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Rozdzial 1

Przestrzen Hilberta

Sygnaly

Funkcje (w jezyku inzynierow - sygnaly) ktore bedziemy rozwazali na tym
wyktadzie beda kilku typow

Sygnaly ciagle (analogowe)

e) L?(R) to funkcje na prostej spetniajace warunek

/ T f @) dr < +oo,

—00

(czyli funkcje catkowalne z kwadratem). Z punktu widzenia zastosowan to
bardzo interesujaca przestrzen sygnatow. Jezeli f(x) oznacza, na przyktad,
napiecie jakiego$ przebiegu elektrycznego, to warunek catkowalnosci z kwa-
dratem oznacza, ze reprezentowany przez to napiecie sygnal ma skonczong
catkowita energie - bardzo rozsadne zalozenie.

o) L*([—m,7]), przestrzefi funkcji okresowych o okresie 27 (czyli f(x+27) =
f(z)), catkowalnych z kwadratem w okresie

/W f(2)[2 dz < +oo.

—T

Podobnie jak poprzednio ten warunek oznacza, ze wartosS¢ energii sygnatu
w okresie jest skonczona. Dhlugosé okresu nie jest szczegélnie wazna, gdyz
poprzez proste przeskalowanie mozna nasze rozwazania przenies¢ na sygnaty
o innych okresach. Okres 27 wybrany jest dla wygody (to jest okres funk-
cji trygonometrycznych, ktorych bedziemy uzywali). Przestrzen te bedziemy
tez oznaczali przez L?(T), gdzie T oznacza okrag jednostkowy, czyli odcinek
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[—7, 7] z utozsamionymi koncami.

) Ogolniej, L*(R™) to funkcje n zmiennych rzeczywistych, catkowalnych z
kwadratem. Szczegélnie interesujacy jest przypadek n = 2, sygnaly takie
reprezentuja obrazy.

) Ogolniej L?(T™), funkcje n zmiennych, wzgledem kazdej zmiennej okre-
sowe o okresie 27:

floy, o x4+ 2m, . x,) = fog, o2, ), i=1,...,n,

i calkowalne z kwadratem po swoim okresie:

/ / ‘f(xlw'-vxn)‘del"'dlEn<—|—OO,

Rowniez tutaj najbardziej interesujacy (oprocz n = 1) jest przypadek n = 2.

Sygnaly dyskretne (cyfrowe)

) L?(Z) to przestrzen ciagow podwdjnie nieskoniczonych { fx}, sumowalnych

7z kwadratem -
Dl < 4o

k=—o00

Przestrzen ta czesto bedziemy tez oznaczaé (2.

o) L*(Z,), p=2,3,... to przestrzen ciagéw podwojnie nieskoriczonych { fi}
okresowych o okresie p, czyli fii, = fi V k € Z. Takie ciagi sa, rzecz jasna,
automatycznie sumowalne z kwadratem po okresie:

p—1
> 1 fil? < 4o
k=0

Ta przestrzen bedziemy tez czasem oznaczaé Kf,.

o) Ogolniej, L*(Z") i L*(Z) to przestrzenie ciggéw n - wymiarowych okre-
sowych (L*(Z7)) lub nie (L*(Z")), sumowalnych z kwadratem, w przypadku
L*(Z7) tylko po okresie. Jak poprzednio, najwazniejsze przypadki to n = 2.

Uwaga 1.1. a) Sygnaly wystepujgce w rzeczywistosci (w naturze) sq¢ nag-
czesciej ciggte. Sygnaly dyskretne pojawiajg sie jako wynik probkowania sy-
gnatow wystepujgeych w rzeczywistosct, i to one pojawiajq sie w algorytmach
numerycznych. Poznamy fundamentalne (ale bardzo proste) twierdzenie mad-
wigce kiedy sygnat ciggly mozna catkowicie odtworzyé z ciggu probek (mowigce
w skrocie, sygnal musi mie¢ skonczone widmo czestotliwoSciowe, a probko-
wanie musi byé wystarczajgco czeste). W przypadku kiedy sygnatu nie da
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sie zrekonstruowaé z probek (na przyktad z jakichs powodéw prébkowanie jest
2byt rzadkie) dowiemy sie jak przygotowaé sygnat do prébkowania, aby uzy-
skaé najlepszy efekt rekonstrukcji (bedzie to tak zwany filtr antyaliasingowy).
b) Zavwazmy, zZe wszystkie rozwazane przestrzenie sygnalow majg pewne
wspdlne cechy, wazne z punktu widzenia teorii. Tworzq je funkcje (o war-
tosciach zespolonych) na jakims zbiorze, catkowalne lub sumowalne na tym
zbiorze z kwadratem. Ta wspolna cecha pozwoli nam wprowadzi¢ w tych prze-
strzeniach strukture przestrzeni Hilberta, nasze podstawowe narzedzie. Drugq
cechq wspolng rozwazanych przestrzeni sygnatow jest to, ze zbior na ktorym
te sygnaty sq rozwazane (R", T", Z", Z7 ) ma strukture grupy abelowej, na
przyktad Z,, z dodawaniem modulo p. To z kolei pozwala nam korzystacé z na-
szego drugiego podstawoweqgo narzedzia - transformaty Fouriera - w jej wielu
wcielentach, transformaty ciggtej, dyskretnej czy szerequ Fouriera.

Przestrzen Hilberta

Przypomnijmy krotko pojecie przestrzeni liniowej, przestrzeni metrycznej i
przestrzeni zupetnej.

Przestrzen liniowa to taka, ktorej elementy mozna dodawac¢, odejmowaé i
mnozy¢ przez skalary (w naszym przypadku skalarami sa liczby zespolone).
Przestrzen liniowa czesto nazywa sie tez przestrzenia wektorowa, a jej ele-
menty wektorami.

Przestrzen metryczna to taka, w ktorej okreslona jest funkcja odlegtosci
d(z,y) (metryka) dzieki ktorej mozna zdefiniowaé¢ zbiezno$¢ ciagu: =, — x
jezeli d(x,,x) — 0. Otrzymujemy przestrzen topologiczna, mozna mowié¢ o
ciggtosci funkcji, czy zbieznosci szeregdw.

Przestrzen metryczna zupetna to taka przestrzen w ktorej kazdy cigg Cau-
chy’ego jest zbiezny, czyli jezeli cigg {x,} elementdéw przestrzeni spelnia wa-
runek

Ve>03INeNVnm>Ndx,z,) <e€

to w tej przestrzeni istnieje x takie, ze x, — x. Zupelno$¢ przestrzeni jest
wazna z punktu widzenia teorii matematycznej. Wszystkie przestrzenie ktore
bedziemy rozwazaé sa zupelne.

Przypomnijmy tez funkcje wykladnicza zmiennej zespolonej, zdefinio-
wang przez szereg potegowy

oo
=2
n=0
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, 2 - liczba zespolona.



Mamy nastepujaca roOwnosé
€ = cos p +isin . (1.1)
Otrzymujemy ja wstawiajac i ¢ do definicji, korzystajac z faktu, ze i2 = —1,

rozdzielajac sktadniki zawierajace i nie zawierajace i (szereg jest zbiezny
absolutnie) i korzystajac z rozwinie¢ Taylora funkeji sinz i cos .

Definicja 1.2. Przestrzen liniowa E nazywa sie przestrzenig Hilberta, je-
zeli istnieje w niej iloczyn skalarny, to znaczy funkcja (x,y) (o wartoSciach
zespolonych) o nastepujgcych wtasnosciach

(a). (x.y) = Ty.2) (jest antysymetryceny)

(b). (x+y,z) = (x,2)+(y, 2), (ax,y) = alz,y) (liniowy wzgledem pierwszej
zmiennej),

(c). {x,y+ z) = (x,y) + (x,2), (z,ay) = @(z,y) (antyliniowy wzgledem
drugiej zmiennej),

(d). {(x,x) >0 oraz (z,x) =0< x =0.

(x,y,z to dowolne elementy E, a jest dowolng liczbg zespolong, a @ jest
liczbg sprzezong do «). Dodatkowo E musi byé zupetna, kwestie metryki i
zupetnosci wyjasnimy za chwile.

Jezeli elementy x i y spelniaja

(z,y) =0,

to mowimy, ze sa prostopadte lub ortogonalne. Majac w przestrzeni Hilberta
iloczyn skalarny wprowadzamy tak zwana norme (dlugosé¢)wektorow

o]l = v/ ().

Zauwazmy, ze dzieki wlasnosci (d) iloczynu skalarnego pierwiastek mozna
zawsze obliczy¢.

Twierdzenie 1.3 (Nieréwno$¢ Schwarza). Dla dowolnych elementéw x,y
przestrzent Hilberta E

[{z, )| < llzllllyll



Dowdd. Ustalmy x,y € E i dowolng liczbe rzeczywista A.

2+ MylI” = (z + Ay, = + Ay)

= (z,z+ \y) + My, z + \y)

= (z,2) + M, y) + My, 2) + A2y, y)
= NlylI” + 22AR(z, y) + ||=|1%,

(R - czes¢ rzeczywista). Rozwazane wyrazenie jest wiec (dla ustalonych z
i y) funkcja kwadratowa zmiennej rzeczywistej A, o wspolczynnikach ||y||%,
2R (z,y) i ||z||*>. Wyrazenie nie moze by¢ ujemne, wigc funkcja kwadratowa
moze mie¢ co najwyzej jeden rzeczywisty pierwiastek. A wiec wyr6znik funk-
cji kwadratowej musi byé¢ ujemny:

(2R(z,))* — 4llyl*[|z]* <o,

czyli
Rz, y)| < [l lflyll-

Jezeli (z,y) jest liczby rzeczywista to dowod jest zakonczony. Jezeli nie, to
pozostaje jeszcze jeden trik: niech ¢ bedzie liczbg rzeczywista taka, ze

(z,y) = e[z, y)].

Taka liczbe zawsze mozna znalezé, €% jest ,znakiemzespolonym liczby (z, )
(chyba ze (z,y) = 0, ale w takim przypadku nieréwnos$¢ Schwarza jest na-
tychmiastowa). Wtedy

e ¥ w,y) = (z,e"y)

jest liczba rzeczywista. WykorzystaliSmy tu rownosci

ely =e v =ev,

ktore tatwo wynikaja z postaci trygonometrycznej (1.1). Z udowodnionej juz
czesci twierdzenia wynika, ze

[(z, ey)| < [l=]llle™yll.
W koticu, skoro, jak tatwo sprawdzié¢ |e*?| = 1, mamy

[z, )l =le ™zl 1 eyl =yl



Uwaga 1.4. Przyglgdajgc sie przedstawionemu wyzej dowodowi zauwazmy,
Ze rowno$é (w nierdwnosci Schwarza) zachodzi tylko jezeli x iy sq wspot-
liniowe (w sensie zespolonym), to znaczy istnieje liczba zespolona o taka,
ze

T = ay.

Twierdzenie 1.5 (Wtlasnosci normy). (a). ||z > 0 oraz ||z|| = 0 & = =
0,

(b). llaz|| = |al||z|| dla kazdej liczby a i elementu x € E,
(c). llz+yl < |zl + |yl (nierdwnosé trajkata).

Dowdd. Wtasnosci (a) i (b) wynikaja wprost z definicji normy i wlasnosci
iloczynu skalarnego. Sprawdzmy tylko nieréwnosé trojkata

e+ yll” = (& +y, 2 +y) = (&, 2) + (x,9) + (y,2) + (4, 9)
= ||z + (z,y) + (v, =) + ||y’
= |[lz)1* + (2, ) + (v, z) + [lyl1?|
<] + [z, y)| + [{y, )| + Iyl
< ] + 2]z Iyl + Nyl
= (=l + llylD>.

Po drodze skorzystaliSmy z nieréwnosci trojkata dla liczb zespolonych
|a+ 0] < af + 0],
oraz z nieréwnosci Schwarza. [
Norma umozliwia nam wprowadzenie w £ metryki
dw,y) = lle —yll.
Wymagane wlasnosci metryki
(a). d(z,y) = d(y, ),
(b). d(z,y) > 0 oraz d(z,y) =0 <z =y,

(c). d(z,y) < d(z,2) +d(2,y),



wynikaja wprost z wyszczegolnionych powyzej wtasnosci normy. Metryka
wprowadza w E topologie, mozna wiec moéwi¢ o zbiezno$ci w przestrzeni
Hilberta ciagoéw czy szeregdéw i o ciaglosci funkcji. Z nieréwnosci Schwarza
wynika, ze iloczyn skalarny jest ciagta funkcjg dwoch zmiennych. Przestrzen
Hilberta, z definicji, musi byé¢ zupelna jako przestrzen metryczna z ta me-
tryka.

Przyklady: Wszystkie opisane poprzednio przestrzenie sygnaléw sa prze-
strzeniami Hilberta. Zeby sie o tym przekona¢ nalezy w kazdej przestrzeni
wprowadzié¢ iloczyn skalarny i sprawdzi¢ warunki (a)—(d) definicji. Nalezy
tez udowodnié¢ zupelno$¢ powstatej przestrzeni metrycznej. W kazdym przy-
padku przy okresleniu iloczynu skalarnego bedziemy korzystac¢ z nastepujacej
nieréwnosci, prawdziwej dla dowolnych liczb zespolonych:

2|ab| < |al® + [b]*. (1.2)
o [2(R"). Jezeli f,g € L*(R™) to funkcja f - g jest absolutnie catkowalna na
R™ ‘ - )
2 |g(w
S < L A
2 2
wiec

I,

[loczyn skalarny okreslamy nastepujaco:

F(a)g(@)| dr < / Fa)P dr+ / 9()[? d < +oo.

n n

(F0)= | faglad (1.3
Jak 7z tego wynika

1=/ [ 1k, (1.4

a odlegtos¢ dwoch funkcji

d(f,9) =17 - gl = \/ | 15@ =gt e

Zbieznos¢ ciagu funkcji w przestrzeni Hilberta L*(R™) to nie jest to samo,
co zbieznosé punktowa. Na przyktad, niech

1 rxenn+1|
0 : poza tym.



Jak tatwo zauwazy¢,
fn(z) — 0, Vr € R,

czyli {f.} jest zbiezny w kazdym punkcji do funkeji stale rownej 0. Z drugiej
strony, dla dowolnego n

n+1
1faull? = /R ()2 de = / dr—1.

Ciag nie jest wiec zbiezny do 0 w L?(R). Mozna tez poda¢ przyklad ciagu
zbieznego w L*(R), ale nie zbieznego punktowo. Niech n bedzie liczba na-
turalnag, i niech n = 2¥ + [, dla pewnego k = 0,1,2,... il =0,...,2F — 1.
Majac taki rozktad n okreslamy
: —k] 9—k
ﬁxx)=={1 : xe[g%az_fl+1»,
0 : a¢ 2,277 +1)).

Zauwazmy, ze ciag { f,|| nie jest zbiezny w zadnym punkcie z € [0, 1), nato-

miast
2=k (141)
5= [ de=2
2

Latwo zauwazy¢, ze k — oo gdy n — oo, wiec
lim anH =0,
n—oo

ciag {f.} zbiega wiec do 0 w przestrzeni Hilberta.
Dla catkowitej Scistosci trzeba zrobi¢ nastepujaca uwage, ktora odnosi sie
do wszystkich rozwazanych przez nas przestrzeni sygnatow cigglych. Niech

1 :2z=0,
f<x):{0 cx # 0. (1.5)

f nie jest funkcja zerowa, ale ||f|| = 0. Tloczyn skalarny wprowadzony wzo-
rem (1.3) nie spelia warunku (d) definicji dla pewnej grupy specyficznych
funkcji takich jak (1.5). Definicje przestrzeni L?(R™) mogliby$my uscislié,
postugujac sie pojeciem klasy abstrakcji. W przypadku tego kursu az taka
Scistos¢ nie jest potrzebna. Wystarczy pamietac, ze jezeli dwie funkcje rozniag
sie na niewielkim zbiorze, na przyklad na zbiorze skoriczonym, to traktujemy
je jako ta sama funkcje. Uwagi te nie dotycza funkcji ciaglych. Jezeli fi g
sa ciagte, oraz
If —gll =0,
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to f = g wszedzie.
e L*(T™). Tloczyn skalarny wprowadzamy nastepujaco

o) =g | o [ S@a@ e o= )

podobnie jak poprzednio, korzystajac z (1.2) pokazujemy, ze calka zawsze
istnieje.

o [*(Z"). Majac dwa ciggi z tej przestrzeni, f = {fn} i g = {gm}, m =
(ma, ..., my) okreslamy

(foy=" D> fulm

Ze wzgledu na (1.2) szereg jest zbiezny absolutnie.
e L*(Z}). Podobnie dla ciagow okresowych

p—1
<f,9>=j% > fnTm

mi,...,mp=0

W kazdym z powyzszych przypadkow nalezy sprawdzi¢ warunki (a)—(d) de-
finicji przestrzeni Hilberta. Istotnym punktem do sprawdzenia pozostaje
zupetnosé tak zdefiniowanych przestrzeni. W przypadku przestrzeni dys-
kretnych zupetno$¢ wynika z zupelnosci zbioru liczb rzeczywistych (kazdy
ciag Cauchy’ego jest zbiezny). Do dowodu zupelnosci R trzeba doktadnie
przyjrzeé sie definicji samych liczb rzeczywistych. W przypadku przestrzeni
sygnatow ciagtych w dowodzie zupemlosci korzysta sie z konstrukcji catki
Lebesgue’a (przestrzenie zdefiniowane przy uzyciu calki Riemanna nie sa
zupetne). Dowod zupelnosci pomijamy. W dalszej czesci kursu wystarczy
(chcialoby sie powiedzie¢ ,w zupelnosci”) nam sama $wiadomos$¢ tego, ze
przestrzenie sa zupelne.

Bazy i rozpiecia

Zbior elementow {e,} przestrzeni Hilberta E (skoriczony lub nieskonczony)
nazywa sie liniowo niezaleznym, jezeli zaden jego element nie jest kombinacja
liniowa pozostatych. Mozna to zapisa¢ nastepujaco. Jezeli dla jakichs liczb
zespolonych aq, ..., ax zachodzi

arey + ..., aper =0,
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to oy = g = - -+ = a, = 0. Na przyklad, zbior funkeji {f,}5°_ gdzie

x €[0,1],
Alx)=4¢2—x sz el,2], (1.6)

0 z ¢ [0,2],
oraz f,(x) = A(x — n) jest liniowo niezalezny w L*(R). Jezeli o, ...,y sa
jakimis liczbami zespolonymi, a nq, ..., n; réznymi liczbami catkowitymi, to

funkcja
O51fn1 + ... Oékfnk
ma warto$¢ o; w punkcie catkowitym n; 4+ 1. Jezeli wiec jest rowna wszedzie
0,toa; =y =---=a; =0.
Jezeli jednak do tego zbioru dodamy funkcje

x x € [0,2],
flz)=4¢6—2x cx € (2,3,
0 :x ¢ 0,3,

to powstaly zbior nie jest juz liniowo niezalezny, bo

f(x) = folz) +2fi(2),

a wiec
f(x) = folx) = 2fi(x) = 0
a wspolczynniki 1, —1, —2 nie sg zerami.
Zbior elementow {e,} (znowu, skoniczony lub nie) nazywa sie ortonormal-

nym jezeli
0 :
<en’em> _ { n#ma
1 S n=m.

Zbior ortonormalny sktada sie wiec z elementéw o normie 1, wzajemnie orto-
gonalnych. Zauwazmy, ze zbior ortonormalny jest zawsze liniowo niezalezny.
Niech {e,} bedzie ortonormalny, i niech a, ..., a; beda liczbami takimi, ze

are; + -+ agep = 0.
WeZmy dowolne j = 1,...,k i obliczmy

0= (aie1 + - - + agey, €;)
= as{er, e;) + -+ aglex, €5)

= O./j.
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W takim razie o = --- = o = 0. Pokazaliémy wiec ze istotnie, zbior
ortonormalny jest liniowo niezalezny.
Majac zbior elementow {e,} przestrzeni Hilberta E rozpieciem liniowym

Lin {e,}

nazywamy zbior wszystkich kombinacji liniowych elementow {e,}. Jest to
najmniejsza podprzestrzen liniowa przestrzeni E zawierajaca wszystkie ele-
menty zbioru {e,}. Mowimy, ze zbior {e,} rozpina ta podprzestrzen. Do-
mkniecie tego zbioru

Lin {e, },

(czyli dotaczenie do niego granic wszystkich zbieznych ciagéow) nazywamy
domknietym rozpieciem liniowym zbioru {e,}.

Na przyklad, rozpiecie liniowe zbioru funkcji danych przez (1.6) zawiera
doktadnie te funkcje f € L?*(R), ktore spelniaja nastepujace warunki: f jest
ciggla, f jest liniowa na przedziatach postaci [n,n+ 1], dlan € Z, i f jest 0
poza pewnym skoriczonym przedzialem. Z kolei domkniete rozpiecie liniowe
tego zbioru to wszystkie funkcje f € L*(R), ciagle i liniowe na przedziatach
postaci [n,n + 1]. Jak latwo sprawdzi¢

Lin{f.; n€ Z} = {g = Z [ Z o |* < oo}
Innymi stowy, warunkiem koniecznym i dostatecznym na to, zeby szereg
> anfn

byt zbiezny w przestrzeni L*(R) jest sumowalnosé¢ z kwadratem ciagu wspot-
czynnikow a,.
Mozna pokazac, ze jezeli zbior {e,} jest skonczony, to

Lin{e,} = Lin{e,}.

Jezeli mamy przeliczalny zbior {e,} elementow przestrzeni Hilberta E,
to zawsze mozemy znalez¢ zbior ortonormalny { f,}, o tym samym rozpieciu
liniowym

Lin{e,} = Lin{f,}.

Konstrukcja zbioru {f,} nazywa sie procedurg Gramma-Schmidta. Proce-
dura jest indukcyjna. Niech elementy zbioru {e,} beda ustawione w ciag
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e1, e, . ... Jezeli ciag zawiera elementy zerowe to odrzuémy je — nie wptywa
to na rozpiecie liniowe. Niech

€1

lexll

fi=

Mamy wiec poczatek procedury indukcyjnej. Teraz opiszemy krok. Zalozmy,

ze utworzony juz zostal zbior ortonormalny {fi,..., fx} o nastepujacej wla-
snoSci: istnieje ny takie, ze
Lin{el,...,enk}:Lin{fl,...,fk}. (17)

Zauwazmy, ze element f; zdefiniowany przed chwila spelnia powyzszy waru-
nek, z k = 1, ny = 1. Zeby wykona¢ krok indukcyjny znajdzmy element ciagu
{en}, nastepny po e, , ktory nie nalezy do powyzszego rozpiecia (1.7). Jezeli
takiego elementu w ciggu nie znajdziemy, innymi stowy wszystkie pozostate
elementy €, +1, €n,+2, ... naleza do rozpiecia (1.7), to procedura si¢ konczy,
i
Lin{e,;n=1,2,...} =Lin{f1,..., fx}.

W tym wypadku procedura Gramma-Schmidta jest zakonczona, a powstaty
zbior ortonormalny jest skonczony. Jezeli natomiast znajdziemy element
ciagu {e,}, nastepny po e,,, ktory nie nalezy do rozpiecia (1.7) (niech to
bedzie pierwszy taki element), to nazywamy go ey, ,,, i definiujemy fi41

Cnppr Zf:l <€nk+1; fl)fl ‘
Enpyr Zf:l <€nk+17 fl)fl”

Whprost z powyzszego wzoru wynika, ze || fry1]] = 1. Niech j = 1,... ki
zauwazmy, ze fr41 1 f; sa ortogonalne

k
<fk‘+17fj> = ﬁ < (enk+1 - Z<e”k+17fl>fl> 7fj>

=1

k
- H 1 H (enk+17fj Z enk+1’fl fl’f7>)
=1

.. (<€nk+1’ f]> - <€”k+1’ fj>)

fk+1 - ‘

Rozszerzony zbior {f1,..., fra1} jest wiec ortonormalny. Pozostaje zauwa-
zy¢, 7e

Lin {61, ce 7€nk+1} = Lin {fl> .. .,fk+1},
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co natychmiast wynika z zalozenia indukcyjnego i konstrukcji elementu fz .
Krok indukcyjny jest wiec wykonany, i procedura Gramma-Schmidta daje w
wyniku skoniczony lub nieskoriczony zbiér ortonormalny {f,} o tym samym
rozpieciu liniowym co Lin{e,}. Zauwazmy, ze skoro rozpiecia liniowe sa
identyczne, to takze domkniete rozpiecia liniowe

Lin{e,} = Lin {f,}.

Przyktad: Niech

1 swen,2)
el(m)_{o e d[1,2),

natomiast nastepne elementy beda dane wzorem

1 cx€n—1n+1),

en(x):{ n=23,....

0 cxédn—1,n+1),

Pokazemy, ze zbior {ej,es,...} jest liniowo niezalezny. Niech beda dane
wspotczynniki aq, . . ., ag 1 niech

are; + -+ ager = 0.

Wezmy liczbe catkowita j = 1,...,k — 1. Wtedy warto$¢ funkcji po lewej
stronie w punkcie j jest rowna «a; + 41, a wige

()éj+aj+1:O, jzl,...,k’—l,

z kolei wartos$¢ lewej strony w punkcie k£ wynosi ag, czyli ap = 0. Otrzy-
mujemy wiec a; = -+ = o = 0. Zbior wektorow {e,} jest wiec liniowo
niezalezny. Nie jest jednak ortonormalny. Na przyktad

eve) = [ e@es)ds

—00

Zastosujmy wiec procedure Gramma-Schmidta. |lei|| = 1, wiec fi = e;.

es(x) = (e2, [1) 1(2) = ea(w) — ex ().

Otrzymujemy wiec
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Kontynuujac indukcyjnie otrzymujemy

1 cx € [n,n+1),
fn<x>—{0 cx & [n,n+1).

Zbior {f,} jest ortonormalny i rozpina ta sama podprzestrzen co zbior wyj-
sciowy {e, }: podprzestrzen funkcji stalych na przedziatach postaci [n,n+1),
rownych 0 dla x < 112 > M dla pewnej liczby naturalnej M.

Mowimy, ze zbior {e, }22 ; elementow przestrzeni Hilberta E jest zupetny,
jezeli

Lin{e,} = E,

czyli kazdy element przestrzeni E jest granica ciggu kombinacji liniowych
elementow zbioru {e,}. Innymi stowy,

Vee EVe>0day,...q < €.

k
xr — E (67 7%
n=1

Ta zupelnosé jest pojeciem ,zupekieriie zwigzanym z zupelnoScia—w sensie
przestrzeni metrycznej—dyskutowana wczesniej. Mozna pokaza¢ nastepujacy
fakt, czesto stosowany w sytuacji, gdy trzeba sprawdzi¢ zupelnosé jakiegos
zbioru.

Fakt 1.6. Zbior {e,} C E jest zupetny wtedy i tylko wtedy, gdy jedynym
elementem x € E prostopadtym do wszystkich e, jest 0.

Definicja 1.7. Zbior {e,} nazywa sie bazq przestrzeni Hilberta E jezeli jest
liniowo niezalezny i zupelny. {e,} nazywa sie bazq ortonormalng jezeli jest
ortonormalny @ zupetny.

Mowiac luzno, zbior tworzy baze jezeli do kazdego elementu przestrzeni
E mozna podej$¢ dowolnie blisko jaka$ kombinacja linowa elementéw bazy
(zupelosé), i zbior nie zawiera zadnych zbednych elementow (liniowa nieza-
leznoseé).

Uwaga 1.8. (a) Powyzsza definicja rézni si¢ zasadniczo od pojecia bazy prze-
strzent lintowej wprowadzanego na wyktadzie z algebry lintowej. W tamtej
definicji kazdy element przestrzeni mozna przedstawic jako kombinacje li-
niowq elementow bazy, a w tej definicyi wystarczy, zeby do kazdego elementu
przestrzeni mozna byto dowolnie blisko ,podejsé” kombinacjami liniowymi ele-
mentow bazy. Dla unikniecia zamieszania tamtq, algebraiczng baze czasami
nazywa sie ,bazq Hamela”, a te ,bazq topologiczng”. Na tym wyktadzie be-
dziemy korzystali tylko z baz topologicznych, i bedziemy je po prostu nazywali
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bazami. W przypadku przestrzeni skonczenie wymiarowych oba pojecia baz sq
tdentyczne.

(b) Mozna udowodnié, Ze dwie bazy tej samej przestrzeni sq réwnoliczne.
Liczbe elementow bazy (moze byé nieskoriczona) nazywamy wymiarem prze-
strzeni. Rozwazane przez nas przestrzenie sq zardwno skoriczenie wymiarowe
(na przyktad wymiar przestrzeni EZ jest rowny p) jak i nieskoriczenie wymia-
rowe ((* czy przestrzenie sygnatow analogowych). Skoriczenie wymiarowe
przestrzenie Hilberta sq czasem nazywane przestrzeniami Euklidesowyms.
(c) Kazdy uktad liniowo niezalezny mozna rozszerzyé do bazy (uzupetnic).
Kazdy uktad ortonormalny mozna rozszerzyé do bazy ortonormalnej. Na tym
wyktadzie bedziemy konstruowac konkretne bazy w konkretnych przestrzeniach
Hilberta.

Bazy ortonormalne sa szczegblnie wygodne w zastosowaniach. Ponizej
przypomnimy na czym polega ta wygoda.

Twierdzenie 1.9. Jezeli {e,} jest bazq o.n. przestrzeni E to dla dowolnych
liczb zespolonych aq, ..., ap @ dowolnego x € E zachodzi nierownosé

k k
x—Z(x,en>en < x—Zan en (1.8)
n=1 n=1
Réwnosé zachodzi tylko w przypadku o, = (x,e,), n=1,... k
Dowad.
k 2 k k 2
T — Z anenll = ||z — Z(x, en)en + Z ((x,en) — an) ey
n=1 n=1 n=1
. 2
= x—Z(x, en)enll +
n=1
k k
+ 2R <x - Z(x, €n)en, Z ((z,em) — am) em> +
n=1 m=0
2
+ Z<<x7€n> an) en
n=1

Powyzsza rownos¢ otrzymalisémy jak zwykle: norme sumy do kwadratu zapi-
saliSmy jako iloczyn skalarny sumy przez siebie, i skorzystalisémy z liniowosci
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iloczynu skalarnego. Rozwazmy drugi sktadnik w uzyskanym wyrazeniu:

<x — Z(x, €n)en, ((z,em) — am) em> =

- Z ((z, em) — am) <37 - Z(x,6n>en, em> =
= Z (7, em) — o) ((:c, em) — Z(:c,en>(em 6m>> _

Zauwazmy, ze ostatni nawias = 0, gdyz baza jest ortonormalna. PokazaliSmy
wiec nierownosé (1.8). Jezeli zachodzi rownosé, to

k

S (. ea) — o) e

n=1

=0.

Korzystajac z wtasno$ci normy kombinacja liniowa jest wiec zerowa

k

Y (a,en) —an)en =0.

n=1
Korzystajac z liniowej niezaleznosci elementéw bazy otrzymujemy
a, = (T, €p), n=1,...,k.
Udowodnilismy wiec ostatnia cze$¢ twierdzenia. ]
Z definicji bazy wynika, ze do kazdego elementu mozna dowolnie blisko po-
dejsc¢ jakqs kombinacja liniowa elementow bazy. Powyzsze twierdzenie mowi,

ze jezeli baza jest ortonormalna, to najlepszymi kombinacjami liniowymi sg

kombinacje
k

Z(:c, €n)en.

n=1
Mamy wiec konkretny wzoér na wspoélczynniki tych ,najefektywniejszych”
kombinacji.

Whiosek 1.10. Jezeli {e,} jest bazq o.n. przestrzeni E to:
(a). dla dowolnego x € E

r = Z(a:, €n)en, (rozktad x wzgledem bazy)

n=1
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(b). jezeli dla jakiego$ ciggu wspotczynnikow oy, s, ... zachodzi

[e's)
€T = E Qp Cp,
n=1

to wspotczynniks muszq bycé iloczynami skalarnyms

a, = (x,e,) (jednoznacznosé rozktadu),

(c). dla dowolnego x € E

o0
[ ]|* = Z (2, e)|? (réwnosé Plancherela,).
n=1

W powyzszym wniosku przyjeliSmy, ze baza jest nieskonczona. Oczywi-
Scie, jezeli jest skoriczona, to wniosek tez jest prawdziwy a wszystkie sumy
nieskoriczone zastepujemy skonczonymi

Dowdd. (a) Korzystamy z poprzedniego twierdzenia. Niech k > m i niech
a, = (z,e,)dlan=1,... mia,=0dlan=m+1,..., k. Nierownos¢ z
poprzedniego twierdzenia wyglada wiec nastepujaco

k m
r — Z(x, en) enll <z — Z(a:, en) €n
n=1 n=1

Dalej, z definicji bazy wiemy, ze dla kazdego € > 0 istnieja wspotczynniki

ay, ..., takie, ze
k
T — E Q€
n=1

7 poprzedniego twierdzenia i poprzedniej uwagi wynika w takim razie, ze dla
tego € i tego k mamy

< €.

! k k
x—Z(w,en>en < x—Z(x,en>en < x—Zan enll <€ VI>E,
n=1 n=1 n=1
a wiec szereg
oo
>z en)en,
n=1

jest zbiezny do x.
(b) Jezeli

9]
xr = g Qp €En,
n=1
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to stosujac iloczyn skalarny i korzystajac z jego ciaglosci mamy

0o 00
(x,€n> = <Z QO em>€n> = Z Oém<€m,€n> = Q.
m=1 m=1

(c) Korzystajac z ciagtosci iloczynu skalarnego otrzymujemy

||x||2 = (z,7) = <Z<xaen>€m Z<xuem>em>

= Z Z(x, en) (T, €m)(€n, €m)
=Y [z en)’

]

Uwaga 1.11. (i) Z powyzszego wniosku wynika, ze jezeli baza {e,} jest or-

tonormalna, to szereg
o
E Qp €n
n=1

jest zbiezny wtedy 1 tylko wtedy, gdy szereq wspotczynnikow jest sumowalny z

kwadratem -

Z o) < 0.

n=1

(1) RownoSci w (a) i (b) sq rdwnosciami w przestrzeni E i, na przyktad,
rownos$é w (a) oznacza

N
]\}gréo T — Z(x,en> en|| = 0.
n=1

Elementy rozwazanych przez nas przestrzeni sq funkcjami, a zbiezno$é szerequ
funkcyjnego w normie przestrzeni nie oznacza z requly zbiezno$ci w kazdym
punkcie.

(111) Rowno$é Plancherela

)
l=l* = [(z, en)?
n=1

mozna rozumieé¢ jako uwogdlnione (z przypadku 2-wymiarowego) twierdzenie
Pitagorasa: kwadrat diugosci wektora jest sumq kwadratow jego sktadowych
w kierunkach elementow bazy ortonormalnej.
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Bedziemy korzystaé¢ z nastepujacych pojec¢

Definicja 1.12. Zbior {e,} elementow przestrzeni Hilberta E (skoriczony
lub nie) nazywamy uktadem Riesza jezeli istniejq state A, B > 0 takie, Ze dla
dowolnego ciggu liczb {a,}

o 2 o0
A oyl < <BY ol (1.9)
n=1 n=1

Jezeli uktad Riesza jest dodatkowo zbiorem zupetnym (rozpina calq przestrzen
E), to nazywamy go bazq Riesza.

oo
E Qp €
n=1

Warunek (1.9) wystarczy sprawdzi¢ dla sum skoriczonych. Zauwazmy tez,
ze z warunku (1.9) wynika, ze szereg

00
E Qp €y
n=1

jest zbiezny wtedy i tylko wtedy gdy szereg wspotczynnikow jest sumowalny

7z kwadratem
o0
Z || < o0
n=1

Mozna pokazaé, ze jezeli w powyzszej definicji A = B = 1, to {e,} jest
uktadem ortonormalnym. Baza Riesza jest wiec pojeciem ogoélniejszym, niz
baza ortonormalna. Bazy Riesza sa czesto stosowane w praktyce. Posiadaja
wszystkie gtowne zalety baz ortonormalnych. Na przyktad, mozna pokazac,
ze jezeli baza {e,} jest baza Riesza to istnieje inna baza Riesza {f,} taka,
ze dla kazdego x €

T = Z<$’ fn>en = Z<x>€n>fn-
n=1 n=1

Dla bazy Riesza mamy wiec, podobnie, jak dla bazy ortonormalnej, jawny
wzOr na znajdowanie wspolczynnikow bazowych, musimy tylko wygenerowaé
wczesniej baze {f,}.

Przyktad: Rozwazmy ponownie przyklad dany przez (1.6), e,(x) = Az —
n). Wiemy, ze elementy e,, n = 0,£1,£2 ... sa liniowo niezalezne, ale nie
tworza zbioru ortonormalnego. Pokazemy, ze tworza zbior Riesza. Wezmy
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dowolne wspotezynniki v, n = N, ..., M, gdzie N, M € Z.

/_Z éanen(@ dw:/_ooianA(x—n)iak Az —
:Zanak/ (x —n)A(z — k) da

2

n,k=N
- Z Oéna_kﬂk—na
n,k=N
gdzie
- % 1=0,
ﬁl—/ A(x)A(r = 1) de = { ¢ Dl =41,
- 0o =2
Tak wiec

- 50 Z |an| + ﬁl Z anan-‘rl + ﬂ— Z anan 1

n=N+1

M M-1
= ﬁO Z |05n|2 =+ 261% (Z anm> .

n=N n=N

E Qn En

Korzystajac z nierownosci Schwarza szacujemy ostatni sktadnik

M—-1 M—1
s <Z anan+1> ‘ S
n=N n=N

Q41

INA
PR
o
3
T
N~
=
[N}
3
ME
9
3
+t
N~
=
Do

i
<) ol
e

Podsumowujac powyzsze otrzymujemy
2

< (2/342/6) Z |aun)?.

En

(2/3-2/6) ) |anf* <

Zgodnie z definicja, wektory {en};’f:,oo tworza uklad Riesza ze stalymi A =
1/31 B = 1. Uzywajac procedury Gramma-Schmidta mozemy wyprodu-
kowa¢ z ukladu Riesza {e,}>° uktad ortonormalny. Jednak nowy uklad

n=—oo
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ortonormalny nie posiadalby waznych wtasnosci, na przyktad tej, ze wszyst-
kie jego elementy sa przesunieciami jednej funkcji-matki. Mozna udowodnié,
ze dla tego uktadu Riesza ,dualny"uktad {f,}>2 ., o ktorym byla mowa
powyzej réwniez sklada sie z catkowitych przesunie¢ jednej funkcji ©. Ta
jedna funkcja jest ciggta, liniowa pomiedzy sasiednimi liczbami catkowitymi,
a jej wartosci w punktach n € Z wynosza

O(n) =V3(3-2" necz

Definicja 1.13. Zbior elementéw {e,}>2, przestrzeni Hilberta E (nieko-
niecznie liniowo niezalezny) nazywamy rozpieciem doktadnym jezeli dla kaz-

dego v € E
l=]1* = [, en) .
n=1

Z definicji wynika, ze rozpiecie dokltadne musi by¢ zbiorem zupeilym.
Jezeli {e,} jest rozpieciem dokladnym i jest zbiorem liniowo niezaleznym, to
musi by¢ baza ortonormalng. Rozpiecie doktadne jest wiec pojeciem ogdl-
niejszym od bazy ortonormalnej, czesto wykorzystywanym w zastosowaniach.
Jezeli {e,} jest rozpieciem dokladnym, to istnieje inne rozpiecie dokladne
{fn} takie, ze dla kazdego © € £

T = Z(x, fa)en = Z(m, en) fn-
n=1 n=1

W przypadku rozpiecia doktadnego rowniez mamy wiec sytuacje, gdzie kazdy
x mozna przedstawi¢ jako kombinacje elementéw rozpiecia, i sg jawne wzory
na wspotezynniki tego rozwiniecia.

Przypomnijmy jeszcze kilka poje¢, z ktérych bedziemy korzystac. Jezeli
H C E jest podprzestrzenia, to dopetnieniem ortogonalnym H nazywamy
podprzestrzen

Ht={rcE:x LlyVYyecH},

(x L y oznacza (x,y) = 0). Dopelnienie ortogonalne podprzestrzeni jest
zawsze domkniete, co wynika z ciaglosci iloczynu skalarnego. Jezeli H C
E' jest podprzestrzenia domknieta to istnieje rzut prostopadty na H, czyli
przeksztalcenie liniowe P : E — H takie, ze

Px=x VaxeH,
Pr=0 VYzeH"
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P przypisuje dowolnemu =z € E najblizszy mu element podprzestrzeni H.
Jezeli w podprzestrzeni H mamy baze o.n. {e,}, to

o0

Pz = Z(x, €n) €n.

n=1

Jezeli G i H s dwoma podprzestrzeniami przestrzeni Hilberta F, to moéwimy,
ze E jest ortogonalng sumgq prostq podprzestrzeni G i H jezeli kazdy element
x € F mozna jednoznacznie zapisaé jako

T =1+ To, 1 € G, x9 € H,
oraz G L H (czyli x L y dla dowolnych x € G iy € H). Piszemy wtedy
E=GaH.
W takiej sytuacji podprzestrzenie G i H musza by¢ domkniete.

Uwaga 1.14. (i) Jezeli E = G® H to zeby skonstruowad baze w E wystarczy
osobno skonstruowaé bazy w G i w H. Ich suma, jako zbiorow, bedzie bazq E.
Jezeli te bazy w G i@ H sq ortonormalne, to ich suma tez jest ortonormalna.
(11) Jezeli H jest domknietq podprzestrzeniq E, to

E=HoH".
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Rozdzial 2

Przeksztalcenie Fouriera

Przypomnimy podstawowe zagadnienia zwiazane z transformata Fouriera.
Transformata Fouriera przeksztatca wyjsciowa funkcje w ten sposob, ze war-
tosci transformaty nie informuja o wartoséci samej funkcji w jakimkolwiek
punkcie, ale informuja jaka jest zawarto$c¢ sktadowej o danej czestotliwosci
w funkcji wyjsciowej. W zwiazku z tym obliczanie transformaty Fouriera
nazywa sie czasem analizq czestotliwosciowq, analizg harmoniczng lub ana-
lizq spektralng funkcji. Transformata Fouriera stanowi przeksztaltcenie funkcji
ktore zachowuje calta informacje, i jest odwracalne. Funkcje wyjsciowg mozna
odtworzy¢ z transformaty, przy pomocy transformaty odwrotnej. Transfor-
mata Fouriera stanowi wiec, intuicyjnie, rozktad funkcji na sktadowe czesto-
tliwosciowe. Nie jest to Sciste stwierdzenie, bo na przyktad w przypadku funk-
cji w L?(R) transformata jest funkcja zmiennej rzeczywistej, wiec musimy
rozwaza¢ wszystkie czestotliwosci bedace liczbami rzeczywistymi, a funkcja
wyjsciowa w ogole nie jest okresowa.

Transformata Fouriera jest, matematycznie, pojeciem bardzo ogdlnym,
ktore wystepuje w wielu sytuacjach. Dla matematyka nie jest wiec niczym
dziwnym, ze podobne pojecie wystepuje w tak wielu formach w praktyce.
Jest ciggla transformata Fouriera, jest rozwiniecie w szereg Fouriera, w koricu
jest dyskretna transformata Fouriera. Z punktu widzenia zastosowan ogdlne
podejscie do transformaty Fouriera nie jest interesujace, ale kilka faktow
warto zna¢. Jezeli G jest lokalnie zwarta grupa abelowa to rozwazamy ho-
momorfizmy grupy G w grupe liczb zespolonych o module 1 (z mnozeniem):

f:G—={ze€C:|z| =1}
Kazdy taki homomorfizm nazywa sie charakterem. Charaktery mozna mno-

zy¢ (tak jak mnozymy funkcje, punktowo), i z tak zdefiniowanym dzialaniem
tworza grupe abelowa. Grupe charakteréw nazywamy grupa dualng do G i
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oznaczamy G. Mozna zdefiniowaé ,transformate Fouriera”, ktora jest wza-
jemnie jednoznacznym izometrycznym przeksztalceniem

§:LAG) = LXG), f—f, &) ={(f¢),

(przypomnijmy, ze charakter & jest funkcja na G). Nie bedziemy zajmowaé
sie ta ogo6lna teoria, w szczegdlnosci nie bedziemy wyjasnia¢ szczegdtow po-
wyzszych wzorow czy catkowania na G i G. Wspomnijmy jeszcze, ze grupa
dualng do R jest tez R, a grupa dualng do T (liczby rzeczywiste z dodawa-
niem modulo 27) jest Z, i vice versa.

Transformata Fouriera w L?(R)

Niech funkcja f bedzie calkowalna na R. Wtedy funkcja f(z)e "% tez jest
catkowalna, dla kazdego £ € R. Transformata Fouriera funkcji f nazywamy
funkcje

for = [ e @2.1)

Korzystajac z twierdzenia o zbieznosci ograniczonej otrzymujemy natych-
miast nastepujacy fakt.

Fakt 2.1. Transformata Fouriera funkcji catkowalnej jest funkcjg ciggtq i
ograniczong na R.

Przyklady: (a) Funkcja charakterystyczna przedziatu [—1/2,1/2];

1
2 1

N

¢ > . 7 . —ix€
f(&) :/ X[-1, ](a:)emgdx:/ o1 gy — € -

1
2

=T

Dla & = 0 rachunek jest jeszcze prostszy:

f(o) = /OO X[-1 1]($) dr = 1.
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(b) Jadro Gaussa-Weierstrassa

_ (ei§/2 _ efi§/2) _

sin(£/2)
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Rysunek 2.1: Funkcja z przykladu (a) i jej transformata Fouriera

Wiadomo, ze

To jest jedna z powszechnie znanych calek, ktora mozna obliczy¢ na przyktad
uzywajac wspotrzednych biegunowych w calce podwojnej. w(x) jest funkcja
catkowalng na R, i

[~ 2
w(é)zﬁ/ e 2 e dr.

Transformate te obliczymy korzystajac z nastepujacego triku: niech F'(§) =
w(§). Wtedy rozniczkujac pod znakiem calki i calkujac przez czesci otrzy-
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mujemy:

21 J_so
1 > d e
_ = 1z
e 2 e dx
vV 2T /oo dx ( )
_ i _z —ix€ t > _z d —ix€
e ze — e 2 — dx
VT -0 V2T J_x dx ( )

Transformata F'(£) spelnia wiec proste rownanie rézniczkowe

F'(§) + EF(§) = 0.

Jest to proste rownanie stopnia 1 ze zmiennymi rozdzielonymi, ktére mozna
tatwo rozwiazac:

Jadro Gaussa-Weierstrassa jest wiec niezmiennikiem transformaty Fouriera.
Jest to jedna z przyczyn, dla ktorych ta funkcja pojawia sie w wielu sy-
tuacjach. Dla os6b, ktore nie lubig rozwigzywa¢ rownan roézniczkowych, a
ktore lubia catkowanie po krzywych na ptaszczyznie w Dodatku obliczymy
ta transformate w inny sposob.

Definicja 2.2. Splotem funkcji f i g okreslonych na R nazywamy funkcje
fro@ = [ fa—v)ay)dy, (22)

0 ile catka (2.2) istnieje dla kazdego x € R.
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Splot jest przemienny (f * g = g * f). Jezeli f i g sa calkowalne to splot
istnieje i tez jest catkowalny:

[ it ae= 7| [ o= nata de
< / i@l dy s
= [l [ 1=l dzay
=/_Oo|<>rdy/_mr<>rdx.

Pojecie splotu bedzie dla nas narzedziem w dowodach. Warto jednak wspo-
mnie¢, ze splot jest jednym z podstawowych poje¢ w praktyce przetwarzania
sygnatu. Zauwazmy, ze zgodnie z powyzsza obserwacja, jezeli funkcja ¢ jest
catkowalna, to splot z ¢ jest przeksztalceniem w przestrzeni funkcji catko-
walnych:

Sploty i filtry

To(N)(x) = (f * )(x).
Przeksztalcenie T, jest liniowe (wynika to z liniowosci catki), oraz przemienne
z przesunieciami. Oznaczmy przez 7,, przesuniecie sygnatu o xg

(Txof)('r> = f(ZL‘ - xO)'
Wtedy

T f)@) = | " (e f) (@ — ) oly) dy
Z/Oof(x—y—xo)w(y)dy

=/ F((x = 70) = 9) () dy

= (To() (@ = x0)
ZHJ%UW@)

Innymi stowy
Ty Tag = Tay - Loy

Splot funkcji catkowalnej g z funkcja f € L*(R) jest funkcja z L*(R), i mamy
nieré6wnos¢

I all <171 [ o)l .
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To jest prosty fakt wynikajacy z wtlasnosci calki (splot nie musi istnie¢ w
kazdym punkcie, tak jak jest w przypadku splotu dwoch funkcji catkowal-
nych, ale istnieje w wystarczajaco wielu punktach — w prawie wszystkich
punktach — aby okresli¢ funkcje w L*(R)). Z tego faktu bedziemy korzy-
sta¢ w dowodzie twierdzenia Plancherela. Warto zwroci¢ uwage, ze powyzsza
niero6wnos$¢ jest zupetnie naturalna, i mozna o niej mysle¢ jako o nieréwnosci
trojkata. Intuicyjnie, mozemy przyblizy¢ splot suma Riemanna

M
k EY\ 1
fxg(x) = Z f(w—ﬁ) g(N) N
k=—M
Stosujac do lewej strony norme L*(R) i wykorzystujac nierownosé trojkata,
otrzymujemy
SN ICEEAPTEAR
N)I\N) N
k=—M
S (=B o () L
NJIP\N)| N
k=—M
M
k 1
11 Y |o ()| &
k=—M
~Ifll [ ot de.

Q

I1f = gl

IN

Kropka zastepuje zmienng catkowania wystepujaca w normie L*(R) (ktorej
nie piszemy). Skorzystalismy z faktu, ze norma L?(R) jest niezmiennicza na

przesuniecia
1FC =Dl = [l7I

Przeksztalcenie sygnatu, ktore jest liniowe, przemienne z przesunieciami,
i spelnia jeszcze pewne, niewielkie zatozenie ciggtosci w zastosowaniach na-
zywa sie filtrem. Filtry to wtasnie sploty z funkcjami. WidzieliSmy, ze splot
z funkcja jest przeksztalceniem liniowym i przemiennym z przesunieciami.
Zalozenie ciaglosci tez jest spelmione, chociaz nie bedziemy sie zajmowac
szczegOtami. Sploty sa wiec filtrami. Na odwrdt tez: okazuje sie, ze kazdy
filtr jest splotem. FLatwo sie o tym przekonaé intuicyjnie. Niech H bedzie
przeksztalceniem liniowym, przemiennym z przesunieciami. Sygnal f przy-
blizymy funkcja schodkowa:

- k
flay= Y f (N) X[/, (k+1)/8) (),
k=—M
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gdzie x[qp) jest funkcja charakterystyczng

X[ab) (T) = {1 ie a. b)'

Rysunek 2.2: Sygnat i jego przyblizenie funkcja schodkowsa

Wtedy

K (2)
N ) Xy | (@

[
NE
[y

==

H (XN, (1) /3)) ()

(
)
) ) (- )
)

M
k k 1
= Z / N H(NX[O,l/N)) <I_N) N

i
|
=

gdzie
g(x) = H(Nxjp,1/m)(x)-

30



Warunek cigglosci natozony na filtr H powinien umozliwié¢ przejscie graniczne
w naszym przyblizeniu, czyli powinien umozliwi¢ zastgpienie =~ przez row-
no$¢. Widzimy wiec, ze filtr H splata sygnal z pewna funkcja g, ktora, w
przyblizeniu jest odpowiedzig filtru H na sygnal Nxjo1/n) dla duzych N. Z
powyzszych rozwazan mozna wyciaggna¢ nastepujace dwa wnioski:

(a). Dzialanie filtru sprowadza sie do splotu z pewna funkcja g

(b). Funkcja g jest odpowiedzia filtru na ,impuls jednostkowy", czyli funkcje
dodatnia, niezerowa tylko w malym otoczeniu zera, ktorej catka jest 1.

Uwaga 2.3. Mowigc o g uzywamy stowa ,funkcja”. Od razu jednak widaé, ze
g moze byé czyms$ ogdlniejszym od funkcyi. Jezeli H jest filtrem identyczno-
Sciowym (czyli takim, ktory nic nie robi, Hf = f) to g nie moze byé funkcjq.
g, jako odpowiedZ filtru na impuls jednostkowy sama jest takim ,impulsem
jednostkowym". Inzynierowie g nazywajq funkcjg uogélniong, a matematycy
dystrybucjq. Impuls jednostkowy jest wtasnie przyktadem funkcyi uogolnionej.
Osoby, ktore chciatyby lepiej zrozumieé opisywane tutaj luZno zagadnienia po-
winny zapisaé sie na jeden z naszych wyktadow z zaawansowanej analizy lub
analizy funkcjonalnej, natomiast na tym wyktadzie poprzestaniemy na takich,
intuicyjnych, vwagach.

Naszym celem teraz jest udowodnienie twierdzenia Plancherela, do kto-
rego bedziemy potrzebowali kilka faktow.

Fakt 2.4. Jezeli f i g sq catkowalne, to

A

(F*9)(©) = 1(€) (9. (2.3)

Dowadd. Podstawiamy do wzoréw, i korzystamy z wlasnosci funkcji wyktad-

niczej
= / fxg(x)e ™ da

//fx— (y) e " dy dx

zy&/ f r— ) e t@EYE 1y dy

" o) W&dy/ J(x) e da
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Wréémy na moment do naszych rozwazan o filtrach. MowiliSmy, ze filtry
to sploty z funkcjami lub funkcjami uogélnionymi. Powyzszy Fakt przenosi
sie na przypadek splotu z funkcja uogoélniona. Dziatanie filtru na sygnale,
po stronie transformaty Fouriera, sprowadza sie wiec do mnozenia przez tak
zwana ,charakterystyke” filtru. Charakterystyka filtru to transformata Fo-
uriera jego odpowiedzi impulsowej. Bardzo czesto opisujac filtr inzynierowie
podaja jego charakterystyke. Mamy tez nastepujacy prosty wzor

Fakt 2.5. Jezeli f jest catkowalna i
1 /x
i) =55 (3). t>0, (2.4)

to

~

F&) = f(te).

Dowadd. Korzystamy ze wzoru na catkowanie przez podstawienie

o= [ 15 2)
/_OO f(z)e """ de
f(g). O

O

Korzystajac z powyzszych dwoch faktéw udowodnimy twierdzenie o ist-
nieniu transformaty odwrotnej. Jezeli funkcja f jest catkowalna, i jej trans-
formata Fouriera f, dana wzorem (2.1), tez jest calkowalna, to funkcje f
mozna odtworzy¢ z f przy pomocy wzoru

fla) = [ F@e*de (2.

Ten wzor daje nam jeszcze jedng, intuicyjng wskazowke, co do natury trans-
formaty Fouriera. Funkcja f jest §rednig wazong oscylacji # — €%, z wagami

1£(9)].

Twierdzenie 2.6. Jezeli [ i [ sq calkowalne (f dana wzorem (2.1)), to
zachodzi wzor (2.5). Innymi stowy przeksztatcenie catkowe

Pla) =5 [ PO 2.6

:% N

jest przeksztatceniem odwrotnym do transformaty Fouriera.
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Dowdd. Wprowadzmy nastepujace oznaczenia:

2
z_

1 T 1 2 . . _
wy(x) = Ww (%) = \/2_7rt€ %, awiec, z (24), W(6) =w(ViE) =e T,

oraz

flx) = frw(x), awig, z (2.3), f(€) = F(€)wi(€).

Nastepnie obliczamy
o | R@evas = o [T foae e a
2 J_ o 21 J_ o
1 00 00 ' 2
= %/ / f(z)e dz e~ T ¢ d¢
LT 7 ey e s emite)
=5 flx)e T e Y d¢ dx

1 [t [~ © @
= g %/ f(x)/ e” 5 e @) de dy

= [ f@me— g

Zauwazmy, ze

1 1 22
wi(z) = e 2 = wy(z),
— (2) ()

\ 27t

a wiec, korzystajac rowniez z tego, ze wy(z) = w;(—z), kontynuujac, otrzy-

:

mujemy
| Foevas= [ r@ua-yi
= [ xwi(y)
= fi(y).

Innymi stowy pokazalismy, ze wzor (2.5) zachodzi dla f;:

fo) = o [ F@ e (2.1

Chcieliby$my teraz przejs¢ w powyzszym wzorze do granicy gdy ¢t — 0. To
jest proste rozumowanie, korzystajace z wlasnosci catki. Wiemy, ze

A

fil&) = (€)= f©), 1 fi(©e™ < IfQ,



przy czym ta ostatnia funkcja jest catkowalna. Korzystajac z twierdzenia o
zbiezno$ci ograniczonej otrzymujemy

1 BN . 1 RN .
N iye ge 129, 2 iy
5 | Roeras = L[ fgena ey
dla kazdego y € R. Z drugiej strony, korzystajac z faktu, ze

/oowt(x)dx:/oow(x)dle, i w(z)>0,

—00 —0o0

otrzymujemy

|1t sl [ \/ (v — o)) wi(a) da

\/ — Vi) () de

/ / F(y = Vi) w(z) do dy
/ / 1y — Vi) dy w(z) de.

7 wlasnodci catki wynika, ze przesuniecia sa ciagle wzgledem calki, czyli

dy

dy

oo

im [ [f(y) = fly = Vix)|dy = 0.

Korzystajac ponownie z twierdzenia o zbieznosci ograniczonej otrzymujemy,
ze fy — f w sensie calki:

lim \ft( )= f(y)ldy = 0.

t—0

Tak wiec f; jest zbiezna do f w sensie calki, i zbiezna w kazdym punkcie

y € R do .
o | d©eas

7 wlasnodci catki wynika, ze obie te granice musza by¢ rowne:

L
— 5 [ fena
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Whioskiem z powyzszego jest najwazniejsze twierdzenie, tak zwane twier-
dzenie Plancherela.

Twierdzenie 2.7 (Plancherel). (a) Niech f € L*(R) bedzie takze calko-
walna. Wtedy f tez nalezy do L*(R), oraz

1 .
If1I* = %HfIIQ, (2.9)

(b) Podzbior L*(R) sktadajgcy sie z funkcji catkowalnych stanowi gestq pod-
przestrzen L*(R). Transformata Fouriera rozszerza si¢ z tej podprzestrzeni
na cate L*(R). W przypadku gdy f € L*(R) nie jest catkowalna transformate
mozna obliczycé ze wzoru

M—oo

f(6) = lim /_M f(z)e " da. (2.10)

Tak okreslone przeksztatcenie jest wzajemnie jednoznacznym (1-1 i ,na"),
izometrycznym (z doktadnoscig do czynnika /27, jak we wzorze (2.9)) prze-
ksztatceniem L*(R) na siebie. Przeksztatcenie odwrotne, w przypadku gdy f
nie jest catkowalna, dane jest wzorem

f(z) = lim — f(&) et de. (2.11)

Dowdd. (a) Transformata f jest ograniczona (Fakt 2.1). Zalozmy najpierw
dodatkowo, ze f tez jest catlkowalna. Wtedy o f mozna mysle¢ jako o trans-
formacie Fouriera funkcji f, zgodnie z Twierdzeniem 2.6, i w takim razie f
tez jest ograniczona. Jak tatwo policzy¢

7O =[ T@ei<d

o0
[e.9]

o0

—

f(z)et*¢ dx

o0

(=£),

I
=,
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gdyz e=i7¢ = ¢'*¢ Podstawiamy to do wzoru, i obliczamy

| i@ = [t ds
— [ twg [ Foesica

o | FCO [ s
:L/
/

f(—€) de

e fe

=5 | _\ferae

Pozbedziemy sie teraz dodatkowego zatozenia, ze f jest catkowalna. Niech
wiec teraz f bedzie w L*(R) i catkowalna. Podobnie jak w dowodzie po-
przedniego twierdzenia, i z tamtymi oznaczeniami, funkcja

Je= [ *w

(splot z przeskalowanym jadrem Gaussa—Weierstfassa) jest catkowalna, w
L*(R) i ma calkowalng transformate Fouriera (|f;(£)| < ciy(€)). Fakt, ze
fi jest w L?(R) wynika z wlasnosci calki: splot funkcji calkowalnej z cal-
kowalna z kwadratem jest catkowalny z kwadratem (byla o tym mowa przy
okazji omawainia wtasnosci splotow). Dla f; mozemy wiec skorzystac z prze-
prowadzonego juz dowodu

1 ~
170 = oA (2.12)

Korzystajac z wtasnosci catki, podobnie jak w poprzednim dowodzie mo-
zemy pokaza¢, ze f; — f w L*(R) gdy t — 0, a wiec || f¢|| — ||f]| (norma jest
funkcja ciagla). Wynika to z ciaglosci przesunie¢ w L*(R), (w poprzednim
twierdzeniu korzystaliSmy z ciagtosci przesunie¢ w przestrzeni funkeji catko-
walnych). Z drugiej strony 1]l = |||l korzystajac z twierdzenia o zbiezmosci
ograniczonej (| f(€)2 < |f(€)]?). Przechodzac do granicy w (2.12) gdy t — 0
otrzymujemy (2.9).

(b) Jezeli f € L*(R), to funkcje obciete

fol(z) = {f(x) el (2.13)

0 :lz|>n
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tworza ciag funkcji calkowalnych, zbiezny do f w L?*(R):

£ -l = [ @) = fulw)P de = [ l@pde == o

—o0 |z|>n

Kazda funkcja f € L?*(R) jest wiec granica, w normie L?(R), ciagu funkcji
catkowalnych. Transformate Fouriera dla funkcji f € L*(R), ktore nie sg
catkowalne okre§lamy wiec nastepujaco. Niech {f,} C L?*(R) bedzie ciggiem
funkcji catkowalnych, zbieznym do f:

fo—f w L*R).

Ciag {fa} jest ciaggiem Cauchy’ego, a wiec, zgodnie z (2.9), ciag {fn} tez jest
Cauchy’ego w L*(R), a wiec jest zbiezny do jakiego$ elementu F € L*(R).
Ta granica to, z definicji, transformata Fouriera f. Zauwazmy, ze ta definicja
nie zalezy od wyboru ciagu {f,} funkcji caltkowalnych, zbieznego do f. Jezeli
dwa rézne ciagi sa zbiezne do f, to ich ro6znice tworza ciag zbiezny do zera:

Tn—=f gn— ) w L2(R) = fa—9g—0 w LQ(R)'

Zgodnie 7z (2.9) transformaty Fouriera réznic tez zbiegaja do 0, a wiec trans-
formaty Fouriera tych dwoch ciggéw maja ta sama granice. Zauwazmy, ze
oznacza to tez, ze gdy wyjsciowa funkcja f jest catkowalna, to nowa defi-
nicja pokrywa sie ze starg — jako ciagg funkcji catkowalnych zbiezny do f
mozna wziaé ciag staly stale rowny f. W koricu zauwazmy, ze skoro ciag
funkcji obcietych (2.13) sktada si¢ z funkcji catkowalnych i jest zbiezny do f,
to (2.10) wynika z podanej powyzej definicji, zastosowanej do tego konkret-
nego ciagu. Korzystajac z ciagltosci normy otrzymujemy (2.9) dla dowolnej
funkcji f € L?*(R). W koticu pozostal do udowodnienia fakt, ze transfor-
mata Fouriera jest ,na” L?(R), oraz wzor (2.11). Niech f bedzie dowolnym
elementem L?(R). Niech f, zbiega do f w L*(R), i sklada sie z funkcji calko-
walnych, o catkowalnych transformatach Fouriera. Taki ciag zawsze istnieje.
Mozna pokazaé, ze funkcje na przyktad roézniczkowalne dwukrotnie, réwne 0
poza pewnym skonczonym przedzialem tworza podzbior gesty L?(R), oraz
maja wymagane wlasnosci: sa catkowalne, oraz ich transformaty Fouriera

sa catkowalne. Z definicji fn — f, orazAfn sa catkowalne, a wiec fn — f
Wiemy z poprzedniego twierdzenia, ze fol@) = 20 fo(—2) — 2nf(—2). A
wiec f = F, gdzie

1 2
F=—f.
472
Z tych rachunkow wynika (2.11) oraz to, ze transformata Fouriera jest ,na”.

[
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Wiasnosci transformaty w L?(R)

Przy zalozeniu, ze wszystkie wystepujace funkcje sa w L*(R) mamy

gx) = flx—c) — §&) =e"“f(&),

g(z) =" f(z) — §(&) = f(§—w),
g(x) = f(z/s) — §() =sf(s§), s>0,
g(z) = f'(x) — §&) =i&f(9),

glx) = —izf(x) — 46 =f().

Dowody zostawiamy jako ¢wiczenie. Pokazemy natomiast zastosowanie trans-
formaty Fouriera do rozwiazania tak zwanego rownania ciepta, lub rownania
dyfuzji.

Roéwnanie ciepla

Wyobrazmy sobie pret metalowy lezacy na plaszczyznie wzdhuz osi OX.
Niech pret bedzie nieskoriczenie dlugi, o pomijalnie malej srednicy, oraz niech
bedzie zrobiony z materiatlu przewodzacego ciepto, na przyktad jakiegos me-
talu. Niech temperatura preta w punkcie z w czasie ¢ bedzie oznaczona przez
u(x,t). Mozna pokazaé, ze funkcja u spelnia nastepujace rownanie ciepla
0*u(z,t) _ 2 82u(x,t). (2.14)
ot? 0x?
Roéwnanie to wynika z praw fizyki, i czasem nazywa sie rownaniem dyfuzji.
Niech rozktad temperatury na precie bedzie znany w czasie ¢ = 0, czyli niech
u spelnia warunek brzegowy

u(z,0) = f(x),

dla zadanej funkcji f. Mozemy zatozy¢, ze f spetnia jakie§ warunki regular-
nosci. Nam wystarczy f € L?*(R). Klasyczny problem sprowadza sie do zna-
lezienia funkcji u(x,t), spelniajacej rownanie ciepla, i zadany warunek brze-
gowy. Bedziemy szukali funkcji u takiej, ze dla kazdego t > O u(-,t) € L*(R),
oraz 2¢(- t) € L*(R). Okazuje sie, ze rozwigzanie mozna znalez¢ uzywajac
transformaty Fouriera. Teoria transformaty Fouriera powstata wlasnie przy
okazji badania zagadnienia ciepta. Dla ustalonego ¢ > 0 zastosujmy trans-
formate Fouriera, wzgledem zmiennej x, do obu stron réwnania (2.14). Tak
powstala transformate oznaczmy przez F(&,t). Rozniczkujac wzgledem ¢ pod

znakiem caltki z (2.14) otrzymujemy

OF(&,t)

Fraa —k2EF(E ). (2.15)
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Ustalmy teraz & i spojrzmy na (2.15) jako na réwnanie rozniczkowe zwyczajne
funkcji zmiennej t. Réwnanie to tatwo rozwiazaé, rozwigzanie ma postac

F(¢t) = ce_”%gt,

dla dowolnej stalej c. Podstawiajac warunek poczatkowy (brzegowy), otrzy-
mujemy

c= F(€>0) = f<€)7
a wiec

F(&t) = f(©) et cayli u(x,t) = f*we(2),

gdzie w; jest znanym nam juz jadrem Gaussa-Weierstrassa (zwanym takze
jadrem ciepta), przeskalowanym zgodnie z (2.4). Mamy wiec ilustracje, jak
wlasnoéci transformaty Fouriera pozwalaja zastosowaé ja do rozwigzywania
rownan rozniczkowych. Dla inzynierow to jest glowne zastosowanie trans-
formaty Fouriera, i stanowi ona jedno z najwazniejszych narzedzi inzynier-
skich. Ponizej udowodnimy tak zwang zasade nieoznaczonosci Heisenberga.
Zasada ta pokazuje pewien problem wystepujacy w zastosowaniach trans-
formaty Fouriera. Mowiac bardzo ogdlnie to jest wtasnie problem, ktorego
chcemy uniknaé¢ zamieniajac transformate Fouriera na transformate falkowa.
Zasada nieoznaczono$ci Heisenberga mowi, ze jezeli rozrzut wartosci funkcji
wokot jej wartodci sredniej jest maly (funkcja jest skupiona wokot jakiegos
punktu, i szybko maleje w miare oddalania sie od niego), to rozrzut war-
tosci transformaty musi by¢ duzy (transformata Fouriera takiej funkeji nie
moze by¢ skupiona woko6l pewnej czestotliwosci). Intuicyjnie to jest tatwe do
uzasadnienia. W rzeczywistosci jest to Scisle twierdzenie.

Twierdzenie 2.8 (Zasada nieoznaczonoéci Heisenberga). Niech f € L*(R)
bedzie unormowana, czyli || f|| = 1, oraz taka, ze v f(x) € L*(R) oraz £f(€) €
L*(R). Wtedy

[ R GG

o0

Dowod. Wykorzystamy nastepujacy wzor na caltkowanie przez czesci. Jezeli
h' g, hg" oraz h g sa catkowalne na R, to

/_ W) gle) do = — / b)) ¢'(2) dor

(o] —00
Zauwazmy, 7e skoro z?|f(x)|? oraz |f(z)|? sa catkowalne, wiec x|f(x)|* tez
jest catkowalna. Mozemy wiec skorzysta¢ z powyzszego wzoru na catkowanie
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przez czesci:

N

o0

— [ el

- “/ ) (2/@) F@) + 2 f@) (@) da

—00

<9 / el @)1/ (@)] da

<2 ([ wapirera) " ([ 1r@ra) "

<= ([ rirera) " ([ epiiorac) "

Przy okazji zauwazmy, ze rOwnos$¢ w powyzszym oszacowaniu moze zachodzi¢
tylko wtedy, gdy zachodzi réwno$¢ w wykorzystanej nieréwnosci Schwarza,
czyli funkcje x f(z) oraz f'(x) musza by¢ wspolliniowe: musi istnie¢ stata
zespolona c taka, ze

v f(z) =c[f(z).

Rozwigzujac to rownanie rézniczkowe otrzymujemy, ze f musi by¢ wielokrot-
noécia jadra Gaussa-Weiserstrassa. O]

Transformata Fouriera w L*(R")

Teoria w L*(R") jest analogiczna do teorii 1-wymiarowej. Jezeli f lub F' sa
catkowalne, to

f©) =] fl@e'=da,

.
() = o [ Qe

- (@m)n

gdzie x - £ oznacza zwykly iloczyn skalarny w R™. Transformata jest wzajem-
nie jednoznacznym przeksztatceniem L?(R") na siebie, a rowno$¢ Plancherela

ma postac
1
(2m)"

IF1I* = 111

Wszystkie dowody sa takie same, jak w przypadku L*(R).
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Transformata Fouriera w L*(T) (szeregi Fouriera)

Niech f bedzie funkcja na R, okresowa o okresie 27, caltkowalng na [—m, 7.
Wspolcezynnikami Fouriera f nazywamy ciag

o 1 4 .
f(n) = 2_/ flx)e ™ dr, n=0,+1,42,... (2.16)
T™J_n

Przyporzadkowanie funkcji f ciagu wspotczynnikow { f (n)} jest tez czasem
nazywane transformata Fouriera. W przypadku funkcji okresowych, w odréz-
nieniu od sytuacji w L*(R) kazda funkcja w L?(T) jest rowniez calkowalna
na przedziale [—m, 7], co wynika z nieréwnosci Schwarza. Dla kazdej funk-
cji w L*(T) mozna wigc policzy¢ wspotczynniki Fouriera ze wzoru (2.16).
Zauwazmy, ze funkcje

{e7""* neZ} (2.17)

tworza baze ortonormalna w L?(T), wiec ciagg wspotczynnikéw Fouriera sta-
nowi ciagg wspotczynnikow bazowych. Twierdzenie Plancherela w przypadku
funkcji okresowych jest wiec prostsze niz w przypadku L?(R).

Twierdzenie 2.9 (Plancherel). Transformata Fouriera jest wzajemnie jed-

noznacznym przeksztatceniem L?(T) na (. Przeksztatcenie odwrotne dane
jest przez tak zwany szereq Fouriera

F = LAT), ki fo fl@)= D ane'™.

n=—oo

Szereq Fouriera jest zbiezny w L*(T). Zachodzq nastepujgce réwnosci

1P =D @I (fg) = fn)in).

n=—oo n=—oo

Dowdd. Przypomnijmy, ze w L*(T)

) =5 | S@adr

Biorac pod uwage, ze uktad (2.17) stanowi baze ortonormalna przestrzeni
L*(T), powyzsze twierdzenie jest szczegdlnym przypadkiem Wniosku 1.10 i
Uwagi 1.11 z rozdziatu o przestrzeni Hilberta. ]
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Przyktad

Niech f € L?(T) bedzie dana przez

fz) =

-1 - <
{ m<zs0 (2.18)

1 :O<x<m.

Przypomnijmy, ze elementy w L?(T) mozna rozwazaé¢ jako funkcje na calej
prostej, okresowe o okresie 27, albo jako funkcje na przedziale [—m, 7. (2.18)
definiuje wigc element z L?(T). W jezyku inzynieréw powyzsza funkcja (lub
jej 2m okresowe rozszerzenie na R) nazywa sie ,fala prostokatna’. Fala pro-
stokatna jest typowym przyktadem sygnalu wystepujacym na przyklad w
kazdym urzadzeniu zawierajacym mikroprocesor. Policzymy wspoélczynniki
Fouriera f

f<o>:%/_” f(x)dx = 0.

Niech n # 0.
fny = o [ fayea
n)=— x)e x
2 J_.
1 [0 I
= —— e ""dr + — e " dx
2 J_. 2m J,
1 " —ine inT
= — (e —e ) dx
2 Jo
—94 [T
= —27: i sin(n x) dz
' cos(nz)
= —cos(nx
™ 0

= ()= )

™n

2. :
{mm : n - nleparzyste

0 :n - parzyste

Zgodnie z twierdzeniem Plancherela funkcja f rozwija sie wiec w nastepujacy
szereg Fouriera. Przypomnijmy, Ze szereg Fouriera jest zbiezny do f w L*(T),
a niekoniecznie w poszczegdlnych punktach z. W tym konkretnym przypadku
szereg Fouriera jest zbiezny w kazdym punkcie z, ale w punktach 0, £7 jest
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Rysunek 2.3: Funkcja f i jej wspotczynniki Fouriera

zbiezny do 0, a nie do wartosci f(x).

ORI S

n nieparzyste

o)

2 ) .
— Z % (eznx o efznx)

n=1
n nieparzyste

(e e

4 .
= E — sinnx
™

n=1
n nieparzyste

4 . sindxz  sinbdx
= — | sinx + + + ... .
T 3 5

Na wykresie 2.4 wida¢ tak zwane zjawisko Gibbsa. W poblizu nieciagto-
Sci skokowej funkcji f (na przykltad w poblizu 0) suma czesciowa szeregu
Fouriera ma ,szpilki”. Szpilki maja zawsze okreslona wysoko$¢: suma skon-
czona, ,przestrzela” wysoko$¢ skoku funkcji f o okoto 9%. Dla coraz dal-
szych sum czesciowych szeregu Fouriera (coraz dokladniejszych przyblizen
f) ,szpilki” przysuwaja sie blizej nieciagtosci, ale zawsze zachowuja swoja
wysokos¢. Mozna to udowodnié. Jako zastosowanie obliczonych powyzej
wspotczynnikow Fouriera fali prostokatnej obliczymy klasyczng sume. Dla
fali prostokatnej (2.18) mamy

191 =5 [ If@Pdz =1,

—T
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Rysunek 2.4: Przyblizenie funkcji f harmonicznymi do 3 i 19 wlacznie

»

Rysunek 2.5: Zjawisko Gibbsa. Z prawej bardzo doktadne przyblizenie funk-
cji majacej nieciaglosé skokowa. Szpilki po obu stronach nieciagltosci zawsze
wystepuja, i zawsze maja okreslona wysokosc.

a z drugiej strony

oo o0 oo
p 4 8 1
WP = Y S5=5 X
n=—oo n=-—oo n T n=1 n
n nieparzyste n nieparzyste

Podstawiajac do rownosci Plancherela otrzymujemy wiec

n=1
mn nieparzyste
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Nastepnie

oo
Ty
8 n?
n=1
n nieparzyste
oo [0.9]
> Y o

Il
—

n=1
n parzyste

1

n

I I
M) 10
3= 3
| |
| = Q‘TME{
™e ~
- =

3
Il
—

—

I
INEC
[
3M|,_\

i w koncu

W podobny sposob, stosujac rowno$¢ Plancherela dla odpowiedniej funkeji

mozemy obliczy¢ sume
o0

L (2.19)

n
n=1

dla dowolnej liczby catkowitej parzystej . Jezeli a nie jest liczba catkowita
parzysta, to o sumach (2.19) niewiele wiadomo. Mozna, na przyktad, udo-
wodni¢, ze dla o = 3 suma (2.19) jest liczba niewymierna, ale dowod jest
skomplikowany. Twierdzenie Plancherela jest wiec bardzo przydatne.

Definicja 2.10. Splotem dwdch funkcji f i g okresowych o okresie 2w nazy-
wamy funkcje

frgle / f(z— ) 9y) dy, (2.20)

0 ile catka istnieje dla kazdego x. Splotem dwdch ciggow o = {an,}, B = {fn}
nazywamy ciqg

ax*f(n) = Z foT— (2.21)
o ile powyzsza suma istnieje dla kazdego n € 7.
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Jezeli f i g sa catkowalne na [—7, 7], to splot f * g istnieje dla (prawie)
kazdego x, jest okresowy o okresie 27 i jest catkowalny po okresie. Okresle-
nie ,prawie kazdy punkt"ma $ciste znaczenie, ale nam wystarczy znaczenie
intuicyjne: splot moze nie istnie¢ w jakim§ punkcie, albo nawet w wielu
punktach, ale tworzacych razem zbiér pomijalnie malty z punktu widzenia
catkowania. We wzorze (2.20) f i g traktujemy jako funkcje okresowe, o
okresie 2m. Mozemy rowniez mys$le¢ o nich jako o funkcjach okreslonych na
odcinku [—m, 7|, wtedy dzialanie x — y nalezy rozumie¢ modulo 27. Jezeli
oba ciggi sa sumowalne z kwadratem, a, 3 € ¢2, to splot istnieje, a jezeli
sa absolutnie sumowalne, to splot istnieje i tez jest absolutnie sumowalny.
Sploty (2.20) i (2.21) sa przemienne: fxg=gx* fia*xf=[x*a.

Wiasnoéci transformaty Fouriera na L*(T)

Transformata w L?*(T) ma wlasnoéci analogiczne do wlasnosci transformaty
w L*(R). Przy odpowiednich zalozeniach mamy

(f *9)(n) = f(n) 4(n),

Szereg Fouriera funkcji catkowalnej nie musi by¢ zbiezny do tej funkcji. Znany
jest przyktad funkcji catkowalnej ktorej szereg Fouriera nie jest zbiezny w zad-
nym punkcie. Jezeli funkcja jest w L%(T), to jej szereg Fouriera jest do niej
zbiezny w L?(T). Jednak nie musi byé¢ zbiezny w kazdym punkcie. Mozna
podaé¢ przykltad funkcji ciaglej, ktorej szereg Fouriera jest rozbiezny w ja-
kim§ punkcie. Sa tez dobre wiadomo$ci. Ponizsze twierdzenie ma charakter
lokalny, to znaczy zbieznosé¢ szeregu Fouriera funkcji w punkcie zalezy tylko
od zachowania tej funkcji w otoczeniu tego punktu. Jest to o tyle ciekawe, ze
sam szereg Fouriera nie ma charakteru lokalnego. Kazdy wspotczynnik Fo-
uriera zalezy od wszystkich wartosci funkcji, zawiera catke po calym okresie
T.

Twierdzenie 2.11. (a) Jezeli f jest okresowa i catkowalna po okresie [—m, 7|
to

lim f(n)=0.

n—=4o00
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(b) Jezeli istnieje pochodna f'(0) w jakims punkcie 0, to szereg Fouriera f
jest zbiezny w tym punkcie 0 do f(0)

F0)="Y" fnyem.
Dowdd. (a) Skorzystamy, jak poprzednio, z ciagtosci przesunie¢ funkeji wzgle-
dem caltki. Najpierw zauwazmy, ze jezeli funkcja jest okresowa o okresie 27,
to calka z tej funkcji po przedziale [a,a + 27| nie zalezy od a.Nastepnie ob-
liczamy

fn) = - / f(z) e da
1

T+7/n '
flx)e "™ dx

:% —m+7/n
1 [" .
L (e T et g
2 J_. n
1 T ™ .
—— [ f(a+ D) e e,
2 J_. n
a wiec
27 =5 | [ (1) =1 (o4 7)) e
n)| =— x)—flz+—))e x
2 | ), n
I n—oo
< — f(x)—f<x+z)‘d:c—i>0.
2 ), n

(b) Wprowadzmy funkcje pomocnicza
f(z) — ()

e—iT _ o—if :

g(z) =

Zauwazmy, ze g jest okresowa o okresie 27, i catkowalna po okresie. Catko-
walnosé¢ wynika z tego, ze w pewnym otoczeniu 6 jest ograniczona (z istnienia
pochodnej f'(0)), a poza otoczeniem € mianownik jest ograniczony od dotu.
Z (a) wynika, ze g(n) — 0 gdy n — £oo. Zauwazmy jednak, ze skoro

g(x)e™* = g(w) e’ = f(z) = f(0),

wiec dla wszystkich n

~

gn+1) = g(n) e’ = f(n),
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gdzie f(z) = f(z) — f(A). Mnozac obie strony przez e’ ™1 otrzymujemy
gn+1)et? _g(n)ein? = eiejf:(n) et
Sumujac obie strony po wszystkich n = —N, ... M, i zwijajac sume telesko-
powa po lewej stronie mamy
M o~
G+ DM = GN) O = 0 3 ) e

Korzystajac z (a) lewa strona — 0 gdy M, N — oo, wiec podobnie dzieje sie z
prawa strona. Zauwazmy, ze f(n) = f(n) dlan # 0, oraz f(0) = f(0)— f(6).

Tak wiec
0= Y Fmem = 3 fnye - )

n=—oo n=—oo
Udowodnilismy wiec, ze szereg Fouriera f jest zbiezny w 6 i jego suma jest

f(0). =

Transformata Fouriera w L?(T") (wielokrotne szeregi Fo-
uriera)

Teoria jest analogiczna do 1-wymiarowe;j:

/ / f kad$1 dl‘n; k:(l{h,,..’kn),x—(xl)-..
27T

Nie ma istotnych roéznic w dowodach powyzszych faktow dla 1 i wielu wy-
miarow.

Transformata Fouriera w K?) (dyskretna transformata Fo-
uriera)

W przestrzeni p-elementowych wektoréw transformata Fouriera jest wzajem-
nie jednoznacznym przeksztalceniem (2 na siebie. Dla z = (2(0),...,z(p —
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1)) € £2 mamy

p_l 27l
Bl =Yz e 7, 1=0,....p—1,
7=0
1 pl 2njl
i‘(]>:_ x(l)elTa jZO, y D 17
=0
p—1 L 1 p—1 1
(w,y) = =(yG) == D 2()al) = - (&),
§=0 e p
ol = L ).

Powyzsze wzory wynikaja z nastepujacej obserwacji

gei%ﬂ_ p ]:O
0 :7#0.

=0

Splotem dwoch elementow x,y € 622, nazywamy element

[y

zxy(k) = _ x(k —1)y(l). (2.22)
l

Il
o

Jezeli o x 1 y myslimy jako o wektorach p-elementowych to dziatanie k& —
[ nalezy rozumie¢ jako odejmowanie modulo p,i wtedy k przebiega zakres
0,...,p—1 a wiec splot tez jest wektorem p-elementowym. Jezeli natomiast
o elementach x i y myslimy jako o ciggach p-okresowych, to dziatanie k —1 w
(2.22) jest zwyklym odejmowaniem, i splot x*y tez jest ciagiem p-okresowym.
Jak sie tatwo domysle¢, zachodzi nastepujacy wzor

Txy(k) = 2(k) §(k).

Szybka transformata Fouriera

Dyskretna transformata Fouriera wystepuje czesto w zastosowaniach. Jezeli
chcemy policzy¢ numerycznie transformate Fouriera funkcji, to w rzeczywi-
stosci sprowadza sie to do policzenia dyskretnej transformaty Fouriera pewnej
ilosci probek danej funkcji. Obliczenie dyskretnej transformaty Fouriera p-
elementowego wektora x = (x(0),...,x(p — 1) sprowadza sie do pomnozenia
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go przez macierz: ¥ = A, z, gdzie A, jest p X p macierza

1 1 . 1
1 el .. mirm-p

A, = :
1 e=i2x-/p ... p=i2e(-D(p-1)/p

o wspotezynnikach {e_i2”('“_1)(1_1)/”}%[:1. Postepujac naiwnie, do obliczenia
transformaty Fouriera dtugosci p bedziemy wiec musieli wykona¢ p? mnozeni
zmiennoprzecinkowych. Istnieje szybszy algorytm obliczania transformaty,
wykorzystujacy wystepujace w macierzy A, symetrie. Jest to tak zwana
szybka transformata Fouriera (FFT), ktora redukuje liczbe mnozen do p log p.
Korzysé jest wielka: jezeli p = 10°, to szybka transformata Fouriera jest 50
tysiecy razy szybsza od algorytmu naiwnego. Jezeli nasz komputer, uzywajac
algorytmu FF'T policzy transformate w godzine, to uzywajac algorytmu na-
iwnego potrzebowalby na to ponad 6 lat. Algorytm FFT odkryto w latach 60
ubieglego wieku. Sam algorytm jest bardzo prosty, i wkrotce okazalo sie, ze
byl stosowany juz od dawna. Obliczenia z wykorzystaniem algorytmu FE'T
znaleziono w pracach Gaussa z korica XVIII wieku. Wniosek plynie z tego
nastepujacy: matematycy czesciej mogliby interesowaé sie zastosowaniami, a
inzynierowie czesciej mogliby zaglada¢ do prac teoretykow. I jedni i drudzy
moga znalez¢ jakas niespodzianke.

Algorytm FF'T jest bardzo prosty. Zamiast od razu formulowaé¢ odpo-
wiednie twierdzenie przeprowadzmy proste rachunki, ktére wszystko wyja-
$nig. Niech dlugosé sygnalu x = (z(0),z(1),...,z(p — 1)) bedzie potega 2:
p=29 gdzieq=1,2,..., wtedy dlal=0,1,2,...,p—1

p-! kl
27
z)=") x(k)e »
k=0
p—1 p—1
2mi kl 2mi kl
= z(k)e” » + Z x(k)e v
k=0 k=0
n-parzyste n-nieparzyste
p/2—1 p/2—1
_ 2mi (2k)1 27 (2k+1)1
= Z x(Qk)e P —+ Z $(2k+1)6 p
k=0 k=0
Pl 2mi kl lp,_l 2mi kil
e 27 T
= Z (ke v +e v Z "(k)e v
k=0 k=0
~ 2mil



gdzie p’ = p/2, 2'(k) = z(2k), 2"(k) = z(2k+1), k = 0,...,p'—1. Zauwazmy,
ze o' i x" sa okresowe o okresie p’, wiec wystarczy je obliczy¢ dlal =0,...,p'—
1. Obliczenie transformaty Fouriera sygnatu o dtugosci p sprowadza sie wiec
do:

(a). rozdzielenia parzystych i nieparzystych sktadowych z,

(b). obliczenia transformaty Fouriera osobno dla sktadowych parzystych i
nieparzystych, kazda rzedu p’ = p/2,
(c). utworzenia kombinacji liniowej:
sy =2() +e 7 a(l),
-

2mil -~

zl4+p)=a'(1)—e » 2"(l)

dlal=0,....p.

W ten spos6b udowodniliSmy nastepujace twierdzenie, bedace podstawa al-
gorytmu FFT:

Twierdzenie 2.12 (Danielson-Lanczos). Macierz

1 1 Ce 1

1 e—2m/p ... e—12r(p—1)/p
A, =

i e—i%(’p—l)/p e e—i%(p—-l)(p—l)/p

mozna roztozyé na czynniki
A, =E, Ay P,

gdzie macierz P, jest postaci

100 0 - 0
0010 - 0
Pp: :
01 00 0
0 001 0

Macierz P, ma doktadnie jedng jedynke w kazdym wierszu, a jej dziatanie na
wektorze sprowadza sie do przestawienia sktadowych: w pierwszej potowce
umieszczone zostajg sktadowe o numerach parzystych, a w drugiej sktadowe
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o numerach nieparzystych: (v(0),z(2),...,2(p—2),2(1),2(3),...,z(p—1)).
Macierz Ayjo ma dwie niezerowe, identyczne klatks

5 Ap/2 0
Ap/2 B ( 0 AP/2) '

Dziatanie macierzy flp/g sprowadza sie do obliczenia transformaty Fouriera
rzedu p/2 osobno dla pierwszych i osobno dla ostatnich p/2 wspétczynnikéw
sygnatu. W koricu macierz E, ma posta¢ czterech klatek

I D
EP:<I —D)’

gdzie I sqg macierzami identycznosciowymi rzedu p/2, a D jest macierzq dia-
gonalng rzedu p/2 ze wspdtczynnikami

_2mi0  _2mil _2mi(p/2-1)
e P ,e P ,....€ P

na przekgtnej.
Zauwazmy, ze z powyzszego, prostego twierdzenia wynika nastepujacy
whniosek:

Whniosek 2.13. Transformate Fouriera rzedu p (potega 2) mozna obliczyé
przy pomocy nie wiecej niz plog, p mnozen.

Dowdd. Dowdd jest indukeyjny wzgledem potegi 2. Transformata rzedu 2!
to
(k) =2(0)£z(1), k=01,

a wiec wystepuje tylko 1 mnozenie, przez —1. Krok indukcyjny uzywa twier-
dzenia. Do policzenia transformaty rzedu p potrzeba 2 razy tyle mnozen
co do policzenia transformaty rzedu p/2 (macierz A,5) i dodatkowo p mno-
zen (macierz E,). Macierz P, nie wymaga mnozeni. Korzystajac z zalozenia
indukcyjnego otrzymujemy

2 (p/2logy(p/2)) +p = p(logy(p/2) + 1) = plog, p.
0

Uwaga: Oszacowalismy tylko ilo§¢ koniecznych mnozen, gdyz to mnozenia
gltownie zajmuja czas procesora. Podobnie jak ilo§¢ koniecznych mnozen
mozna oszacowac ilo§¢ wszystkich koniecznych operacji arytmetycznych.

Nastepujace twierdzenie daje nam algorytm FF'T:
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Twierdzenie 2.14. Niech p = 29. Macierz A, rozktada sie na iloczyn

Ay = ByByja- - BaPibBy- - PoP, (2.23)
gdzie Eyji oraz Py majg to samo znaczenie co w twierdzeniu Danielsona-
Lanczosa, FEy oraz Py to macierze pxp zp/2’ klatkami Eo; i Py odpowiednio

na przekgtne;.

Dowod. Wystarczy zauwazy¢, ze twierdzenie Danielsona-Lanczosa mozna ite-
rowac:

Ap= EpAp/2Pp = EpEp/2Ap/4Pp/2Pp == EpEp/2 s By APy Pp/2Pp-
(2.24)
Macierze A; i P, a wiec takze fll 1 ]52 sa macierzami identycznos$ciowymi,
wiec z (2.24) wynika (2.23). O

Uwagi:(i) Kazda z macierzy Py jest macierza permutacji, wiec ich iloczyn
tez jest macierza permutacji. Wynika z tego, ze przeksztatcenie

U= PP PP,

sprowadza sie do pewnego przestawienia wspotczynnikow wektora z. To prze-
stawienie jest szczegoélnie proste do zaimplementowania w praktyce. Jezeli
oznaczymy x = (x(0),...,z(p — 1)) oraz Uz = 2/ = (2/(0),...,2'(p — 1)), to
2’ (k) = x(l), gdzie k i | maja wzajemnie symetryczne rozwiniecia w uktadzie
dwojkowym

(k)? :6(]—1"'607 (Z)Q :eo...eq_17 6]' :0’1

Jest to tak zwane przeksztalcenie odwrocenia bitow.

(ii) Przedstawiony powyzej algorytm FFT jest tylko jednym z mozliwych.
Niektore programy komputerowe stosuja inny algorytm. Zauwazmy, ze ma-
cierz dyskretnej transformaty Fouriera A, jest symetryczna. Twierdzenie
Danielsona-Lanczosa mozna wiec zapisa¢ jako

Ay = Al = PLA,,E!. (2.25)
gdzie ' oznacza transpozycje, i gdzie wykorzystalismy fakt, ze A, i Ap/g sa

symetryczne, a wiec niezmiennicze ze wzgledu na transpozycje. Powyzszy
wz6Or mozna udowodni¢ bezpos$rednio, grupujac elementy sumy inaczej, niz
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robilismy to wezesniej. Niech p' = p/2.

p—1
B0 =3 w(k)e 5
k=0
p/2_1 - 27 ki pil - 271 kl
= ake T + Y w(k)e

k=p/2

I
=
~
M7
o
VR

L on .27 (k+p)l
x<k)€—z2pkl —|—Q;(k’—|—p/>€_zz p+p )

k=0
p'—1
—inl Y, —i 2rkl
:Z(x(k:)—i-e w(k+p))e v
k=0
p'—1
l / —j 2kl
=) (xk)+ (=) a(k+p))e ">
k=0
Jezelil =2n,n=0,...,p  — 1 jest parzysta, to
plil - 27 k
BO) = 3 (k) ok ) e
k=0
a jezeli | = 2n + 1 jest nieparzysta, to
p/_l 2k
- 21k - 2w kn
B(1) =Y (w(k) —a(k+p)) e e
k=0

Innymi stowy, parzyste wspolczynniki & to transformata rzedu p’ wektora z’
o wspotczynnikach
o' (k) = x(k) + x(k + 1),

a nieparzyste to transformata wektora z”
(k) = (x(k) —a(k+p)) e 7 .

Latwo sprawdzi¢, ze powyzsze obliczenia daja nam doktadnie (2.25). Za-
uwazmy tez, ze macierz U z poprzedniej uwagi jest symetryczna, wiec stosu-
jac ten algorytm rowniez dochodzimy do przeksztalcenia odwrdcenia bitow,
z tym, ze w poprzednim algorytmie byt to pierwszy krok szybkiej transfor-
maty, a w omawianym teraz wariancie jest to ostatni krok.

(iii) Omawiali$émy przypadek, gdy sygnal mial dlugosé¢ bedaca potega 2. W
praktyce to jest przypadek najwazniejszy. Sygnaly o innych dlugosciach sa
przedtuzane do najblizszej potegi 2, na przyktad dodaje sie odpowiednig ilos¢
zer. Szybki algorytm mozna jednak skonstruowaé niezaleznie dla sygnaltéow o
innych dtugosciach.
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Transformaty trygonometryczne

Naturalnym jezykiem transformat Fouriera w ich wszystkich wcieleniach, w
tym takze dyskretnej transformaty Fouriera jest jezyk liczb zespolonych. W
zastosowaniach jest to niepraktyczne. Sygnaly rzeczywiste maja transfor-
maty o wartosciach zespolonych. Takie sygnaty o wartosciach zespolonych
wymagaja innych struktur do przechowywania i manipulacji. Nie jest to wiel-
kim problemem, ale w praktyce wygodniejsze jest postugiwanie sie transfor-
matami, ktore sygnaly rzeczywiste przeksztalcaja na rzeczywiste. Sa to tak
zwane transformaty trygonometryczne. Transformaty takie powstaja przez
proste przeksztalcenie transformaty Fouriera i w zwigzku z tym mozna sto-
sowac¢ do nich szybkie algorytmy. Podstawowa obserwacja jest fakt, ze jezeli
sygnal rzeczywisty x = (2(0),...,z(p — 1)) jest parzysty, czyli

z(p — k) = x(k),

to jego transformata Fouriera tez jest rzeczywista, a jezeli jest nieparzysty,
czyli

v(p = k) = —a(k), (0)=0,

to transformata jest czysto urojona. Istniejace sygnaly mozna wiec odpo-
wiednio przedtuzy¢ i zastosowaé¢ do nich transformate Fouriera odpowiedni
wysokiego rzedu. W praktyce spotyka sie kilka odmian transformat sinuso-
wych i cosinusowych, ktore otrzymuje sie wtasnie mniej wiecej wedtug powyz-
szego schematu. Na przykltad, wyprowadzimy wzor na jedna z transformat
cosinusowych. Niech dany bedzie sygnat o dtugosci p, x = (z(0),...,z(p —
1)). Niech & bedzie przedtuzeniem x o dtugosci 2p, zdefiniowanym nastepu-

jaco:
k k=0,....,.p—1
i) = (k) SRRy
x2p—k—-1) k=p,....2p—1.

Zauwazmy, ze sygnal T ma pewna symetrie — jest ,parzysty'"wokot punktu
p—1/2:

Hp=1/2)+1) =2((p-1/2) =),
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gdzie [ jest liczba poléwkowa, 21 = 1,3,...,2p — 1. Obliczmy transformate
Fouriera dlugosci 2p sygnatu rozszerzonego 7.

2p—1

=)
—~
=
Il
=
—~
ol
SN—
('b
V)
w:\
”5 >

k=0
p—1 2p—1
_ {:i. 6 2;};@1 + Z 27rkl
k=0
p—1 2p—1
=S ek e+ Y a2k 1)
k=0

Przenumerujmy sktadniki drugiej sumy, niech nowy indeks &' = 2p — k — 1.
Nowy indeks (tez go potem nazwiemy k) biegnie od 0 do p—1. Otrzymujemy

= - _jmkl  _ymCpok=1)l
() = x(k) (e P +e m )
k=0
p—1
—i 7 kl i mkl i wl
:Zx(k)<€ P fe'r e p)
k=0
p_l l (k+1/2)1 (k+1/2)1
= w(k)e'® <€_Z v +e » >
k=0
p—1
T k+1/2)l
=2 6Z 75 x(k;) coS (M) .
k=0 p
Zauwazmy, ze transformata Fouriera T zalezy tylko od wspotczynnikéw ,.co-
sinusowych”
p—1
(k+1/2
Zl’ COS <+—/)) .
k=0 p
Mamy wiec

ST

() =2-¢% - 2.().

Zrobmy jeszcze nastepujace obserwacje

Z(p) :e%Zx cos(m(k +1/2)) =
=0
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gdyz cos(m(k+1/2)) = 0 dla kazdej liczby calkowitej k. W koncu zauwazmy,
ze

T(2p —1) = z(1).
Rekonstruujac z, korzystajac z odwrotnej transformaty Fouriera, otrzymu-
jemy

1= "
-~ 27
(k) = o D E()e'
P =0
2p—1
1"\ 1 ~ 27 kl
= —2x(0)4+ — z(l)e” 2»
25 20 ZP; (1)
l#p
1 1 Pl Comkl o~ 27 k(2p—1)
— 2 0.(0) + — (flez B F2p - el s )
570+ 55 3 (B0 w3
1 1 p! 1 kl 1 kl
- T 27 i I 27
= —7.0) + — 27 (1 (6121’61 % 4ewe 2p>
0 QPZZI 0
m(k+1/2
Zxc ( i ”).
p

Gdy k =0,...,p—1to Z(k) = x(k), wiec otrzymaliSmy wzoér na odwrotna
transformate cosinusowa. Podsumowujac: transformata cosinusowa i od-
wrotna transformata cosinusowa dane sg wzorami

p—1
(k+1/2
:Zx cos<+—/>), [=0,...,p—1,

p

p—1
k+1/2
x( COS( mik + /)>, k=0,....,p—1.
T p

Transformata cosinusowa zwiagzana jest z dyskretnag transformata Fouriera
wzorem

Cp = RpAgyQy,

gdzie C), jest macierza odpowiadajaca transformacie cosinusowej, natomiast
R, i @, sa pewnymi macierzami prostokatnymi, zawierajacymi w wiekszosci
zera. Dokladne wzory na R, i (), mozna otrzymac analizujac przeprowadzone
powyzej rachunki.

Przypomnijmy, ze powyzsze wzory stanowia tylko jeden z mozliwych wa-
riantow transformat trygonometrycznych.
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Inne transformaty

e Lokalne transformaty Fouriera i trygonometryczne

Transformata Laplace’a

Transformata Mellina

Transformata Zaka

Transformata Radona
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Rozdzial 3

Dodatek: kilka transformat
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Rozdzial 4

Analiza Wielorozdzielcza

Bazy falkowe

W tym rozdziale przedmiotem naszego zainteresowania bedzie konstrukcja
szczegolnego rodzaju baz w przestrzeni L*(R), tak zwanych baz falkowych.
Baza falkowa to baza ortonormalna w L?(R) nastepujacej postaci

{Q%w@jx —n);n,j € Z}, (4.1)

dla pewnej funkcji v € L*(R). Baza falkowa powstaje z jednej funkcji v,
w ten sposob, ze najpierw tworzymy wszystkie calkowite przesuniecia ),
a nastepnie tworzymy wszystkie mozliwe przeskalowania powstatej rodziny
o wspotczynniki bedace potega 2. Jezeli tak otrzymana rodzina funkcji w
L?*(R) jest baza ortonormalng, to nazywamy ja baza falkowa, a funkcje v
falka. Nazwa ,falka” pochodzi stad, ze ¢ jest najczesciej elementarna oscy-
lacja, o wyraznej lokalizacji w czasie i o okreslonej czestotliwosci. Budujac z
takiej funkcji baze wedtug schematu (4.1) widzimy, ze funkcje 2//2¢) (272 —n)
tez stanowig taka elementarng oscylacje, ale o czestotliwosci rzedu 27 i loka-
lizacji w okolicy punktu 277n.

Przesuniecie i przeskalowanie takiej funkcji powoduje, ze iloczyn skalarny z
niag wychwytuje w sygnale szczegoly wystepujace w konkretnym miejscu i
posiadajace okre$long czestotliwo$¢. Ta wlasnosé sprawia, ze bazy falkowe
odniosty w ostatnich 20 latach ogromny sukces w zastosowaniach. Ana-
liza falkowa jest obecnie obszernym dzialem matematyki. Z grubsza biorac
mozna wydzieli¢c dwa rodzaje transformaty falkowej. Po pierwsze mamy cia-
gla transformate falkowa

Wt = [ " f@) Vadlas 1) da,
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Rysunek 4.1: Falka Haara i falka ,meksykanski kapelusz”.

ktora funkcji f € L*(R) przyporzadkowuje funkcje dwoch zmiennych a, t €
R, a > 0. Dla kazdego a > 0 W(f)(a,t) jest, mowiac intuicyjnie ,obrazem”
funkcji ,,na poziomie rozdzielczosci a”. Drugim rodzajem transformaty falko-
wej jest transformata falkowa dyskretna, czyli rozklad funkcji f € L*(R) w
bazie falkowej

() = /OO F(2)259 2z —n)dr, n,j€ L

Latwo zauwazy¢, ze dyskretna transformata falkowa jest rezultatem prob-
kowania transformaty ciaglej w punktach (a,t) = (2/,n), j,n € Z. Je-
zeli 1) jest falka, czyli uklad funkcji (4.1) stanowi baze w L?(R), to funkcje
f € L*(R) mozna zrekonstruowa¢ z tych probek «(f), ;. Dla baz falkowych
istnieje szybki algorytm numeryczny, tak zwany algorytm Mallata, wylicza-
jacy wspotezynniki bazowe o f), ;. Algorytm Mallata opiszemy w nastepuja-
cym rozdziale. Problem konstrukcji baz falkowych jest o tyle interesujacy, ze
wtasnosci konkretnej falki 1) maja istotne znaczenie dla zastosowan. Dlatego
nie wystarczy skonstruowac jednej bazy falkowej do wszystkich zastosowan.
Istnieje potrzeba konstruowania falek o konkretnych wtasnoéciach. W zasto-
sowaniach najczesciej pojawiaja sie tak zwane falki Daubechies. Jest to ro-
dzina falek o nosniku ograniczonym (czyli ) = 0 poza pewnym przedzialem) i
o roznym stopniu gladkosci. Falek Daubechies uzywamy w laboratorium. W
tym rozdziale glownie zajmujemy sie przypadkiem jednowymiarowym, czyli
przestrzenia L?(R). Pod koniec pokazemy, jak bazy falkowe mozna budo-
wa¢ w przypadku wielowymiarowym, uzywajac skonstruowanych juz falek
jednowymiarowych.
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Analiza wielorozdzielcza MRA

Narzedziem do konstrukcji falek jest tak zwana analiza wielorozdzielcza.

Definicja 4.1. Analizq wielorozdzielczq (w skrécie: MRA) nazywamy cigg
rosnqcy podprzestrzeni domknietych L*(R)

.CcVaocVycVycWVicVpc---c L*R)
spetniajgeych nastepujgce warunks
(a) Ul_V; = L*(R),
(0) M=o Vi = 10},
(¢c) f(z) € Vj & [(22) € Vi,

(d). istnieje funkcja ¢ € Vi (tak zwana funkcja skalujgca analizy) taka, ze
zbior funkcji
{o(z—n)ineZ}

stanowi baze o.n. (lub baze Riesza) przestrzeni Vj.

Dla podkreslenia, czy funkcja skalujaca generuje baze o.n. czy baze Rie-
sza przestrzeni Vj czasem mowi sie ,ortogonalna MRA”, lub ,MRA Riesza”.
Konstrukcja falek nastapi w dwoch krokach. Najpierw pokazemy, ze majac
MRA mozemy skonstruowaé¢ falke, a nastepnie pokazemy, jak mozna skon-
struowac interesujace nas analizy wielorozdzielcze.

Uwagi: (i) Zauwazmy, ze funkcja ¢ calkowicie okresla analize wielorozdziel-
cza, dla ktorej jest funkcja skalujaca. Istotnie, skoro przesuniecia ¢ stanowia
baze o.n. Vj, to

Vo = Lin {p(x —n);n € Z}. (4.2)

Z warunku (c) z kolei wynika, ze
Vi={f e L*(R); f(277z) € Vo }. (4.3)

Konstrukcja MRA bedzie wiec wygladata nastepujaco. Znajdziemy funkcje
v taka, ze jej przesuniecia calkowite stanowia uklad ortonormalny. Wtedy
przesuniecia beda stanowily baze o.n. przestrzeni Vi zdefiniowanej w (4.2).
Nastepnie przestrzenie V; zdefiniujemy wzorem (4.3). Znajdziemy dodatkowe
warunki na ¢, ktére sprawia, ze tak powstaly ciag domknietych podprze-
strzeni jest rosnacy (wystarczy, ze Vo C V1), oraz spelnione sa warunki (a) i
(b) definicji.
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(i) Rozrozniamy analizy wielorozdzielcze ortonormalne i Riesza, w zalezno-
Sci od bazy, ktora w Vg generuje funkcja skalujaca ¢. Pokazemy, ze analiza
wielorozdzielcza Riesza tez jest analizg o.n., tylko trzeba wybra¢ inng funkcje
skalujaca. Innymi stowy, dla analizy Riesza, z funkcja skalujaca ¢ mozna w
Vb znalez¢ inng funkcje ¢, ktorej przesuniecia sa baza o.n. V4. Pomimo tego,
ze analiza Riesza jest automatycznie takze analiza o.n. warto rozro6znia¢ oba
rodzaje analiz. Na przyklad, zdarza sie, ze funkcja ¢, chociaz istnieje, ma
bardzo skomplikowana postac¢, i wygodniej jest pracowac z poczatkowa funk-
cja ¢, chociaz generuje jedynie baze Riesza, a nie o.n.

Przyktady: (i) Dla N =0,1,2,... moéwimy, ze funkcja f jest splinem rzedu
N (nie znam dobrego polskiego ttumaczenia) jezeli jest rozniczkowalna w spo-
sob ciagly N — 1 razy oraz jest wielomianem stopnia < N na przedziatach
postaci [k, k 4+ 1] (pomiedzy sasiednimi liczbami catkowitymi). Jezeli N = 0
to zalozenie o rézniczkowalno$ci jest puste, funkcja f ma tylko byé stata na
przedzialtach [k, k + 1].

Niech N bedzie ustalone. Definiujemy

Vo = {f € L*(R); f jest splinem rzedu N}.

W

012345678910 012345678910

Rysunek 4.2: Spliny rzedu 1 i 2.

Zauwazmy, ze jest to podprzestrzeni domknieta. Pozostale przestrzenie
definiujemy tak, aby warunek (c) definicji byt spelniony

Vi ={f € LI*(R); f(277z) € Vi}.

V; zachowuje wszystkie wlasnosci Vj, ktore sa zachowywane przy przeskalo-
waniu: jest podprzestrzenia domknieta, sktada sie z funkcji rézniczkowalnych
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N —1 razy w sposob ciagly, ktore sa wielomianami stopnia < N na przedzia-
tach postaci 277k, k+1] = 277k, 277 (k+1)]. W ten sposob skonstruowali$my
ciag podprzestrzeni domknigtych w L?(R), ktore spelniaja warunek (c) defi-
nicji MRA. Zauwazmy, ze V; C V;y;. Wynika to z faktu, ze kazdy przedzial
postaci 27UV [k k + 1] zawiera sie w calogci w ktoryms z dhuzszych prze-
dziatow 277 [k’ k' + 1]:

27k /2,k/2 + 1] k — parzyste

2-UD[k k4+1] = 279[k/2, (k+1)/2] C {2j[(k —1)/2,(k—1)/2+ 1] k — nieparzyste

Jezeli f € Vj, czyli jest wielomianem na dtuzszych przedziatach, to jest takze
wielomianem na zawartych w nich krotszych przedziatach, czyli f € Vji;.
Ciag podprzestrzeni {v;} jest wiec rosnacy. Niech ¢ bedzie funkcja Haara,
czyli
1: x€]0,1],
p(z) = xp1(z) = {0: v 0.1,
oraz
AN(z) = @*---x@(x), (splot N+ I-krotny).

Fakt 4.2. A" jest splinem rzedu N.

Dowod. W przypadku N = 0 wynika to od razu z definicji: funkcja Haara jest
stala pomiedzy sasiednimi liczbami catkowitymi. W rozdziale o przestrzeni
Hilberta pokazaliémy, ze Al = ¢ x ¢ jest ciggla, liniowo ro$nie na przedziale
[0, 1], liniowo maleje na [1,2], i jest rowna 0 poza tym. Jest wiec splinem
rzedu 1. Dowod faktu jest indukcyjny. Dla n > 2

M) = A (o) = [~ AN ooty = [ A ey = [ ANy,

[e.e]
. - el . . ;L .
gdzie w ostatniej caltce zrobiliSmy zamiane zmiennych ¢y’ = z—y. Korzystajac
z zasadniczego twierdzenia rachunku rézniczkowego mamy

(AY)(z) = AYH(2) = AV (z = 1),

Jezeli wiec zalozymy, ze AN~ jest splinem rzedu N — 1, jest rozniczkowalna
w sposob ciagly N — 1 razy, to AV jest rézniczkowalna w sposob ciagly o
jeden raz wiecej, czyli N razy. Niech x € [k, k + 1]. Wtedy k € [z — 1,z],
oraz

k

M@ = [ Ay = [ a g [Car )i

k

Na obu przedziatach calkowania AN~! jest wielomianem stopnia < N — 1,
wiec obie catki sg wielomianami stopnia < /N zmiennej x, wiec ich suma tez.
Jezeli wiec AN~ jest splinem rzedu N — 1 to A jest splinem rzedu N. [
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W rozdziale o przestrzeni Hilberta pokazaliémy, ze dla N = 0 przesunie-
cia catkowite ¢ stanowia baze o.n. przestrzeni V, a w przypadku N = 1
przesuniecia A' stanowia baze Riesza V. Dla dowolnego N mozna poka-
zaé, 7e przesuniecia catkowite AN stanowia baze Riesza Vj, i warunki (a) i
(b) definicji MRA sa spelnione. Dowdd tego odlozymy do momentu, kiedy
udowodnimy wygodng charakteryzacje uktadow Riesza. Dla N = 0 tak po-
wstala analize nazywamy analizg Haara, a dla NV > 1 nazywamy ja analizag
splinowa. Sa to wazne przykltady analiz, ktore czesto spotyka sie w praktyce.
W oparciu o nie konstruuje sie falke Haara i falki splinowe. Funkcje AN (x)
nazywa sie splinami podstawowymi rzedu N.

(ii) Analiza Shannona. Niech
Vi={f e L*(R); f(§) =0 dla ¢ ¢ [-2m,27]}.

V; sktada si¢ z funkcji o ,spektrum” ograniczonym do [—2/m,2/7]. Wida¢
wiec od razu, Ze jest to rosnacy ciag podprzestrzeni V; C V. Widac tez,
ze s to podprzestrzenie domkniete. Mamy @(6) = 1/2f(£/2). f(6)=0
poza [—2i, 297] dokladnie wtedy, gdy f(£/2) = 0 poza [—27 17, 20+ 7], czyli
(c) definicji MRA jest spetnione. Pokazemy, ze ¢ zdefiniowane przez swoja
transformate Fouriera

jest o.n. funkcja skalujaca. Dowdd tego jest bardzo prosty. f € Vj dokladnie
wtedy, gdy f € L*(R) i f(§) = 0 dla & ¢ [—m,@]. Niech {a}} € ¢* beda
wspotezynnikami Fouriera funkeji f(€) na przedziale [—m, 7|, czyli

F©) =) ae™ wIT). (4.4)

FO=0f(©) =) ae™p(6). (4.5)



Powyzsza 16wno$¢, jak tatwo sprawdzi¢, zachodzi w L?(R):

2

) N o | N
Fo > ety = [ R0 Y aetpr) as
k=—M o k=—M
T N 2
= [ F0- 3 e a
. 2.

korzystajac 7 (4.4). Skoro réowno$é (4.5) zachodzi w L?*(R), to mozemy od-
wrocié¢ transformate Fouriera, i mamy

fl@)= Y ap(z—k) wIR). (4.6)
k=—00
Innymi stowy, f € Vi dokladnie wtedy, gdy istnieja wspotezynniki |lay| €
(* takie, ze zachodzi (4.6). Przesuniecia calkowite ¢ stanowia wiec uklad
zupelny w V. Latwo pokaza¢, ze sa tez uktadem o.n.:

1 — —
(- =n), (- = k) = 5 {o(- —n)e(- —k))
o IR GG
R S )
=5 ,,,6 k gdf
B 1 :k=n
)0 ik#n.

Warunki (a) i (b) definicji MRA sa spelnione automatycznie, co wynika z
faktu, udowodnionego przed twierdzeniem ??, dalej w tym rozdziale.

Konstrukcja falki

Niech bedzie dana o.n. analiza wielorozdzielcza z funkcja skalujaca . Niech
Wy bedzie dopelnieniem ortogonalnym Vi, w Vi:

Wo={feVi;f LgVge W}, cyli Wo=V,6V. (4.7)
Poniewaz Vj jest domknieta, wiec

Vi= Vo W (4.8)
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Naszym celem bedzie znalezienie takiej funkcji v € Wy, ze uktad

{¢(x —n)in e}

stanowi baze o. n. Wy. Pokazemy potem, ze taka 1) jest falka.

Filtr dolnoprzepustowy

Z definicji MRA wynika, ze funkcja (1/2) ¢(x/2) jest elementem V_; C Vj.
Mozna ja wiec zapisa¢ w bazie jako

%<p (g) = i hnp(z —n), (4.9)

n=—oo

gdzie szereg jest zbiezny w L?(R), wspolczynniki bazowe dane sa przez
n - 2 90 2 Y 90 n )
> © |1 ga\ | 1 1
hal? = o (5)| do=lel? =5
Somk= [ (5o (5] do=gier =3

j=—o0 /

oraz

j=—00

Zastosujmy transformate Fouriera do (4.9). Poniewaz szereg jest zbiezny w
L?*(R), to mozemy z transformata wej$¢ pod znak sumy.

p(28) = > hap(§)e ™. (4.10)

n=—oo

Szereg jest zbiezny w L?(R). Skoro ciag {h,}5° __ jest sumowalny z kwadra-
tem, to szereg > oo h,e” " jest zbiezny w L*(T) do funkcji ktora ozna-

czymy przez my:
mo(§) = Y hne ™ (4.11)

Laczac te dwie zbiezno$ci mozna uzasadnié, ze w takim razie

P(28) = mo(§) ¢(8)- (4.12)

Funkcje mg(§) nazywamy filtrem dolnoprzepustowym. Czasem sam ciag
wspotezynnikow {h,}22 _ tez bedziemy nazywali filtrem dolnoprzepusto-
wym. Pokazali$smy wiec, ze funkcja (1/2) ¢(x/2) (lub, co na jedno wychodzi
©(x/2)) jest wynikiem dziatania filtru mo na ¢. Filtr my nazywamy dolno-
przepustowym, gdyz jego wartosci (jezeli jest funkcja ciagla) w otoczeniu 0
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-2 0 2 0

Rysunek 4.3: Filtr dolnoprzepustowy Haara |my| i idealny filtr dolnoprzepu-
stowy.

sa zblizone do 1, w czym przypomina charakterystyke typowego filtru dolno-
przepustowego.

Na obrazku 4.3 pokazany jest wykres |mg(§)| dla analizy wielorozdzielczej
Haara. Oczywiscie nazwanie filtru dolnoprzepustowym jest uproszczeniem.
Na przyktad funkcja mg jest okresowa. Dzialanie filtru mg na funkcjach nie
jest splotem z funkcja catkowalna. Latwo zauwazy¢, ze jest ono splotem z
funkcja uogodlniona

_ ki:oohka(x — k), %s@ (%x) = (H * ¢)(z),

gdzie symbol 0 oznacza impuls jednostkowy (delte Diraca). Nie bedziemy
uscisla¢ powyzszej uwagi.
W podobny sposob jak (4.12) pokazemy nastepujace twierdzenie

Twierdzenie 4.3. (i) f € Vo & 3\ € L*(T) taka, ze
F©) = A©)().
Mamy tez nastepujgceq rownosé

LFII® = IA* = ZM

k=—o00

(normy w odpowiednich przestrzeniach).

(ii) f € V; & 3N € LX(T) taka, ze
F(2€) = A(€)¢(§),
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oraz

IFIP =2 AP =2 Y AK)P

k=—o00

Dowdd. (i) f nalezy do V; dokladnie wtedy, gdy

e}

f@)= Y anplz—n) w L*(R),

n=—oo

gdzie {a,} jest pewnym ciagiem w (2. To z kolei, stosujac jak poprzednio
transformate Fouriera, jest rownowazne

FE) = AO@() gdde A= ) ane™.

Dodatkowo,

I =D laal, & = A(=n),

n=—oo

a wiec otrzymujemy (i). Do (ii) wystarczy zauwazy¢, ze
feVie f(27x) € Vo, oraz |If|*=277[f(277)|*
]

Kluczowym narzedziem w konstrukcji falki jest nastepujace twierdzenie

Twierdzenie 4.4. (i) Dla dowolnej funkeji f € L*(R) uktad
{f(z—n)in e Z}
jest ortonormalny wtedy 1 tylko wtedy gdy

> IfE+2kmP =1 (4.13)

k=—00
(ii) Dla dowolnych funkcji f,g € L*(R) uktady
{flx =n);neZ} i {g9(x—n);neclZ}

sq wzajemnie ortogonalne (czyli kazda funkcja z jednego zbioru jest ortogo-
nalna do kazdej funkcji z drugiego) wtedy i tylko wtedy gdy

> F(E+2km)g(€ + 2km) = 0, (4.14)

k=—o00

(W kazdym przypadku szeregi sq zbiezne prawie wszedzie.)
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Dowdd. Czesci (i) i (ii) sa bardzo podobne. Przeprowadzimy dowod (i).

1

(P =) f =R = 5= (0 =), fT =)

— 5 [ fe e
1 oo

=5 [ f©Pe e

Calke po R zapiszemy jako sume calek po kolejnych przedziatach [(2] —
)m, (204 1)m), Il =0,4£1,£2, ..., a nastepnie zamienimy zmienne.

(21+1)m
Z / ‘2 —i(n— kfdé;
20—
w3 [l s ampeiobeag
™
l=—c0 T

gdzie w ostatniej calce zamieniliémy zmienne ¢ — £+2lw. Funkcja wyktadni-
cza nie zmienita sie, bo jest okresowa. Zamienimy teraz kolejno$¢ sumowania
i catkowania. W tym wypadku jest to mozliwe na mocy twierdzenia o zbiez-
nosci ograniczonej, gdyz funkcja

= 3 1f( + 2tm)?

l=—o00

jest calkowalna na [—m, 7], jezeli f € L*(R). Kontynuujac rachunki otrzy-
mujemy

( > 1f(€+ 21m)] ) e~ (k) ge

l=—
1 T

N —i(n=k)¢
=5 F(&)e de.

Zauwazmy, ze ostatnie wyrazenie jest wspotczynnikiem Fouriera rzedu n — k
funkcji F(€). Funkcja ta jest calkowalna na [—, 7], ale niekoniecznie catko-
walna z kwadratem. Dla funkcji calkowalnych tez mozna oblicza¢ wspotczyn-
niki Fouriera i te wspolczynniki sa jednoznaczne. To znaczy ze dwie funkcje
catkowalne o identycznych wspotczynnikach Fouriera musza byé réwne, pra-
wie wszedzie. Funkcja F'(§) ma wiec wspolezynniki Fouriera

F(n) = (f, f(- —n)).
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A wiec,
1 n=k,
<f(-—n),f(~—k)>={0 .

wtedy i tylko wtedy, gdy F(§) = 1.
Dowod czesci (ii) wyglada podobnie. Zaczynamy od

(f(- =n),g(- —k))

i otrzymujemy, ze jest to (n—k)-ty wspotczynnik Fouriera funkcji catkowalne;j

Z F(€ + 2im)g(€ + 2im).

l=—00

Wszystkie wspolezynniki sa zerami wtedy i tylko wtedy, gdy sama funkcja
jest stale 0. [

Zastosujemy teraz cze$¢ (i) twierdzenia do funkcji skalujacej . W naste-
pujacej sumie, ktora zgodnie z twierdzeniem jest rowna 1 rozdzielamy wyrazy
parzyste i nieparzyste, stosujemy (4.12) i korzystamy z okresowosci my:

L= > |p(2€ + 2kn)|”

k=—0o0

= > IpQe+2km) P+ D @28 + 2km)?
k=—o0 k::—oo

= Z (26 + 2(2k)T Z |p(26 + 2(2k + 1)7)|?
k=—o0 k=—0c0

= Z Imo(& + 2km)[* |4(€ + 2km)|*+
k=—0o0

+ Y mo(€ + 7+ 2km) P | Q€ + 7 + 2km)|?

k=—00

= mo(€) Z |P(€ + 2km) | + |mo(€ + )| Z |p(€ 4+ 7 + 2km)|?

k=—o00 k=—o00

= [mo(&)* + [mo(€ + 7).
Filtr dolnoprzepustowy spetnia wiec tak zwane rownanie Barnwella-Smitha

mo(&)* + [mo(¢ + )P = 1. (4.15)
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Filtr gérnoprzepustowy
Przypomnijmy, ze szukamy funkcji ¢ € Vi. Korzystajac z twierdzenia 4.3
(i) widzimy, ze ¥ musi mie¢ postaé

$(28) = AE)P(E) (4.16)

dla pewnej funkcji A € L?*(T). Ponadto przesuniecia catkowite ¢ maja sta-
nowi¢ uktad ortonormalny, i maja byé¢ ortogonalne do przesunie¢ ¢ (maja
stanowié¢ baze o.n. W). Przeprowadzajac rachunek podobny do powyzszego,
i stosujac twierdzenie 4.4 (i) oraz (ii) otrzymujemy

|A_(§)|2+ INE+ )2 =1, (4.17)

mo(§)A(E) +mo(§ +m)A(E +m) = 0. (4.18)

Znalezienie odpowiedniej funkcji A jest juz proste Zauwazmy, ze nastepujaca
funkcja wstawiona w miejsce A spetnia (4.17) i (4.18):

my(€) = e Cmy(€ + 7). (4.19)

Funkcje my nazywamy filtrem gérnoprzepustowym analizy wielorozdzielczej.
Poniewaz ¢ € V1, wiec (1/2)1(x/2) € Vj, a wiec istnieje ciag wspotczynnikow

{gn}>2 _ ., taki, ze

%w (g) = i gnp(T —n). (4.20)

n=—oo

Wspolezynniki g, sa wspotezynnikami filtru goérnoprzepustowego

mi(€) = Y gne ', (4.21)

n=—0oo

a wiec mozemy je wyliczy¢ znajac wspotezynniki filtru dolnoprzepustowego.
mi(€) = e~ mo(€ + )

_ e—z’ﬁ i hy, e—in(&+m)

< _
= 3 Ra(cyeehs
= > hia(-1)'en e
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7 jednoznacznos$ci rozwiniecia w szereg Fouriera mamy
Gn = (=)' hy_,. (4.22)

Sam ciag wspolczynnikow {g,} tez czasem nazywa sie filtrem gornoprzepu-
stowym analizy.

Filtry QMF
Podstawowe wtasnosci pary filtrow mg i my to
Imo(€) + [mo(& + )P =1,
ma(§)7 + [mu (€ +m)f* = 1,
mo(&§)mi(§) + mo(& +m)my(§+m) = 0.

Wtiasnosci te mozna sformutowaé bezposrednio w jezyku wspolczynnikow
filtrow:

i podobnie dla {g,}, oraz

Z h2n+k% = 07 n € Z.

k=—o00

Pare filtrow (mg, m1) speliajacych powyzsze warunki nazywa sie filtrem
QMF (quadrature mirror filter). Maja one zastosowanie w teorii przetwarza-
nia sygnatu niezaleznie od teorii falek.

Sformulujemy teraz ostateczne twierdzenia, ktore mowia, ze 1 istotnie
jest falka.

Twierdzenie 4.5. Niech funkcja v bedzie dana przez
$(26) = ma(€)@(&) = e mo(€ + m)B(€). (4.23)

Wtedy zbior funkcji
{Y(x —n);n € Z} (4.24)

stanow: baze o.n. przestrzent Wy =V, © V.

Dowdd. Przypomnijmy, ze z definicji ¢ € Vi, a przestrzen V; jest niezmien-
nicza na przesuniecia catkowite (nawet na przesuniecia poléwkowe). Caly
zbior funkeji (4.24) lezy wiec w Vi, jest ortonormalny i ortogonalny do Vj
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(przypomnijmy warunki (4.18) 1 (4.19)), a wiec jest uktadem ortonormalnym
w Wy. Pozostaje pokazaé, ze jest to uktad zupelny, to znaczy, ze kombina-
cje liniowe elementow (4.24) leza gesto w Wy. Wystarczy pokazaé, ze jezeli
f e Wi f jest ortogonalna do wszystkich elementow (4.24) to f = 0. Niech
wiec f € Wy. W szczegolnosci f € Vy, wiec istnieje A € L?(T) taka, ze

~

F(26) = AE)#(8)-

f jako element Wj jest ortogonalna do wszystkich przesunie¢ . Zakladamy
dodatkowo, ze jest ortogonalna do wszystkich przesunie¢ v. Oczywiscie cal-
kowite przesuniecia f tez maja te wltasnosci. Korzystajac z twierdzenia 4.4
(ii), podobnie jak poprzednio, otrzymujemy

mo(§)A(E) +
m1<§)®+

mo(§ +mNE+7) =0 (4.25)
my (€ + m)NE +7) = 0. (4.26)

Pomnézmy stronami (4.25) przez mo(€). W (4.26) wstawmy wzor na my,
pomnoézmy stronami przez e'¢ mgy(€ + 7) i uwzglednijmy, ze e =™ = —1. Po-
zostaje doda¢ rownania stronami, aby otrzymac¢ A(§) = 0, a poniewaz £ jest
dowolne, to

~

f(26) =0.
Widzimy wiec, ze uklad (4.24) jest baza o.n. przestrzeni Wj. O

Podsumowujac, skonstruowaliémy funkcje v, ktorej catkowite przesunie-
cia (4.24) stanowia baze o.n. przestrzeni Wy = Vi & V. Teraz pokazemy,
ze uklad falkowy (4.1) stanowi baze o.n. calej przestrzeni L*(R). Niech W
bedzie dopetnieniem ortogonalnym V; w V4

Wj = ‘/j+1 © ‘/j, czyli ‘/j+1 = ‘/] © I/Vj, JjEZ. (427)
Ta definicja rozszerza wczes$niejsza definicje Wy. Mamy nastepujacy fakt

Fakt 4.6. (i) W, = {f € L*(R) : f(2772) € Wy},
(ii) Uktad funkcji |
{2v(@a—n)inez} (4.28)

jest bazg o.n. przestrzeni W;.

Dowdd. (i) Z definicji MRA mamy, ze f € Vi1 & f(277:) e Vi, g€V, &
g(277.) € Vi, a przez zamiane zmiennych mamy

flge f27) Lg27).
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Stwierdzenie, ze f € V; 116V jest wiec rtownowazne stwierdzeniu, ze f(277.) €
VioW.

(ii) Przez zamiang zmiennych ¢ — 277¢ sprowadzamy (ii) do przypadku
7 =0, ktory z kolei jest udowodniony w Twierdzeniu 4.5. O

Zauwazmy, ze podprzestrzenie W; sa do siebie wzajemnie ortogonalne.
Jezeli j < k to W; C V41 C Vi, a Wy jest z definicji ortogonalna do V.
W kazdej z tych podprzestrzeni W; mamy baze on. (4.28). Nastepujace
twierdzenie pokazuje, ze nieskoniczona suma prosta tych podprzestrzeni jest
caloécia L?(R), a uktad (4.1) baza o.n.

Twierdzenie 4.7. (i) Dla J € Z mamy

J
P w; =V, (4.29)

j=—o0
i dla tej podprzestrzeni uktad funkcyi
{z%w(%; —n)injEZ, j< J} (4.30)
stanowt baze 0.n.,
(ii)
é W, = L'R), (4.31)

j=—o0

i uktad funkcji (4.1), czyli
{2%¢(2jx —n):n,j € Z}

stanowi baze o.n. (falkowaq).

Dowdd. (i) Jak zauwazyliSmy powyzej przestrzenie IW; sa do siebie wzajemnie
ortogonalne

oraz, dla j < J
W; C Vi C Vit

Przypomnijmy, ze nieskorniczona suma prosta (4.29) jest domknieciem zbioru
kombinacji liniowych elementéw podprzestrzeni W, j < J. W takim razie

J
P wic Vi

j=—00
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Chcemy pokaza¢ réwnosé. Niech f € V;i i niech f bedzie ortogonalna do
kazdej podprzestrzeni W;, j < J. Skoro f € Vi1 i f L Wyto f € V).
Skoro f L W;_y to f € V;_1. Postepujac tak dalej, pokazujemy, ze f € V;
dla kazdego 7 < J + 1, a wiec

J+1 [eS)

fe N vi= v

j=—00 j=—00

czyli, zgodnie z punktem (b) definicji MRA f = 0. PokazaliSmy wiec (4.29).
Fakt, ze zbior funkcji (4.30) stanowi baze¢ o.n. sumy prostej wynika z tego,
ze jest to zbior baz o.n. podprzestrzeni sktadowych sumy.

(ii) Z (i) wynika, ze
J-1 00
V- @medw,
j=—00 Jj=—00

a wiec

U V; C @ I/Vj
J=—00 j=—00
Poniewaz suma prosta jest domknieta, wiec domkniecie lewej strony tez sie w
niej zawiera. Z punktu (a) definicji MRA mamy, ze domkniecie lewej strony
jest caloécia L?*(R). Fakt, ze zbior funkcji (4.1) stanowi baze o.n. sumy
prostej wynika, podobnie jak w czesci (i) z tego, ze jest to zbior wszystkich
baz ortonormalnych przestrzeni sktadowych W, j € Z. Il

Przyklady: (i) MRA Haara ma funkcje skalujaca ¢ = xp,1). Widaé wiec,

ze
1 1 1 1
z - — - -1

czyli hg = hy =1/2, oraz hy = 0 dla k # 0,1. W takim razie

1 1
ggz—h1:—§, 91:h0:§ oraz gr =0dlan#0,1,
1 1 1 1
¥lge)=—gel@tgel@—1) = @)= —p2)+e2r-1),
Lol e iep Lol e . iep
mo(f’):§+§e ="'~ cos(£/2), mi(§) :—§+§e =ie'” sin(£/2).

(ii) Filtry analizy Shannona wygodniej jest rozwaza¢ po stronie transformaty
Fouriera. Mamy

P(&) = X(-rm (&), P(28) = X-m/2.m/21(8),
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0
0
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-3 0 3 0 05 1

Rysunek 4.4: Wykresy |[mo(€)[? i |mq(€)[*

wiec
m0(€) = $(21) = Xirprmy(€) ma [-m 7],
mi(€) = €7 Xor—n/olulr/oa (§) ma [—m,7),
Q&(f) =my (5/2)35(5/2) = 6_i§/2 X[—2m,—7|U[r,27] (6)

Mozemy policzy¢ ¢ i ¢ analizy Shannona

™

[ , 1 et 1 , , sin(zm)
= A 1§$d [ — txw _ ,—iEm)
#() 2w /_7r Ple)e ¢ 2 axw |_ 2mix (e © ) [
P(x) = L K P(€) e dE = L /_7r e 182 et e 4 L /27r e 182 gite g
27T —or 27'(' —or 27T -
2

1 ita=1/2) |77 Gife-1/2)

T i@ —12)|, mi—1/2)|
— —in(z—1/2) _ —i2n(z—1/2) i2m(z—1/2) _ iw(z—1/2)
271.2(1,_1/2) ((6 € )+(€ € ))
1

= 1z (e = 1/2)) —sin(n(z — 1/2)))

Pakiety falkowe

Zauwazmy, ze w przestrzeniach V; mamy w tej chwili wiele r6znych baz o.n.
7 definicji, mamy baze

{2%§0(2jx —n)n e Z} . (4.32)
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0
0
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-4 0 4 -4 0 4

Rysunek 4.5: Funkcja skalujaca i falka Shannona.

Dodatkowo, mamy rozktad
Vi=Via© W,
i w kazdej z przestrzeni sktadowych bazy o.n.
{2%g0(2j’1:c —n);n € Z} oraz {2%¢(2j’1x —n)n e Z} (4.33)

odpowiednio. W przestrzeni V; mamy wiec do wyboru baze (4.32) lub sume
baz (4.33). Mozemy tak postepowac dalej, rozkladajac V;_q, i widzimy, ze w
przestrzeniach V; mamy, dla kazdego J > 0 baze o.n.
{2%g0(2j"]x —n), 2%w(2j’kx —n)neZ,1<k< J} .

W takiej sytuacji moéwimy, ze w V; mamy biblioteke baz o.n. W rozdziale o
pakietach falkowych wrocimy do tego zagadnienia. Bedziemy konstruowali
jeszcze inne bazy, rozkladajac rowniez przestrzenie IW; na sumy proste, uzy-
wajac pary filtrow dolno- i gornoprzepustowego. W ten sposob, majac kon-
kretny sygnal i biblioteke baz mozemy dobra¢ do niego indywidualna baze z
biblioteki, i w tej bazie go roztozyé. Kryteria wyboru baz moga by¢ rozne,
ale generalnie chodzi o to, zeby w rozktadzie bylo jak najmniej duzych wspot-
czynnikow.

MRA Riesza

Wspomnielismy, ze analiza wielorozdzielcza Riesza jest takze, po zamianie
funkcji skalujacej ale dla tych samych podprzestrzeni Vj, analiza ortonor-
malng. Teraz to uzasadnimy. Bedzie nam potrzebna nastepujaca wersja
Twierdzenia 4.4 (i).
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Twierdzenie 4.8. Niech f € L*(R). Wtedy uktad
{f(x —n);n € Z} (4.34)

jest uktadem Riesza, to znaczy istniejg state A, B > 0 takie, Ze

[o¢] (o] 2 [o¢]
AN el < | Y anf-n)| <B Y el fadiooe
N N N (4.35)
wtedy 1 tylko wtedy, gdy
A< D f(E+2km) < B. (4.36)

k=—o00

Dowdd. Dowdd przebiega podobnie do dowodu Twierdzenia 4.4. Jezeli f €
L*(R) to funkcja

F(&)= Y If(¢+2km)’ (4.37)

k=—o00

jest catkowalna na [—m, 7]. Niech ciag o = {a,} bedzie skoniczony, i niech

Q) = ) ape ™ (4.38)

k=—o00

bedzie odpowiadajacym mu elementem L?*(T) — wielomianem trygonome-
trycznym. Pokazemy, ze

o0

> anf(- —k)

k=—0oc0

! / " G(ORF(E) de (4.39)

:% B

Dowo6d powyzszej rownosci przeprowadzimy za chwile, a teraz zauwazmy, ze
twierdzenie wynika z (4.39). Zalozmy, ze funkcje (4.34) tworza uklad Riesza,
to znaczy zachodzi (4.35). Niech

E={¢ € [-m 7] F(£) > B},

i niech

Xe(§) = Z are” ",

k=—o00

czyli ay sa wspotezynnikami Fouriera funkcji charakterystycznej xg. Ta funk-
cja nie jest wielomianem trygonometrycznym (ciag {ax} nie jest skoriczony),
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ale przy zalozeniu (4.35) rownosé (4.39) rozszerza sie automatycznie na ciagi
{ax} € /2. Mamy wiec

o | e©FR© = 5= [ xe©@F©de = 5B [ (s = 5-BIEL
(4.40)
|E| oznacza miare (dlugosé) zbioru E. Jezeli F(&) jest ciagla, to E jest
otwarty, a wiec jest suma roztacznych odcinkow. Wtedy |E| jest ich taczna
dtugoscia. Miara jest uogolnieniem dlugosci na inne zbiory. Nie wchodzac
w szczeg6Oly, pozostanmy przy takim intuicyjnym rozumieniu miary. Za-
uwazmy, ze w (4.40) rowno$¢ moze zachodzi¢ tylko jezeli |E| = 0, w przeciw-
nym wypadku zachodzi nieréwno$¢ ostra. Laczac (4.35), (4.39) oraz (4.40)
otrzymujemy

2
1 o0
G PORTERE
<B ), |l
k=—o00
S GRS
o)
1
=B —|E|.
27

Widzimy wiec, ze w (4.40) musi zachodzi¢ rownosé, a wiec |E| = 0, a wiec
F(§) < B prawie wszedzie. Podobnie pokazujemy, ze F'(§) > A. W druga
strone jest prosciej. Zalozmy (4.36), i majac (4.39) otrzymujemy

2
oo 1 - A
S ast -0 =5 [ a@rre
<3 [ la©r
=B ) |l
k=—0oc0

Podobnie z druga nieréwnoscia. Pozostaje pokazac (4.39). Niech {«y} bedzie
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ciggiem skoniczonym.

[e.9]

=/OO S @ f(o — k) —n)de

O k,n=—00

= Z Oéka_n/_oof(:c—k)f(:c—n)dx

k,n=—o00
- 1 [~ o
= ) adg / F(&) e f(e) e dg
kn=—o0 —
N 1 o f 2 —i(k—n)¢
= Y amg [ f@Pet
k,n=—o0 2 —o0
0o 1 o] w(2041) R ) ()
e e} a_n_ f é‘ e*’L —n d£
k‘,nZ;oo “an lz—;x;/ﬂ(?l—l) FEN
= Y g [ R
"om ) .
kn=—o00
= > @ F(k—n)
k,n=—o00
= (0, ax F)
1 [ . - =
=5 | @ (axF)©de
Y A ——
=57 | OO FE) de
e WGINGE
Com ),
Zabawny symbol w ostatniej calce to F(§):
E(f) = Z F(k) e-ike
k=—00
= ) F(k)e'*
k=—o00

a wiec udowodnilismy (4.39). Jest jeszcze drobny szczegol techniczny. Poka-
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zujac réownosé

> i Fh-n = o [ 6©@PFOdE @4y

—T

korzystaliémy z twierdzenia Plancherela, w ten sposob po cichu zaktadajac,
ze F(€) € L*(T). W rzeczywistosci wiemy tylko, ze F(£) jest catkowalna.
Mozemy sobie z tym poradzi¢ w standardowy sposob. Niech, dla N € N
funkcja Fy(§) bedzie obcieciem F'(£) do poziomu N:

Fy(&) = min{F(&), N}.

Fy(€) jako funkcja ograniczona jest w L?(T). Mamy wiec (4.41) z Fy w
miejsce F':

2 o Pk -m =5 [ GOPFv©ds  (442)

Nastepnie przechodzimy do granicy, gdy N — oo. Na mocy twierdzenia o
zbieznosci ograniczonej prawa strona (4.42) dazy do prawej strony (4.41). Z
drugiej strony widaé, ze

Fn(k) == F(k).
(znowu twierdzenie o zbieznosci ograniczonej), a sumy po lewych stronach
sa skorczone, wigc z (4.42) wynika (4.41). O

Mozemy teraz sformutowa¢ wniosek dotyczacy analiz wielorozdzielczych
Riesza.

Whiosek 4.9. Jezeli {V;}5°_ i ¢ tworzg MRA Riesza, to istnieje ¢ € Vj

j=—00
taka, ze {V;}2_ i ¢ tworzq o.n. MRA.

j=—o00

Dowadd. Wiemy, ze funkcja

F(&) = ) &+ 2km)P?

k=—o0

jest ograniczona od gory i odcieta od 0 od dotu. W takim razie funkcja
F(£)7"2 jest ograniczona, a wiec w L?(T), a wiec istniejg wspotczynniki
{an} € % takie, ze

1 _ - —iné
—F(é“) = n_z_oo Q€ .
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Niech

FNRI(3)
o(6) = 6

= Y ane (9),

n=—oo

czyli, jak wiemy,

s@)= 3 anplz—n).

n=—0oo

Wynika z tego, ze ¢ € Vj, a w zwigzku z tym wszystkie catkowite przesuniecia
¢ tez nalezg do V. Tworzg one uktad o.n. w Vj:

5 |6(€ + 2km)[?
Z |5(€ + 2km)|? Z Ptz

o0

Z (& + 2km)?

k=—o00

= 1.

Korzystajac z tego, ze F(£)Y/? € L*(T) widzimy, Ze istnieja rowniez wspol-
czynniki {3,} € (2, takie, ze

n=—oo

a wiec domkniete rozpiecia liniowe przesunie¢ catkowitych ¢ i ¢ sa takie
same, rowne Vj. O

Skoro analiza Riesza jest takze analiza o.n., wiec réwniez generuje baze
falkowa. W szczego6lnosci dla dowolnego N € N istnieje falka 1 bedaca
splinem rzedu V.

Analizy splinowe

Wré6émy na chwile do analiz splinowych. W rozdziale o przestrzeni Hilberta
pokazalismy, ze przesuniecia calkowite funkecji Haara ¢ = A = X[o,1) stano-
wig uklad o.n., a przesuniecia A! = ¢ * ¢ stanowia uklad Riesza ze stalymi
A=1/31i B = 1. Korzystajac z Twierdzenia 4.8 pokazemy teraz ogdlng me-
tode, przy pomocy ktorej mozna pokazac¢, ze przesuniecia dowolnego splinu
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AV stanowig uklad Riesza. Niech

o0

Fr(€) = > [AN(E + 2km)”
Kl
Wiemy, ze
B = oo = [T
— kio B(€ + 2km)[* = 4 sin®(£/2) ki@ m =1, (4.43)
Fy(§) = ki (€ + 2km)PNVHD = 22VHD sin? V4D (¢ /2) ki €+ zkjr) ZVED

Oszacujemy wartosci Fiy(€) obliczajac sume w ostatnim wierszu. Z (4.43)
wynika

- 1 1
_Z &+ 2k7r T 4sin?(6/2)  2(1—cos(€))

(4.44)

Zauwazmy, ze powyzsza sume mozna rézniczkowaé¢ wyraz za wyrazem. Wy-
nika to z tego, ze szereg, a takze szereg pochodnych jest zbiezny jednostajnie
na kazdym domknietym podprzedziale otwartego przedzialu (0,27) (w ta-
kiej sytuacji mowimy, ze szereg jest zbiezny niemal jednostajnie na (0, 27)).
Rozniczkujac (4.45) 4 krotnie otrzymujemy
6 i 1 _ 24 cos(§) 7

(€ 2km)T 21— con(€))?

1+ 2cos(§) 15 — 12 cos?(£) — 3 cos®(€)
120 Z £+ 2]m- ~ 2(1 — cos(€))? + 2(1 — cos(§))* '

Otrzymujemy wiec

[e.9]

— 16 sin? 1 2+ cos(§)
P8 =10 sie/2) k:z_:oo E+2kmt 3
Fy(€) = 64 sin(£/2) Z o ;kﬂ)(s _16+16 cos?()g) + cos (5)
k=—00

Pierwsza funkcje tatwo jest oszacowaé dokltadnie od gory i od dotu
1
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i otrzymujemy te same stale A i B, ktére otrzymaliSmy wcze$niej, bezposred-
nio badajac przesunigcia A'. Dla Fy(€) obliczymy pochodna, i znajdziemy
maksima i minima. Latwo mozna sprawdzié¢, ze F»(§) osiaga swoja wartosé
maksymalna w punktach 2n7 a minimalna w punktach (2n + 1)7. Wynika
stad, ze . .

20 SFE) =35
W ten sposob udowodnili$my, ze przesuniecia splinu podstawowego A?(x)
stanowia uklad Riesza, ze stalymi 1/30 1 11/10. Rozniczkujac (4.45) mozna

uzyska¢ stale Riesza ogélnie, dla dowolnego AN (z).

Konstrukcja falek Daubechies

Falki Daubechies to falki o ograniczonym no$niku i, w zaleznoéci od wersji,
roznej gtadkosci. Powstaja one z analizy wielorozdzielczej, ktorej funkcja
skalujaca ma te same wtlasnosci co falka, czyli ograniczony no$nik i glad-
kosé. Filtr dolnoprzepustowy takiej analizy wielorozdzielczej musi wiec by¢
wielomianem trygonometrycznym, czyli jego ciag wspotczynnikow musi byé
skoniczony. Konstrukcja takiej analizy wielorozdzielczej rozpoczyna sie wiec
od znalezienia odpowiedniego filtru. Pierwszym krokiem bedzie twierdze-
nie, mowiace, ze jezeli funkcja mg spelnia okreslone warunki, to jest filtrem
dolnoprzepustowym pewnej analizy. Dow6d twierdzenia jest dtugi, ale intu-
icyjnie jasny i dosy¢ interesujacy. Idea jest nastepujaca. Majac funkcje myg
konstruujemy funkcje skalujaca wzorem

P(€) = mo(271E)p(27€) = mo(27 mo(2726)p(2726) = - - = [ [ mo(277€).
j=1

Pytania sg wiec dwa: co trzeba zatozyé¢ o ¢, zeby byla to funkcja skalujaca
pewnej analizy, i co trzeba zatozy¢ o myg, zeby powyzszy iloczyn nieskon-
czony dawal odpowiednie ¢. To zostanie rozstrzygniete w Twierdzeniu 6.
Nastepnie, kiedy juz bedzie wiadomo jakie warunki ma spetnia¢ mg, skon-
struujemy ja. Teraz odpowiemy na pierwsze pytanie. Potrzebny nam bedzie
nastepujacy fakt.

Fakt 4.10. Niech
.cVayaccVycViCce-

bedzie rosngcym ciggiem podprzestrzeni domknietych L*(R), i niech bedg
spetnione warunki (c) i (d) definicji analizy wielorozdzielczej. Wtedy wa-
runek (b) jest spetniony automatycznie, a warunek (a) jest réwnowazny na-
stepujgcemu

lim |p(277¢)[ = 1,

J—o0
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dla prawie kazdego £ € R.
Dowdd. Niech f € V;. Z warunku (c) definicji analizy wynika, ze
fi(z) = 2012f(2 ) € V.

Jezeli f € NV; to f; € Vi dla kazdego j € Z. Zamieniajac zmienne widzimy,
ze dla kazdego 7 € Z

LA511 = [LFII
Korzystajac z Twierdzenia 4.3 (i) mamy, ze istnieja m; € L*(T) takie, ze

Fi(€) =my(©)@(€), my e LX(T), |myll =1£] = I,

czyli . o . A .
F(&) =22 f,(27€) = 2/Pm(27€)p(27¢).

Zauwazmy, ze w takim razie, z nieréwnosci Schwarza

47r N . 47r . .
/2 F(©)) de = 2972 / my (26)[|p(20¢)| de

T 2

4r 1/2 4 1/2
sW(/Q |mj<2f>|2d5) (/ \s5(2j€)\2d5) |

Zamieniamy zmienne w obu catkach. m; jest 2m-okresowa, a przedzial [27 717, 20727]
sktada sie z 27 okresow, wiec

20+27

4 ) ‘
| maepas =2 [ o ae
27 20417

— [ imytor ag

= 2 [m; |
=27 || fII*.

47 ) ) 22,
/ PRI de = 2 / GO de
2

T 2i+1g

<97 / Gl

Wstawiajac powyzsze do naszych rachunkow

[isenae < vamisi ([

T +lg

1/2
|¢<§>|2d5) .
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Calka po prawej stronie jest ,ogonem” skonczonej calki, wiec prawa strona
— 0 gdy j — o0, a wiec

4
| 1@l =0=f© =0 na [2r,4a)
2
W podobny sposob pokazujemy, ze f(ﬁ) =0 dla £ € [—4m, —27|. Nastepnie
mozemy przeprowadzi¢ ten sam argument dla funkcji f(2z), ktora tez nalezy
do N V;. Otrzymujemy

f(6)=0 dla ¢ € 2727, 4n] dla kazdego k € Z,
czyli f = 0. Pokazalismy wiec, ze spelniony jest warunek (b) definicji MRA.
Teraz zajmiemy sie warunkiem (a). Przypomnijmy, zZe niezaleznie od (a)

(nie korzystajac z niego) mozemy pokaza¢ istnienie filtru dolnoprzepustowego
my takiego, ze

$(28) = mo(§)(§), (4.45)
7B+ 2k =1, (4.46)
mo(€)I* + [mo(€ +m)[* = 1. (4.47)

Z (4.47) wynika, ze |mo(§)| < 0 co, biorac pod uwage (4.45) daje nam, ze
ciag |¢(277€)| jest niemalejacy
2(277€)] = [mo(27UHVE)] - |p(27UHVe)] < [p(27 Ve,
Z (4.46) wynika, ze jest to ciag ograniczony od gory przez 1, wiec dla kazdego
¢ € R mamy granice
9(&) = Jim [227€)] 1 0<g(€) < 1.
Wykorzystamy fakt, ze w kazdej podprzestrzeni V; mamy baze¢ o.n. sklada-
jaca sie z funkcji
oip() = 22022 —k); kcZ
Rzut ortogonalny na V; mozna wi¢c zapisa¢ wzorem

[e.9]

(Pif) @)= > (f.oimpin(z) wL*(R),

k=—o00

oraz

IPAIP = D 1 ol

k=—00

Dowod nastepujacego faktu zostawiamy jako ¢wiczenie.
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Fakt 4.11. Mamy nastepujgcg rownowaznosé:

U Vi=L*R) < |Bf] == |fl. VfeL*®R).

j=—o0

Warunek po prawej mozna nieco ostabié, zachowujgc rownowaznosé. Wy-
starczy zeby zbiezno$é zachodzita dla [ z jakiego$ gestego podzbioru.

Niech gestym podzbiorem L?*(R) bedzie zbior funkcji f o ograniczonym
spektrum, czyli takich, ktorych transformata Fouriera ma ograniczony no-
$nik. Niech f bedzie taka funkcja.

<f7 90j7k> =

(f, %
/ &2 B IE 7 de

/ et de.

Niech j bedzie dostatecznie duze, tak, aby f(2j§) =0dla¢ ¢ [—m, 7|. Wtedy

2]/2
YRS

Tak wiec (f, k) jest wspolczynnikiem Fouriera funkcji z L?(T):

1
2
1
27
_ 2/

e'F de.

(F0in) = F(=k), dla F(¢) = f(27) ().
Skorzystamy z rownosci Plancherela w L*(T)

1P f]1? = Z [(f, i8]

k=—o00

.

—% | (219 (€)1 dé

2w )
- —/ Ple P de

2171'

212 f(206) ()| de

= o [ ifer gt as
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gdzie w ostatniej linijce skorzystaliémy z twierdzenia o zbiezno$ci ograniczo-
nej. Widzimy wiec, ze

] — 00 1 o
1B 2= 0 = o [ 1R de
doktadnie wtedy, gdy
| 1iorara = [ 1P
Poniewaz 0 < g(&¢) < 1 to powyzsza réownos¢ zachodzi dla kazdej funkcji fo
nos$niku ograniczonym wtedy i tylko wtedy gdy ¢(¢) = 1 prawie wszedzie. [

Skorzystamy teraz z udowodnionego wilasnie faktu. Widzimy, ze funk-
cja ¢ € L*(R) jest funkcja skalujaca pewnej analizy wielorozdzielczej jezeli
spelnia nastepujace warunki

> 1p(E +2km)P =1, (4.48)
k=—o00
istnieje  mo € L*(T) taka, ze  @(28) = mo(€)P(€). (4.49)
lim |¢(277¢)| =1 dla prawie kazdego ¢ € R. (4.50)
J]—00

Warunek (4.48) mowi, ze przesuniecia catkowite ¢ stanowia uklad o.n., a
wiec jezeli Vj zdefiniujemy jako domkniete rozpiecie liniowe tych przesuniec,
to stanowi¢ one beda baze o.n. Vj. Warunek (4.49) z kolei mowi, ze je-
zeli zdefiniujemy V; jako odpowiednie przeskalowanie Vp, to V; C V1. W
koricu, jak wynika z faktu powyzej warunek (4.50) gwarantuje (a) w definicji
MRA. Teraz odpowiemy na drugie pytanie, czyli sformutujemy warunki na
my, dzieki ktorym funkcja ¢ zdefiniowana przy pomocy iloczynu nieskonczo-
nego (po stronie transformaty Fouriera), bedzie speliata (37)-(39).

Twierdzenie 4.12. Niech funkcja mo(§) € L*(T) spetnia nastepujgce wa-
runks
(i) Imo(E)* + mo(§ +m)> =1,
(ii) mo jest rézniczkowalna w 0 i mo(0) = 1,
(iii) mo ma wartosci rzeczywiste na [—mw/2,7/2], oraz

Ee[—g}g,wﬂ] mo(§) = K > 0.
Wtedy myq jest filtrem dolnoprzepustowym pewnej analizy wielorozdzielczey.
Dodatkowo, jezeli mqg jest wielomianem trygonometrycznym (to znaczy cigg
wspdtezynnikow Fouriera {mo(k)} jest skoriczony), to funkcja skalujgca i
falka tej analizy majg nosnik ograniczony (poza pewnym skoriczonym prze-
dziatem sq rowne 0).
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Dowadd. Zauwazmy, ze iloczyn nieskoriczony

H mo(277€)

jest zbiezny dla kazdego ¢ € R. Poniewaz 277¢ — 0 dla j — oo, wiec
wystarczy pokazaé zbieznosé iloczynu dla & dostatecznie matych. Niech wiec

€ [-m/2,7/2]. Wtedy, zgodnie z (iii) wszystkie czynniki sa dodatnie. Z (i)
wynika, ze |mo(£)] < 1, a wiec

0<me(279¢) <1 j=1,2,..., €£¢&[-m,7.
lNloczyny czesciowe

H mo(277€) (4.51)

tworza wiec ciagg nierosngcy, ograniczony od dotu przez 0, a wiec zbiezny.
Granice iloczynu oznaczamy przez ¢(§). Pokazemy, ze istotnie ta granica jest
elementem L?*(R), a wiec transformatg Fouriera czego$, ale obecnie niech to
bedzie tylko oznaczenie jakiej$ funkcji. Mamy wiec

Hmo i3} (4.52)

Zauwazmy, ze ¢ spelnia (4.49):

Pokazemy teraz, ze ¢ spelnia (4.50). Z (i) wynika, ze 0 < |mo(§)] < 1, a wiec
takze 0 < |p(§)] < 1. Zamienimy iloczyn na sume korzystajac z logarytmu.
Zauwazmy, ze logmg(§) jest okreslona na [—7/2,7/2], i jej pochodna w 0
jest O:

d , B
€ log mo(§) o = mmo(o) =0,



gdyz my(0) = 0. Wynika to z faktu, ze mq jest rozniczkowalna w 0 i ma tam
lokalne maksimum. Tak wiec dla kazdego € > 0 istnieje 6 > 0 taka, ze

logmg(&) > —€lé] dla  [€] < 0.

Niech wiec |£| <20 i [£] < 7, wtedy p(&) > 0 oraz

log (¢ Zlog mo(277€)

czyli
() > e~ dla [§] <4, [¢] <.
Funkcja |$(€)| jest wiec ciagla w 0 i ma tam warto$¢ 1, a wiec spelnione

jest (4.50). Musimy jeszcze pokazac, ze ¢ € L*(R) oraz (4.48). W tym celu
wprowadzmy nastepujace funkcje

@N (5) = X[-2Nx 2N7r] (453)

u’:]z

Zauwazmy, ze dla kazdego £ € L*(R) mamy

P(§) = lim @n(E).

N—oo

Przypomnijmy, ze iloczyny czedciowe (4.51) nie sa elementami L*(R) (cho-
ciazby dlatego, ze sa okresowe). Chcemy pokazaé, ze ¢ € L*(R), wiec utwo-
rzylismy ciag (4.53), ktory nalezy do L*(R) i jest zbiezny do ¢ w kazdym
punkcie. Pokazemy teraz, ze wszystkie ¢n maja ta sama norme, rowna v/27.
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Niech N > 2

lonlP = / on(E)P de

[T Imo(277¢)[> de

0 N oN. N
~ [ Tlimatzipac+ [ T o) de

—2N7Tj:
2N lN
:/ (H|m0(2 i(e —2Nn) ]2+H‘m02]5 )df
0 j=
2N JNl
:/0 (H|m0( g —2Mm) |2+H|mo ]5|>d€'
j=1

my jest 2m-okresowa, wiec wszystkie czynniki w obu iloczynach z wyjatkiem
N-tego sa rowne. Mozemy je wiec wyciaggna¢ przed nawias, i mamy

oNx N—-1
- / (Imo(2 Ve — )2 + mo@ V) ) T Imo(276) P de
j=1
oN N—1 '
_ /0 [T Imo(277¢) 2 de.
j=1

Funkcja podcatkowa jest okresowa o okresie 27, wiec calke po okresie mo-
zemy ,,przesungc’:

= int*n H Imo(277€)|? dé

— [ lena@P ae

o0

= len-1]*.

Widzimy wiec, ze normy wszystkich funkcji ¢n sa rowne, N = 1,2,....
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Policzymy norme ¢

27
910 = [ Imo2 ) dg

—27

0 21
a/|m@%W&+/ mo(27€)? de
0

—27

= [ (mafz € = 2m)P + lma(2 M6)F)

:/jﬁmg

= 2.

Wiemy, ze
2(6) = lim n(€), oraz [on|?=1.

Skorzystamy teraz z drugiego podstawowego narzedzia teorii catki Lebes-
gue’a, czyli z lematu Fatou.

| eore= [ len(@Pds < tim [ eno)fds = 2

Widzimy wiec, ze ¢ € L?(R), a wiec istotnie, zgodnie z jej oznaczeniem, jest
transformata Fouriera elementu ¢ € L?*(R). Pokazemy teraz, ze

p(6) = lim pn ()

nie tylko w kazdym punkcie, ale takze w L?*(R). W tym celu pokazemy, ze
istnieje stata c taka, ze

[N (€] < clp(E)]- (4.54)
Jezeli & ¢ [—2N7 2N7] to pn(€) = 0, i (4.54) jest spetnione. Dla £ €
[—2N7, 2V 7] mamy



a wiec
Bl
[p(27N¢))
Poniewaz dla ¢ € [—2V7, 2¥7] mamy 27V¢ € [—7, 7], wiec wystarczy poka-
zac, ze

[on ()] =

1
) >~ dla g€ l-ma].

Niech wiec & € [—m, 7|. Wezesniej pokazalismy, ze dla kazdego € > 0 istnieje
0 > 0, taka, ze
pn) >e™ dla g <6, |n] <.

Wybierzmy, na przyktad, e = 1, i niech 6 < 7 bedzie zgodna z powyzszym.
Niech L € N bedzie wystarczajaco duze, tak aby [271¢| < 5. Wtedy dla
j=1,2,...,L — 1 mamy 277¢ € [-7/2,7/2], oraz

5(€)] = H Imo(277€)|

—H|mo |- (271

— KL—l e ™

Niech wigc ¢ = e™/K*~!. Majac (4.54) pokazemy oy — ¢ w L*(R).

. 1 A
Jim llow = ol = tim o= [ Jo(©) - p(@) P dg =0,

N—oo 27T o

na mocy twierdzenia o zbieznosci ograniczonej, gdyz

[on (&) = 2(&)1* < (en (O] +[2(O)])* < [@(&)* (e +1)%,
a funkcja |p(€)|? jest calkowalna. Pokazemy teraz, ze funkcje px spelniaja
(4.48). W tym celu wykonamy rachunek podobny do tego, w ktorym poka-
zaliSmy, ze wszystkie ¢y maja tg sama norme 1. Niech



A

Najpierw pokazemy, ze Fy(m) = Fy(m), m € Z niezaleznie od N. Niech
N >2

F(m) = o [ Pulg)e e

/_ Z | (€ + 2km) |2 e e dg

T k=

=—/ O et de

Ny N
H’mo ]5 2 —szdf

T =1
1 2N N
= <H|mo(2_J(f |2+H|mo 03] ) eI mE de
1 2N N—-1
_ % H ’m(] jéf |2 —imé df
0
1 oN— 17rN 1
— 9=J 2 —zm{d
o |y, L imose e
1 > ~ 2 _—imé&
= lena@P e
:FN_l(m)

Funkcje Fy(§) maja wiec identyczne wspotczynniki Fouriera, a poniewaz sa
catkowalne na T, wiec musza by¢ sobie réwne. Obliczymy wspoétczynniki
Fouriera Fi(&). Podobnie jak powyzej

- 1 o — —im
Fm) = 5- [ Imaf2 9P e
1 2m

:% ;

1 2w

_J1 m=0
o m#£o.

Dla kazdego N mamy wiec

(Imo(271(€ = 2m)I* + [mo(277)[*) e™"™4dg

e‘imfdﬁ



czyli dla kazdego NV

<¢N<-—k>,<,oN<-—z>>={é Y

Korzystajac ze zbieznosci pn — ¢ w L?(R), oraz cigglosci iloczynu skalar-
nego otrzymujemy (4.48).

Do udowodnienia pozostalo jeszcze stwierdzenie o ograniczonym nosniku
funkcji skalujacej i falki, zwigzanych z analiza wielorozdzielcza, w przypadku,
gdy my jest wielomianem trygonometrycznym

mo(§) = Y hpe '™ (4.55)

n=—L

Do udowodnienia tego ostatniego stwierdzenia najwygodniej jest skorzystac z
jezyka teorii funkcji uogolnionych (dystrybucji). Dlatego tylko naszkicujemy
idee. Tloczyny czesciowe zbiegaja do ¢ w kazdym punkcie £

[Tmo(27) — ¢(0).

ale nie w L?(R), gdyz nie sa elementami L?*(R). Sa natomiast funkcjami
uogblnionymi i jako takie zbiegaja do ¢, ktora tez jest funkcja uogdlniona.
Korzystajac z (4.55) widzimy, ze iloczyny czeSciowe maja postaé

N L . I
H ( Z h”ein2_J£> = Z hnl ce hnNefi (n12_1+~~~+nN2_N)§.

7j=1 \n=-L ny...,nN=—L

Widzimy wiec, ze taki iloczyn cze$ciowy jest kombinacja liniowa transformat
Fouriera impulséw Diraca w punktach 7,271 +- - -4+-nx2~". Poniewaz wszyst-
kie wspotczynniki |n;| < L, wiec wszystkie impulsy Diraca zlokalizowane sa w
przedziale [— L, L]. Wida¢ wiec, przynajmniej intuicyjnie, ze funkcja ¢, ktora
jako funkcja uogolniona jest granica funkcji uogélnionych o nosnikach zawar-
tych w [—L, L] tez ma ta wlasnosé. Z kolei falka jest skonczong kombinacja
liniowa, (gdyz filtr m; tez jest wielomianem trygonometrycznym) przesuniec
©, a wiec tez ma nos$nik ograniczony. O]

Uwaga 4.13. Oszacowanie rozmiaru nosnika p(x) mozna zrobié¢ doktadniej.
Jezeli

N
mo(§) =Y hye” ™, M <N, MNE€Z, (4.56)

n=M
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to nosnik p(x) zawiera sie w przedziale [M, N|. Podobnie mozemy oszacowaé
noénik falki ¥ (x) zwigzanej konstruowang analizq wielorozdzielczg. Jezeli
filtr dolnoprzepustowy jest postaci (4.56), to filtr gornoprzepustowy jest wie-
lomianem trygonometrycznym postaci

—_

—-M

m(€) = D gae™ oraz () =mi(27€) [ mo(276).

n=1-N

Przeprowadzajgc takie samo rozumowanie jak dla nosnika p(x) otrzymujemy,
ze nosnik (x) jest zawarty w przedziale [1/2—(N—M)/2,1/24+(N —M)/2].

Konstrukcja falek o nosniku ograniczonym sprowadziliSmy wiec do pro-
blemu znalezienia wielomianu trygonometrycznego mg spetniajacego zaltoze-
nia Twierdzenia 4.12. Konstrukcja takiego wielomianu podzielimy na 2 kroki.
W pierwszym znajdziemy wielomian trygonometryczny g(§) spelniajacy

g(0)=1, ¢(&§) >0, oraz g¢g(&) >0na[—7/2,7/2], (4.57)
9(&) + 9§ +m) =1 (4.58)

W drugim kroku ,wyciagniemy pierwiastek” z g, czyli znajdziemy wielomian
taki, ze

mo(§)* = g(&)-

Filtry Daubechies

Filtry Daubechies moga mie¢ dowolne, parzyste dlugosci. Ustalmy pewne
k=0,1,2,.... Niech

ck:/ sin(t)2F 1 dt,
0

oraz

1 3
ge(€) =1 — = [ sin(t)**" dt.
Ck Jo

Pokazemy, ze gi sa wielomianami trygonometrycznymi spelniajacymi (4.57)
i (4.58). Przede wszystkim sin(t) jest wielomianem trygonometrycznym
it _ it

Sln(t) = T,
1
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po podniesieniu do potegi mamy

2k+1
1 2k+ 1Y\ | ,
N2kl ilt ,—i (2k+1-1)t
sin(t) = @i E < ] ) e'e
1=0

1 25:“ 2k +1 o (2h1-20)1
(24)2+1 I

=0
2k+1
— E : a ez lt7
l=—2k—1

l-nieparz.

a wiec takze wielomian trygonometryczny. Wielomian ten nie ma wyrazu
wolnego, wiec po scatkowaniu w dalszym ciggu jest wielomianem trygonome-
trycznym:

2k+1

/sm 2k“ahf Z al/ et dt
0

l=—2k—1
l-nieparz.

2k+1 (eilE — 1)

-y g

l=—2k—1
l-nieparz.

2k+1

_ Z 5l et It

I=—2k—1

Widzimy wiec, ze gi(€) jest wielomianem trygonometrycznym stopnia 2k + 1.
Zakres warto$ci g ustalimy wyznaczajac ekstrema.

(6 = 2 me g = L e,
F cr d§ 0 Ck

Funkcja g rosnie wiec na przedzialach postaci [(2n — 1)m, 2n7|, a maleje
na przedzialach postaci [2nm, (2n + 1)7w]. Ma wiec lokalne $ciste maksima
w punktach 2nm i lokalne, sciste minima w punktach postaci (2n + 1)7.
Poniewaz jest 2m-okresowa, wiec wystarczy sprawdzi¢ warto$ci w punktach
0im.

1
ge(0) =1, ge(m)=1——c =0.
Ck

gr ma wiec maksimum 1 w punktach 2n7 i minimum 0 w punktach (2n+1)r.
W innych punktach 0 < g¢x(§) < 1, czyli gx spetnia (?7). Udowodnimy
teraz (4.58), przy czym wystarczy ograniczy¢ sie do & > 0, ze wzgledu na
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okresowosé.

3 E+m
g(&) +ogp(§+m)=1— 1 sin(t)?* T dt +1 — 1 sin ()21 dt
Ck- 0 Ck 0
1 [ 1 [T
=2— — [ sin(t)*dt — — / sin ()2 dt.
Ck 0 Ci; 0

(4.59)

Zauwazmy, 7e

§+m 3 3
/ sin(t)* ! dt = / sin(t + )2 dt = —/ sin(t)2F 1 dt,
0 —r n

czyli, kontynuujac (4.59) i korzystajac z wlasnosci calki

I I
=2 — — [ sin(t)*dt + — / sin(¢)% ! dt
Ck Jo Ck J—n
1 0
=2+ — sin(t)2F dt
Ck J_n
1 ™
=2 — — [ sin(t)*dt
C 0
=2-1=1.

Mamy wiec (4.58), czyli dla kazdego k = 0, 1,2, ... skonstruowali$émy odpo-
wiednie gx. Dla kazdego k£ mozemy tatwo wyliczy¢ wspotczynniki wielomianu
gk- Drugim krokiem w konstrukeji filtréw Daubechies jest nastepujace twier-
dzenie, ktore umozliwia ,wyciagniecie pierwiastka” z g.

Twierdzenie 4.14. Niech g(§) bedzie wielomianem trygonometrycznym
M
g(&) = Y e, (4.60)
n=—M
takim, ze g(§) > 0. Wtedy istnieje wielomian trygonometryczny mo(§)
M
mo(€) =Y Bue "™
n=0

taki, ze |mo(€)[* = g(£).

Dowadd. Dowdd sprowadza sie do tego, ze pierwiastki g mozna pogrupowaé w
pary, a nastepnie te pary mozna rozdzieli¢. Niech P(z) bedzie wielomianem
zespolonym danym wzorem

2M
P(z) = Z Qp_r 2",
k=0
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czyli, dla z na okregu jednostkowym, z = €’¢ mamy
P(e'*) = (") g(&).

P(z) spelia nastepujace rownanie
1 oM
2Mp (:) = M E gz "
z
k=0
oM
_2M Z gz
k=0
oM
_ Zak_M 2M—k
k=0

2M
= E Qnr_p 2"
k=0

Po drodze skorzystaliSmy z tego, ze g ma wartosci rzeczywiste, a wiec a_p =
a@y. Wielomiany P(z) i P(1/Z) maja wiec te same pierwiastki (rézne od
zera), z tymi samymi krotnosciami. Niech rq,...,r; beda réznymi pierwiast-
kami P, lezacymi wewnatrz okregu jednostkowego (|r;| <1, i =1,...,0), 0
krotnosciach nq,...,n;. Wtedy 1/7, i = 1,...,[ sa roznymi pierwiastkami
P lezacymi poza okregiem jednostkowym, o krotnosciach nq,...,n;.

r,...,71 oraz 1/77,...,1/7

sa wszystkimi pierwiastkami P réznymi od 0 i nie lezacymi dokladnie na
okregu jednostkowym. Niech si,...,s, beda réznymi pierwiastkami P le-
zacymi dokladnie na okregu jednostkowym, [s;| =1, j = 1,...,p. Mozna
uzasadni¢, ze krotnosci pierwiastkow s; sa liczbami parzystymi. W skrocie,
dodajemy ¢ > 0 do naszego wielomianu g(&) i staje sie on $cisle dodatni.
Odpowiadajacy mu wielomian nie ma wiec zer na kole jednostkowym, tylko
poza nim, wystepujace w parach. Gdy € — 0 pierwiastki, ktore przesung sie
na okrag jednostkowy zejda sie na nim parami, jeden przesunie sie ze srodka,
drugi z zewnatrz. Mozna to usci$lic. KrotnoSci pierwiastkow na okregu
jednostkowym oznaczmy wiec przez 2ky,...,2k,. Wielomian P(z) nie ma
pierwiastka w 0. To jest réwnowazne warunkowi a_p; # 0, czyli temu, ze

100



M w (48) jest najmniejsze. Skoro P(z) nie ma innych pierwiastkow oprocz
wypisanych powyzej, wiec mozemy roztozy¢ go na czynniki

Zrobimy nastepujace przeksztatcenia

1 S
(z —sj) = —zs, <;—Sj), (gdyz Sj_sj)’

czyli
1 ks
(o= = (a5 (£ -57)

Podobnie

(-2)-% ()

== || == — =T,

T T z

czyli

AH (;z) i f[ (2 —r;)" G —7"_,-) : ﬁ(—zsj)’“j ICEDL (% _

i=1 j=1 j=1

l 1 n; P 1 k:j
— B ymtettkitethy —r) (= =7 sV 2 5
z H(z ri) T H(z S;) -5

i=1 j=1

gdzie ny + --- +mny + ki +--- + k, jest polowa sumy krotnosci wszystkich
pierwiastkow wielomianu P(z), czyli potowa stopnia P(z)

2M
n1+'--+nl+k1+~~+kp M = M.

Mamy wiec

z)=2"B H ) (-—n>m ﬁ(z—sj)kf G—g)k

j=1

Dla z na okregu jednostkowym z = ¢‘¢ mamy wiec

l n; P kj
@ =8 =r (7)o (5 -57)
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ale 1/¢'€ = 7€ = i€ czyli

! p
€)= B [T 1 — rf? T[ 1S — 5.
i=1 j=1
Poniewaz g(£) > 0, wiec B > 0. Niech wiec

mo(€) = VB 1—[(‘5’_1'é —7;)" I_I(e_ié — 5.

j=1

Zauwazmy jeszcze na koniec, ze znalezienie my wymaga roztozenia wielo-
mianu P(z) na czynniki liniowe. Czesto jest to robione numerycznie. O

Uwaga 4.15. Dia k = 0,1,2,... skonstruowalismy filtry gx(§), spetniajgce
warunki powyzszego twierdzenia z M = 2k + 1. Filtry mo(§) ktdre otrzymu-
jemy z powyzszego twierdzenia $q wiec postaci

2k+1

mo(§) = > hpe ' (4.61)

Sq to standardowe filtry Daubechies, ktore stuzqg do konstrukcji standardowych
falek Daubechies. Korzystajge z (4.61) i uwagi po dowodzie Twierdzenia 4.12
mamy, ze dla ustalonego k (odpowiada to filtrowi diugosci 2k + 2) nosnik
funkeji skalujgeej p(z) zawiera sie w przedziale [0,2k + 1], a nosnik falki
W(x) zawiera sie w przedziale [—k, k + 1].

Przyklady: Policzymy wspotczynniki filtrow Daubechies dtugosci 21 4. W
przypadku filtrow Daubechies rozklad wielomianu P(z) jest troche tatwiejszy.
Wielomiany gx(§) ktore skonstruowaliémy maja pierwiastek rzedu k42 w ,
a wiec wielomian P(z) ma pierwiastek rzedu co najmniej k +2 w —1. Niech
k=0.

co = / sin(t) dt = 2,
0

1 [¢ 1 1 1 ., 1 1.

go(f)_l_é/o Sin(t)dt:§+§COS(5)21—16716+5+Z—1615
11 1, 1 ,
P(z)=+52+ 727 =7 (+1)"

P(z) ma 1 podwojny pierwiastek na okregu jednostkowym, z = —1, czyli
[=0, p=1, k; = 2. Otrzymujemy

1

mo(€) = = (7€ +1) = e cos(£/2), ho=hy = 5 =0, k#0,1

N —
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To jest filtr dolnoprzepustowy analizy Haara, ktory jest takze najkrotszym z
filtrow Daubechies.
Niech £ = 1. Mamy

1 3 1

1
91(§) = >t cos(§) — = cos*(§) = = + 0s(§) — 6 cos(3§),
9 1 9 1

1
P - _ = 2 — .3 I S 6.
Bl =—pt s ter vt — 5t

FLatwo zauwazy¢, ze P(z) ma pierwiastki rzeczywiste, na okregu jednost-
kowym jest pierwiastek —1 krotnosci 4, oraz poza okregiem jednostkowym
pierwiastki 2 + /31 2 — v/3. W naszych oznaczeniach [ =1, ny =1, p = 1,
ki = 4. Otrzymujemy nastepujacy wzor

1 . , .
mo(§) = ——— (—(2 +V3) = (3+2V3) et —V3e T 4 e"35> .

32(2 +V/3)

W literaturze wspotczynniki filtrow podaje sie najczesciej pomnozone przez
V2. Jak zobaczymy w nastepnym rozdziale w ten sposob oszczedza sie mno-
zenie przez ten pierwiastek a algorytmie obliczeniowym.

Funkcji skalujacych i falek odpowiadajacych filtrom Daubechies nie da sie
zapisa¢ zadnym rozsadnym wzorem. Natomiast istnieje metoda numerycz-
nego generowania ich przyblizonych wykresow. Jest to tak zwany algorytm
kaskadowy, ktory opiszemy w nastepnym rozdziale.

Falki w wymiarze n > 1

W R” baza falkowa ma postac
{2%"@@1(2%—@; neZ”,jeZ,lzl,...,2”—1} (368)

Na przyktad, w wymiarze n = 2 baza falkowa generowana jest przez 3 falki.
Dla R™ mozna zdefiniowa¢ pojecie analizy wielorozdzielczej MRA i przepro-
wadzi¢ konstrukcje falek w sposob zupetie analogiczny do konstrukcji w
przypadku n = 1. Postepujac tak zauwazyliby$my, ze w sposoéb naturalny
pojawia sie 2" —1 filtrow gérnoprzepustowych, przy minimalnych zatozeniach
o regularnosci funkcji skalujacej. Analize wielorozdzielcza i zwiazane z nia
falki w wielu wymiarach mozna skonstruowaé¢ uzywajac analizy jednowymia-
rowej. Majac analize w L?(R) z funkcja skalujaca o(z) i falka ¥ (z) mozemy
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zdefiniowaé¢ funkcje skalujaca ®(z,y) i falki W!(x,y), | = 1,2,3 w L*(R?)
wzorami

B(z,y) = p(r) p(y), ¥z, y) = () ¥(y), V(2,y) = ¥(2) p(y), ¥¥(z,y) = ()Y (y).
(4.62)

Sformutowanie definicji MRA w L?(R?) i sprawdzenie, ze funkcje (4.62) spel-

niaja wszystkie warunki tej definicji zostawiamy jako ¢wiczenie.

Uwagi 4.16. (i) w (??) zastosowalismy zamiane skali w postaci macierzy

A=

Bazy falkowe mozna generowaé rowniez uzywajge innych macierzy A, w kto-
rych, na przyktad, rozciggniecie potgczone jest z jakims obrotem.

(ii) Bazy falkowe o zmiennych rozdzielonych takie, jak we wzorze (4.62) to
tylko jeden szczegolny rodzaj baz falkowych w wielu wymiarach. Czesto sto-
suje sie bazy w ktorych poszczegolne falki majq szczegolny ksztatt. Takie falki
sq uzyteczne w wychwytywaniuv w sygnale elementow o tego typu ksztatcie.
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Rozdzial 5

Algorytmy Numeryczne

Algorytm Mallata

Algorytm Mallata jest podstawa dyskretnej transformaty falkowej (dyskret-
nej, to znaczy transformaty sygnalow bedacych ciagami probek). Algorytm
pozwala w sposob efektywny numerycznie oblicza¢ wspotczynniki bazowe sy-
gnatlu w jednej bazie na podstawie wspotczynnikow w innej bazie. Opiszemy
teraz o jakie bazy chodzi.

Przypomnijmy, ze dla danej analizy MRA i dowolnego j € Z przestrzen
V; rozklada si¢ jako ortogonalna suma prosta podprzestrzeni

Vi=V e W,

Zauwazmy, ze zgodnie z tym, co wiemy o analizie wielorozdzielczej, w prze-
strzeni V; mamy baze ortonormalna

{pjn(2); n€Z}, (5.1)

gdzie p jest funkcja skalujaca analizy. Dla j = 0 jest to cze$¢ definicji analizy
wielorozdzielczej, dla pozostatych j € Z wynika z zamiany zmiennych = —
272, Poniewaz j jest dowolne, to takze w przestrzeni V;_; mamy baze o. n.

{pj—1n(x); n € Z}.

W przestrzeni W;_; mamy z kolei baze o. n.

{Yj-1n(2); n € Z},

gdzie 1 jest falka zwigzana z nasza analizg wielorozdzielcza. Przypomnijmy,
ze uzywamy nastepujacych oznaczen

Spjm(x) = 2j/290(2j$ - n)7 wj,n(x) = 2j/2¢(2j$ — ’I’L)
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W przestrzeni V; mamy wiec do dyspozycji dwie rozne bazy o. n., baze (5.1),
oraz baze
{cpj—l,n(x)’ 77/)]'_17”(%); nc Z} (52)
Algorytm Mallata pozwala oblicza¢ wspotczynniki sygnatlu w jednej z tych
baz przy pomocy wspotczynnikow w drugie;j.
Niech f € L*(R), i wprowadZmy nastepujace oznaczenia na ciggi wspol-
czynnikow f w réznych bazach. Niech j € Z bedzie dowolne, i niech

aj(n> = <f7 gpj:”>7 d](”) = <f7 ¢j7n>7 n € 2. (53)

Przypomnijmy, ze {h,}5>_ i {g.}>2 ., oznaczaja filtry dolno- i gorno-

przepustowy analizy wielorozdzielczej. Nastepujace twierdzenie przedstawia
algorytm.

Twierdzenie 5.1 (Mallat). Transformata:

a;1(k) = V2 ) By arai(n),

n=—oo

dj_l(k?) = \/§ Z Maj(n).

n=—oo

Transformata odwrotna:

a;j(n) =vV2 > hpova;a (k) +V2 Y goaaja(k).  (5.5)

k=—o00 k=—00

Uwaga 5.2. (a) Zauwazmy, zZe algorytm odwoluje sie tylko do filtrow dolno-
i gornoprzepustowego. Same wartosci funkcji ¢ i1 nigdzie nie sqg potrzebne.
Zauwazmy tez, ze wzory powyzisze sq¢ tym efektywniejsze numerycznie, im
krotsze sq filtry, a jezeli sq nieskoriczone to im szybciej malejq.

(b) Zwréémy vwage na wspotezynniki V2 wystepujace w powyzszych wzorach.

W praktyce po prostu filtry {h,} i {gn} normalizuje sie w ten sposdb, ze

V2 jest juz w nich zawarte. Oszczedza sie w ten sposéb ciggtego mmnoze-

nia przez ten wspotczynnik. Filtry Daubechies generowane przez polecenie

daubcqf () pakietu RWT sq wtasnie tak znormalizowane, na przyktad filtr
11

Haara to (75, 75), a nie, tak jak na naszym wyktadzie (%, %)

Dowdd (twierdzenia Mallata). Przypomnijmy wzory
= (50 (5) o0 —n)

n - 2()0 2 790 n 9
= (5u(5) et —n

gn = B 9 y P n),.
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Liczba catkowita n jest dowolna, wiec w pierwszym ze wzoréw (5.6) wpiszmy
w jej miejsce n — 2[, gdzie n,l € Z.

1
hn72l - <§ 2

/N
DN -

ol (=20

8

)Mdm

AS)
o~ —~ —
8 NS

/.3
:/:%@ ;”)mdx
:/_‘”%@(g_z)mdm

g

Dokonujemy zamiany zmiennych x +— 2/x. Granice calkowania nie zmieniaja
sie

>~ 1 . - .
by = / 5 02 e — 1) (29 —n) 2 dx

_ /Oo E 9’7 0(2 e —1) 9% p(29x —n)dx
1
= N E %-1,1(55) ‘Pj,n(x) dr

1

\/§ <g0j—1,la 90]7n> .

Podobnie wyprowadzamy wzor dla g, o i otrzymujemy

\/Ehn—Ql = <30j—1,l7 Soj,n>7

5.7
V2 gneor = (Y14, Pjn)- 1)

Obliczylismy wspotczynniki bazowe funkeji w;_1, 1 ¥;_1; w bazie (5.1), wiec
funkcje te maja rozwiniecia

Pi-11 = V2 Z hn—21 Pjn;

n=—oo

Vi1 = V2 Z In—21 Pjn-

n=—oo

(5.8)

107



Wrzory te wstawiamy do definicji naszych ciggow
aj—1(k) = ([, @j-1k)

= <f, \/§ Z hn72k (Pj,n>

n=—0oo

= \/§ Z P —ok <f7 90]',”>

n=—oo

=V2 > Ty a;(n).

n=—oo

Podobnie obliczamy d;_; (k). W ten sposob pokazaliSmy pierwsza czesSé¢ twier-
dzenia.

Wzory (5.7) mozemy tez potraktowac jako wzory na wspoétezynniki ba-
zowe funkcji ;,, € V; w bazie (5.2). W takim razie

Oin =Y (i Lictk) Cicrk+ > (Pimsim1k) Yio1i
koo S (5.9)
= \/§ Z hn,Qk <,0j71,]g + \/§ Z n—2k wjfl,k-
k=—00 k=—00

Mozemy wiec obliczy¢ wspotczynniki bazowe f
aj(n) = <f> 90]'7”)
= <f7\/§ Z Pk Pj—1k + V2 Z Gn—2k ¢j—1,k>

k=—00 k=—oc0

=2 Z ho—ok (f,05-1) + V2 Z In—2k {fsVi-1%)

k=—0o0 k=—o00

-2 i Pn—or a1 (k) + V2 i In—2k dj—1(k),

k=—o0 k=—o00
co konczy dowdd. O]

Przyjrzyjmy sie wzorom. Niech ciagi {h,} i {g,} maja wspolczynniki

hn = h—na gn =0-n-
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Wtedy, zgodnie z twierdzeniem Mallata

aj (k) = V2 Y hapn aj(n) = V2 (hxa;)(2k),

n=—oo

di (k) = V2 Y ok a;(n) = V2(§ * a;)(2k).

n=—oo

Obliczenie ciggéw a;_1 i d;—; sprowadza si¢ wiec do splotu wyjSciowego ciagu
a; z ciggami h i g, a nastepnie wybrania co drugiego elementu powstatych
ciagow (i pomnozenia przez \/5) Odrzucenie co drugiego wyrazu po angiel-
sku nazywa sie downsampling. W teorii przetwarzania sygnalu operacje na
sygnale czesto opisuje sie przy pomocy schematoéw blokowych. Nasza ope-
racje mozemy przedstawi¢ schematycznie nastepujaco (operatory H i G to

sploty z filtrami {%,} i {g,}, oraz pomnozenie przez \%)

-| H - ¥2 -
oo
= G_ - +2 —j‘i-_

Rysunek 5.1: Jeden krok dyskretnej transformaty falkowe;j.
Podobnie przyjrzyjmy sie drugiej czesci twierdzenia Mallata. Wprowadzmy

nastepujace oznaczenie. Jezeli dany jest ciag {a,}, to przez {o/,} oznaczamy
jego ,rozrzedzenie™:

;) Qnj2 1 m - parzyste
0 : n - nieparzyste.

Ciag {«a,} zostal wiec ,przepleciony” zerami:
e, 01, 00,00, ... = e a-1,0,00,0, 01,0, a0, . ..
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Wzor (5.5) mozna wtedy zapisac

a;(n) = V2 i hi-ok aj-1(k) + V2 i Gn—2k dj-1(k)

k=—00 k=—o0

=2 Z hoer a;-1(k/2) + V2 Z In—k dj-1(k/2)
k—’;z;z;zte k—l;jr;;zte

= \/§ Z hnfk a;_l(k) + \/5 Z In—k d;—l(k)
k=—o00 k=—o00

=2 (hx a;_y)(k)+ V2(g* d;_1) (k).

Zauwazmy wiec, ze 1 krok odwrotnej transformaty falkowej sprowadza sie
najpierw do rozrzedzenia sygnalow wejsciowych a;_1 i d;—1 (po angielsku
upsampling), a nastepnie splotu kazdego sygnalu z odpowiednim ciggiem,
i w koncu zlozenia (sumy). Sploty sa w zasadzie z tymi samymi ciggami
co w transformacie. Odwrotng transformate mozemy przedstawi¢ w postaci
schematu blokowego (tutaj operatory H i G to sploty z filtrami {h,} i {g.},

oraz pomnozenie przez \%)

I3 Fni
- 12 - H -
cly
—_— "l' 2 - G

Rysunek 5.2: Jeden krok odwrotnej dyskretnej transformaty falkowe;.

Sygnaly dyskretne

Sygnaly dyskretne to ciagi wartosci {f,}, skoriczone lub nie (tymczasem
rozwazamy sygnaly l-wymiarowe). Najczesciej taki ciag wartosci to ciag
probek jakiego$ sygnatu cigglego, na przyktad dzwieku. Analiza falkowa ta-
kiego sygnalu polega wyborze analizy wielorozdzielczej (czyli wyborze falki),
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nastepnie umieszczeniu tego sygnalu w przestrzeni V{), a nastepnie oblicze-
niu wspolezynnikow bazowych w bazie falkowej (ciagow {d;}). Numerycznie
caly ten proces sprowadza sie do prostego i szybkiego algorytmu rekurencyj-
nego, w ktorym wartosci funkcji skalujacej ani falki w ogole sie nie pojawiaja.
Jedynym elementem analizy wielorozdzielczej wystepujacym w obliczeniach
sa filtry dolno- i gérnoprzepustowy. Algorytm opiera sie na twierdzeniu
Mallata i nazywa sie algorytmem Mallata. Niech naszym sygnatem bedzie
ciag {fn}. Wybrawszy analize wielorozdzielczg przyporzadkujemy sygnatowi
funkcje f € Vg

fl@) = fuplz—n). (5.10)
Takie przyporzadkowanie jest bardzo naturalne. Najczesciej wartosci f, sa
probkami jakiej$ ciagtej wartosci fizycznej, pobieranymi w regularnych od-
stepach czasu. Czujnik pobierajacy probke z reguly pobierajac ja dokonuje
usrednienia wartosci w jakims przedziale czasu. Caly proces pobrania pro-
bek i przyporzadkowania im elementu f € Vj jest wiec rzutem wyjsciowego
sygnatu ciggtego na V5. W sumie bardzo naturalna i tagodna operacja, je-
zeli analize wielorozdzielcza dobierzemy wtasciwie do charakteru badanego
sygnatu.
Dyskretna transformata falkowa dyskretnego sygnatu { f,,} to zbior wspol-
czynnikoéw bazowych

{d;(n) = {f.¥jn)idn€Z, j <—1}. (5.11)

Widzimy wiec, ze obliczenie transformaty sprowadza sie do rekurencyjnego
stosowania twierdzenia Mallata, z ag = {f,}. Sygnal mozna odtworzy¢ z jego
transformaty falkowej (5.11) stosujac rekurencyjnie druga cze$¢ twierdzenia
Mallata. W praktyce sygnat analizowany jest zawsze skoniczony i algorytm
Mallata ma skoniczong liczbe krokow.

Sygnaly skorniczone

W przypadku sygnatu skonczonego sktadajacego sie z N probek
{f07f17 s 7fN—1}

algorytm wyglada nastepujaco. Algorytm ma zastosowanie do sygnalow,
ktorych dlugosé jest potega 2, wiec najpierw ewentualnie wydtuzamy sygnat,
poprzez dodanie zer, tak, aby jego dlugoéé¢ byta potega 2, niech N = 27.
Nastepnie okres§lamy wyjsciowy ciag ag, jako N-periodyzacje sygnatu:

ag(n) = fn, n=0,...,N —1,
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oraz

ao(n + kN) = ap(n), keZ, n=0,...,N—1.

Latwo zauwazy¢, ze zastosowanie 1 kroku transformaty falkowej do nam 2

ciagi
{oa(m)hz oo 1 {da(m)liz o,
ktore sa okresowe o okresach dwukrotnie krétszych

a_1(n+ N/2) =a_y(n), d_1(n+ N/2) =d_i(n).

Wynika to wprost ze wzoréw, na przyktad

a_i(n+ N/2) = V2 Z hi—am+n/2) ao(k)

k=—o00

=2 i hi—on—n ao(k)

k=—o00

=2 f: hi—an ag(k + N)

k=—o00

“VES T aolh)

=a_1(n).

Ze wzgledu na ta okresowos$é¢ sygnaly a_; i d_; sa o polowe krotsze, bo wy-
starczy zapamietywac tylko jeden okres kazdego ciggu. Iterujac procedure,
czyli stosujac twierdzenie Mallata kolejno do ciagéw a; okresowych o coraz
krotszych okresach, po J krokach uzyskujemy kompletna transformate fal-

kowa wyjsciowego sygnatu {fo, ..., fv_1}:
a*J(O% d*J(O)a de+1(0)> d*JJrl(l)a s >d71(0>7 s adfl(N/z - 1)

Odwrotng transformate obliczamy podobnie. Kazdy ze skoriczonych ciggdw
d; przedtuzamy okresowo do ciagu nieskoniczonego, nastepnie stosujemy .J
razy twierdzenie Mallata. W kazdym kroku rekonstruujemy ciag a;, o coraz
dtuzszym okresie.

Algorytm kaskadowy

Przypomnijmy, ze analizy wielorozdzielcze Daubechies, a, co za tym idzie,
falki Daubechies skonstruowaliémy konstruujac odpowiednie filtry dolnoprze-
pustowe mg. Dzieki wtasnosciom tych konkretnych filtrow moglismy udo-
wodni¢ wazne wlasnosci funkcji skalujacych i falek, takie jak na przyktad
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ograniczony nosnik (to znaczy, ze funkcje znikaja poza skonczonym przedzia-
tem), oraz rézniczkowalnosé. Wspominalismy, ze funkcji skalujacych i falek
Daubechies nie da sie zapisa¢ zadnym jawnym wzorem (z wyjatkiem przy-
padku filtru dtugosci 2, dla ktorego funkcje te sa funkcjami Haara). Nie
ma to znaczenia dla algorytmu Mallata, w ktorym wystepuja tylko wspol-
czynniki filtrow. Bardzo tatwo mozna jednak obliczy¢ przyblizone wartosci
funkcji skalujacej i falki, dla dowolnej analizy wielorozdzielczej, dla ktorej te
funkcje sa wystarczajaco regularne (czyli rézniczkowalne odpowiednia ilosé
razy). Dzieki temu, na przyklad, mozna narysowa¢ wykresy tych funkcji.
Do przyblizonego obliczenia wartoéci stuzy tak zwany algorytm kaskadowy,
oparty na algorytmie Mallata.

Zilustrujemy teraz algorytm kaskadowy, rysujac wykresy funkcji skalu-
jacych i falek Daubechies. Funkcja skalujaca Daubechies jest ciggla, ma
ograniczony no$nik, oraz

1=¢0) = [ pla)ds, | lewlde < o

[e.9] o0

(ograniczmy sie do przypadku filtrow dluzszych niz 2). Mamy nastepujacy
fakt

Fakt 5.3. Jezeli funkcja f(x) jest ciggla, to dla kazdego x € R
/ fle+y)2 o2 y)dy — f(z).

Jezeli f(x) jest ciggta jednostajnie, to zbiezno$é jest jednostajna, a jezeli f(x)
jest ciggta w sensie Héldera, czyli

F(@) — FW) < Cla —yl®,  dla jakiegos 0<a <1,

to zbieznosc jest wyktadnicza
‘f(:c) —/ fla+y)2 o(27y)dy| < C"277.

Dowdd. Niech [—R, R] bedzie przedziatem, poza ktorym ¢(z) = 0. Na przy-
ktad, z dowodu twierdzenia ?? z rozdzialu o analizie MRA wynika, ze dla
filtru o dhugoéci 2k mamy R = 2k — 1. Ustalmy = oraz € > 0 i niech N € N
bedzie takie, ze

Vi>N |yl <27 R = |f(x) - flz +y)| <e

113



Dla 5 > N mamy wtedy oszacowanie

‘ / flz+y)2

] ‘/ fa+ )2 o@ ) dy
< / F(@) = Fz + )| 2 |02 )| dy
_ / T @) = fle+ 29 y) le(y)| dy

_ / f(x) = fl+ 279 y)l lp(y)] dy

R

R
Se/RW@H@

<?:/mwmwwy

Zauwazmy, ze wszystkie tezy faktu wynikaja z powyzszego oszacowania. [

gdzie

Funkcja skalujaca i falka Daubechies sa rozniczkowalne, a wiec spetniaja
warunek Holdera z o = 1. Zbiezno$¢ w powyzszym fakcie jest wiec dla
nich wyktadnicza, czyli szybka. Niech x bedzie liczba diadyczna, czyli liczba
postaci x =27/ n, J € Z. Wtedy

o) = lim 27 [ o2 )o@ ) dy

—
J—00 )

= hn12j”u/‘ p(y) 27 o(2y =27+ n)dy

—
J—00 00

= lim 2//2 <g0 D)o~ J+Jn>

j—o0
czyli, w punktach diadycznych 277 n, dla odpowiednio duzego j > J
90(2_J 77,) = 2j/2 <90a Spj,Zj*Jn> = 2j/2aj (Qj_J n)a (512)

gdzie ciag a; z twierdzenia Mallata jest obliczony dla f = ¢. Ciag ten
mozemy obliczy¢ dla dowolnego 7 > 0 korzystajac z drugiej czesci twierdzenia
Mallata. Wiemy, ze dla f = ¢ ciag ao sktada sie z 1 w zerze i poza tym samych
zer, a ciagi d; skladaja sie¢ z samych zer, dla j > 0. Aby narysowa¢ wykres
(z) postepujemy wiec nastepujaco. Wybieramy J € Z odpowiednio duze, w
zalezno$ci od potrzebnej doktadnosci. Wartos¢ J decyduje o tym, jak gesta
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jest siatka liczb postaci 277 n, ale takze o dokladnosci przyblizenia (5.12), w
ktorym wezmiemy j = J. Nastepnie stosujemy twierdzenie Mallata J razy.
Podobnie postepujemy w celu narysowania wykresu falek. Wychodzimy od
ciagodw

ag(k) =0, do(k) = 6o(k), (jedynka w 0 isame 0 poza tym),

oraz d;(k) = 0 dla j > 1. Nastepnie stosujemy twierdzenie Mallata J razy.
Na obrazkach pokazujemy kilka przyktadow. W kazdym przypadku stosowa-
ligmy J = 15.

1 1

0.5 0

0 -1
0 1 2 3 -1 0 1 2

Rysunek 5.3: Funkcja skalujaca i falka Daubechies, filtry dtugosci 4.

Wykresy funkeji skalujacych zostaly wygenerowane przy pomocy naste-
pujacego skryptu w Matlabie. Nalezy wybra¢ N w 1 linijce (dlugosé filtra),
oraz J w linijce 5 (dokladnos¢).

N=20;\%dtugos¢ filtra, musi by¢ parzysta

A=-1;\Y%lewy zakres wykresu funkcji skalujacej, musi by¢ ujemny
B=N;\/prawy zakres wykresu funkcji skalujacej, musi by¢ > N-1
h=daubcqf (N) ;

J=15;

a=2"J*(N-1);

dx=2~(-J);

X=[floor(A) :dx:floor(B)];

phil=zeros(1,size(X,2));

offset=-floor(A)/dx;

phi=zeros(1,a+1);

temp=zeros(l,a+1);
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phi(1)=1;
for j=1:J
temp=phi;
for n=0:a
c=0;
par=n-2x*floor(n/2);
for l=par:2:N-1
ind=(n-1)/2;
if (ind>=0)\&(ind<=a)
c=c+h(1+1)*temp(ind+1) ;
end;
end;
phi(n+1)=c;
end;
end;
for i=1:a+1
phil(offset+i)=phi(i);
end;
phil=sqrt(2~J)*phil;
plot(X,phil,’black’);

1
1
0
0
-1
0o 2 4 6 8 -4 -2 0 2 4 6

Rysunek 5.4: Funkcja skalujaca i falka Daubechies, filtry dtugosci 10.

Probkowanie 1 kwantyzacja

Sygnaly dyskretne (czyli skoriczone lub nieskonczone ciagi wartosci) w prak-
tyce powstaja jako wynik probkowania sygnatow ciagtych. Naturalne pyta-
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1
1
0
0
-1
0 4 8 12 16 -8 -4 0 4 8

Rysunek 5.5: Funkcja skalujaca i falka Daubechies, filtry dtugosci 20.

nie, jakie sie pojawia, to czy i w jakim stopniu taki ciag probek reprezentuje
wyjsciowy sygnal. Na przyktad, czy i w jaki sposob sygnal ciggly mozna z
takich probek odtworzy¢. Podstawowym twierdzeniem wigzanym z probko-
waniem jest nastepujace twierdzenie.

Twierdzenie 5.4 (Shannon, Whittaker). Jezeli funkcja f € L*(R) ma ogra-
niczone spektrum czestotliwosciowe, to znaczy dla pewnego Tj

~

f&) =0 dla & ¢ [Ty, To),

to funkcja ta jest catkowicie reprezentowana przez cigg probek (w jednako-
wych odstepach) {f(np)}nez, jezeli probkowanie jest wystarczajgco geste, a

doktadnie jezeli p < T Wartosci funkcji mozna odtworzyé z probek przy
pomocy wzory

fl@)="Y_ f(np)sinc(Zz—mn), (5.13)

n=—oo

gdzie funkcja interpolujgca sinc () dana jest wzorem

sin(x) .

sinc (z) = .
Uwaga 5.5. (i) Zauwazmy, Ze funkcja interpolujgca

sinc (T o — mn)

jest rowna 0 w punktach postaci x = kp, dla k € Z, k # n, oraz jest réwna 1
dla x = np. Od razu wiec widaé, Ze prawa strona (5.13) zgadza sie z lewq w
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punktach postaci kp, czyli prawa strona jest funkcjg interpolujgeq wartosSci
pomiedzy probkami.

(il) Powyzsze twierdzenie mdwi nam, ze interpolacja wartosci pomiedzy prob-
kami odtwarza funkcje wyjsciowq, jezeli ta ma odpowiednio ograniczone spek-
trum czestotliwosciowe. Wiekszosé funkcyi wystepujgcych w praktyce jest tego
typu, i dlatego twierdzenie Shannona- Whittakera jest wazne. Mozna jednak
badaé inne przestrzenie funkcji (na przyktad spliny, dla ktorych funkcja inter-
polujgca, zeby odtwarzaé doktadnie wyjsciowy sygnat analogowy, musi mieé
mng postac.

(ili) Ciekawe jest pytanie o odtwarzanie funkcji z probek pobieranych niere-
gularnie. W tym przypadku rowniez mozna udowodnié wazne twierdzenia,
wyjasniajgce sprawe, i dajgce inzynierom praktyczne narzedzia.

(iv) Powyzsze twierdzenie jest sformutowane w ten sposdb, ze podaje jak cze-
sto trzeba probkowac sygnal wyjsciowy, o spektrum czestotliwosciowym ogra-
niczonym do Ty, zeby moc sygnat odtworzyé. Mozna to przeformutowaé: je-
zeli probki pobierane sq w odstepach p, to jaka jest maksymalna czestotliwosé
sygnatu, ktora zostanie odtworzona bez znieksztatcen. Jest to tak zwana cze-
stotliwosé Nyquista i, jak tatwo odczytac z twierdzenia Shannona- Whittakera,
wynosi %. Uwaga: czestotliwosé, o ktorej mowimy tutaj, to w jezyku inzynie-
row tak zwana czestotliwosé kotowa. Czestotliwo$é, ktorg najczesciej postu-
qujg sie inzynierowie (czyli 1/okres) to nasza czestotliwo$é podzielona przez
2m. W jezyku inzynierow czestotliwosé Nyquista wynosi wiec zip.

(v) Mozna zastanowié sie, co sie dzieje, jezeli sygnat probkowany jest za
rzadko, w stosunku do zakresu swoich sktadowych czestotliwosciowych. Prawa
strona (5.13) jest wtedy zaledwie przyblizeniem lewej strony, a znieksztatcenia
(czyli blgd tego przyblizenia) majq charakterystyczng postac, i noszg nazwe
aliasingu. Wrocimy jeszcze do zjawiska aliasingu.

Dowdd twierdzenia Shannona-Whittakera. Zatézmy, ze

A~

[ =0 dla ¢ ¢ [T, To],

Niech T' > Ty, i niech funkcja pomocnicza g(§) bedzie dana wzorem

s =i (2¢), celna

a nastepnie tak zdefiniowang w przedziale [—7, 7] funkcje g przedluzamy
jako okresowa o okresie 27 na cala prosta R. Zauwazmy, ze g € L*(R). To
proste, f jest calkowalna z kwadratem na prostej, a wiec tez na przedziale
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[—To, To], a calka kwadratu g na przedziale [—m, 7] jest jej rowna, po zamianie
zmiennych. Funkcje g rozwijamy w szereg Fouriera

o0

g€ = > gn)e™, w L*T),

n=—oo

a wspolczynniki Fouriera maja nastepujaca postac:

i(n) = — / " g6 i de

= [ FEeea
T™J_n
1 (T inze
= o7 . f§emrsdg
_ 1 2 —inZ ¢
=T . f§)e 3
= S/ F).

Zauwazmy, ze wszystkie calki ,po drodze” sa absolutnie zbiezne, wiec mozemy
skorzysta¢ ze wzoru na odwrotng transformate Fouriera. WykorzystaliSmy
tez fakt, ze f jest zerem poza przedzialem [—T,T] 2 [-Tb, Ty], wiec catka z
f po przedziale [—T,T] i po calej prostej sa sobie rowne. Z definicji funkcji
g mamy

f(zé>=g@%xwmdo

™
= D 9() Xjrm (&) e’
B ()0

W koricu obliczmy warto$é¢ f(z) wykorzystujac odwrotna transformate Fo-
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uriera.

[(z) et
oo s s

= f: f(%k)sinc(Tx—Wk)

k=—o00

Niech teraz p = %, i koniec dowodu.

el B
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Rozdzial 6

Materialy na laboratorium

Odczytywanie, zapisywanie i wyswietlanie ob-
razkéw w Matlabie

Obrazki w postaci cyfrowej wystepuja w kilku rodzajach. Sa tak zwane for-
maty indeksowane, gdzie kazdemu pikselowi (elementowi obrazu) przypisy-
wana jest liczba (najczesciej 1 bajt) bedaca numerem koloru na liscie. Lista
kolorow, tak zwana paleta, najczesciej sktada sie z 256 kolorow, ktore repre-
zentowane sa przez 3 bajty, odpowiadajace zawartosci sktadowej czerwonej,
zielonej i niebieskiej. Przyktadami formatow indeksowanych sa formaty bmp
i gif. Format gif zawiera obraz oraz palete w postaci skompresowanej (bez-
stratnie). W tym formacie w jednym pliku obrazéw moze by¢ kilka, i kazdy
moze mie¢ wlasng palete. Jezeli obrazéow jest kilka, to calo$¢ moze by¢ ani-
mowana. Jeden z kolor6w moze by¢ zadeklarowany jako przezroczysty. Plik
w formacie bmp zawiera obraz i palete, najczesSciej w postaci nieskompreso-
wanej. Sam format dopuszcza prosta kompresje, ale w praktyce nie spotyka
sie skompresowanych plikow w formacie bmp. Drugim rodzajem obrazow
cyfrowych sa obrazy w odcieniach szarosci. Obrazy tego typu najczesciej za-
pisywane sa w jednym z formatéw indeksowanych, z uzyciem standardowe]
palety. Standardowa paleta zawiera réwnomiernie roztozone odcienie szaro-
Sci (3 bajty kolorow sktadowych réwne sobie), od koloru (0,0,0), czyli czerni
(indeks 0) do (255,255,255), czyli bieli (indeks 255). Trzecim rodzajem obra-
zow cyfrowych sg tak zwane obrazy true color, w ktorych kazdemu pikselowi
bezposredni przypisane sa 3 bajty okreslajace zawartos¢ 3 kolorow sktado-
wych. Obrazy tego typu zapisywane sa w formatach tiff (skompresowane
bezstratnie) i jpeg (skompresowane stratnie).

W tym laboratorium bedziemy zajmowali si¢ obrazami drugiego typu, to
znaczy obrazami w odcieniach szarosci. Kolorowe obrazy indeksowane nie
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moga by¢ sensownie przetwarzane przy pomocy stosowanych przez nas me-
tod, poniewaz numery kolorow w palecie nie maja zwiazku z wlasnos$ciami
ykolorystycznymi”. Innymi stowy, to, ze dwa kolory maja bliskie sobie in-
deksy nie oznacza, ze sa do siebie podobne. Oczywiscie kolorowy obrazek w
formacie indeksowanym mozna najpierw przeksztalci¢ do formatu true color
lub odcieni szarosci, i wtedy obrabia¢. Obrazki true color mozna przetwarzac
traktujac kazdy kolor sktadowy (tak zwany kanal) jako oddzielny obrazek.
Lepiej jest najpierw przeksztalci¢ kanaly z tak zwanej przestrzeni RGB (ka-
naly to sktadowe czerwone, zielone i niebieskie) do przestrzeni YC,C, (ka-
naly to mieszanki koloréw sktadowych, przy czym Y to kanal luminancji,
czyli najwazniejsza sktadowa zawierajaca odcienie szarosci, Cy i C,. to kanaty
chrominancji, odpowiednio niebieski i czerwony). Przeksztalcenia pomiedzy
przestrzeniami RGB i C,C, implementuje sie przy pomocy konkretnej, od-
wracalnej macierzy 3 X 3. By¢ moze starczy nam czasu na zajecie si¢ obraz-
kami kolorowymi, wtedy poznamy wiecej szczegdélow na temat zarzadzania
barwami.

Do wezytania obrazka stuzy funkcja imread. Jezeli chcemy wezytaé obraz
Lena.bmp, ktory jest w biezacym katalogu, wydajemy instrukcje

A=imread(’Lena.bmp’,’bmp’) ;

Powstaje w ten sposob macierz pikseli o wartos$ciach od 0 do 255. Bedziemy
korzystali z formatow gif i bmp. Sa to tak zwane formaty indeksowane, to
znaczy wartos¢ piksela jest numerem koloru w palecie. W obrazach z ktorych
bedziemy korzystali paleta jest zawsze taka sama, standardowa. Sktada sie z
256 odcieni szarosci, zmieniajacych sie jednostajnie od czerni (pierwszy kolor
palety, odpowiada mu indeks 0) do bieli (256 kolor, o indeksie 255). Jezeli
uzyjemy innej palety to nasz obraz bedzie mial zmienione kolory. Wezytujac
obrazek mozemy wczytaé tez jego palete, zakodowana wraz z obrazkiem w
pliku (dotyczy to, oczywiscie formatow indeksowanych, takich jak gif lub
bmp), wywolujac funkcje imread w nastepujacy sposob:

[A,MAP]=imread(’goldhill.gif’,’gif’);

Paleta obrazka sktada sie z trojek bajtow, reprezentujacych intensywnosé ko-
loréw czerwonego, zielonego i niebieskiego w skali od 0 do 255. Przy wczyty-
waniu do tablicy MAP (MAP jest tablica 256 na 3, o wartosciach typu double) te
wartosci sa przeskalowane do zakresu [0,1]. Taki jest format uzywanej przez
Matlab palety (tak zwanej colormapy): dowolna ilo§¢ wierszy, 3 kolumny, i
warto$ci typu double z przedziatu [0,1].

Otrzymana macierz pikseli A zawiera dane typu uint8. Niektorych ob-
liczen w Matlabie nie mozna wykonywaé¢ na liczbach typu uint8 i najpierw
trzeba je przeksztatci¢ do typu double.
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B=double(A);

Podstawowe funkcje pakietu RW'T, z ktorego bedziemy korzysta¢ nie moga
operowa¢ na danych typu uint8, wiec nasze dane typu uint8 zawsze be-
dziemy przed obliczeniami przeksztalca¢ na double. To nic nie kosztuje.
Zmieniany jest tylko typ danych, wartos$ci pozostaja bez zmian.

Do zapisu macierzy do pliku graficznego stuzy funkcja imwrite:

imwrite(A,’lena.bmp’, ’bmp’);

Macierz A powinna by¢ typu uint8. Mozna ja do tego typu przeksztatci¢ z
dowolnego innego (na przyklad double) uzywajac funkcji uint8

A=uint8(B);

Funkcja uint8 zaokragla liczby double do najblizszej catkowitej, p czym
obcina zakres do przedziatu [0,255]. Jezeli funkcje imwrite zastosujemy do
tablicy o wartosciach typu double to wartosci zostana najpierw pomnozone
przez 255, a nastepnie przeksztalcone przy pomocy funkcji uint8. Wartosci
ponizej 0 przejda na 0 a powyzej 1 na 255. Caly uzywany przez macierz
A zakres wartoSci powinien wiec sie zawiera¢ w przedziale [0,1]. Dlatego
przed zapisem do pliku warto recznie obrobi¢ wartosci macierzy A tak, aby
zawieraly sie w przedziale [0,1]. Na przyktad, niech

M = max A(i, j), N = min A(3, j),
1,7 4,7

A(i,j) — N

M—-N
Po takim przeksztalceniu wartosci macierzy A’ sa w przedziale |0,1], a po-
niewaz przeksztalcenie wartosci jest liniowe wiec obraz ,,graficznie” nie ulegt
zmianie. Wraz z macierza do pliku zapisywana jest takze standardowa paleta,
sktadajaca sie z 256 rownomiernie roztozonych odcieni szarosci (dotyczy to
formatow indeksowanych, takich jak bmp). Jezeli chcemy zapisa¢ inng palete
mozemy uzy¢ instrukeji

A'(i,j) =

imwrite (A,MAP,’lena.bmp’, ’bmp’) ;

gdzie MAP jest dowolna colormapa Matlaba. Zostanie ona przeskalowana do
formatu palety odpowiedniego pliku graficznego, ucieta do 256 wierszy jezeli
jest dtuzsza, i uzupelniona wierszami zer, jezeli jest krotsza niz 256 kolorow.
Matlab nie zapisuje plikow w formacie gif.

Macierz A mozna wyswietli¢ jako obraz nie zapisujac jej do pliku graficz-
nego. Stuzy do tego instrukcja image
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image (A4) ;

Wartoéci wyswietlanej macierzy A sa traktowane jako indeksy do biezacej
colormapy Matlaba. Jezeli sa typu uint8 to sa bezposrednio traktowane
jako indeksy koloréow. Jezeli sa typu double to najpierw odejmowana jest od
nich 1, nastepnie sa zaokraglane do najblizszej liczby catkowitej, a nastepnie
obcinane na poziomie 0 i 255. Tak powstale wartosci sa traktowane jako
indeksy koloréw. Wygodna instrukcja jest tez imagesc. Wartosci tablicy
A sa najpierw przeskalowane liniowo, tak, zeby najmniejsza warto$¢ (moze
by¢ ujemna) przyjeta wartos¢ 0 a najwieksza 255. Tak otrzymane wartosci
sa zaokraglane w dot do liczb catkowitych, i traktowane jako indeksy kolo-

roOw biezacej colormapy. Jezeli chcemy przeskalowaé inaczej, mozemy uzy¢
sktadni

imagesc (A, [a,b]);

wtedy zakres [a,b] zostanie rozciggniety liniowo do zakresu [0,255].
Do podgladu naszych obrazéw bedzie nam potrzebna standardowa color-
mapa, ktora musimy sami wygenerowac:

szara=zeros (256,3) ;

for i=1:256
szara(i,1)=(i-1)/255;
szara(i,2)=szara(i,1);
szara(i,3)=szara(i,1);

end;

Nastepnie ustalamy biezaca colormape instrukcja
colormap(szara) ;

Colormapa pozostaje ustalona dla danego okna obrazka az do jego zamknie-
cia. Przy nastepnym otwarciu colormape trzeba ustawi¢ ponownie. Mozna
najpierw zaladowaé obrazek, a nastepnie wydac instrukcje colormap. Dopoki
nie zamkniemy okna obrazka ta sama colormapa bedzie stosowana do wszyst-
kich kolejno tadowanych obrazkéw. Nasza colormape szara mozemy zachowac
w pliku instrukcja save, i na nastepnych zajeciach zaladowa¢ z pliku instruk-
cja load. Matlab ma pewna ilosci predefiniowanych colormap, jedna z nich
jest colormapa domyslna. Zawiera ona tylko 64 kolory. W przypadku gdy
ustalona colormapa ma mniej koloréw niz zakres wartosci wyswietlanej ma-
cierzy A, to brakujace kolory sa zastepowane czarnym. Obrazki w domy$lne;j
colormapie sa bardzo niewyrazne. Inne standardowe colormapy to gray, hot,
cool, copper czy pink. Standardowe colormapy sa z reguly krotsze niz 256

124



kolorow, ale kazdej z powyzszych nazw mozna uzy¢ do wygenerowania color-
mapy dowolnej dlugosci. Na przyklad zamiast podanej powyzej procedury
generowania colormapy ,szara” mozna w Matlabie uzy¢ instrukcji

szara=gray(256) ;
albo do ustawienia biezacej colormapy instrukcji

colormap(gray(256)) ;

Podstawowe operacje na obrazkach

Wyprobujemy niektore typowe przeksztatcenia na obrazkach. Niektore z ope-
racji wystepujacych w przyktadowych skryptach mozna w Matlabie wykonaé¢
proéciej, wykorzystujac wbudowane funkcje. Na przyktad w Matlabie s spe-
cjalne funkcje zwracajace najwieksza i najmniejsza warto$¢ wspotczynnikow
tablicy. W prezentowanych skryptach raczej wszystko wykonywane jest ,na
piechote”.

Rozjasnij
Zwiekszamy wartos¢ pikseli. Wartosci powyzej 255 beda uciete

A=imread(’Lena.bmp’, ’bmp’) ;
B=double(A);

B=1.2%B;

A=uint8(B);

imwrite (A, ’Lena2a.bmp’, ’bmp’) ;

Przyciemnij

Zmniejszamy wartosé¢ pikseli:
A=imread(’Lena.bmp’, ’bmp’) ;
B=double(A) ;

B=B/1.2;

A=uint8(B);
imwrite (A, ’Lena2b.bmp’, bmp’) ;
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Rysunek 6.1:

Rysunek 6.2: Lekkie przyciemnienie.

Zwieksz kontrast

Zmajdziemy najwieksza i najmniejsza wartosé¢ pikseli. Nastepnie przeksztal-
cimy, liniowo, obraz tak, zeby najmniejsza wartos¢ wynosita 0 a najwieksza
255. W ten sposob maksymalizujemy kontrast. Jezeli kontrast byt juz mak-
symalny to operacja nie daje zadnego efektu.

A=imread(’Lena.bmp’, ’bmp’) ;
B=double(A);
min=B(1,1);
max=B(1,1);
for i=1:512

126



for j=1:512
if B(i,j)>max
max=b(i,j);
end;
if B(i,j)<min
min=B(i,j);
end;
end;
end;
¢=255/(max-min) ;
for i=1:512
for j=1:512
B(i,j)=(B(i,j)-min)*c;
end;
end;
A=uint8(B);
imwrite (A, ’Lena2c.bmp’, bmp’) ;

Rysunek 6.3: Zwiekszony kontrast.

Czesta operacja jest korekta kontrastu tylko w pewnym zakresie jasno$ci.
Na przyklad przeksztalcenie B(i, j) — B(i,j)” zwicksza kontrast w zakresie
czerni jezeli v < 11w zakresie jasnym, jezeli v > 1 (obraz musi by¢ wczesniej
znormalizowany, tak aby 0 < B(i,7) < 1).

Zmniejsz kontrast

Wartosci pikseli pomnozymy przez 0.8 i dodamy do nich 25:
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A=imread(’Lena.bmp’, ’bmp’) ;
B=double(A);
for i=1:512

for j=1:512

B(i,j)=25+0.8*B(i,j);

end;
end;
A=uint8(B) ;
imwrite(A,’Lena2d.bmp’, ’bmp’) ;

Rysunek 6.4: Zmniejszony kontrast.

Binaryzacja

Kazdemu pikselowi przyporzadkowujemy warto$¢ 0 jezeli jego warto$é jest
ponizej progu i 255 jezeli powyzej.

Powiel obraz, uzywajac odbicia

Rozszerzymy obraz w poziomie, uzupetniajac prawa potéwke lustrzanym od-
biciem lewej:

B=zeros(512,1024) ;
A=imread(’Lena.bmp’, ’bmp’) ;
for i=1:512
for j=1:512
B(i,j)=A(i,3);
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Rysunek 6.5: Binaryzacja na poziomach 50, 100, 150 i 200.

B(i,1025-3j)=A(i,j);
end;
end;
A=uint8(B);
imwrite (A, ’Lena2e.bmp’, ’bmp’) ;

Wyciecie fragmentu
Wytniemy kwadratowy fragment obrazka, zastepujac reszte bialym ttem:

A=imread(’Lena.bmp’, ’bmp’) ;
for 1=1:128
for j=1:512
A(i,j)=255;

129



Rysunek 6.6: Odbicie poziome.

A(513-1,j)=255;r

A(j,i)=255;
A(j,513-1)=255;
end;
end;

imwrite (A, ’Lena2f.bmp’, >bmp’) ;

Rysunek 6.7: Wyciecie fragmentu.
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Wyciecie gtadkie

Wytniemy kwadratowy kawatek obrazka, ale tym razem przejscie do biatego
tta bedzie ptynne:

A=imread(’Lena.bmp’, ’bmp’) ;
B=double(A);
mask=zeros(512,1);
for i=1:256
if (i>108)\&(i<129)
mask(i)=(i-108)/21;
mask(513-1i)=mask(i);
end;
if i>128
mask(i)=1;
mask(513-1i)=1;
end;
end;
for i=1:512
for j=1:512
B(i,j)=255-mask(i)*mask(j)*(255-B(i,j));
end;
end;
A=uint8(B);
imwrite (A, ’Lena2g.bmp’, ’bmp’) ;

Rysunek 6.8: Wyciecie fragmentu z gtadkim przejsciem do tta.
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Zaszumienie

Dodamy do obrazka tak zwany ,bialy szum”, to znaczy do kazdego piksela
niezaleznie dodamy liczbe losowa o rozkladzie normalnym o $redniej 0 i ja-
kim§ odchyleniu. W Matlabie jest funkcja randn ktora generuje liczbe pseu-
dolosowa o rozktadzie normalnym (gaussowskim), o Sredniej 0 i odchyleniu
standardowym 1. Mozna tez uzy¢ skladni randn(512), ktora od razu ge-
neruje tablice 512 x 512 liczb pseudolosowych, niezaleznych o tym samym
rozktadzie. W naszym przyktadzie tak wygenerowane liczby mnozymy przez
20, w ten sposOb rozktad generowanych zmiennych ma odchylenie standar-
dowe 20. Wielko$¢ odchylenia jest zwigzana ze stopniem zaszumienia. Takie
zaszumienie symuluje znieksztalcenie obrazka czesto wystepujace w praktyce,
przy przesytaniu sygnatow, lub przy rejestracji bardzo stabych sygnatow.

A=imread(’Lena.bmp’, ’bmp’) ;
B=double(A);
for i=1:512
for j=1:512
B(i,j)=B(i,j)+20*randn;
end;
end;
A=uint8(B) ;
imwrite(A,’Lena2h.bmp’, ’bmp’) ;

Rysunek 6.9: Zaszumienie obrazka, o = 20.
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Rozmycie

Obrazek zostaje rozmyty, pozbawiony ostrosci. Jest to zabieg stosowany
na przyklad jako wstepna obrobka przed algorytmem wykrywania krawedzi.
Efektem rozmycia jest ostabienie niektorych rodzajow szumu (na przyklad
szumu biatego). Krawedzie tez zostaja oslabione (rozmyte), ale z reguly w
mniejszym stopniu niz szum.

A=imread(’Lena.bmp’, ’bmp’) ;
B=double(A);
C=zeros(512);
mask=[2 4 5 4 2;4 9 12 9 4;5 12 15 12 5;4 9 12 9 4;2 4 5 4 2];
mask=mask/159;
for i=1:512
for j=1:512
suma=0;
for k=-2:2
for 1=-2:2
if (i-k<513)\&(j-1<513)\&(i-k>0)\&(j-1>0)
prod=B(i-k,j-1);
else
prod=0;
end;
suma=suma+mask (k+3,1+3) *prod;
end;
end;
C(i,j)=suma;
end;
end;
A=uint8(C);
imwrite(A,’Lena2i.bmp’, ’bmp’) ;

Dwa czesto stosowane filtry Gaussa (maski), 3 x 315 x 5:

2 4 5 4 2
1 21 4 9 12 9 4
2 4 2], 5 12 15 12 51,
1 21 4 9 12 9 4

2 4 5 4 2

filtry te nalezy podzieli¢ przez sume wspotczynnikow, odpowiednio 16 i 159.
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Rysunek 6.11: Rozmycie filtrem Gaussa 3x3.

Filtr medianowy

Czasem chcielibySmy ostabi¢ szum w obrazku, ale bez ogdlnego ,zmiekcza-
nia”. Mozna wtedy zastosowa¢ tak zwany filtr medianowy. Odczytujemy
warto$¢ piksela i jego sasiadow (na przyktad najblizszych sasiadow). Tak
otrzymane wartosci sortujemy. Pikselowi przypisujemy warto$é¢ znajdujaca
sie w $rodku posortowanej listy (jezeli mamy parzys$cie wiele wartosci, to
pikselowi przyporzadkowujemy $rednia arytmetyczna wartosci w §rodku po-
sortowanej listy. Filtr medianowy dobrze usuwa niektoére rodzaje szumu, na

przyktad tak zwany ,speckle noise”, bez ogélnego ,zmiekczenia” obrazka.

A=imread(’Lena.bmp’,’bmp’) ;
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B=double(A);
C=zeros(512);
lista=zeros(9,1);
for i=2:511
for j=2:511
m=1;
for k=-1:1
for 1=-1:1
lista(m)=B(i+k,j+1);
m=m+1;
end;
end;
for k=1:8
for 1=1:9-k
if lista(l)>1lista(l+1)
t=lista(l);
lista(l)=1lista(l+1);
lista(l+1)=t;
end;
end;
end;
C(i,j)=1lista(5b);
end;
end;
A=uint8(C);
imwrite(A,’Lena2j.bmp’, ’bmp’) ;

Zastosowanie filtru medianowego, podobnie jak filtru Gaussa daje efekt osta-
bienia szumu biatego. Efekt ten najlepiej wida¢ na obrazku kontrastowym.
Obrazek test sktada sie z pikseli o wartosci 80 i 180 (dosy¢ ciemne i dosy¢
jasne), i ma wyrazne krawedzie. Do obrazka dodajemy nieco szumu (odchy-
lenie standardowe 5), a nastepnie stosujemy filtr Gaussa z maska 5 x 5, oraz
filtr medianowy, tez o glebokosci 5 x 5. Na obrazkach mozemy poréwnaé
efekty.

Oba filtry ostabiaja szum, ale filtr Gaussa zmiekcza krawedzie, natomiast filtr
medianowy pozostawia krawedzie nienaruszone, jedynie ,obgryza” narozniki.
Latwo sobie wyttumaczy¢ jak to sie dzieje.
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Rysunek 6.12: Filtr medianowy, obejmujacy najblizszych sasiadow.

Rysunek 6.13: Obraz testowy, bez szumu i z lekkim szumem, o2 = 5.

Transformata Fouriera

Transformata Fouriera to jest nasze glowne narzedzie na wyktadzie. W prak-
tycznej obrébce obrazkéw nie bedziemy stosowali transformaty Fouriera. W
praktyce lepsza jest transformata falkowa. Sprobujmy obliczyé¢ transformate
Fouriera obrazka. W Matlabie sa funkcje fft i £ft2 obliczajace 1- i1 2—
wymiarowa transformate Fouriera, uzywajace algorytmu szybkiej transfor-
maty. Transformata ma wartosci zespolone, nawet dla sygnalow, ktore maja
wartosci tylko rzeczywiste. Zeby zwizualizowaé transformate osobno wyswie-
tlimy tablice modulow wartosci, i osobno tablice argumentow (faz) wartosci.
Do obliczania modutu uzywamy funkcji abs(X), ktora mozna stosowaé¢ do
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Rysunek 6.14: Z lewej zastosowano filtr medianowy, a z prawej filtr Gaussa,
oba o wielkosci 5 X 5.

zmiennych typu rzeczywistego i zespolonego, a do obliczania argumentu uzy-
wamy funkcji angle, ktora zwraca argument jako kat w zakresie (—m, 7).

A=imread(’Lena.bmp’, ’bmp°’) ;
B=double(A);

C=fft2(B);

A=uint8(abs(C)/20);
imwrite(A,’Lena3a.bmp’, ’bmp’) ;
A=uint8((pi+angle(C))*128/pi);
imwrite (A, ’Lena3b.bmp’, bmp’) ;

Na obrazku 3.1 wspotczynniki odpowiadajace niskim czestotliwo$ciom
rozmieszczone sa w rogach obrazka. Czasem obraz czestotliwos$ciowy przed-
stawia sie ze wspoOtczynnikami niskich czestotliwosci umieszczonymi w cen-
trum. W Matlabie jest specjalna funkcja do takiego przesuniecia obrazka
fftshift(C). Na obrazku 3.2 przedstawiona jest tak przesunieta transfor-
mata Fouriera.

Transformata Fouriera nie jest lokalna. To znaczy, ze nawet jezeli dwa
obrazki roznig sie tylko na jakim$ malym obszarze, to ich transformaty réznia
sie wszedzie. Na obrazku 3.3 widzimy obraz Leny, z niewielka modyfikacja w
okolicach $rodka. Obok przedstawiony jest obraz modutu réznicy transfor-
maty Fouriera Leny zwyklej i zmodyfikowane;].
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Rysunek 6.15: Modutl i argument transformaty Fouriera Leny.

Rysunek 6.16: Modut i argument transformaty Fouriera, niskie czestotliwo$ci
w §rodku obrazka.

Kodowanie pasmowe

Typowym przeksztalceniem obrazka jest tak zwane kodowanie pasmowe. Ze-
rujemy te wspoOlczynniki transformaty Fouriera, ktore lezag w wybranych ob-
szarach. Tradycyjnie rozne obszary geometryczne transformaty Fouriera na-
zywaja sie pasmami, i stad nazwa. Typowym przyktadem kodowania pasmo-
wego jest filtr dolnoprzepustowy. Zerujemy wszystkie wspotczynniki trans-
formaty Fouriera, ktore lezg poza pewnym, powiedzmy kwadratowym oto-
czeniem poczatku uktadu. Fig. 3.4 pokazuje maske przyktadowego filtru
dolnoprzepustowego, oraz przefiltrowany obraz. Obraz jest zupelnie dobrej
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Rysunek 6.17: Lena z niewielka modyfikacja (prawe oko). Obok modut réz-
nicy transformaty Fouriera Leny zwyktej i zmodyfikowanej.

jakosci, jezeli wzia¢ pod uwage, ze zostal odtworzony z 12544 wspotczynni-
kow (pozostale zostaly wyzerowane), co stanowi ok. 4,78% calosci. Jedyne
co optycznie przeszkadza, to okresowo powielone, ,drgajace"krawedzie.

Is? ;

Rysunek 6.18: Maska filtru dolnoprzepustowego, i przeksztalcona Lena. Sto-
pieni kompresji. wynosi ok. 21 (obraz po prawej ma w rezultacie ok. 0,38
bita na piksel (bpp))

clear;
mask=zeros(512);
for i1=200:311

139



for j=200:311
mask(i,j)=1;

end
end;
A=imread(’Lena.bmp’, ’bmp’) ;
B=double(A);
C=fft2(B);
C=fftshift(C);
C=mask.*C;
C=ifftshift(C);
B=ifft2(C);
A=uint8(abs(B));
imwrite(A,’low.bmp’, ’bmp’) ;
mask=255*mask;
A=uint8(mask) ;
imwrite (A, ’mask.bmp’, ’bmp’);

Rice Wayvelet Toolbox

Naszym narzedziem do analizy falkowej obrazkéw jest darmowy toolbox fal-
kowy (Rice wavelet toolbox) napisany przez grupe ludzi na uniwersytecie
Rice. Mozna go znalez¢ w sieci uzywajac stowa kluczowego ,rwt”. Bedziemy
uzywali nastepujacych funkcji z tego pakietu: mdwt - transformata falkowa,
midwt - odwrotna transformata falkowa oraz daubcqf - program generujacy
filtry falkowe Daubechies. Funkcji uzywamy nastepujaco

hO=daubcqf (N) ;
lub
[h0,h1]=daubcqf (N);

N jest dhugoscia filtru, musi by¢ liczba parzysta. Dtuzsze filtry powinny da-
wac lepsze rezultaty, ale dziataja wolniej, i generuja wieksze btedy zaokraglen.
Typowe dlugosci to 2,6,10. Bedziemy poréwnywaé nasze algorytmy dla roz-
nych dtugosci filtréw. Uzyskane przy pomocy funkcji daubcqf filtry stanowia
parametr transformaty falkowej i transformaty odwrotnej. Podajemy tylko
wspotezynniki filtru 20 (dolnoprzepustowego), Matlab sam wyliczy wspot-
czynniki pasujacego filtru hl.

[B,L]=mdwt (A,hO,L); [A,L]=midwt (B,hO0,L);
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Rysunek 6.19: Transformata falkowa glebokosci 1 i glebokosci 9 (silnie roz-
jasniona)

A jest obrazkiem, ktory powinien by¢ kwadratowy o boku bedacym potega 2.
L jest parametrem okreslajacym gleboko$¢ transformaty. Warto$¢ parametru
L powinna by¢ taka sama dla transformaty i transformaty odwrotnej — w
przeciwnym razie obraz nie bedzie prawidlowo zrekonstruowany. Wartoéé¢ L
moze sie zawiera¢ w przedziale od 1 do logy, N, gdzie N jest dlugoscia (w
pikslach) boku obrazu. Transformata mdwt i transformata odwrotna midwt
wymagaja danych typu double. Jezeli zastosujemy ja do danych typu uint8
(takich, jakie zwraca imread), to transformaty albo beda Zle policzone, albo
program sie wysypie. Przetransformowany obraz mozemy obejrzeé¢ instrukcja
image, pamietajac o ustawieniu odpowiedniej colormapy, i o ewentualnym
przeksztalceniu zakresu wartosci transformaty do przedziatu [0,255].

Kompresja obrazéw

Nasze podejécie do kompresji bedzie bardzo proste. Pierwsza obserwacja jest
taka, ze transformata falkowa obrazu jest prawie cala czarna. Wiekszo$¢
wspotezynnikow (dla realistycznego obrazu, takiego jak fotografia) jest bar-
dzo mala. Ustalimy sobie prog e, i wszystkie wspotczynniki o wartosci bez-
wzglednej ponizej progu zmienimy na 0. W ten spos6b w obrazku pozostanie
niewiele niezerowych wspotczynnikow. Format obrazu z ktérym pracujemy
(.bmp) nie kompresuje danych, wiec efektow kompresji nie zauwazymy w roz-
miarze kompresowanego pliku. Dlatego bedziemy obliczali stopienn kompresji
w sposOb uproszczony. Kazdy wyzerowany wspoOtczynnik policzymy, i na
koniec podzielimy przez ilos¢ wszystkich pikseli.
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Zerowanie wspolczynnikow o wartosciach ponizej ustalonego progu be-
dziemy nazywa¢ progowaniem (po angielsku ,thresholding”). Bedziemy roz-
waza¢ dwa rodzaje progowania, tak zwane progowanie twarde i progowanie
miekkie. Roznice objasniaja wykresy funkcji progujacych. Programowa-
nie twarde jest koncepcyjnie prostsze, ale wprowadza do obrazka sztuczne
nieciaglosci. Z kolei progowanie miekkie obniza kontrast transformaty, i w
przypadku wysokich progéow nalezy kontrast wyrownacé przed zastosowaniem
transformaty odwrotne;j.

eps

-eps

-eps O eps -eps O eps

Rysunek 6.20: Progowanie twarde i miekkie

Bedziemy poroéwnywaé subiektywna, optyczng jakosé obrazéw skompre-
sowanych filtrami Daubechies r6znej dtugosci, o roznym stopniu kompres;ji,i
kompresowanych z uzyciem obu metod progowania. Przyktadowe procedury
moga wiec by¢ nastepujace.

A=imread(’Lena.bmp’,’bmp’) ;
A=double(A);
N=6;\% 2,10 itp
hO=daubcqgf (N) ;
L=9;
[B,L]=mdwt (A,hO,L);
eps=50;\% 30, 100 itp
11=0;
for i=1:512
for j=1:512
if abs(B(i,j))<eps
B(i,j)=0;
11=11+1;
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end;
end;
end;
A=midwt (B,h0,L);
image (A4) ;
100*i1/(512%512)

Progowanie miekkie mozemy zaimplementowa¢ nastepujaco

if B(i,j)>0
if B(i,j)<0

B(i,3)=0;
il=il1+1;
end;
else;

B(i,j)=B(i,j)+eps;
if B(i,j)>0

B(i,3)=0;
il=il1+1;
end;
end;

Jezeli bedziemy uzywac duzej wartosci progu €, to nalezy wyréwna¢ poziomy.
To znaczy, nalezy przed progowaniem znalez¢

M = max |B(i, j)],
1,7

a nastepnie, po progowaniu pomnozyc¢

Powinnismy eksperymentowa¢ z € tak, aby uzyska¢ typowe wartosci stop-
nia kompresji: 90%, 95%, 98%. W przypadku trafienia we wlasciwy stopien
kompresji obraz skompresowany nalezy zapisa¢, nadajac mu nazwe umozli-
wiajaca identyfikacje stopnia kompresji, dtugosci filtru i rodzaju progowania.
postarajmy sie wyciaggna¢ wnioski na temat roli dtugosci filtru oraz stopnia
progowania. Poréwnajmy wyniki dla kilku réznych obrazkéow. Wyprobujmy
ten algorytm réwniez na obrazkach typu grafika komputerowa.

143



