
Wykład 2.

Transformata Fouriera

Transformata Fouriera jest podstawowym narzędziem analizy harmonicznej i teorii analizy i przetwa-
rzania sygnału. Z punktu widzenia teorii matematycznej transformata Fouriera jest narzędziem występu-
jącym w przypadku analizy przestrzeni L2(G), funkcji całkowalnych z kwadratem na grupie przemiennej
G. W zastosowaniach transformaty Fouriera używamy najczęściej gdy G = R (grupą są liczby rzeczy-
wiste z dodawaniem), G = [0, 2π] (grupą są liczby rzeczywiste z przedziału [0, 2π], z utożsamionymi
końcami, działaniem jest dodawanie modulo 2π) oraz G = Zn (grupą są liczby całkowite {0, 1, . . . , n−1}
z dodawaniem modulo n). Transformata Fouriera przetwarza funkcję z danej przestrzeni w ten sposób, że
wyeksponowane są jej własności okresowe, częstotliwościowe (tak zwane spektrum funkcji). Przekształce-
nie jest bezstratne, i funkcja może zostać zrekonstruowana ze swojej transformaty Fouriera. Transformata
Fouriera po raz pierwszy pojawiła się przy okazji badania zjawiska przepływu ciepła, obecnie pojawia
się w wielu dziedzinach matematyki i w wielu praktycznych zastosowaniach. Opiszemy teraz kolejno wy-
mienione wyżej konkretne przykłady. Tradycyjnie zastosowanie transformaty Fouriera oznacza się przez
dodanie do symbolu funkcji daszka .̂

(a) Transformata Fouriera w L2(R). Transformata zadana jest wzorem

(2.1) f̂(ξ) =
∫
R
f(x) e−i xξ dx, f ∈ L2(R).

W tym przypadku transformata jest przekształceniem L2(R) w siebie, f̂ ∈ L2(R). Przekształcenie
odwrotne do transformaty, czyli rekonstrukcja funkcji dane jest podobnym wzorem

f(x) =
1
2π

∫
R
f̂(ξ) ei ξx dξ.

Prawdziwa jest następująca równość, często nazywana równością Plancherela.

‖f̂‖ =
√

2π‖f‖.

Przykład. Obliczymy transformatę funkcji charakterystycznej odcinka [−1, 1]

f(x) =
{

1 x ∈ [−1, 1]

0 x /∈ [−1, 1].

Podstawiamy do wzoru

f̂(ξ) =
∫
R
f(x)e−i xξ dx =

∫ 1
−1
e−i xξ dx =

1
−i ξ e

−i xξ∣∣1
x=−1 =

1
−i ξ
(
e−i ξ − ei ξ) = 2 sin ξ

ξ
.

Funkcja podcałkowa f(x)e−i xξ może nie być całkowalna na R (założyliśmy tylko że jest całkowalna
z kwadratem). Wtedy transformatę możemy wyliczyć ze wzoru

(2.1’) f̂(ξ) = lim
M→∞

∫ M
−M
f(x) e−i xξ dx granica w L2(R).

Własności. Przy założeniu, że wszystkie występujące funkcje należą do L2(R) mamy następujące
wzory.
Przesunięcie w czasie

g(x) = f(x− c) −→ ĝ(ξ) = e−i uξ f̂(ξ),
1
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f(x) f^(ξ)

Przykład funkcji na prostej i jej transformaty Fouriera

modulacja
g(x) = ei ωxf(x) −→ ĝ(ξ) = f̂(ξ − ω),

skalowanie
g(x) = f(x/s) −→ ĝ(ξ) = sf̂(sξ), s > 0,

pochodna w czasie
g(x) = f ′(x) −→ ĝ(ξ) = i ξf̂(ξ),

pochodna w spektrum
g(x) = −i xf(x) −→ ĝ(ξ) = f̂ ′(ξ).

Jako zastosowanie powyższych własności policzymy transformatę Fouriera funkcji Gaussa

f(x) = e−x
2/2.

Obliczymy pochodną transformaty. Będziemy różniczkowali pod znakiem całki i zastosujemy całkowanie
przez części.

f̂ ′(ξ) =
d

dξ

∫ ∞
−∞
e−x

2/2 e−i xξ dx =
∫ ∞
−∞
e−x

2/2 d

dξ

(
e−i xξ

)
dx

=
∫ ∞
−∞
e−x

2/2(−i x) e−i xξ dx = i
∫ ∞
−∞

d

dx

(
e−x

2/2
)
e−i xξ dx

= −i
∫ ∞
−∞
e−x

2/2 d

dx

(
e−i xξ

)
dx = (−i)2ξ

∫ ∞
−∞
e−x

2/2 e−i xξ dx

= −ξ f̂(ξ).

Nietrudno pokazać, że funkcja F (ξ) spełniająca powyższe równanie różniczkowe musi mieć postać

F (ξ) = F (0) e−ξ
2/2.

Wartość f̂(0) to jedna z dobrze znanych całek∫ ∞
−∞
e−x

2/2 dx =
√

2π.
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Tak więc ostatecznie
f̂(ξ) =

√
2π e−ξ/2.

(b) Transformata Fouriera w L2([0, 2π]). W tym przypadku transformata jest po prostu rozkładem funkcji
na współczynniki bazowe względem układu Fouriera (stąd zbieżność nazwy). Funkcji przyporządkowany
jest jej ciąg współczynników Fouriera

f̂(n) =
1
2π

∫ 2π
0
f(x)e−i nx dx.

Jest to przekształcenie L2([0, 2π]) w L2(Z) = { {αn}∞n=−∞ :
∑∞
n=−∞ |αn|2 < ∞}, zachowujące długość

wektorów

‖f̂‖ =

√√√√ ∞∑
n=−∞

|f̂(n)|2 =

√
1
2π

∫ 2π
0
|f(x)|2 dx = ‖f‖.

Przekształceniem odwrotnym jest szereg Fouriera

(2.2) f(x) =
∞∑

n=−∞
f̂(n)ei nx,

gdzie zbieżność i równość zachodzi w L2([0, 2π]), zgodnie z (1.3).

Przykład. Obliczymy współczynniki Fouriera funkcji

f(x) =
{

1 0 ≤ x ≤ π
−1 π < x ≤ 2π.

Symetryczna fala prostokątna

f jest bardzo pospolitą, często spotykaną w praktyce funkcją. Jeżeli rozważyć ją jako okresową funkcję
na całej prostej R, to jest zwykła fala prostokątna. Sygnały takie pojawiają się w każdym układzie
elektronicznym zawierającym mikroprocesory.

Obliczmy najpierw f̂(0). Podstawiając do wzoru otrzymujemy

f̂(0) =
1
2π

∫ 2π
0
f(x) dx =

1
2π

∫ π
0

1 dx+
1
2π

∫ 2π
π

−1 dx = 0.
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Teraz obliczmy pozostałe współczynniki. Niech n �= 0. Rozdzielając całkę jak poprzednio otrzymujemy

(2.3)

f̂(n) =
1
2π

∫ π
0
e−i nx dx− 1

2π

∫ 2π
π

e−i nx dx =
1
2π
e−i nx

−i n
∣∣∣∣π
x=0
− 1

2π
e−i nx

−i n
∣∣∣∣2π
x=π

=
1

−2π i n

(
e−i nπ − e−i n0 − e−i n2π + e−i nπ

)
=

1
−2π i n

(2(−1)n − 2)

=
{ 2
i πn n nieparzyste

0 n parzyste.

Przybliżenie funkcji f harmonicznymi do 3 i do 19 włącznie.

Otrzymujemy więc z (2.2) następujące rozwinięcie naszej funkcji f(x) w szereg

f(x) =
∞∑

n=−∞
n nieparzyste

2
i πn
ei nx =

∞∑
n=1

n nieparzyste

2
i πn

(
ei nx − e−i nx) = ∞∑

n=1
n nieparzyste

4
πn

sinnx

=
4
π

(
sinx+

sin 3x
3

+
sin 5x

5
+ . . .

)
.

Można udowodnić, że równość powyższa zachodzi w każdym punkcie przedziału [0, 2π], z wyjątkiem
0, π, 2π (w tych punktach prawa strona jest 0). Analizując kolejne sumy częściowe powyższego rozwinię-
cia możemy zauważyć zjawisko Gibbsa: po obu stronach nieciągłości skokowej funkcji f w jej przybliżeniu
pojawiają się lokalne maksima. Ich wysokość nie zmniejsza się, natomiast przesuwają się w stronę nie-
ciągłości, i stają się coraz bardziej strome. Elektronicy nazywają je zakłóceniami szpilkowymi. Takie
szpilki pojawiają się zawsze przy skokach analizowanej funkcji f , i ich wysokość jest proporcjonalna do
wysokości skoku. Jako zastosowanie (2.3) otrzymamy następującą równość

(2.4)
∞∑
n=1

1
n2

=
π2

6
.

Stosując (2.3) i równość Plancherela

∞∑
n=−∞

|f̂(n)|2 =
1
2π

∫ 2π
0
|f(x)|2 dx
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otrzymujemy
∞∑

n=−∞
n nieparzyste

4
π2n2

= 2
∞∑
n=1

n nieparzyste

4
π2n2

= 1,

czyli
∞∑
n=1

n nieparzyste

1
n2

=
π2

8
.

Z drugiej strony

∞∑
n=1

n nieparzyste

1
n2

=
∞∑
n=1

1
n2
−

∞∑
n=1

n parzyste

1
n2

=
∞∑
n=1

1
n2
−
∞∑
n=1

1
(2n)2

=
∞∑
n=1

1
n2
− 1

4

∞∑
n=1

1
n2

=
3
4

∞∑
n=1

1
n2
.

Łącząc powyższe równości otrzymujemy (2.4).

(c) Transformata Fouriera w L2(Zn), tak zwana „dyskretna transformata Fouriera”. Elementami L2(Zn)
są wektory o n współrzędnych x = (x(0), x(1), . . . , x(n − 1)). W tym przypadku transformata Fouriera
jest to przekształcenie L2(Zn) na siebie, zadane wzorem

x̂(k) =
n−1∑
j=0

x(j)e−i jk/n, k = 0, . . . , n− 1.

Jak łatwo sprawdzić odwrotna transformata Fouriera dana jest wzorem

x(k) =
1
n

n−1∑
j=0

x̂(j)ei jk/n, k = 0, . . . , n− 1,

i zachodzi równość Plancherela

‖x̂‖ =
√
n‖x‖, ‖x‖ =

√
|x(0)|2 + · · ·+ |x(n− 1)|2.

Dyskretna transformata Fouriera bardzo często pojawia się w zastosowaniach. Jest używana do nume-
rycznego obliczania ciągłej transformaty (funkcja na R jest najpierw próbkowana), oraz istnieje szybki
algorytm do jej obliczania - tak zwana szybka transformata Fouriera (FFT).

Zróbmy jeszcze następującą obserwację. Niech a < b będą dowolnymi liczbami i rozważmy następującą
funkcję f na prostej

f(x) =
{

1 x ∈ [a, b],

0 poza tym.

Funkcja f „żyje” więc jedynie na odcinku [a, b]. Z drugiej strony, jak łatwo policzyć

f̂(ξ) = e−i ξ(a+b)/2
2 sin
(
ξ (b−a)2

)
ξ

.

Transformata „żyje” więc na całej prostej, maleje powoli, tak jak 1/ξ. Mówimy, że transformata Fouriera
nie jest lokalna: zmiana funkcji która jest ograniczona tylko do jakiegoś, być może bardzo małego,
przedziału powoduje zmianę transformaty na całej prostej. Patrząc się na transformatę funkcji łatwo
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jest zauważyć występowanie oscylacji – transformata jest duża w okolicy odpowiedniej częstotliwości.
Nie jest natomiast łatwo, bez obliczania transformaty odwrotnej, stwierdzić, gdzie ta oscylacja miała
miejsce. Tą własność transformaty można ująć bardzo konkretnie, jako tak zwaną zasadę nieoznaczoności
Heisenberga. Niech f ∈ L2(R). Wprowadźmy następujące oznaczenia

m =
1
‖f‖
∫ ∞
−∞
x|f(x)|2 dx,

ζ =
1

2π‖f‖
∫ ∞
−∞
ξ|f̂(ξ)|2 dξ.

m i ζ oznaczają więc wartości oczekiwane (średnie) |f |2 i |f̂ |2. Wprowadźmy też oznaczenia na odchylenia
standardowe wokół tych średnich

σ2x =
1
‖f‖
∫ ∞
−∞

(x−m)2|f(x)|2 dx

σ2ξ =
1

2π‖f‖
∫ ∞
−∞

(ξ − ζ)2|f̂(ξ)|2 dξ.

Zasada Nieoznaczoności Heisenberga. Dla dowolnej funkcji f ∈ L2(R) zachodzi nierówność

σxσξ 
 1
2
.

Równość zachodzi tylko dla funkcji Gaussa.

Innymi słowy, jeżeli |f(x)|2 jest skupiona wokół swojej średniej, to |f̂(ξ)|2 musi być rozproszona, i na
odwrót.

Sploty

Wprowadzimy pojęcie splotu funkcji. Podobnie jak w przypadku transformaty Fouriera pojęcie splotu
można zawsze wprowadzić dla funkcji określonych na przestrzeni, która jest również grupą przemienną.
Wprowadzimy więc splot dwóch funkcji na prostej R

f ∗ g(x) =
∫ ∞
−∞
f(x− y)g(y) dy, x ∈ R,

dwóch funkcji na odcinku [0, 2π]

f ∗ g(x) =
1
2π

∫ 2π
0
f(x− y)g(y) dy, x ∈ [0, 2π],

dwóch ciągów nieskończonych α = {αk}∞k=−∞, β = {βk}∞k=−∞

(α ∗ β)k =
∞∑
l=−∞

αk−lβl, k ∈ Z,

oraz dwóch ciągów skończonych α, β ∈ L2(Zn)

(α ∗ β)k =
n−1∑
l=0

αk−lβl, k = 0, . . . , n− 1.

W przypadku splotu na odcinku [0, 2π] różnicę x− y pod całką należy rozumieć modulo 2π, albo funkcję
f traktować jako okresową na prostej. Podobnie, w przypadku splotu ciągów skończonych różnicę k − l
pod sumą rozumiemy jako różnicę modulo n, albo ciąg α traktujemy jako ciąg nieskończony okresowy, o
okresie n. W każdym przypadku splot jest przemienny, co można łatwo pokazać przez zamianę zmiennych
lub indeksu sumowania. Będziemy korzystać z następujących własności splotów.
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Własności. (a) Na prostej

f̂ ∗ g(ξ) = f̂(ξ) · ĝ(ξ), f̂ · g(ξ) = f̂ ∗ ĝ(ξ),

na odcinku
f̂ ∗ g(n) = f̂(n)ĝ(n), f̂ · g(n) = (f̂ ∗ ĝ)n (splot ciągów),

oraz dla ciągów skończonych

(̂α ∗ β)k = α̂kβ̂k, (̂α · β)k = (α̂ ∗ β̂)k.

Splot f ∗g dwóch funkcji z L2(R) jest funkcją ciągłą, ale nie musi być ani całkowalna ani całkowalna z
kwadratem. W takiej sytuacji transformatę Fouriera f̂ ∗ g można policzyć podobnie jak we wzorze (2.1’).

Znaczenie splotów dla analizy sygnałów bierze się stąd, że większość operacji przekształcających
sygnały w praktyce ma właśnie postać splotu. Innymi słowy, większość operacji na sygnałach można
przedstawić jako splot z pewną funkcją. Biorąc pod uwagę powyższe własności oznacza to że operacje
na sygnałach, po stronie transformaty Fouriera, mają postać mnożenia przez funkcję. Operacje takie
nazywamy filtrami.


