Wyktad 2.

Transformata Fouriera

Transformata Fouriera jest podstawowym narzedziem analizy harmonicznej i teorii analizy i przetwa-
rzania sygnaltu. Z punktu widzenia teorii matematycznej transformata Fouriera jest narzedziem wystepu-
jacym w przypadku analizy przestrzeni L?(G), funkcji catkowalnych z kwadratem na grupie przemiennej
G. W zastosowaniach transformaty Fouriera uzywamy najczesciej gdy G = R (grupa sa liczby rzeczy-
wiste z dodawaniem), G = [0,27] (grupa sa liczby rzeczywiste z przedzialu [0, 27], z utozsamionymi
koficami, dzialaniem jest dodawanie modulo 27) oraz G = Z,, (grupa sa liczby catkowite {0,1,...,n—1}
z dodawaniem modulo n). Transformata Fouriera przetwarza funkcje z danej przestrzeni w ten sposéb, ze
wyeksponowane sa jej wlasnosci okresowe, czestotliwo$ciowe (tak zwane spektrum funkeji). Przeksztalce-
nie jest bezstratne, i funkcja moze zostaé zrekonstruowana ze swojej transformaty Fouriera. Transformata
Fouriera po raz pierwszy pojawila sie przy okazji badania zjawiska przeplywu ciepta, obecnie pojawia
sie w wielu dziedzinach matematyki i w wielu praktycznych zastosowaniach. Opiszemy teraz kolejno wy-
mienione wyzej konkretne przyktady. Tradycyjnie zastosowanie transformaty Fouriera oznacza sie przez
dodanie do symbolu funkcji daszka "

(a) Transformata Fouriera w L?(R). Transformata zadana jest wzorem
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W tym przypadku transformata jest przeksztalceniem L?(R) w siebie, fe L?(R). Przeksztalcenie
odwrotne do transformaty, czyli rekonstrukcja funkcji dane jest podobnym wzorem
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Prawdziwa jest nastepujaca réwnoscé, czesto nazywana réwnoécia Plancherela.

1F1 = Vx| f].

Przyktad. Obliczymy transformate funkcji charakterystycznej odcinka [—1, 1]
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Podstawiamy do wzoru
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Funkcja podcatkowa f(x)e~?*¢ moze nie by¢é calkowalna na R (zalozylismy tylko ze jest catkowalna
z kwadratem). Wtedy transformate mozemy wyliczy¢ ze wzoru
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(2.17) f(&) = lim [M fz)e " * do granica w L*(R).
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Wiasnoéci. Przy zalozeniu, ze wszystkie wystepujace funkcje naleza do L?(R) mamy nastepujace
WZOrYy.
Przesuniecie w czasie
g@) = fle—c) — §(&) =" f(g),
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Przyklad funkcji na prostej i jej transformaty Fouriera

modulacja 4 R
glx) =" f(z) — g§(§) =[f(§—w),
skalowanie X
g(x) = f(z/s) — 9(§) =sf(s§), s>0,

pochodna w czasie

pochodna w spektrum R
g(a) =—izf(x) —  4(§) = f(&).

Jako zastosowanie powyzszych wlasnosci policzymy transformate Fouriera funkcji Gaussa
fla)=e"2,

Obliczymy pochodna transformaty. Bedziemy rézniczkowali pod znakiem calki i zastosujemy catkowanie
przez czgsci.
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Nietrudno pokazaé, ze funkcja F(§) spelniajaca powyzsze réwnanie rézniczkowe musi mieé¢ postaé

F(¢) = F(0)e /2,

Wartosé f(0) to jedna z dobrze znanych calek
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Tak wiec ostatecznie

f(&) = Vame /2,

(b) Transformata Fouriera w L2([0, 27]). W tym przypadku transformata jest po prostu rozktadem funkcji
na wspotczynniki bazowe wzgledem uktadu Fouriera (stad zbiezno$é nazwy). Funkcji przyporzadkowany
jest jej ciag wspolczynnikow Fouriera
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Jest to przeksztalcenie L2([0,27]) w L?(Z) = {{an}22_ o : >ove |an|* < oo}, zachowujace dlugosé
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Przeksztalceniem odwrotnym jest szereg Fouriera
(2.2) f@= S fmer,

gdzie zbieznosé i réwnosé zachodzi w L?([0, 27]), zgodnie z (1.3).

Przyktad. Obliczymy wspolczynniki Fouriera funkcji
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Symetryczna fala prostokatna

f jest bardzo pospolita, czesto spotykang w praktyce funkcja. Jezeli rozwazy¢ ja jako okresowsg funkcje
na calej prostej R, to jest zwykla fala prostokatna. Sygnaly takie pojawiaja sie w kazdym ukladzie
elektronicznym zawierajacym mikroprocesory.

Obliczmy najpierw f (0). Podstawiajac do wzoru otrzymujemy
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Teraz obliczmy pozostate wspotczynniki. Niech n # 0. Rozdzielajac catke jak poprzednio otrzymujemy
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Przyblizenie funkcji f harmonicznymi do 3 i do 19 wlacznie.
Otrzymujemy wiec z (2.2) nastepujace rozwiniecie naszej funkcji f(z) w szereg
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Mozna udowodnié, ze réwno$é powyzsza zachodzi w kazdym punkcie przedziatu [0, 27|, z wyjatkiem
0,7, 27 (w tych punktach prawa strona jest 0). Analizujac kolejne sumy czedciowe powyzszego rozwinie-
cia mozemy zauwazy¢ zjawisko Gibbsa: po obu stronach nieciagltosci skokowej funkcji f w jej przyblizeniu
pojawiaja sie lokalne maksima. Ich wysoko$¢ nie zmniejsza sie, natomiast przesuwajg sie w strone nie-
ciaglosci, i staja sie coraz bardziej strome. Elektronicy nazywaja je zakléceniami szpilkowymi. Takie
szpilki pojawiaja sie zawsze przy skokach analizowanej funkcji f, i ich wysokosé jest proporcjonalna do
wysokosci skoku. Jako zastosowanie (2.3) otrzymamy nastepujaca réwnosé
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Stosujac (2.3) i réwnosé¢ Plancherela
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otrzymujemy
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Laczac powyzsze réwnosci otrzymujemy (2.4).

(c) Transformata Fouriera w L?(Z,,), tak zwana ,dyskretna transformata Fouriera”. Elementami L?(Z,,)
sa wektory o n wspélrzednych « = (x(0),z(1),...,z(n — 1)). W tym przypadku transformata Fouriera
jest to przeksztalcenie L?(Z,) na siebie, zadane wzorem
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Jak tatwo sprawdzi¢ odwrotna transformata Fouriera dana jest wzorem
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i zachodzi réwnosé Plancherela
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Dyskretna transformata Fouriera bardzo czesto pojawia sie¢ w zastosowaniach. Jest uzywana do nume-
rycznego obliczania ciaglej transformaty (funkcja na R jest najpierw prébkowana), oraz istnieje szybki
algorytm do jej obliczania - tak zwana szybka transformata Fouriera (FFT).

Zrébmy jeszcze nastepujaca obserwacje. Niech a < b beda dowolnymi liczbami i rozwazmy nastepujaca

funkcje f na prostej
1 x € [a,b],
o) = {
0 poza tym.

Funkcja f ,zyje” wiec jedynie na odcinku [a, b]. Z drugiej strony, jak tatwo policzyé
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Transformata ,zyje” wiec na calej prostej, maleje powoli, tak jak 1/£. Méwimy, ze transformata Fouriera
nie jest lokalna: zmiana funkcji ktéra jest ograniczona tylko do jakiego$, by¢ moze bardzo malego,
przedzialu powoduje zmiane transformaty na calej prostej. Patrzac sie na transformate funkcji tatwo

f(§) _ efif(aer)/Q



jest zauwazy¢ wystepowanie oscylacji — transformata jest duza w okolicy odpowiedniej czestotliwosci.
Nie jest natomiast latwo, bez obliczania transformaty odwrotnej, stwierdzi¢, gdzie ta oscylacja miala
miejsce. Ta wlasnos¢ transformaty mozna ujaé bardzo konkretnie, jako tak zwang zasade nieoznaczonosci
Heisenberga. Niech f € L%(R). WprowadZmy nastepujace oznaczenia
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m i ¢ oznaczaja wiec wartoéci oczekiwane ($rednie) | f|2 1 | f|2. Wprowadzmy tez oznaczenia na odchylenia
standardowe wokot tych $rednich

= [ wmmPle)Pds

0_2: 1 > A2 f 2

Zasada Nieoznaczono$ci Heisenberga. Dla dowolnej funkcji f € L?(R) zachodzi nieréwnosé
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Rownosé zachodzi tylko dla funkcji Gaussa.
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Innymi stowy, jezeli | f(x)|* jest skupiona wokdl swojej sredniej, to |f(£)|2 musi byé rozproszona, i na

odwroét.
Sploty
Wprowadzimy pojecie splotu funkcji. Podobnie jak w przypadku transformaty Fouriera pojecie splotu

mozna zawsze wprowadzi¢ dla funkcji okreslonych na przestrzeni, ktéra jest réwniez grupa przemienna.
Wprowadzimy wiec splot dwéch funkeji na prostej R

Frot) = [ T -yl dy. zeR,

dwdch funkcji na odcinku [0, 27]
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oraz dwéch ciagéw skonczonych o, 8 € L%(Z,,)
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W przypadku splotu na odcinku [0, 27] r6znice = — y pod calka nalezy rozumieé modulo 27, albo funkcje
f traktowaé jako okresowg na prostej. Podobnie, w przypadku splotu ciaggéw skonczonych réznice k — [
pod suma rozumiemy jako réznice modulo n, albo ciag « traktujemy jako ciag nieskonczony okresowy, o
okresie n. W kazdym przypadku splot jest przemienny, co mozna tatwo pokazac przez zamiane zmiennych
lub indeksu sumowania. Bedziemy korzysta¢ z nastepujacych wlasnosci splotéw.



Wtasnosci. (a) Na prostej

na odcinku - .
fxgn)=f(n)g(n),  f-g(n)=(f*g)n (splot ciagéw),
oraz dla ciagéw skonczonych
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(@ B)y = &b, (a-B), = (6 x B

Splot f*g dwéch funkeji z L?(R) jest funkcja ciagla, ale nie musi by¢ ani catkowalna ani catkowalna z

kwadratem. W takiej sytuacji transformate Fouriera f * g mozna policzy¢ podobnie jak we wzorze (2.17).

Znaczenie splotéw dla analizy sygnaléw bierze sie stad, ze wiekszoS¢ operacji przeksztalcajacych
sygnaly w praktyce ma wtlasnie postaé¢ splotu. Innymi stowy, wiekszoéé operacji na sygnalach mozna
przedstawié¢ jako splot z pewna funkcja. Biorac pod uwage powyzsze wlasnosci oznacza to ze operacje
na sygnalach, po stronie transformaty Fouriera, maja posta¢ mnozenia przez funkcje. Operacje takie
nazywamy filtrami.



