
Wykład 3.

Analiza wielorozdzielcza i konstrukcja falek

Przedmiotem naszego zainteresowania są bazy falkowe w przestrzeni L2(R), których elementy są
funkcjami o dobrej lokalizacji w czasie i w częstotliwości. Falką nazywamy funkcję ψ ∈ L2(R) taką, że
układ funkcji

(3.1) {ψj,k(x) = 2j/2ψ(2jx− k); j, k ∈ Z}

jest bazą o. n. przestrzeni L2(R). Nazwa „falka” bierze się stąd, że ψ najczęściej jest prostą, elemen-
tarną oscylacją. Bazę (3.1) określoną przez falkę ψ nazywamy bazą falkową. Zainteresowanie bazami
falkowymi wzięło się stąd, że w latach 80 odkryto, że bazy powstające w ten sposób (z jednej funk-
cji, przez przesunięcia i skalowanie) prowadzą do efektywnych algorytmów numerycznych. Osobą, która
pierwsza zwróciła na to uwagę był francuski inżynier Morlet, który we wczesnych latach 80 pracował dla
przedsiębiorstwa naftowego Elf Aquitaine. Poszukiwanie złóż ropy naftowej polegało na wywoływaniu
na powierzchni ziemi fal sejsmicznych (przy pomocy ładunków wybuchowych) a następnie analizowaniu
zarejestrowanych odbić. Różne warstwy można poznać po charakterystycznych częstotliwościach, które
są najsilniej odbijane, a głębokość warstw można wyliczyć analizując przesunięcie w czasie pojawiają-
cych się odbić. Morlet zauważył, że analiza sygnału przy pomocy bazy falkowej jest numerycznie bardzo
efektywna. Morlet używał tak zwanej ciągłej transformaty falkowej, z której wywodzą się, przez próbko-
wanie, bazy falkowe. Bazy falkowe w ostatnich czasach zrobiły dużą karierę i w dziedzinie zastosowań i
z punktu widzenia teorii, w matematyce i fizyce. Kiedy pojawiło się zainteresowanie falkami od dawna
znana była już falka Haara (która widzieliśmy w rozdziale 1)

ψ(x) =




1 x ∈ [0, 1/2),
−1 x ∈ [1/2, 1)
0 x /∈ [0, 1).

Budując bazę falkową {ψj,k} według schematu (3.1) widzimy, że funkcja ψj,k stanowi jednostkową, ele-
mentarną oscylację o czasie trwania 2−j , zlokalizowaną w przedziale [2−jk, 2−j(k+1)). Rozkład sygnału
w bazie falkowej Haara jest więc rozkładem na elementarne oscylacje o określonej częstotliwości i okre-
ślonym miejscu w czasie. Z punktu widzenia zastosowań falka Haara ma wadę - jest nieciągła. Naszym
celem będzie konstrukcja różnych innych falek.
Podstawowym narzędziem w konstrukcji falek jest tak zwana analiza wielorozdzielcza.

Analiza wielorozdzielcza. Analizą wielorozdzielczą (w skrócie MRA) nazywamy rosnący ciąg pod-
przestrzeni domkniętych L2(R)

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . L2(R),

spełniających następujące warunki

(a)
⋃∞
j=−∞ Vj = L2(R).

(b)
⋃∞
j=−∞ Vj = {0}.

(c) f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1.
(d) ∃ϕ ∈ V0 taka, że układ {ϕ(x−n);n ∈ Z} stanowi bazę o. n. przestrzeni V0. ϕ nazywamy funkcją

skalującą analizy.

Warunki (a) i (b) oznaczają, że rosnący ciąg podprzestrzeni jest nietrywialny i wypełnia wszystko. W
(a) kreska oznacza domknięcie. Przestrzenie Vj rosnąc wypełniają całą przestrzeń L2(R). Do każdego
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elementu f ∈ L2(R) można podejść dowolnie blisko elementami przestrzeni Vj (dla odpowiednio dużego
j):

∀ ε > 0∀ f ∈ L2(R)∃ j ∈ Z∃ g ∈ Vj ‖f − g‖ < ε.

Można to też sformułować tak: jeżeli f ∈ L2(R) jest prostopadła do wszystkich przestrzeni Vj , to f = 0.
Warunki (a) i (b) w praktyce są łatwe do sprawdzenia i spełnienia. Tak naprawdę jeżeli spełnione jest (c)
i (d) to (b) automatycznie też, a (a) sprowadza się do prostego warunku na funkcję ϕ. Na przykład, jeżeli
ϕ̂ jest ciągła w 0 to warunkiem gwarantującym (a) jest |ϕ̂(0)| = 1. Warunki (c) i (d) są najważniejsze.
(c) mówi, że każda następna, większa przestrzeń jest przeskalowaną, przez czynnik 2 kopią poprzedniej.
Jest to równoważne stwierdzeniu, że

f ∈ Vj ⇔ f(2−jx) ∈ V0.

Można myśleć o tym tak, że elementy w każdej kolejnej podprzestrzeni mogą mieć coraz więcej szczegó-
łów, i odwrotnie, w każdej poprzedniej podprzestrzeni coraz mniej szczegółów. Warunek (d) oznacza, że
ustalona podprzestrzeń V0 w ciągu ma ustalony poziom rozdzielczości - przestrzeń jest niezmiennicza na
przesunięcia o liczby całkowite i jest „rozpinana” przez przesunięcia jednaj, referencyjnej funkcji-matki.
Jak zobaczymy własności konstruowanych falek, takie jak ciągłość czy różniczkowalność, będą odzwier-
ciedlały własności funkcji ϕ.

Uwaga. •) Z powyższej definicji wynika, że analiza wielorozdzielcza to dwie rzeczy - rosnący ciąg pod-
przestrzeni domkniętych {Vj} i funkcja ϕ ∈ V0, spełniające odpowiednie warunki. Analizą wielorozdziel-
czą jest więc para ({Vj}∞j=−∞, ϕ).
•) W praktyce często stosuje się nieco inną definicję. W (d) zamiast warunku, że układ {ϕ(x−n);n ∈ Z}
stanowi bazę o. n. przestrzeni V0 wymagamy, aby stanowił bazę Riesza. Jest to nieco słabszy warunek.
Tak zdefiniowaną analizę wielorozdzielczą nazywamy analizą wielorozdzielcza Riesza. Naszą zwykłą ana-
lizę, dla podkreślenia w razie potrzeby, będziemy też nazywali analizą wielorozdzielczą ortonormalną.
Komentarz dotyczący spełnienia warunków (a) i (b) definicji odnosi się też do analizy Riesza, chociaż
inny jest warunek na ϕ.
•) Okazuje się, że jeżeli ({Vj}∞j=−∞, ϕ) jest analizą Riesza, to w V0 zawsze można znaleźć inną, zmo-
dyfikowaną funkcję skalującą ϕ̃, taką, że ({Vj}∞j=−∞, ϕ̃) jest analizą ortonormalną. Pomimo tego często
wygodniej jest jednak pracować z funkcją ϕ (generującą bazę Riesza) niż ϕ̃ (generującą bazę o. n.), gdy
ϕ dana jest prostym wzorem a ϕ̃ zawiłym.
Konstrukcja falek nastąpi teraz w 2 krokach. Najpierw pokażemy, że analiza wielorozdzielcza zawsze

daje nam falkę (będzie to pewna szczególna funkcja, która wybierzemy z przestrzeni V1), a następnie
skonstruujemy potrzebne analizy wielorozdzielcze.

Przykłady. Analiza Haara. Jest to najprostszy przykład MRA. Z tej analizy powstaje falka Haara.

Vj = {f ∈ L2(R); f jest stała na przedziałach [2−jk, 2−j(k + 1)), k ∈ Z}.

Funkcję skalującą określamy przez

(3.2) ϕ(x) =
{
1 x ∈ [0, 1),
0 x /∈ [0, 1).

Zauważmy, że Vj ⊂ Vj+1. Wynika to stąd, że wraz ze wzrostem j długość przedziałów [2−jk, 2−j(k+1))
maleje, i każdy taki krótszy przedział w całości zawiera się w którymś z przedziałów poprzedniego
poziomu: jeżeli k jest parzyste to

[
2−(j+1)k, 2−(j+1)(k + 1)

)
⊂ [2−j(k/2), 2−j(k/2 + 1)

)
,
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a jeżeli k jest nieparzyste to[
2−(j+1)k, 2−(j+1)(k + 1)

)
⊂ [2−j(k − 1)/2, 2−j(k + 1)/2

)
.

Jeżeli f jest stała na każdym dłuższym przedziale, to jest też stała na każdym krótszym. Rozważmy
warunek (c).

x ∈ [2−jk, 2−j(k + 1)
)⇔ 2x ∈ [2−(j+1)k, 2−(j+1)(k + 1)

)
.

Widać, że f jest stała na przedziale z lewej strony wtedy i tylko wtedy gdy f(2x) jest stała na przedziale
z prawej strony (to jest ta sama stała wartość). Stąd (c). Sprawdźmy teraz warunek (d), to znaczy, że
układ

(3.3) {ϕ(x− n);n ∈ Z}
stanowi bazę o. n. V0. Łatwo sprawdzić korzystając z definicji, że układ (3.3) stanowi układ ortonormalny.
Pozostaje więc sprawdzić, czy jest bazą w V0, czyli czy kombinacje liniowe elementów (3.3) leżą gęsto w
V0. Niech f ∈ V0. f jest stała na każdym przedziale postaci [k, k+1), i niech ta stała wartość wynosi fk.
Zauważmy, że ciąg fk jest sumowalny z kwadratem

‖f‖2 =
∫ ∞
−∞
|f(x)|2 dx =

∞∑
k=−∞

∫ k+1
k

|f(x)|2 dx =
∞∑

k=−∞
|fk|2,

a więc

(3.4)
∞∑

k=−∞
|fk|2 <∞.

Niech fN będzie obcięciem funkcji f do przedziału [−N,N), czyli

fN (x) =
{

f(x) x ∈ [−N,N)

0 x /∈ [−N,N).

Wtedy fN jest kombinacją liniową elementów (3.3)

fN(x) =
N−1∑
k=−N

fkϕ(x− k).

Z drugiej strony

‖f − fN‖2 =
∫ −N
−∞
|f(x)|2 dx+

∫ ∞
N

|f(x)|2 dx

=
−N−1∑
k=−∞

|fk|2 +
∞∑
k=N

|fk|2.

Dwie ostatnie reszty dążą do 0 gdy N →∞, ze względu na (3.4). Tak więc
fN → f w L2(R),

a więc kombinacje liniowe elementów (3.3) leżą dowolnie blisko każdego elementu V0, więc (3.3) jest bazą.
W końcu obliczmy

ϕ̂(ξ) =
∫ 1
0

e−iξx dx =
e−iξx

−iξ
∣∣∣∣
1

0
=

e−iξ − 1
−iξ = e−iξ/2

sin(ξ/2)
ξ/2

.
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Transformata ϕ̂ jest więc ciągła w 0 i ma tam wartość 1. Wykorzystując komentarz zrobiony po definicji
MRA widzimy, że wszystkie warunki definicji MRA są spełnione.
Spliny. Oznaczmy przez Cn zbiór wszystkich funkcji na R różniczkowalnych w sposób ciągły n razy. To
znaczy, że jeżeli f ∈ Cn to pochodne f istnieją do rzędu n włącznie i pochodna najwyższego rzędu jest
ciągła. Ustalmy n = 1, 2, . . . i niech

Vj = {f ∈ Cn−1∩L2(R); na przedziałach postaci [2−jk, 2−j(k+1)) f jest wielomianem stopnia nie większego niż n}.
Podobnie jak w przypadku analizy Haara zauważamy, że Vj ⊂ Vj+1 oraz f ∈ Vj ⇔ f(2x) ∈ Vj+1.
Elementy V0 nazywamy splinami rzędu n (nie znam dobrego polskiego tłumaczenia). Są to odpowiednio
sklejone wielomiany stopnia n (sklejone tak, żeby przejście w punktach całkowitych było różniczkowalne
w sposób ciągły n − 1 razy). Znalezienie funkcji skalującej ϕ ∈ V0 spełniajacej warunek (d) w definicji
MRA nie jest łatwe. Zamiast tego znajdziemy ϕ generujące bazę Riesza. W ten sposób pokażemy, że
spliny generują MRA Riesza. Niech

∆(x) = ϕ ∗ ϕ(x),
gdzie ϕ jest funkcja skalujacą MRA Haara (3.2). Wtedy

∆(x) =
∫ ∞
−∞

ϕ(y)ϕ(x − y) dy =
∫ 1
0

ϕ(x − y) dy.

Jeżeli x � 0 lub x � 2 to ∆(x) = 0, bo funkcja podcałkowa jest stale zerem w przedziale całkowania
[0, 1]. Jeżeli x ∈ [0, 1] to

∆(x) =
∫ x
0
1 dy = x.

Jeżeli x ∈ [1, 2] to
∆(x) =

∫ 1
x−1

1 dy = 1− (x− 1) = 2− x.

Ostatecznie więc

∆(x) =




x x ∈ [0, 1]
2− x x ∈ [1, 2]
0 x /∈ [0, 2].

Zauważmy, że ∆ jest splinem rzędu 1. Dla n � 2 określamy indukcyjnie funkcje

(3.5) ∆n(x) = ∆n−1 ∗ ϕ(x) =
∫ 1
0
∆n−1(x− y) dy =

∫ x
x−1

∆n−1(y) dy.

Na przykład

∆2(x) = ∆ ∗ ϕ(x) =
∫ x
x−1

∆(y) dy.

Jeżeli x � 0 lub x � 3 to, jak poprzednio funkcja podcałkowa jest stale 0 na przedziale całkowania, i
∆2(x) = 0. Jeżeli x ∈ [0, 1] to

∆2 =
∫ x
0
∆(y) dy =

∫ x
0

y dy =
y2

2

∣∣∣∣
x

0
=

x2

2
.

Podobnie rozważamy pozostałe przypadki. Otrzymujemy

∆2(x) =



x2

2 x ∈ [0, 1]
−x2 + 3x− 32 x ∈ [1, 2]
(x−3)2
2 x ∈ [2, 3].

Zauważmy, że ∆2 jest splinem rzędu 2. Rzeczywiście, na każdym przedziale postaci [k, k + 1] jest wie-
lomianem co najwyżej kwadratowym. Żeby sprawdzić różniczkowalność i ciągłość pochodnej wystarczy
sprawdzić granice obustronne funkcji i jej pochodnej w punktach 0,1,2,3. Pozostawiamy to jako ćwiczenie.
Można udowodnić odpowiednie twierdzenie dla wszystkich rzędów
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Tw. 3.1. Dla każdego n � 1 ∆n jest splinem rzędu n.

Dowód. Dowód jest indukcyjny. Wiemy, że twierdzenie jest prawdziwe dla n = 1 i n = 2. Niech ∆n

będzie splinem rzędu n. Z (3.5) i zasadniczego twierdzenia rachunku różniczkowego wynika, że(
∆n+1

)′
(x) = ∆n(x) −∆n(x− 1).

Skoro pochodna ∆n+1 jest różniczkowalna w sposób ciągły n − 1 razy (założenie indukcyjne), to sama
∆n+1 jest różniczkowalna w sposób ciągły n razy. Niech x ∈ [k, k + 1]

∆n+1(x) =
∫ k
x−1

∆n(y) dy +
∫ x
k

∆n(y) dy.

W obu przedziałach całkowania funkcja podcałkowa jest wielomianem stopnia co najwyżej n. Każda z
całek jest więc wielomianem stopnia co najwyżej n+ 1. ∆n+1 jest więc splinem stopnia n+ 1. �
Tw. 3.2. {∆n(x− k; k ∈ Z} stanowi bazę Riesza przestrzeni V0. ({Vj}∞j=−∞,∆n) jest analizą wieloroz-
dzielczą Riesza.

To twierdzenie pozostawimy bez dowodu. Kłopotliwą częścią jest pokazanie, że układ splinów pod-
stawowych jest bazą Riesza V0. Żeby to zilustrować przeprowadzimy dowód w przypadku n = 1.
MRA Shannona Niech

Vj = {f ∈ L2(R); f̂(ξ) = 0 poza przedziałem [−2jπ, 2Jπ]}.
Oczywiście Vj ⊂ Vj+1. Skoro

f(2 ·)̂(ξ) = 1
2
f̂(
1
2
ξ),

więc warunek (c) też jest łatwo spełniony: jeżeli f̂(ξ) znika poza [−2jπ, 2jπ], to 1/2f̂(ξ/2) znika poza
[−2j+1π, 2j+1π] i na odwrót. Niech ϕ ∈ L2(R) będzie funkcją określoną przez swoją transformatę Fo-
uriera

ϕ̂(ξ) =
{
1 ξ ∈ [−π, π]
0 ξ /∈ [−π, π].

Łatwo obliczyć, że

ϕ(x) =
sinπx
πx

,

ale wygodniej będzie patrzeć się na ϕ̂. Zauważmy, że przesunięcia (3.3) stanowią rodzinę o. n.: jeżeli
n �= 0

〈ϕ,ϕ(· − n)〉 = 1
2π
〈ϕ̂, ϕ(· − n)̂〉 = 1

2π

∫ ∞
−∞

ϕ̂(ξ)ϕ̂(ξ)einξ dξ

=
1
2π

∫ π
−π

e−inξ dξ =
1

2π(−in) e−inξ
∣∣π
−π

= 0.

Jeżeli n = 0 to podobnie

〈ϕ,ϕ〉 = 1
2π

∫ π
−π

1 dξ = 1.

Chcemy teraz pokazać, że układ (3.3) stanowi bazę w V0. Weźmy dowolne f ∈ V0. f̂ jest całkowalna z
kwadratem na R, więc jest całkowalna z kwadratem na [−π, π]. Możemy więc rozwinąć f̂ na [−π, π] w
szereg Fouriera

(3.6) f̂(ξ) =
∞∑

n=−∞
αne

inξ ξ ∈ [−π, π].
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Szereg jest zbieżny w L2([−π, π]). Zauważmy, że

f̂(ξ) =
∞∑

n=−∞
ϕ̂(ξ)αneinξ ξ ∈ R.

Obie strony sa 0 dla ξ /∈ [−π, π], a w [−π, π] zgadzają się na mocy (3.6). Szereg (3.7) jest zbieżny w
L2(R), co wynika natychmiast ze zbieżności szeregu (3.6) w L2([−π, π]) i znikania obu stron poza [−π, π]:

∫ ∞
−∞

∣∣∣∣∣f̂(ξ)−
N∑

n=−M
ϕ̂(ξ)αneinξ

∣∣∣∣∣
2

dξ =
∫ π
−π

∣∣∣∣∣f̂(ξ)−
N∑

n=−M
αne

inξ

∣∣∣∣∣
2

dξ.

Możemy więc obliczyć odwrotna transformatę Fouriera obu stron (3.7) wyraz za wyrazem i otrzymamy

f(x) =
∞∑

n=−∞
α−nϕ(x − n) w L2(R).

Ponieważ f było dowolnym elementem V0, więc układ (3.3) stanowi bazę o. n. V0. Zauważmy, że ϕ̂ jest
ciągła w 0 i ϕ̂(0) = 1, więc ({Vj}∞j=−∞, ϕ) stanowi MRA. MRA Shannona stanowi w pewnym sensie
odbicie analizy Haara, poprzez transformatę Fouriera. Jest prosta w obliczeniach, dla zastosowań ma
wadę: ϕ̂ jest nieciągła.
MRA Lemarie-Meyera

Konstrukcja falek. Niech W0 będzie dopełnieniem ortogonalnym V0 w V1:

W0 = {f ∈ V − 1; f ⊥ g ∀ g ∈ V0}.
Ponieważ V0 jest domkniętą podprzestrzenią liniową V1, więc V1 można zapisać jako sumę prostą

V1 = V0 ⊕W0.

Naszym celem będzie znalezienie ψ ∈W0 takiej, że układ

{ψ(x− n);n ∈ Z}
stanowi bazę o. n.W0. Pokażemy, że takie ψ jest falką. Z analizą wielorozdzielczą ({Vj}∞j=−∞, ϕ) związany
jest tak zwany filtr dolnoprzepustowy. Z definicji MRA wynika, że funkcja

(1/2)ϕ(x/2)

jest elementem V−1, a więc także V0. Można ją więc zapisać w bazie jako

(3.8) (1/2)ϕ(x/2) =
∞∑

n=−∞
hnϕ(x− n),

gdzie szereg jest zbieżny w L2(R), a współczynniki bazowe dane są przez

hn =
〈
1
2
ϕ

(
1
2
·
)
, ϕ(· − n)

〉
.

Ciąg współczynników {hn}∞n=−∞ nazywamy filtrem dolnoprzepustowym. Zastosujmy transformatę Fo-
uriera do (3.8)

ϕ̂(2ξ) =
∞∑

n=−∞
hnϕ̂(ξ)e−inξ.
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Szereg jest zbieżny w L2(R). Zauważmy, że ciąg {hn}∞n=−∞ jest sumowalny z kwadratem (jako ciąg
współczynników bazowych), a więc szereg

(3.9) m0(ξ) =
∞∑

n=−∞
hne

−inξ

jest zbieżny w L2([−π, π]) do funkcji m0 2π-okresowej, którą również nazywamy filtrem dolnoprzepusto-
wym. Z dwóch ostatnich równości otrzymujemy tak zwane równanie skalujące

(3.10) ϕ̂(2ξ) = m0(ξ)ϕ̂(ξ).

Będziemy potrzebowali nastepującego twierdzenia

Tw. 3.3. (a) Dla dowolnej funkcji f ∈ L2(R) układ

{f(x− n);n ∈ Z}

jest ortonormalny wtedy i tylko wtedy gdy

(3.11)
∞∑

k=−∞
|f̂(ξ + 2kπ)|2 = 1.

(b) Dla dowolnych funkcji f, g ∈ L2(R) układy

{f(x− n);n ∈ Z} i {g(x− n);n ∈ Z}

są wzajemnie ortogonalne (czyli każda funkcja z jednego układu jest ortogonalna do każdej funkcji z
drugiego) wtedy i tylko wtedy gdy

(3.12)
∞∑

k=−∞
f̂(ξ + 2kπ)ĝ(ξ + 2kπ) = 0.

Równości (3.11) i (3.12) zachodzą prawie wszędzie, to znaczy zachodzą poza zbiorem miary Lebesgue’a
0. Oba szeregi są absolutnie zbieżne prawie wszędzie.

Dowód. Części (a) i (b) są bardzo podobne. Przeprowadzimy dowód (a).

〈f( · − n), f( · − k)〉 = 1
2π
〈f( · − n)̂, f( · − k)̂〉

=
1
2π

∫ ∞
−∞

f̂(ξ)e−inξ f̂(ξ)eikξ dξ

=
1
2π

∫ ∞
−∞
|f̂(ξ)|2e−i(n−k)ξ dξ.

Całkę po R rozpiszemy jako sumę całek po kolejnych przedziałach [2lπ, 2(l+ 1)π)

=
1
2π

∞∑
l=−∞

∫ 2(l+1)π
2lπ

|f̂(ξ)|2e−i(n−k)ξ dξ

=
1
2π

∞∑
l=−∞

∫ 2π
0
|f̂(ξ + 2lπ)|2e−i(n−k)ξ dξ,
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gdzie w ostatniej całce zamieniliśmy zmienne ξ �→ ξ+2lπ. Funkcja wykładnicza nie zmieniła się, bo jest
okresowa.Zamienimy teraz kolejność sumowania i całkowania. W tym wypadku jest to możliwe na mocy
twierdzenia o zbieżności zdominowanej.

=
1
2π

∫ 2π
0

( ∞∑
l=−∞

|f̂(ξ + 2lπ)|2
)

e−i(n−k)ξ dξ.

Zauważmy, że ostatnie wyrażenie jest współczynnikiem Fouriera rzędu n− k 2π-okresowej funkcji

(3.13)
∞∑
l=−∞

|f̂(ξ + 2lπ)|2.

Funkcja ta jest całkowalna na [−π, π], ale niekoniecznie całkowalna z kwadratem. Ale funkcje całkowalne
też można rozwijać w szeregi Fouriera i takie rozwinięcia są jednoznaczne. Pora wyciągnąć wnioski z
naszych obliczeń. Układ {f(x − n);n ∈ Z} jest ortonormalny czyli lewa strona naszego długiego ciągu
równości jest 0 dla n �= k i 1 dla n = k wtedy i tylko wtedy gdy wszystkie współczynniki Fouriera funkcji
(3.13) są zerami, z wyjątkiem współczynnika rzędu 0, który jest równy 1. To oznacza, korzystając z
jednoznaczności rozwinięć, że funkcja (3.13) musi być stała równa 1.
Dowód części (b) wygląda podobnie, zaczynamy od

〈f( · − n), g( · − k)〉
i otrzymujemy, że jest to (n− k)-ty współczynnik Fouriera funkcji całkowalnej

∞∑
l=−∞

f̂(ξ + 2lπ)ĝ(ξ + 2lπ).

Wszystkie współczynniki są zerami wtedy i tylko wtedy, gdy sama funkcja jest stale 0. �
Z powyższego twierdzenia najpierw otrzymamy pewną własność filtru dolnoprzepustowego. Niech

ξ ∈ R. Funkcja skalująca ϕ spełnia założenia (a) twierdzenia, więc

1 =
∞∑

k=−∞
|ϕ̂(ξ + 2kπ)|2 =

∞∑
k=−∞

k− parzyste

|ϕ̂(ξ + 2kπ)|2 +
∞∑

k=−∞
k− nieparzyste

|ϕ̂(ξ + 2kπ)|2

=
∞∑

k=−∞
|ϕ̂(ξ + 2(2k)π)|2 +

∞∑
k=−∞

|ϕ̂(ξ + 2(2k + 1)π)|2.

W powyższej sumie rozdzieliliśmy składniki parzyste i nieparzyste i zmieniliśmy indeksy sumowania.
Zastosujmy teraz równanie skalujące (3.10)

|ϕ̂(ξ + 2(2k)π)|2 = |m0(ξ/2 + 2kπ)|2|ϕ̂(ξ/2 + 2kπ)|2
|ϕ̂(ξ + 2(2k + 1)π)|2 = |m0(ξ/2 + 2kπ + π)|2|ϕ̂(ξ/2 + 2kπ + π)|2.

Otrzymujemy więc

1 =
∞∑

k=−∞
|m0(ξ/2 + 2kπ)|2|ϕ̂(ξ/2 + 2kπ)|2+

+
∞∑

k=−∞
|m0(ξ/2 + 2kπ + π)|2|ϕ̂(ξ/2 + 2kπ + π)|2

= |m0(ξ/2)|2
∞∑

k=−∞
|ϕ̂(ξ/2 + 2kπ)|2+

+ |m0(ξ/2 + π)|2
∞∑

k=−∞
|ϕ̂(ξ/2 + π + 2kπ)|2,
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gdzie wykorzystaliśmy 2π-okresowość filtru m0. Wykorzystamy teraz jeszcze równość (3.13) dla obu
pozostałych sum i otrzymujemy

= |m0(ξ/2)|2 + |m0(ξ/2 + π)|2.

Ponieważ ξ było dowolne, więc otrzymujemy tak zwane równanie Barnwella-Smitha

(3.15) |m0(ξ)|2 + |m0(ξ + π)|2 = 1,

prawdziwe prawie wszędzie. Do znalezienia falki ψ będzie nam jeszcze potrzebne następujące proste
twierdzenie.

Tw. 3.4. f ∈ V0 ⇔ f̂(ξ) = λ(ξ)ϕ̂(ξ) dla pewnej 2π-okresowej funkcji λ ∈ L2([−π, π]).
Dowód. Powtarzamy argument służący do dowodu równania skalującego. f ∈ V0 wtedy i tylko wtedy,
gdy

f(x) =
∞∑

n=−∞
αnϕ(x− n),

gdzie szereg jest zbieżny w L2(R) i αn = 〈f, ϕ( · − n)〉. Wynika to wprost z tego, że {ϕ(x − n);n ∈ Z}
jest bazą o. n. V0. Stosując transformatę Fouriera do obu stron otrzymujemy

f̂(ξ) =
∞∑

n=−∞
αne

−inξϕ̂(ξ).

Ciąg {αn}∞n=−∞ jako ciąg współczynników bazowych jest sumowalny z kwadratem, więc szereg

λ(ξ) =
∞∑

n=−∞
αne

−inξ

jest zbieżny w L2([−π, π]) do 2π-okresowej funkcji λ ∈ L2([−π]). �

Powróćmy do falki ψ. Przypomnijmy, że szukamy ψ ∈ V1. A więc

(1/2)ψ(x/2) ∈ V0.

Z twierdzenia 3.4
ψ̂(2ξ) = λ(ξ)ϕ̂(ξ).

Wystarczy więc znaleźć odpowiednią funkcję λ. Przypomnijmy, że szukamy ψ takiej, że

(3.16) {ψ(x− n);n ∈ Z}

jest bazą o. n. przestrzeni W0, prostopadłej do V0. Skorzystamy z części (a) i (b) twierdzenia 3.3. Ko-
rzystając z części (a) i postępując tak, jak przy dowodzie równości (3.15) otrzymujemy

(3.17) |λ(ξ)|2 + |λ(ξ + π)|2 = 1.

Korzystając z części (b) twierdzenia 3.3 i postępując identycznie otrzymujemy

(3.18) m0(ξλ(ξ) +m0(ξ + π)λ(ξ + π) = 0.
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Przypomnijmy, że (3.17) oznacza, że układ (3.16) jest ortonormalny, a (3.18) oznacza, że układ (3.16)
należy do W0 (dopełnienie ortogonalne V0). Zauważmy, że (3.17) i (3.18) są spełnione jeśli przyjąć

(3.19) λ(ξ) = e−iξm0(ξ + π).

Funkcję tą będziemy nazywać filtrem górnoprzepustowym i oznaczać przez m1. Sprawdźmy, dla przy-
kładu, że (3.19) spełnia (3.18)

m0(ξ)eiξm0(ξ + π) +m0(ξ + π)ei(ξ+π)m0(ξ + 2π) = eiξm0(ξ)m0(ξ + π)− eiξm0(ξ)m0(ξ + π) = 0,

gdyż eiπ = −1. Nietrudno się przekonać, że układ (3.16) jest nie tylko układem ortonormalnym w W0,
ale jest bazą o. n. W0. Gdyby nie był bazą, czyli jego kombinacje liniowe nie leżałyby gęsto w W0 to
istniałby niezerowy element f ∈ W0, spełniający f ⊥ ψ( · − n) dla każdego n ∈ Z. Skoro f ∈ W0, to
także f ⊥ ϕ( · − n) dla każdego n ∈ Z. Mamy

f̂(2ξ) = λ(ξ)ϕ̂(ξ), ψ̂(2ξ) = m1(ξ)ϕ̂(ξ), ϕ̂(2ξ) = m0(ξ)ϕ̂(ξ).

Rozumując jak w dowodzie twierdzenia 3.3 a następnie jak w dowodzie równości (3.15) otrzymujemy

m0(ξ)λ(ξ) +m0(ξ + π)λ(ξ + π) = 0,

m1(ξ)λ(ξ) +m1(ξ + π)λ(ξ + π) = 0.

Wstawiając wzór na m1 i korzystając z (3.15) powyższy układ można rozwiązać ze względu na wartości
λ. Jedynym rozwiązaniem jest

λ(ξ) = λ(ξ + π) = 0.

Ponieważ ξ było dowolne otrzymujemy f = 0, co stanowi sprzeczność. Otrzymaliśmy więc bazę o. n. W0,
daną przez (3.16).
Falka ψ została skonstruowana przy pomocy konkretnego filtru m1¿ Można pokazać, że dowolna ψ̃

generująca bazę w W0 musi spełniać
ˆ̃
ψ(ξ) = ψ̂(ξ)s(ξ),

gdzie s jest funkcją 2π-okresową i unimodularną, to znaczy |s(ξ) = 1 dla każdego ξ. Przykładami takich
funkcji są funkcje

s(x) = einξ, n ∈ Z.
Wynika stąd, na przykład, że w ramach danej MRA możemy wybierać falki o różnych „fazach”.
Rozwijając filtr górnoprzepustowy w szereg Fouriera, podobnie jak m0,

m1(ξ) =
∞∑

n=−∞
gne
−inξ,

otrzymujemy ciąg współczynników {gn}∞n=−∞, który również nazywamy filtrem górnoprzepustowym.
Współczynniki gn można wyliczyć przy pomocy współczynników filtru dolnoprzepustowego hn:

m1(ξ) = e−iξm0(ξ + π) = e−iξ
∞∑

n=−∞
hne−in(ξ+π)

= e−iξ
∞∑

n=−∞
hne

in(ξ+π) =
∞∑

n=−∞
hne

i(n−1)ξ(−1)n

=
∞∑

n=−∞
hn+1(−1)n+1einξ =

∞∑
n=−∞

(−1)1−nh1−ne−inξ.
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Tak więc
gn = (−1)1−nh1−n.

(Wybierając falkę z inną fazę możemy uzyskać inny wzór.) Zauważmy jeszcze, że

gn = 〈(1/2)ψ( · /2), ϕ( · − n)〉.

Podsumowując, m0 i m1 spełniają następujące 3 warunki

|m0(ξ)|2 + |m0(ξ + π)|2 = 1,

|m1(ξ)|2 + |m1(ξ + π)|2 = 1,(3.20)

m0(ξ)m1(ξ) +m0(ξ + π)m1(ξ + π) = 0.

Dwa filtry (czyli 2π-okresowe funkcje) spełniające powyższe 3 warunki nazywamy filtrem kwadraturowo
sprzężonym lub kwadraturowo lustrzanym (w skrócie QMF). Filtry takie często się pojawiają w teorii
przetwarzania sygnału.
Na koniec chcielibyśmy pokazać, że układ

(3.21)
{
ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z

}
jest bazą o. n. całej przestrzeni L2(R). Wprowadźmy przestrzenie Wj :

Wj = {f ; f(2−jx) ∈W0}.

Ponieważ jak zauważyliśmy wcześniej

Vj = {f ; f(2−jx) ∈ V0},

więc Wj jest częścią Vj+1 prostopadłą do Vj

(3.22) Vj+1 = Vj ⊕Wj .

Ponieważ przeskalowanie f �→ f(2−jx) jest przekształceniem zachowującym ortogonalność, więc (3.22)
jest po prostu przeskalowaną definicją przestrzeni W0

V1 = V0 ⊕W0.

Zauważmy, że przestrzenieWj są wzajemnie ortogonalne. Jeżeli k < j to Wk jest podprzestrzenią Vk+1 ⊂
Vj , a Vj jest ortogonalna do Wj . Jeżeli k > j to stosujemy ten sam argument, zamieniając k z j. Tak
więc

Wj ⊥Wk ∀ k �= j.

Funkcje

(3.23) {ψj,k; k ∈ Z}

stanowią bazę o. n. przestrzeni Wj , co wynika wprost z definicji Wj i ψj,k. Dla różnych j układy (3.23)
są wzajemnie ortogonalne, więc układ (3.21) jest ortonormalny. Pozostaje uzasadnić, że jest bazą. Niech
f ∈ VJ i niech

f ⊥ ψj,k ∀ j, k ∈ Z, j < J.

Z tego, że
f ⊥ ψJ−1,k ∀ k ∈ Z
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wynika, że f ⊥WJ−1, a więc f ∈ VJ−1. Powtarzając ten argument otrzymujemy kolejno f ∈ VJ−2, f ∈
VJ−3, . . . . Tak więc

f ∈
∞⋂

j=−∞
Vj

a więc f = 0. Czyli układ
{ψj,k; j, k ∈ Z, j < J}

jest bazą o. n. VJ . Niech teraz f ∈ L2(R) i f ⊥ ψj,k dla wszystkich j, j ∈ Z. Z powyższego wynika, że
f ⊥ VJ dla wszystkich J ∈ Z, a więc także

f ⊥
∞⋃

j=−∞
Vj .

Z tego wynika, że f = 0.
Pokazaliśmy, że z każdą MRA związany jest filtr dolnoprzepustowy m0. Filtr m0 odgrywa kluczową

rolę. Mając filtr można zrekonstruować całą MRA. Konstrukcja wielu falek w tym falek Daubechies
opiera się na następującym twierdzeniu

Tw. 3.5 (Mallat-Meyer). Jeżeli m0 jest 2π-okresową funkcją spełniającą równanie Barnwella-Smitha
(3.15), m0(0) = 1, m0 jest różniczkowalna w sposób ciągły i m0(ξ) > 0 dla ξ ∈ [−π/2, π/2] to istnieje
MRA dla której m0 jest filtrem dolnoprzepustowym.

Dowód. Będzie dowód. �
Przykłady falek. Falka Haara: MRA Haara ma filtr dolnoprzepustowy dany równaniem

m0(ξ) =
ϕ̂(2ξ)
ϕ̂(ξ)

=
e−iξ sin ξξ

e−iξ/2 sin ξ/2ξ/2

= e−iξ/2
sin ξ
sin ξ/2

· ξ/2
ξ

= e−iξ/2 cos ξ/2

=
1
2
+
1
2
e−iξ.

Mając h0 = h1 = 1/2 i hn = 0 dla n �= 0, 1 obliczamy g0 = (−1)h1 = −1/2, g1 = h0 = 1/2 i gn dla
n �= 0, 1. Następnie wykorzystujemy wzór

(1/2)ψ(x/2) =
∞∑

n=−∞
gnϕ(x− n) = −(1/2)ϕ(x) + (1/2)ϕ(x− 1),

czyli

ψ(x) =



−1 x ∈ [0, 1/2)
1 x ∈ [1/2, 1)
0 x /∈ [0, 1)

Falka Shannona: W przypadku MRA Shannona mamy

ϕ̂(ξ) =
{
1 ξ ∈ [−π, π]
0 ξ /∈ [−π, π].

Jeżeli ξ ∈ [−π, π] to można rozwiązać równanie skalujące (3.10)

m0(ξ) =
ϕ̂(2ξ)
ϕ̂(ξ)

.
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Otrzymujemy, że dla ξ ∈ [−π, π]

m0(ξ) =
{
1 ξ ∈ [−π/2, π/2]
0 ξ /∈ [−π/2, π/2].

Powyższe określa m0 całkowicie, ze względu na okresowość. Podstawiając do wzoru otrzymujemy

ψ̂(2ξ) = e−iξm0(ξ + π)ϕ̂(ξ).

Łatwo sprawdzić, że oznacza to

ψ̂(ξ) =
{

e−iξ ξ ∈ [−2π,−π] ∪ [π, 2π]
0 poza tym.

Falki Lemarie-Meyer:
Falki Daubechies: Falki Daubechies to najważniejsza, najczęściej używana w zastosowaniach numerycz-
nych rodzina falek. Ich najważniejszą cechą jest to, że filtry dolno- i górnoprzepustowe mają skończoną
długość. Falki Daubechies istnieją dla każdej, parzystej długości filtrów. Falka Haara jest najprostszym
elementem tej rodziny, ma najkrótsze filtry, ale jest nieciągła. Wraz ze wzrostem długości filtrów zwiększa
się gładkość falek. Konstrukcja falek opiera się na konstrukcji odpowiedniego filtru dolnoprzepustowego
m0 spełniającego założenia twierdzenia 3.5. Będziemy więc szukali m0 - wielomianu trygonometrycznego
(czyli funkcji o skończonym szeregu Fouriera) spełniającej

|m0(ξ)|2 + |m0(ξ + π)|2 = 1,

m0(0) = 1,

m0(ξ) > 0 dla ξ ∈ [−π/2, π/2].

Pozostałe założenia różniczkowalności w sposób ciągły jest spełnione automatycznie dla wielomianów
trygonometrycznych - są one różniczkowalne nieskończenie wiele razy. Pierwszym krokiem jest skonstru-
owanie wielomianu trygonometrycznego g spełniającego

g(ξ) � 0,

g(ξ) > 0 ξ ∈ [−π/2, π/2],
g(0) = 1,(3.24)

g(ξ) + g(ξ + π) = 1.

Niech k = 0, 1, 2, . . . . Niech

gk(ξ) = 1− 1
ck

∫ ξ
0
(sin t)2k+1 dt,

gdzie stała ck jest dana przez

ck =
∫ π
0
(sin t)2k+1 dt.

Zauważmy, że funkcja gk spełnia wszystkie warunki (3.24). Różniczkując całkę

d

dξ

(∫ ξ
0
(sin t)2k+1 dt

)
= (sin ξ)2k+1

widzimy, że sama całka ma lokalne maksima w nieparzystych wielokrotnościach π i lokalne minima w
parzystych wielokrotnościach π. Można to wywnioskować ze znaku sin ξ. Potęga 2k + 1 jest nieparzysta
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i zachowuje znak. Całka rośnie od 0 do π, gdzie przyjmuje wartość największą ck, następnie maleje od π
do 2π, gdzie przyjmuje wartość najmniejszą 0. Wynika to z następującej obserwacji

∫ 2π
π

(sin t)2k+1 dt =
∫ π
0
(sin(t+ π))2k+1 dt = −

∫ π
0
(sin t)2k+1 dt,

a więc ∫ 2π
0

(sin t)2k+1 dt =
∫ π
0
+
∫ 2π
π

= 0.

Wynika stąd, że gk oscyluje od swojej wartości największej 1 w punktach 2kπ do wartości najmniejszej
0 w punktach (2k + 1)π, a pomiędzy takimi punktami jest ściśle dodatnia. W ten sposób pokazaliśmy
pierwsze 3 własności w (3.24). Sprawdźmy ostatnią własność

gk(ξ) + gk(ξ + π) = 1− 1
ck

∫ ξ
0
(sin t)2k+1 dt+ 1− 1

ck

∫ ξ+π
0

(sin t)2k+1 dt

= 2− 1
ck

∫ ξ
0
(sin t)2k+1 dt+

1
ck

∫ ξ
−π
(sin t)2k+1 dt,

gdzie w ostatniej całce zamieniliśmy zmienne t �→ t + π i skorzystaliśmy z nieparzystości (sin t)2k+1.
Mamy więc

= 2 +
1
ck

∫ 0
−π
(sin t)2k+1 dt = 2− 1

ck

∫ π
0
(sin t)2k+1 dt = 1.

W końcu zauważmy, że gk jest wielomianem trygonometrycznym. sin t jest wielomianem

sin t =
1
2i

eit − 1
2i

e−it.

Po podniesieniu do potęgi dalej jest wielomianem trygonometrycznym, podobnie po scałkowaniu. Filtr
m0 uzyskujemy z następującego, bardzo starego twierdzenia, którego nie będziemy dowodzić.

Tw. 3.6 (Riesz-Fejer). Jeżeli g(ξ) jest wielomianem trygonometrycznym i g(ξ) � 0 w każdym punkcie
ξ ∈ R, to istnieje wielomian trygonometryczny m0 taki, że

|m0(ξ)|2 = g(ξ). �

Falki splinowe:


