Wyktad 3.

Analiza wielorozdzielcza i konstrukcja falek

Przedmiotem naszego zainteresowania sa bazy falkowe w przestrzeni L?(R), ktérych elementy sa
funkcjami o dobrej lokalizacji w czasie i w czestotliwogci. Falka nazywamy funkcje ¢ € L?(R) taka, ze
uktad funkcji

(3.1) {x(x) = 2292z — k); 4, k € Z}

jest baza o. n. przestrzeni L?(R). Nazwa ,falka” bierze sie stad, ze ¢ najczeéciej jest prosta, elemen-
tarna oscylacja. Baze (3.1) okreslona przez falke ¢ nazywamy baza falkowa. Zainteresowanie bazami
falkowymi wzielo sie stad, ze w latach 80 odkryto, ze bazy powstajace w ten sposéb (z jednej funk-
¢ji, przez przesunigcia i skalowanie) prowadza do efektywnych algorytméw numerycznych. Osoba, ktéra
pierwsza zwrécita na to uwage byl francuski inzynier Morlet, ktéry we wczesnych latach 80 pracowal dla
przedsiebiorstwa naftowego Elf Aquitaine. Poszukiwanie z167 ropy naftowej polegalo na wywotywaniu
na powierzchni ziemi fal sejsmicznych (przy pomocy tadunkéw wybuchowych) a nastepnie analizowaniu
zarejestrowanych odbié¢. Rézne warstwy mozna poznaé po charakterystycznych czestotliwosciach, ktére
sa najsilniej odbijane, a gleboko$é warstw mozna wyliczyé analizujac przesuniecie w czasie pojawiaja-
cych sie odbié¢. Morlet zauwazyl, ze analiza sygnalu przy pomocy bazy falkowej jest numerycznie bardzo
efektywna. Morlet uzywal tak zwanej ciagtej transformaty falkowej, z ktoérej wywodza sie, przez probko-
wanie, bazy falkowe. Bazy falkowe w ostatnich czasach zrobily duza kariere i w dziedzinie zastosowan i
z punktu widzenia teorii, w matematyce i fizyce. Kiedy pojawilo sie zainteresowanie falkami od dawna
znana byla juz falka Haara (ktéra widzieliémy w rozdziale 1)

1 ze[0,1/2),
Y(x)=< -1 xze€ll/2,1)
0 xz ¢10,1).

Budujac baze falkowa {¢; 1} wedlug schematu (3.1) widzimy, ze funkcja 1;; stanowi jednostkows, ele-
mentarna oscylacje o czasie trwania 277, zlokalizowana w przedziale [277k, 277 (k +1)). Rozkltad sygnatu
w bazie falkowej Haara jest wiec rozkladem na elementarne oscylacje o okreslonej czestotliwosci 1 okre-
Slonym miejscu w czasie. Z punktu widzenia zastosowan falka Haara ma wade - jest nieciggla. Naszym
celem bedzie konstrukcja réznych innych falek.

Podstawowym narzedziem w konstrukcji falek jest tak zwana analiza wielorozdzielcza.

Analiza wielorozdzielcza. Analiza wielorozdzielcza (w skrocie MRA) nazywamy rosnacy ciag pod-
przestrzeni domknietych L2(R)

e CVacVoayacWycVicVecC...L*(R),

spelniajacych nastepujace warunki
(a) UZ_V; = L*(R).

j=—o00
(b) Uj= o Vi = {0}
(c) flz) eV; & f(2z) € Vjq1.
(d) e € W, taka, ze uklad {p(x —n);n € Z} stanowi baze o. n. przestrzeni Vj. ¢ nazywamy funkcja
skalujaca analizy.

Warunki (a) i (b) oznaczaja, ze rosnacy ciag podprzestrzeni jest nietrywialny i wypelnia wszystko. W
(a) kreska oznacza domkniecie. Przestrzenie V; rosnac wypelniaja cala przestrzenn L2(R). Do kazdego
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elementu f € L?(R) mozna podejéé¢ dowolnie blisko elementami przestrzeni V; (dla odpowiednio duzego
j):
Ve>0fe L) R)IjeZ3geV; |f—gl<e

Mozna to tez sformulowacé tak: jezeli f € L?(R) jest prostopadla do wszystkich przestrzeni V;, to f = 0.
Warunki (a) i (b) w praktyce sa tatwe do sprawdzenia i spelnienia. Tak naprawde jezeli spelnione jest (c)
i(d) to (b) automatycznie tez, a (a) sprowadza sie do prostego warunku na funkcje . Na przyklad, jezeli
@ jest ciagla w 0 to warunkiem gwarantujacym (a) jest |$(0)] = 1. Warunki (¢) i (d) sa najwazniejsze.
(¢) méwi, ze kazda nastepna, wieksza przestrzen jest przeskalowana, przez czynnik 2 kopia poprzednie;j.
Jest to réwnowazne stwierdzeniu, ze

fev,e f(277x) e V.

Mozna mysleé¢ o tym tak, ze elementy w kazdej kolejnej podprzestrzeni moga mie¢ coraz wiecej szczego-
16w, i odwrotnie, w kazdej poprzedniej podprzestrzeni coraz mniej szczegdtéw. Warunek (d) oznacza, ze
ustalona podprzestrzen Vj w ciggu ma ustalony poziom rozdzielczosci - przestrzen jest niezmiennicza na
przesuniecia o liczby catkowite i jest ,rozpinana’ przez przesuniecia jednaj, referencyjnej funkcji-matki.
Jak zobaczymy wlasnosci konstruowanych falek, takie jak ciagto$é czy rézniczkowalno$é, beda odzwier-
ciedlaty wlasnosci funkeji .

Uwaga. ) Z powyzsze]j definicji wynika, ze analiza wielorozdzielcza to dwie rzeczy - rosnacy ciag pod-
przestrzeni domknietych {V;} i funkcja ¢ € Vo, spelniajace odpowiednie warunki. Analizg wielorozdziel-
cza jest wige para ({V;}52_ ., ¢).
o) W praktyce czesto stosuje sie nieco inng definicje. W (d) zamiast warunku, ze uklad {p(z—n);n € Z}
stanowi baze o. n. przestrzeni V) wymagamy, aby stanowit baze Riesza. Jest to nieco stabszy warunek.
Tak zdefiniowana analize wielorozdzielcza nazywamy analiza wielorozdzielcza Riesza. Nasza zwykla ana-
lize, dla podkreslenia w razie potrzeby, bedziemy tez nazywali analiza wielorozdzielcza ortonormalna.
Komentarz dotyczacy spelnienia warunkéw (a) i (b) definicji odnosi si¢ tez do analizy Riesza, chociaz
inny jest warunek na .
e) Okazuje sig, ze jezeli ({V;}52_ ., ) jest analiza Riesza, to w Vy zawsze mozna znalez¢ inng, zmo-
dyfikowang funkcje skalujaca @, taka, ze ({V;}52_ ., $) jest analiza ortonormalna. Pomimo tego czesto
wygodniej jest jednak pracowaé z funkcja ¢ (generujaca baze Riesza) niz ¢ (generujaca bazg o. n.), gdy
o dana jest prostym wzorem a ¢ zawitym.

Konstrukcja falek nastapi teraz w 2 krokach. Najpierw pokazemy, ze analiza wielorozdzielcza zawsze
daje nam falke (bedzie to pewna szczegdlna funkcja, ktéra wybierzemy z przestrzeni V1), a nastepnie
skonstruujemy potrzebne analizy wielorozdzielcze.

Przyktady. Analiza Haara. Jest to najprostszy przyklad MRA. Z tej analizy powstaje falka Haara.
V; = {f € L*(R); f jest stala na przedzialach [277k,277 (k + 1)),k € Z}.

Funkcje skalujaca okreslamy przez

1 x €[0,1),
3.2 =
(32) @ ={y TS

Zauwazmy, ze V; C Vj1. Wynika to stad, ze wraz ze wzrostem j dtugo$é przedziatéw 277k, 277 (k + 1))
maleje, i kazdy taki krotszy przedzial w calosci zawiera sie w ktoryms z przedzialow poprzedniego
poziomu: jezeli k jest parzyste to

9=+ 9=+ (f 4 1)) C [277(k/2), 277 (k/2+ 1)),



a jezeli k jest nieparzyste to
[2—<J‘+1>k, 9=(+D ( 1)) C 277k —1)/2,27(k+1)/2) .

Jezeli f jest stala na kazdym dluzszym przedziale, to jest tez stala na kazdym krétszym. Rozwazmy
warunek (c).
€277k, 277 (k+1)) & 2z € 270 270D (k4 1)).

Widaé, ze f jest stala na przedziale z lewej strony wtedy i tylko wtedy gdy f(2z) jest stala na przedziale
z prawej strony (to jest ta sama stala wartosé). Stad (c). SprawdZmy teraz warunek (d), to znaczy, ze
uktad

(3.3) {o(x—n)inecZ}

stanowi baze o. n. Vp. Latwo sprawdzié¢ korzystajac z definicji, ze uktad (3.3) stanowi uktad ortonormalny.
Pozostaje wigc sprawdzié, czy jest baza w Vj, czyli czy kombinacje liniowe elementéw (3.3) leza gesto w
Vo. Niech f € Vg. f jest stala na kazdym przedziale postaci [k, k4 1), i niech ta stala warto$é¢ wynosi f.
Zauwazmy, ze ciag fr jest sumowalny z kwadratem

[e%) k+1
1912 = [ 1@k de= Z / DPde= 3 |4
- k=—oc0
a wiec
(3.4) > Il < 0.
k=—c
Niech fy bedzie obcigciem funkcji f do przedziatu [-N, N), czyli

f(z) x €[-N,N)

In(@) = { 0 z & [-N,N).

Wtedy fn jest kombinacja liniowa elementéw (3.3)
N-1
= Y frplz—k)
k=—N

7 drugiej strony

I1f = fwl?

/ @R + IR

— 0o

—N-1

S IR+ Z |l

k=—o00

Dwie ostatnie reszty daza do 0 gdy N — oo, ze wzgledu na (3.4). Tak wiec
In—=f w L*(R),

a wiec kombinacje liniowe elementéw (3.3) leza dowolnie blisko kazdego elementu Vp, wiec (3.3) jest baza.
W koncu obliczmy

o —igx |1 —ig _q , .
~ _ —iéx _ € _ € _ —i€/2 bln(f/2)
ole) = [ e ran = | =S e B
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Transformata ¢ jest wiec ciagta w 0 i ma tam warto$é¢ 1. Wykorzystujac komentarz zrobiony po definicji

MRA widzimy, ze wszystkie warunki definicji MRA sa spelnione.

Spliny. Oznaczmy przez C™ zbiér wszystkich funkcji na R rézniczkowalnych w sposéb ciaglty n razy. To

znaczy, ze jezeli f € C™ to pochodne f istniejg do rzedu n wlacznie i pochodna najwyzszego rzedu jest

ciagta. Ustalmy n =1,2,... i niech

V; = {f € C"'NL*(R);na przedziatach postaci [277k,277(k-+1)) f jest wielomianem stopnia nie wigkszego niz n}.

Podobnie jak w przypadku analizy Haara zauwazamy, ze V; C Vjiq oraz f € V; & f(2z) € V1.
Elementy V) nazywamy splinami rzedu n (nie znam dobrego polskiego tlumaczenia). Sa to odpowiednio
sklejone wielomiany stopnia n (sklejone tak, zeby przejscie w punktach catkowitych bylo rézniczkowalne
w sposob ciagly n — 1 razy). Znalezienie funkeji skalujacej ¢ € Vj spelniajacej warunek (d) w definicji
MRA nie jest latwe. Zamiast tego znajdziemy ¢ generujace baze Riesza. W ten sposéb pokazemy, ze
spliny generuja MRA Riesza. Niech

Ar) = @ * p(x),
gdzie ¢ jest funkcja skalujaca MRA Haara (3.2). Wtedy
o] 1
8@ = [ ewet—ndy= [ ow—g)dy
0

Jezeli ¢ < 0 lub = > 2 to A(xz) = 0, bo funkcja podcatkowa jest stale zerem w przedziale catkowania
[0,1]. Jezeli « € [0,1] to

A(x):/‘ ldy = x.
0
Jezeli z € [1,2] to
1
A(x):/ ldy=1-(z—-1)=2—-=.
z—1

Ostatecznie wiec

x x € 1[0,1]
Alz)=4¢ 2—z z€]l,2]
0 x ¢ [0,2].

Zauwazmy, ze A jest splinem rzedu 1. Dla n > 2 okre$lamy indukcyjnie funkcje

(3.5) A™(2) = AP xp(z) = / AP — y) dy = / AT dy

0 r—

x

Na przyktad

A*(z) = Ak p(z) = A(y) dy.
z—1
Jezeli x < 0 lub x > 3 to, jak poprzednio funkcja podcatkowa jest stale 0 na przedziale catkowania, i
A?%(z) = 0. Jezeli z € [0,1] to

T T 2 |® 2
Y x
AQ:/ A(y)dy=/ ydy = | ==
0 0 0
Podobnie rozwazamy pozostate przypadki. Otrzymujemy
z z€[0,1]
A*z)={ —2*+3z—-3 z€][l,2]
-3 € [2,3].

2
Zauwazmy, ze A? jest splinem rzedu 2. Rzeczywidcie, na kazdym przedziale postaci [k, k + 1] jest wie-
lomianem co najwyzej kwadratowym. Zeby sprawdzié¢ rézniczkowalnosé i ciagloéé pochodnej wystarczy
sprawdzi¢ granice obustronne funkcji i jej pochodnej w punktach 0,1,2,3. Pozostawiamy to jako ¢wiczenie.
Mozna udowodnié¢ odpowiednie twierdzenie dla wszystkich rzedow



Tw. 3.1. Dla kaidego n > 1 A™ jest splinem rzedu n.
Dowdéd. Dowdd jest indukcyjny. Wiemy, ze twierdzenie jest prawdziwe dla n = 1 i n = 2. Niech A"
bedzie splinem rzedu n. Z (3.5) i zasadniczego twierdzenia rachunku rézniczkowego wynika, ze

(A" (2) = A™(z) — A"z - 1).

Skoro pochodna A™*! jest rézniczkowalna w sposéb ciagly n — 1 razy (zalozenie indukcyjne), to sama
A" jest rézniczkowalna w sposéb ciagly n razy. Niech z € [k, k + 1]

k T
n+1$: n n .
At = [ A+ [ an)dy

W obu przedziatach catkowania funkcja podcatkowa jest wielomianem stopnia co najwyzej n. Kazda z
calek jest wiec wielomianem stopnia co najwyzej n + 1. A" jest wiec splinem stopnia n + 1. [

Tw. 3.2. {A"(z —k;k € Z} stanowi baze Riesza przestrzeni Vo. ({V;}52_ o, A") jest analizq wieloroz-
dzielczg Riesza.

To twierdzenie pozostawimy bez dowodu. Klopotliwa cz¢scia jest pokazanie, ze uklad splinéw pod-
stawowych jest baza Riesza Vj. Zeby to zilustrowaé przeprowadzimy dowdéd w przypadku n = 1.
MRA Shannona Niech

V,={f¢ L*(R); f(£) = 0 poza przedziatem [—277,2.J7]}.

Oczywiscie V; C Vj41. Skoro
1.
F@NE) = 576,

wiec warunek (c) tez jest latwo spelniony: jezeli f(€) znika poza [—27m, 277, to 1/2f(€/2) znika poza
[—27F17 20+ 7] i na odwrét. Niech ¢ € L?(R) bedzie funkcja okredlona przez swoja transformate Fo-

uriera e €eoma]
R PR

Fatwo obliczy¢, ze
sinmz

SD(‘,E) - )

T™r

ale wygodniej bedzie patrzeé sie na ¢. Zauwazmy, ze przesuniecia (3.3) stanowia rodzine o. n.: jezeli

n#0

(=) = 5ol =) = 5= [ eleip@e de
[ _. 1 g | T
o /,7r e e de = 27 (—in) eim&}‘”
=0.

Jezeli n = 0 to podobnie

1 s
(@, 0) = %/ 1dé=1.

—T

Chcemy teraz pokazaé, ze uklad (3.3) stanowi baze w V. Wezmy dowolne f € V. f jest catkowalna z
kwadratem na R, wiec jest calkowalna z kwadratem na [—m, 71]. Mozemy wiec rozwinaé f na [—7, 7| w
szereg Fouriera

(3.6) fO= > ane™  ge-ma]

n=—oo
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Szereg jest zbiezny w L?([—m, 7]). Zauwazmy, ze

oo

fO = ¢@ane™  ¢eR.

n—=—oo

Obie strony sa 0 dla € ¢ [—m, 7], a w [—m, 7] zgadzaja sie na mocy (3.6). Szereg (3.7) jest zbiezny w
L?(R), co wynika natychmiast ze zbieznoéci szeregu (3.6) w L?([—, ]) i znikania obu stron poza [, 7]:

I e

Mozemy wiec obliczy¢ odwrotna transformate Fouriera obu stron (3.7) wyraz za wyrazem i otrzymamy

N

FO = > ¢©ane™

n=—M

N 2
FO = Y ane™| de.

n=—M

oo

f@) =3 aple—n)  wIAR).

n=—oo

Poniewaz f bylo dowolnym elementem Vp, wigc uklad (3.3) stanowi baze o. n. Vy. Zauwazmy, ze @ jest
ciagla w 01 $(0) = 1, wiec ({V;}52_..,¢) stanowi MRA. MRA Shannona stanowi w pewnym sensie
odbicie analizy Haara, poprzez transformate Fouriera. Jest prosta w obliczeniach, dla zastosowan ma
wade: ¢ jest nieciggla.
MRA Lemarie-Meyera

Konstrukcja falek. Niech W bedzie dopelnieniem ortogonalnym Vy w Vi:
Wo={feV-1fLgVgeW}
Poniewaz V) jest domknieta podprzestrzenia liniowa V;, wiec V) mozna zapisaé¢ jako sume prosta
Vi=Vo® Wy.
Naszym celem bedzie znalezienie i € Wy takiej, ze uktad
{¢(z —n);n € Z}

stanowi bazg o. n. Wo. Pokazemy, ze takie ¢ jest falka. Z analiza wielorozdzielcza ({V;}32 _ ., ¢) zwiazany
jest tak zwany filtr dolnoprzepustowy. Z definicji MRA wynika, ze funkcja

(1/2)¢(z/2)
jest elementem V_1, a wiec takze V. Mozna ja wiec zapisa¢ w bazie jako
(3.8) (1/2)p(x/2) = > hap(x —n),

gdzie szereg jest zbiezny w L?(R), a wspotczynniki bazowe dane sg przez

-

Ciag wspétezynnikéw {h, }52 nazywamy filtrem dolnoprzepustowym. Zastosujmy transformate Fo-

uriera do (3.8)

— 00

P28 = D hap(§e ™.

n=—oo
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Szereg jest zbiezny w L?(R). Zauwazmy, ze ciag {h,}3° _ ., jest sumowalny z kwadratem (jako ciag
wspOlezynnikéw bazowych), a wiec szereg

(3.9) mo(€) = > hnpe ™

jest zbiezny w L2([—7, 7)) do funkcji mg 2m-okresowej, ktéra réwniez nazywamy filtrem dolnoprzepusto-
wym. Z dwoch ostatnich réwnoéci otrzymujemy tak zwane réwnanie skalujace

(3.10) @(28) = mo(€)o ().

Bedziemy potrzebowali nastepujacego twierdzenia

Tw. 3.3. (a) Dla dowolnej funkeji f € L*(R) uklad
{f(z —n);n e Z}
jest ortonormalny wtedy i tylko wtedy gdy

(3.11) > 1fE+2kmPP =1.

k=—o0

(b) Dla dowolnych funkcji f,g € L*(R) uktady
{flx—n);neZ} i {g(x—n);neZ}
s@ wzajemnie ortogonalne (czyli kazda funkcja z jednego ukladu jest ortogonalna do kazdej funkcji z

drugiego) wtedy i tylko wtedy gdy

(3.12) > &+ 2km)g(E + 2km) = 0.

k=—o00

Roéwnosci (3.11) 1 (3.12) zachodza prawie wszedzie, to znaczy zachodza poza zbiorem miary Lebesgue’a
0. Oba szeregi sa absolutnie zbiezne prawie wszedzie.

Dowdd. Czesci (a) i (b) sa bardzo podobne. Przeprowadzimy dowdd (a).

S={F(- = n], £ (-~ K])
3 | fe e g

L™ e pein bt e,

2r ) o

(f(- =n), f(- = k)

Calke po R rozpiszemy jako sume calek po kolejnych przedziatach [2lm,2(1 + 1)7)

o 2(+D)m )
—on > [ P

2w
I—— oo 2l

1 oo 2m R Citn
= /0 (€ + 20m) 2100 g,
l=—o00
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gdzie w ostatniej calce zamieniliémy zmienne £ — & + 2lm. Funkcja wykltadnicza nie zmienita sig¢, bo jest
okresowa.Zamienimy teraz kolejno$¢ sumowania i catkowania. W tym wypadku jest to mozliwe na mocy
twierdzenia o zbieznosci zdominowane;j.

R Y Gl AR~ 2\ —itn—k)e
=3/ <l2m|f(g+2m)|>e de.

Zauwazmy, ze ostatnie wyrazenie jest wspélczynnikiem Fouriera rzedu n — k 27-okresowej funkcji

o0
(3.13) > 1f(E+2m)P.
l=—0o0
Funkeja ta jest calkowalna na [—m, 7], ale niekoniecznie calkowalna z kwadratem. Ale funkcje catkowalne
tez mozna rozwija¢ w szeregi Fouriera i takie rozwiniecia sa jednoznaczne. Pora wyciagnaé¢ wnioski z
naszych obliczen. Uklad {f(x — n);n € Z} jest ortonormalny czyli lewa strona naszego dlugiego ciagu
rownoéei jest 0 dlan # ki1 dlan = k wtedy i tylko wtedy gdy wszystkie wspdtezynniki Fouriera funkcji
(3.13) sa zerami, z wyjatkiem wspo6lczynnika rzedu 0, ktory jest réwny 1. To oznacza, korzystajac z
jednoznacznosci rozwinieé, ze funkcja (3.13) musi by¢ stala réwna 1.
Dowdd czesci (b) wyglada podobnie, zaczynamy od

(f(- =n)g(- = k)

i otrzymujemy, ze jest to (n — k)-ty wspdlczynnik Fouriera funkcji catkowalnej

> f(e +2um)g(e + 2im).

l=—00
Wszystkie wspolczynniki sg zerami wtedy i tylko wtedy, gdy sama funkcja jest stale 0. [

7 powyzszego twierdzenia najpierw otrzymamy pewna wlasno$¢ filtru dolnoprzepustowego. Niech
¢ € R. Funkcja skalujaca ¢ spelnia zalozenia (a) twierdzenia, wiec

1= ) leE+2kmP = > [pE+2km)P+ Y (@€ +2km)
k=—o0 kfk:airzojste k— :iz;ai:yste

= Y 1€ +20k)mP+ > [p(E+2(2k+ 1)m).
k=—c k=—o0

W powyzszej sumie rozdzieliliSmy skladniki parzyste i nieparzyste i zmieniliSmy indeksy sumowania.
Zastosujmy teraz rownanie skalujace (3.10)

|B(€ + 2(2k) )| = |mo(£/2 + 2km)|*|p(€/2 + 2km)?
|9(& + 22k + 1)) |2 = |mo(€/2 4 2km + m)|2|p(€/2 + 2km + )|,
Otrzymujemy wiec

> Imo(€/2 + 2km)*p(€/2 + 2km) [+

k=—oc0

—
I

+ ) Imo(§/2 4 2km + ) *|2(6/2 + 2km + )

k=—o0
oo

=Imo(&/2)1> D 19(&/2 + 2km) P+

k=—o00

oo

+lmo(€/2+m)* D 1¢(6/2 + 7+ 2km),

k=—o0
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gdzie wykorzystaliSmy 2m-okresowos¢ filtru mg. Wykorzystamy teraz jeszcze réwnosé (3.13) dla obu
pozostatych sum i otrzymujemy

= mo(£/2) + [mo(&/2 + ).
Poniewaz £ bylo dowolne, wiec otrzymujemy tak zwane réwnanie Barnwella-Smitha
(3.15) Imo(€)[* + [mo(& +m)|* =1,

prawdziwe prawie wszedzie. Do znalezienia falki ¢ bedzie nam jeszcze potrzebne nastepujace proste
twierdzenie.

Tw. 3.4. f e Vo f(€) = ANE)@(E) dla pewnej 2r-okresowej funkeji A € L2([—m, ]).

Dowdéd. Powtarzamy argument stuzacy do dowodu réwnania skalujacego. f € Vy wtedy i tylko wtedy,

gdy

oo

f@) =Y auple —n),

n—=—oo

gdzie szereg jest zbiezny w L*(R) i a, = (f, (- —n)). Wynika to wprost z tego, ze {¢(x —n);n € Z}
jest baza o. n. V{. Stosujac transformate Fouriera do obu stron otrzymujemy

FE) = Y ane™™p(6).
Ciag {an}>2 _ . jako ciag wspélezynnikéw bazowych jest sumowalny z kwadratem, wiec szereg
MO = Y ane™™
jest zbiezny w L?([—m,7]) do 2m-okresowej funkeji A € L?([—n]). O
Powréémy do falki 4. Przypomnijmy, ze szukamy 1 € V;. A wiec
(1/2)9(x/2) € Vo.

7 twierdzenia 3.4

$(28) = AE@(E)-

Wystarczy wiec znalezé odpowiednig funkcje A. Przypomnijmy, ze szukamy v takiej, ze
(3.16) {Y(x —n);n € Z}

jest baza o. n. przestrzeni Wy, prostopadlej do Vp. Skorzystamy z czesci (a) i (b) twierdzenia 3.3. Ko-
rzystajac z czesci (a) i postepujac tak, jak przy dowodzie réwnosci (3.15) otrzymujemy

(3.17) IMOP +[AE +m)* =1.

Korzystajac z czesci (b) twierdzenia 3.3 i postepujac identycznie otrzymujemy

(3.18) mo(EA(E) +mo(§ + m)A( + ) = 0.
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Przypomnijmy, ze (3.17) oznacza, ze uklad (3.16) jest ortonormalny, a (3.18) oznacza, ze uklad (3.16)
nalezy do Wy (dopelnienie ortogonalne V). Zauwazmy, ze (3.17) i (3.18) sa spelnione jesli przyjaé

(3.19) ME) = e ®mo(E + 7).

Funkcje ta bedziemy nazywaé filtrem gérnoprzepustowym i oznacza¢ przez my. Sprawdzmy, dla przy-
kladu, ze (3.19) spelnia (3.18)

mo(€)e S mo (& + ) +mo(€ + m)e! S mg(€ + 2m) = “mo(€)mo (€ + ) — e “mo(E)mo (€ + ) =0,

gdyz ™ = —1. Nietrudno si¢ przekonaé, ze uklad (3.16) jest nie tylko ukladem ortonormalnym w Wy,
ale jest baza o. n. Wy. Gdyby nie byt baza, czyli jego kombinacje liniowe nie lezalyby gesto w Wy to
istnialby niezerowy element f € Wy, speliajacy f L (- —n) dla kazdego n € Z. Skoro f € Wy, to
takze f L ¢(- —n) dla kazdego n € Z. Mamy

fF28) =AM&e©), (28 =ma(§)B(E),  &(28) =mo(§)(E).-

Rozumujac jak w dowodzie twierdzenia 3.3 a nastepnie jak w dowodzie réwnosci (3.15) otrzymujemy

£)
£)

Wstawiajac wzér na my i korzystajac z (3.15) powyzszy uklad mozna rozwiazaé ze wzgledu na wartosci
A. Jedynym rozwigzaniem jest

+mo(E+mAE+7) =0,
+mi(§+mAE+m) =0.

3 3
= o
—~
T I
~— ~—
> >
—~| —~

AE) =AE+m)=0.

Poniewaz & bylo dowolne otrzymujemy f = 0, co stanowi sprzecznosé. Otrzymalidémy wiec baze o. n. Wy,
dana przez (3.16).

Falka 1 zostala skonstruowana przy pomocy konkretnego filtru my; Mozna pokazaé, ze dowolna 'JJ
generujaca baze w Wy musi spelniaé

D(€) = V(©)s(©),

gdzie s jest funkcja 2m-okresowa i unimodularna, to znaczy |s(§) = 1 dla kazdego . Przykladami takich
funkcji sa funkcje ,
s(x) =e™, necl.

Wynika stad, na przyktad, ze w ramach danej MRA mozemy wybieraé falki o réznych ,fazach”.
Rozwijajac filtr gérnoprzepustowy w szereg Fouriera, podobnie jak my,

mi(§) = Z gneimgv

otrzymujemy ciag wspdlczynnikéw {g, 52, ktéry réwniez nazywamy filtrem gérnoprzepustowym.
Wspéblezynniki g, mozna wyliczy¢ przy pomocy wspotczynnikow filtru dolnoprzepustowego h,:

m(§) = e Cmo(€ +m) = Y hyemin(etn)

= S T () = 3 () e e,

n=—oo n=—oo
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Tak wiec
gn = (_1)1_nh1—n-

(Wybierajac falke z inna faze mozemy uzyskaé¢ inny wzoér.) Zauwazmy jeszcze, ze
gn = ((1/2)0(- /2), (- —n)).
Podsumowujac, mg i m; spelniaja nastepujace 3 warunki
Imo(&)[* + [mo(€ +m)[* = 1,

(3.20) Ima () + fma (€ +m)|* =1,
mo(§)ma(§) +mo(§ + m)ma (€ +m) = 0.

Dwa filtry (czyli 2m-okresowe funkcje) spelniajace powyzsze 3 warunki nazywamy filtrem kwadraturowo
sprzezonym lub kwadraturowo lustrzanym (w skrécie QMF). Filtry takie czesto si¢ pojawiaja w teorii
przetwarzania sygnatu.

Na koniec chcieliby$my pokazaé, ze uktad

(3.21) {@/;j,k(x) = 99/2)(2g — k), j,k € z}
jest baza o. n. calej przestrzeni L?(R). Wprowadzmy przestrzenie Wi:
Wj = {f; f(277z) € Wo}.
Poniewaz jak zauwazyliSmy wczesniej
Vi ={f: f(2772) € Vo},
wiec W; jest czescig Vj41 prostopadla do Vj
(3.22) Vier = V; & W;.

Poniewaz przeskalowanie f +— f(277x) jest przeksztalceniem zachowujacym ortogonalno$é, wiec (3.22)
jest po prostu przeskalowang definicja przestrzeni Wy

Vi=Vy®Wp.

Zauwazmy, Ze przestrzenie W; sa wzajemnie ortogonalne. Jezeli k < j to W, jest podprzestrzenig Vi1 C
V;, a Vj jest ortogonalna do W;. Jezeli k > j to stosujemy ten sam argument, zamieniajac k z j. Tak
wiec

W; LWy Yk #j.

Funkcje

(3.23) {’lﬁj7k;k S Z}

stanowia baze o. n. przestrzeni W;, co wynika wprost z definicji W; i ¢; . Dla réznych j uklady (3.23)
sa wzajemnie ortogonalne, wiec uklad (3.21) jest ortonormalny. Pozostaje uzasadnié, ze jest baza. Niech
f € Vj iniech

Lk VikeZ, j<.J.

7 tego, ze
fLys 1k VkeZ
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wynika, ze f L W;_1, a wiec f € V;_1. Powtarzajac ten argument otrzymujemy kolejno f € V;_o, f €

Vi_3, .... Tak wiec
fe NV

j=—00
a wigc f = 0. Czyli uktad
WikikeZ,j<J}

jest baza o. n. V. Niech teraz f € L*(R) i f L ;5 dla wszystkich j, j € Z. Z powyzszego wynika, ze
f L V; dla wszystkich J € Z, a wiec takze

re U
j=—00
7 tego wynika, ze f = 0.

Pokazalidmy, ze z kazda MRA zwiazany jest filtr dolnoprzepustowy mg. Filtr my odgrywa kluczowa
role. Majac filtr mozna zrekonstruowaé cata MRA. Konstrukcja wielu falek w tym falek Daubechies
opiera sie na nastepujacym twierdzeniu
Tw. 3.5 (Mallat-Meyer). Jezeli mq jest 2m-okresowq funkcjg spelniajgcq réwnanie Barnwella-Smitha
(8.15), mo(0) = 1, myg jest rézniczkowalna w sposéb ciggly i mo(€) > 0 dla § € [—7n/2,7/2] to istnieje
MRA dla ktorej my jest filtrem dolnoprzepustowym.

Dowdd. Bedzie dowod. O
Przyktady falek. Falka Haara: MRA Haara ma filtr dolnoprzepustowy dany réwnaniem

~ —€siné
p2e) _ e
(&) eit/2 —Sinf/Q

_ itz S0E E/2 i e

siné/2 ¢
1 1

Sl 13
2+2€ .

Majac ho = hiy = 1/2i h, = 0 dla n # 0,1 obliczamy go = (—1)hy = —1/2, g1 = ho = 1/2 i g, dla
n # 0, 1. Nastepnie wykorzystujemy wzor

mo(ﬁ) =

(1/2)¢p(x/2) = Z gne(x —n) = =(1/2)p(z) + (1/2)p(z — 1),

n=—oo

czyli
-1 x €10,1/2)

Ylx)=1< 1 x €[1/2,1)
0 x ¢100,1)

Falka Shannona: W przypadku MRA Shannona mamy

wo-{, o oT

0 £é¢ [—m, .
Jezeli € € [—m, 7] to mozna rozwiazaé¢ réwnanie skalujace (3.10)
$(2¢
mo(§) = 2¢)

¢(&)
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Otrzymujemy, ze dla £ € [—m, 7]

1 Eel-n/2,m/2
0 Eé¢[—m/2,m/2].

Powyzsze okresla mg catkowicie, ze wzgledu na okresowosé. Podstawiajac do wzoru otrzymujemy

mo(©) = {

$(26) = e “mo(€ + 1)@ (&)

Latwo sprawdzié, ze oznacza to

~ e~ % —2m, —T T, 2T
w@):{ ¢ € [~2m,—7] U [m,2n]

0 poza tym.

Falki Lemarie-Meyer:

Falki Daubechies: Falki Daubechies to najwazniejsza, najczedciej uzywana w zastosowaniach numerycz-
nych rodzina falek. Ich najwazniejsza cecha jest to, ze filtry dolno- i gérnoprzepustowe maja skonczona
dtugosé. Falki Daubechies istnieja dla kazdej, parzystej dtugosci filtréw. Falka Haara jest najprostszym
elementem tej rodziny, ma najkrétsze filtry, ale jest nieciagta. Wraz ze wzrostem dtugoéci filtréw zwieksza
sie gladko$é falek. Konstrukcja falek opiera sie na konstrukcji odpowiedniego filtru dolnoprzepustowego
myg spelniajacego zalozenia twierdzenia 3.5. Bedziemy wiec szukali mg - wielomianu trygonometrycznego
(czyli funkcji o skonczonym szeregu Fouriera) spelniajacej

Imo(&)I* + [mo(§ +m)> =1,
mo(O) = 1,
mo(§) >0 dla¢ e [-n/2,7/2].
Pozostale zalozenia rézniczkowalnosci w sposéb ciagly jest spelnione automatycznie dla wielomiandw

trygonometrycznych - sa one rézniczkowalne nieskonczenie wiele razy. Pierwszym krokiem jest skonstru-
owanie wielomianu trygonometrycznego g spetniajacego

9(§) >0,
9(&) >0 §el-n/2,7/2
(3.24) 9(0) =1,

Niech £ =0,1,2,.... Niech

1 €
gr(§) =1— — (sint)%Jr1 dt,
Ck Jo

gdzie stalta cj jest dana przez
Ck :/ (sint)* 1 qt.
0

Zauwazmy, ze funkcja g spelnia wszystkie warunki (3.24). Rézniczkujac catke

§
d% </0 (sint)?F+! dt) = (sin&)? !

widzimy, ze sama calka ma lokalne maksima w nieparzystych wielokrotnosciach 7 i lokalne minima w
parzystych wielokrotnosciach w. Mozna to wywnioskowac ze znaku sin . Potega 2k + 1 jest nieparzysta
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i zachowuje znak. Calka rosnie od 0 do m, gdzie przyjmuje warto$¢ najwieksza ci, nastepnie maleje od m
do 27, gdzie przyjmuje warto$¢ najmniejsza 0. Wynika to z nastepujacej obserwacji

2m T -
/ (sint)* 1 dt = / (sin(t +m))* 1 dt = — / (sin )+ dt,

27 T 27
/ (sint)?*+1 dt = / +/ =0.
0 0 T

Wynika stad, ze gr oscyluje od swojej wartosci najwiekszej 1 w punktach 2km do wartosci najmniejszej
0 w punktach (2k 4 1)7, a pomiedzy takimi punktami jest Scisle dodatnia. W ten sposéb pokazali$my
pierwsze 3 wlasnosci w (3.24). Sprawdzmy ostatnia wlasnosé

a wiec

Etm

1 /¢ 1
gk(€) +gr(§+m) =1 - —/ (sint)* 1 dt +1 — — (sint) 2+ dt
Ck Jo ¢k Jo

IRA 2k+1 IRA 2k+1

=2—— [ (sint) dt + — (sint) dt,
Ck Jo Ck J—n

gdzie w ostatniej calce zamieniliémy zmienne ¢ + ¢ + 7 i skorzystaliémy z nieparzystodci (sin#)?**1.

Mamy wiec
I L[
=24+ — [ (sint)?*'dt=2— = [ (sint)?*'dt=1.
Ck J_x Ck Jo

W koncu zauwazmy, ze gj, jest wielomianem trygonometrycznym. sint jest wielomianem

. 1.
sint = —e®t — —e™ %,
24 21

Po podniesieniu do potegi dalej jest wielomianem trygonometrycznym, podobnie po scatkowaniu. Filtr
mo uzyskujemy z nastepujacego, bardzo starego twierdzenia, ktérego nie bedziemy dowodzic.

Tw. 3.6 (Riesz-Fejer). Jezeli g(&) jest wielomianem trygonometrycznym i g(€) > 0 w kazdym punkcie
& € R, to istnieje wielomian trygonometryczny mg taki, zZe

mo (€)= g(&). O

Falki splinowe:



