}
-1 / 2, & 1 \\
-2 / 3,-1 / 3
\end{array}\right.\right),
\end{aligned}
$$

where $x \in(0,27 / 4)$ (see [11] for the role of c in the integrals). On the other hand, for the parameters of the G-function we have

$$
(-2 / 3-1 / 3)-(-1 / 2+1)=-3 / 2<0
$$

and hence the assumptions of formula 2.24.2.1 in [9] are satisfied. Therefore we can apply the Mellin transform on $\widetilde{V}(x)$:

$$
\left.\begin{array}{rl}
\int_{0}^{27 / 4} x^{s-1} \tilde{V}(x) d x & =\frac{2}{27} \sqrt{\frac{3}{\pi}} \int_{0}^{27 / 4} x^{s-1} G_{2,2}^{2,0}\left(\frac{4 x}{27} \left\lvert\, \begin{array}{l}
-1 / 2, \\
-2 / 3, \\
-1 / 3
\end{array}\right.\right) d x \\
& =\frac{2}{27} \sqrt{\frac{3}{\pi}}\left(\frac{27}{4}\right)^{s} \int_{0}^{1} u^{s-1} G_{2,2}^{2,0}\left(u \left\lvert\, \begin{array}{l}
-1 / 2, \\
-2 / 3,
\end{array}\right.\right)-1 / 3
\end{array}\right) d u=\psi(s)
$$

whenever $\Re s>2 / 3$. Consequently, $\widetilde{V}=V$.
Now we use Slater's formula (see [9], formula 8.2.2.3) and express V in terms of the hypergeometric functions:

$$
\begin{aligned}
V(x)= & \frac{2}{27} \sqrt{\frac{3}{\pi}} G_{2,2}^{2,0}\left(\frac{4 x}{27} \left\lvert\, \begin{array}{l}
-1 / 2, \\
-2 / 3, \\
\hline
\end{array}\right.\right) \\
= & \frac{2}{27} \sqrt{\frac{3}{\pi}} \frac{\Gamma(1 / 3)}{\Gamma(1 / 6) \Gamma(5 / 3)}\left(\frac{4 x}{27}\right)^{-2 / 3}{ }_{2} F_{1}\left(\frac{-2}{3}, \frac{5}{6} ; \frac{2}{3} \left\lvert\, \frac{4 x}{27}\right.\right) \\
& +\frac{2}{27} \sqrt{\frac{3}{\pi}} \frac{\Gamma(-1 / 3)}{\Gamma(-1 / 6) \Gamma(4 / 3)}\left(\frac{4 x}{27}\right)^{-1 / 3}{ }_{2} F_{1}\left(\frac{-1}{3}, \frac{7}{6} ; \frac{4}{3} \left\lvert\, \frac{4 x}{27}\right.\right) \\
= & \frac{\sqrt{3}}{4 \pi x^{2 / 3}}{ }_{2} F_{1}\left(\frac{-2}{3}, \frac{5}{6} ; \frac{2}{3} \left\lvert\, \frac{4 x}{27}\right.\right)+\frac{1}{2 \pi \sqrt{3} x^{1 / 3}}{ }_{2} F_{1}\left(\frac{-1}{3}, \frac{7}{6} ; \frac{4}{3} \left\lvert\, \frac{4 x}{27}\right.\right) .
\end{aligned}
$$

Applying the formula

$$
{ }_{2} F_{1}\left(\frac{t-2}{2}, \frac{t+1}{2} ; t \mid z\right)=\frac{2^{t}}{2 t}(t-1+\sqrt{1-z})(1+\sqrt{1-z})^{1-t}
$$

(see [6]) for $t=2 / 3$ and $t=4 / 3$ we complete the proof.

4. RELATIONS WITH FREE PROBABILITY

In this part we describe relations of μ_{0} with free probability. In particular, we will show that μ_{0} is infinitely divisible with respect to the additive free convolution. Let us briefly describe the additive and multiplicative free convolutions. For details we refer to [12] and [7].

Denote by \mathcal{M}^{c} the class of probability measures on \mathbb{R} with compact support. For $\mu \in \mathcal{M}^{c}$, with moments

$$
s_{m}(\mu):=\int_{\mathbb{R}} t^{m} d \mu(t)
$$

and the moment generating function

$$
M_{\mu}(z):=\sum_{m=0}^{\infty} s_{m}(\mu) z^{m}=\int_{\mathbb{R}} \frac{d \mu(t)}{1-t z}
$$

we define its R-transform $R_{\mu}(z)$ by the equation

$$
\begin{equation*}
R_{\mu}\left(z M_{\mu}(z)\right)+1=M_{\mu}(z) \tag{4.1}
\end{equation*}
$$

Then the additive free convolution of $\mu^{\prime}, \mu^{\prime \prime} \in \mathcal{M}^{c}$ is defined as the unique measure $\mu^{\prime} \boxplus \mu^{\prime \prime} \in \mathcal{M}^{c}$ which satisfies

$$
R_{\mu^{\prime} \boxplus \mu^{\prime \prime}}(z)=R_{\mu^{\prime}}(z)+R_{\mu^{\prime \prime}}(z)
$$

If the support of $\mu \in \mathcal{M}^{c}$ is contained in the positive half-line $[0,+\infty)$ then we define its S-transform $S_{\mu}(z)$ by

$$
\begin{equation*}
M_{\mu}\left(\frac{z}{1+z} S_{\mu}(z)\right)=1+z \quad \text { or } \quad R_{\mu}\left(z S_{\mu}(z)\right)=z \tag{4.2}
\end{equation*}
$$

on a neighborhood of zero. If $\mu^{\prime}, \mu^{\prime \prime}$ are such measures then their multiplicative free convolution $\mu^{\prime} \boxtimes \mu^{\prime \prime}$ is defined by

$$
S_{\mu^{\prime} \boxtimes \mu^{\prime \prime}}(z)=S_{\mu^{\prime}}(z) \cdot S_{\mu^{\prime \prime}}(z)
$$

Recall that for dilated measure $\mathbf{D}_{c} \mu$ we have

$$
M_{\mathbf{D}_{c} \mu}(z)=M_{\mu}(c z), \quad R_{\mathbf{D}_{c} \mu}(z)=R_{\mu}(c z), \quad \text { and } \quad S_{\mathbf{D}_{c} \mu}(z)=S_{\mu}(z) / c
$$

The operations \boxplus and \boxtimes can be regarded as free analogs of the classical and Mellin convolution.

For $t>0$ let ϖ_{t} denote the Marchenko-Pastur distribution with parameter t,

$$
\begin{equation*}
\varpi_{t}=\max \{1-t, 0\} \delta_{0}+\frac{\sqrt{4 t-(x-1-t)^{2}}}{2 \pi x} d x \tag{4.3}
\end{equation*}
$$

with the absolutely continuous part supported on $\left[(1-\sqrt{t})^{2},(1+\sqrt{t})^{2}\right]$. Then

$$
\begin{align*}
& M_{\varpi_{t}}(z)=\frac{2}{1+z-t z+\sqrt{(1-z-t z)^{2}-4 t z^{2}}} \tag{4.4}\\
&=1+\sum_{n=1}^{\infty} z^{n} \sum_{k=1}^{n}\binom{n}{k}\binom{n}{k-1} \frac{t^{k}}{n} \\
& R_{\varpi_{t}}(z)=\frac{t z}{1-z}, \quad S_{\varpi_{t}}(z)=\frac{1}{t+z} \tag{4.5}
\end{align*}
$$

In free probability the measures ϖ_{t} play the role of the Poisson distributions. Note that by (4.5) the family $\left\{\varpi_{t}\right\}_{t>0}$ constitutes a semigroup with respect to \boxplus, i.e. we have $\varpi_{s} \boxplus \varpi_{t}=\varpi_{s+t}$ for $s, t>0$.

THEOREM 4.1. The measure μ_{0} can be decomposed as the additive free convolution $\mu_{0}=\mu_{1} \boxplus \mu_{2}$, where $\mu_{1}=\mathbf{D}_{2} \varpi_{1 / 2}$, so that

$$
\begin{equation*}
\mu_{1}=\frac{1}{2} \delta_{0}+\frac{\sqrt{8-(x-3)^{2}}}{4 \pi x} \chi_{(3-\sqrt{8}, 3+\sqrt{8})}(x) d x \tag{4.6}
\end{equation*}
$$

and $\mu_{2}=\frac{1}{2} \delta_{0}+\frac{1}{2} \varpi_{1}$, i.e.

$$
\begin{equation*}
\mu_{2}=\frac{1}{2} \delta_{0}+\frac{\sqrt{4 x-x^{2}}}{4 \pi x} \chi_{(0,4)}(x) d x \tag{4.7}
\end{equation*}
$$

The measures μ_{1}, μ_{2} are infinitely divisible with respect to the additive free convolution \boxplus, and, consequently, so is μ_{0}.

The absolutely continuous parts of the measures μ_{1} and μ_{2} are represented in Figure 1 (a).

Proof. The moment generating function of μ_{0} is $M_{\mu_{0}}(z)=G(z) / 2$. Then we have $M_{\mu_{0}}(0)=1$ and, by (2.3),

$$
2-z-2(1+2 z) M_{\mu_{0}}(z)+8 z M_{\mu_{0}}(z)^{2}-8 z^{2} M_{\mu_{0}}(z)^{3}=0
$$

Let $T(z)$ be the inverse function for $M_{\mu_{0}}(z)-1$, so that we have $T(0)=0$ and $M_{\mu_{0}}(T(z))=1+z$. Then

$$
2-T(z)+(-1-2 T(z)) 2(1+z)+8 T(z)(1+z)^{2}-8 T(z)^{2}(1+z)^{3}=0
$$

which gives

$$
8(1+z)^{3} T(z)^{2}-\left(8 z^{2}+12 z+3\right) T(z)+2 z=0
$$

and finally

$$
T(z)=\frac{8 z^{2}+12 z+3-\sqrt{9+8 z}}{16(1+z)^{3}}=\frac{4 z}{8 z^{2}+12 z+3+\sqrt{9+8 z}}
$$

Therefore we can find the S-transform of μ_{0} :

$$
S_{\mu_{0}}(z)=\frac{1+z}{z} T(z)=\frac{8 z^{2}+12 z+3-\sqrt{9+8 z}}{16 z(1+z)^{2}}=\frac{4(1+z)}{8 z^{2}+12 z+3+\sqrt{9+8 z}}
$$

consequently, from (4.2) we get the R-transform

$$
R_{\mu_{0}}(z)=\frac{4 z-1+\sqrt{1-2 z}}{2(1-2 z)}
$$

Now we observe that $R_{\mu_{0}}(z)$ can be decomposed as follows:

$$
R_{\mu_{0}}(z)=\frac{z}{1-2 z}+\frac{1-\sqrt{1-2 z}}{2 \sqrt{1-2 z}}=R_{1}(z)+R_{2}(z)
$$

Comparing this formula with (4.5) we observe that $R_{1}(z)$ is the R-transform of $\mu_{1}=\mathbf{D}_{2} \varpi_{1 / 2}$, which implies that μ_{1} is \boxplus-infinitely divisible.

Consider the Taylor expansion of $R_{2}(z)$:

$$
R_{2}(z)=\sum_{n=1}^{\infty}\binom{2 n}{n} 2^{-n-1} z^{n}=\frac{z}{2}+z^{2} \sum_{n=0}^{\infty}\binom{2(n+2)}{n+2} 2^{-n-3} z^{n}
$$

Since the numbers $\binom{2 n}{n}$ are moments of the arcsine distribution

$$
\frac{1}{\pi \sqrt{x(4-x)}} \chi_{(0,4)}(x) d x
$$

the coefficients of the last sum constitute a positive definite sequence. So $R_{2}(z)$ is the R-transform of a probability measure μ_{2}, which is \boxplus-infinitely divisible (see Theorem 13.16 in [7]). Now using (4.1) we obtain

$$
M_{\mu_{2}}(z)=\frac{1+2 z-\sqrt{1-4 z}}{4 z}=\frac{1}{2}+\frac{1-\sqrt{1-4 z}}{4 z}=\frac{1}{2}+\frac{1}{1+\sqrt{1-4 z}}
$$

Comparing this formula with (4.4) for $t=1$ we see that $\mu_{2}=\frac{1}{2} \delta_{0}+\frac{1}{2} \varpi_{1}$.
Let us now consider the measures μ_{1}, μ_{2} separately. For $\mu_{1}=\mathbf{D}_{2} \varpi_{1 / 2}$ the moment generating function is

$$
M_{\mu_{1}}(z)=\frac{2}{1+z+\sqrt{1-6 z+z^{2}}}=1+\sum_{n=1}^{\infty} z^{n} \sum_{k=1}^{n}\binom{n}{k}\binom{n}{k-1} \frac{2^{n-k}}{n}
$$

so the moments are

$$
1,1,3,11,45,197,903,4279,20793,103049,518859, \ldots
$$

This is the A001003 sequence in OEIS (little Schroeder numbers), $s_{n}\left(\mu_{1}\right)$ is the number of ways to insert parentheses in product of $n+1$ symbols. There is no restriction on the number of pairs of parentheses. The number of objects inside a pair of parentheses must be at least two.

On the subject of μ_{2}, applying (4.2) we can find the S-transform:

$$
S_{\mu_{2}}(z)=\frac{2(1+z)}{(1+2 z)^{2}}=\frac{1+z}{1 / 2+z} \cdot \frac{1}{1+2 z}
$$

One can check that $(1+z) /(1 / 2+z)$ is the S-transform of $\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}$, which yields

$$
\begin{equation*}
\mu_{2}=\left(\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}\right) \boxtimes \mu_{1} . \tag{4.8}
\end{equation*}
$$

Acknowledgments. We would like to thank G. Aubrun, C. Banderier, K. Górska, and H . Prodinger for fruitful interactions.

REFERENCES

[1] N. Balakrishnan and V. B. Nevzorov, A Primer on Statistical Distributions, WileyInterscience, Hoboken, N. J., 2003.
[2] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. A Foundation for Computer Science, Addison-Wesley, New York 1994.
[3] N. S. S. Gu and H. Prodinger, Bijections for 2-plane trees and ternary trees, European J. Combin. 30 (2009), pp. 969-985.
[4] N. S. S. Gu, H. Prodinger, and S. Wagner, Bijection for a class of labeled plane trees, European J. Combin. 31 (2010), pp. 720-732.
[5] W. Młotkowski, Fuss-Catalan numbers in noncommutative probability, Doc. Math. 15 (2010), pp. 939-955.
[6] W. Młotkowski, K. A. Penson, and K. Życzkowski, Densities of the Raney distributions, arXiv:1211.7259, Doc. Math., 2013 (in press).
[7] A. Nica and R. Speicher, Lectures on the Combinatorics of Free Probability, Cambridge University Press, 2006.
[8] K. A. Penson and K. Życzkowski, Product of Ginibre matrices: Fuss-Catalan and Raney distributions, Phys. Rev. E 83 (2011) 061118, 9 pp.
[9] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 3: More Special Functions, Gordon and Breach, Amsterdam 1998.
[10] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences (2013), published electronically at: http://oeis.org/.
[11] I. N. Sneddon, The Use of Integral Transforms, Tata McGraw-Hill Publishing Company, 1974.
[12] D. V. Voiculescu, K. J. Dykema, and A. Nica, Free Random Variables, CRM Monogr. Ser., Amer. Math. Soc., 1992.

Institute of Mathematics
University of Wrocław pl. Grunwaldzki $2 / 4$
50-384 Wrocław, Poland
E-mail: mlotkow@math.uni.wroc.pl

Laboratoire de Physique Théorique de la Matière Condensée (LPTMC) Université Pierre et Marie Curie CNRS UMR 7600, Tour 13 - 5ième ét.

Boîte Courrier 121, 4 place Jussieu F 75252 Paris Cedex 05, France E-mail: penson@lptl.jussieu.fr

[^0]: * W. M. is supported by the Polish National Science Center grant No. 2012/05/B/ST1/00626.
 ${ }^{* *}$ K. A. P. acknowledges support from Agence Nationale de la Recherche (Paris, France) under Program PHYSCOMB No. ANR-08-BLAN-0243-2.

