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Rozdziaª 1

Przestrze« Hilberta

Sygnaªy
Funkcje (w j¦zyku in»ynierów - sygnaªy) które b¦dziemy rozwa»ali na tym
wykªadzie b¦d¡ kilku typów

Sygnaªy ci¡gªe (analogowe)
•) L2(R) to funkcje na prostej speªniaj¡ce warunek

∫ ∞

−∞
|f(x)|2 dx < +∞,

(czyli funkcje caªkowalne z kwadratem). Z punktu widzenia zastosowa« to
bardzo interesuj¡ca przestrze« sygnaªów. Je»eli f(x) oznacza, na przykªad,
napi¦cie jakiego± przebiegu elektrycznego, to warunek caªkowalno±ci z kwa-
dratem oznacza, »e reprezentowany przez to napi¦cie sygnaª ma sko«czon¡
caªkowit¡ energi¦ - bardzo rozs¡dne zaªo»enie.
•) L2([−π, π]), przestrze« funkcji okresowych o okresie 2π (czyli f(x+2π) =
f(x)), caªkowalnych z kwadratem w okresie

∫ π

−π

|f(x)|2 dx < +∞.

Podobnie jak poprzednio ten warunek oznacza, »e warto±¢ energii sygnaªu
w okresie jest sko«czona. Dªugo±¢ okresu nie jest szczególnie wa»na, gdy»
poprzez proste przeskalowanie mo»na nasze rozwa»ania przenie±¢ na sygnaªy
o innych okresach. Okres 2π wybrany jest dla wygody (to jest okres funk-
cji trygonometrycznych, których b¦dziemy u»ywali). Przestrze« t¦ b¦dziemy
te» oznaczali przez L2(T), gdzie T oznacza okr¡g jednostkowy, czyli odcinek
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[−π, π] z uto»samionymi ko«cami.
•) Ogólniej, L2(Rn) to funkcje n zmiennych rzeczywistych, caªkowalnych z
kwadratem. Szczególnie interesuj¡cy jest przypadek n = 2, sygnaªy takie
reprezentuj¡ obrazy.
•) Ogólniej L2(Tn), funkcje n zmiennych, wzgl¦dem ka»dej zmiennej okre-
sowe o okresie 2π:

f(x1, . . . , xi + 2π, . . . , xn) = f(x1, . . . , xi, . . . , xn), i = 1, . . . , n,

i caªkowalne z kwadratem po swoim okresie:
∫ π

−π

· · ·
∫ π

−π

|f(x1, . . . , xn)|2 dx1 · · · dxn < +∞.

Równie» tutaj najbardziej interesuj¡cy (oprócz n = 1) jest przypadek n = 2.

Sygnaªy dyskretne (cyfrowe)
•) L2(Z) to przestrze« ci¡gów podwójnie niesko«czonych {fk}, sumowalnych
z kwadratem ∞∑

k=−∞
|fk|2 < +∞.

Przestrze« t¡ cz¦sto b¦dziemy te» oznacza¢ `2.
•) L2(Zp), p = 2, 3, . . . to przestrze« ci¡gów podwójnie niesko«czonych {fk}
okresowych o okresie p, czyli fk+p = fk ∀ k ∈ Z. Takie ci¡gi s¡, rzecz jasna,
automatycznie sumowalne z kwadratem po okresie:

p−1∑

k=0

|fk|2 < +∞.

T¡ przestrze« b¦dziemy te» czasem oznacza¢ `2
p.

•) Ogólniej, L2(Zn) i L2(Zn
p ) to przestrzenie ci¡gów n - wymiarowych okre-

sowych (L2(Zn
p )) lub nie (L2(Zn)), sumowalnych z kwadratem, w przypadku

L2(Zn
p ) tylko po okresie. Jak poprzednio, najwa»niejsze przypadki to n = 2.

Uwaga 1.1. a) Sygnaªy wyst¦puj¡ce w rzeczywisto±ci (w naturze) s¡ naj-
cz¦±ciej ci¡gªe. Sygnaªy dyskretne pojawiaj¡ si¦ jako wynik próbkowania sy-
gnaªów wyst¦puj¡cych w rzeczywisto±ci, i to one pojawiaj¡ si¦ w algorytmach
numerycznych. Poznamy fundamentalne (ale bardzo proste) twierdzenie mó-
wi¡ce kiedy sygnaª ci¡gªy mo»na caªkowicie odtworzy¢ z ci¡gu próbek (mówi¡c
w skrócie, sygnaª musi mie¢ sko«czone widmo cz¦stotliwo±ciowe, a próbko-
wanie musi by¢ wystarczaj¡co cz¦ste). W przypadku kiedy sygnaªu nie da
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si¦ zrekonstruowa¢ z próbek (na przykªad z jakich± powodów próbkowanie jest
zbyt rzadkie) dowiemy si¦ jak przygotowa¢ sygnaª do próbkowania, aby uzy-
ska¢ najlepszy efekt rekonstrukcji (b¦dzie to tak zwany �ltr antyaliasingowy).
b) Zauwa»my, »e wszystkie rozwa»ane przestrzenie sygnaªów maj¡ pewne
wspólne cechy, wa»ne z punktu widzenia teorii. Tworz¡ je funkcje (o war-
to±ciach zespolonych) na jakim± zbiorze, caªkowalne lub sumowalne na tym
zbiorze z kwadratem. Ta wspólna cecha pozwoli nam wprowadzi¢ w tych prze-
strzeniach struktur¦ przestrzeni Hilberta, nasze podstawowe narz¦dzie. Drug¡
cech¡ wspóln¡ rozwa»anych przestrzeni sygnaªów jest to, »e zbiór na którym
te sygnaªy s¡ rozwa»ane (Rn, Tn, Zn, Zn

p) ma struktur¦ grupy abelowej, na
przykªad Zp z dodawaniem modulo p. To z kolei pozwala nam korzysta¢ z na-
szego drugiego podstawowego narz¦dzia - transformaty Fouriera - w jej wielu
wcieleniach, transformaty ci¡gªej, dyskretnej czy szeregu Fouriera.

Przestrze« Hilberta
Przypomnijmy krótko poj¦cie przestrzeni liniowej, przestrzeni metrycznej i
przestrzeni zupeªnej.
Przestrze« liniowa to taka, której elementy mo»na dodawa¢, odejmowa¢ i
mno»y¢ przez skalary (w naszym przypadku skalarami s¡ liczby zespolone).
Przestrze« liniow¡ cz¦sto nazywa si¦ te» przestrzeni¡ wektorow¡, a jej ele-
menty wektorami.
Przestrze« metryczna to taka, w której okre±lona jest funkcja odlegªo±ci
d(x, y) (metryka) dzi¦ki której mo»na zde�niowa¢ zbie»no±¢ ci¡gu: xn → x
je»eli d(xn, x) → 0. Otrzymujemy przestrze« topologiczn¡, mo»na mówi¢ o
ci¡gªo±ci funkcji, czy zbie»no±ci szeregów.
Przestrze« metryczna zupeªna to taka przestrze« w której ka»dy ci¡g Cau-
chy'ego jest zbie»ny, czyli je»eli ci¡g {xn} elementów przestrzeni speªnia wa-
runek

∀ ε > 0 ∃ N ∈ N ∀ n,m ≥ N d(xn, xm) < ε

to w tej przestrzeni istnieje x takie, »e xn → x. Zupeªno±¢ przestrzeni jest
wa»na z punktu widzenia teorii matematycznej. Wszystkie przestrzenie które
b¦dziemy rozwa»a¢ s¡ zupeªne.

Przypomnijmy te» funkcj¦ wykªadnicz¡ zmiennej zespolonej, zde�nio-
wan¡ przez szereg pot¦gowy

ez =
∞∑

n=0

zn

n!
, z - liczba zespolona.
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Mamy nast¦puj¡c¡ równo±¢

eiϕ = cos ϕ + i sin ϕ. (1.1)

Otrzymujemy j¡ wstawiaj¡c i ϕ do de�nicji, korzystaj¡c z faktu, »e i2 = −1,
rozdzielaj¡c skªadniki zawieraj¡ce i nie zawieraj¡ce i (szereg jest zbie»ny
absolutnie) i korzystaj¡c z rozwini¦¢ Taylora funkcji sin x i cos x.

De�nicja 1.2. Przestrze« liniowa E nazywa si¦ przestrzeni¡ Hilberta, je-
»eli istnieje w niej iloczyn skalarny, to znaczy funkcja 〈x, y〉 (o warto±ciach
zespolonych) o nast¦puj¡cych wªasno±ciach

(a). 〈x, y〉 = 〈y, x〉 (jest antysymetryczny),

(b). 〈x+y, z〉 = 〈x, z〉+〈y, z〉, 〈αx, y〉 = α〈x, y〉 (liniowy wzgl¦dem pierwszej
zmiennej),

(c). 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉, 〈x, αy〉 = α〈x, y〉 (antyliniowy wzgl¦dem
drugiej zmiennej),

(d). 〈x, x〉 ≥ 0 oraz 〈x, x〉 = 0 ⇔ x = 0.

(x, y, z to dowolne elementy E, α jest dowoln¡ liczb¡ zespolon¡, a α jest
liczb¡ sprz¦»on¡ do α). Dodatkowo E musi by¢ zupeªna, kwesti¦ metryki i
zupeªno±ci wyja±nimy za chwil¦.

Je»eli elementy x i y speªniaj¡

〈x, y〉 = 0,

to mówimy, »e s¡ prostopadªe lub ortogonalne. Maj¡c w przestrzeni Hilberta
iloczyn skalarny wprowadzamy tak zwan¡ norm¦ (dªugo±¢)wektorów

‖x‖ =
√
〈x, x〉.

Zauwa»my, »e dzi¦ki wªasno±ci (d) iloczynu skalarnego pierwiastek mo»na
zawsze obliczy¢.

Twierdzenie 1.3 (Nierówno±¢ Schwarza). Dla dowolnych elementów x, y
przestrzeni Hilberta E

|〈x, y〉| ≤ ‖x‖‖y‖.
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Dowód. Ustalmy x, y ∈ E i dowoln¡ liczb¦ rzeczywist¡ λ.

‖x + λy‖2 = 〈x + λy, x + λy〉
= 〈x, x + λy〉+ λ〈y, x + λy〉
= 〈x, x〉+ λ〈x, y〉+ λ〈y, x〉+ λ2〈y, y〉
= λ2‖y‖2 + 2λ<〈x, y〉+ ‖x‖2,

(< - cz¦±¢ rzeczywista). Rozwa»ane wyra»enie jest wi¦c (dla ustalonych x
i y) funkcj¡ kwadratow¡ zmiennej rzeczywistej λ, o wspóªczynnikach ‖y‖2,
2<〈x, y〉 i ‖x‖2. Wyra»enie nie mo»e by¢ ujemne, wi¦c funkcja kwadratowa
mo»e mie¢ co najwy»ej jeden rzeczywisty pierwiastek. A wi¦c wyró»nik funk-
cji kwadratowej musi by¢ ujemny:

(2<〈x, y〉)2 − 4‖y‖2‖x‖2 ≤ 0,

czyli
|<〈x, y〉| ≤ ‖x‖‖y‖.

Je»eli 〈x, y〉 jest liczb¡ rzeczywist¡ to dowód jest zako«czony. Je»eli nie, to
pozostaje jeszcze jeden trik: niech ϕ b¦dzie liczb¡ rzeczywist¡ tak¡, »e

〈x, y〉 = eiϕ|〈x, y〉|.

Tak¡ liczb¦ zawsze mo»na znale¹¢, eiϕ jest �znakiem¹espolonym liczby 〈x, y〉
(chyba »e 〈x, y〉 = 0, ale w takim przypadku nierówno±¢ Schwarza jest na-
tychmiastowa). Wtedy

e−iϕ〈x, y〉 = 〈x, eiϕy〉
jest liczb¡ rzeczywist¡. Wykorzystali±my tu równo±ci

1

eiϕ
= e−iϕ = eiϕ,

które ªatwo wynikaj¡ z postaci trygonometrycznej (1.1). Z udowodnionej ju»
cz¦±ci twierdzenia wynika, »e

|〈x, eiϕy〉| ≤ ‖x‖‖eiϕy‖.

W ko«cu, skoro, jak ªatwo sprawdzi¢ |eiϕ| = 1, mamy

|〈x, y〉| = |e−iϕ〈x, y〉|, i ‖eiϕy‖ = ‖y‖.
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Uwaga 1.4. Przygl¡daj¡c si¦ przedstawionemu wy»ej dowodowi zauwa»my,
»e równo±¢ (w nierówno±ci Schwarza) zachodzi tylko je»eli x i y s¡ wspóª-
liniowe (w sensie zespolonym), to znaczy istnieje liczba zespolona α taka,
»e

x = αy.

Twierdzenie 1.5 (Wªasno±ci normy). (a). ‖x‖ ≥ 0 oraz ‖x‖ = 0 ⇔ x =
0,

(b). ‖ax‖ = |a|‖x‖ dla ka»dej liczby a i elementu x ∈ E,

(c). ‖x + y‖ ≤ ‖x‖+ ‖y‖ (nierówno±¢ trójk¡ta).

Dowód. Wªasno±ci (a) i (b) wynikaj¡ wprost z de�nicji normy i wªasno±ci
iloczynu skalarnego. Sprawd¹my tylko nierówno±¢ trójk¡ta

‖x + y‖2 = 〈x + y, x + y〉 = 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
= ‖x‖2 + 〈x, y〉+ 〈y, x〉+ ‖y‖2

=
∣∣‖x‖2 + 〈x, y〉+ 〈y, x〉+ ‖y‖2

∣∣
≤ ‖x‖2 + |〈x, y〉|+ |〈y, x〉|+ ‖y‖2

≤ ‖x‖2 + 2‖x‖ ‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2.

Po drodze skorzystali±my z nierówno±ci trójk¡ta dla liczb zespolonych

|a + b| ≤ |a|+ |b|,

oraz z nierówno±ci Schwarza.

Norma umo»liwia nam wprowadzenie w E metryki

d(x, y) = ‖x− y‖.

Wymagane wªasno±ci metryki

(a). d(x, y) = d(y, x),

(b). d(x, y) ≥ 0 oraz d(x, y) = 0 ⇔ x = y,

(c). d(x, y) ≤ d(x, z) + d(z, y),
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wynikaj¡ wprost z wyszczególnionych powy»ej wªasno±ci normy. Metryka
wprowadza w E topologi¦, mo»na wi¦c mówi¢ o zbie»no±ci w przestrzeni
Hilberta ci¡gów czy szeregów i o ci¡gªo±ci funkcji. Z nierówno±ci Schwarza
wynika, »e iloczyn skalarny jest ci¡gª¡ funkcj¡ dwóch zmiennych. Przestrze«
Hilberta, z de�nicji, musi by¢ zupeªna jako przestrze« metryczna z t¡ me-
tryk¡.
Przykªady: Wszystkie opisane poprzednio przestrzenie sygnaªów s¡ prze-
strzeniami Hilberta. �eby si¦ o tym przekona¢ nale»y w ka»dej przestrzeni
wprowadzi¢ iloczyn skalarny i sprawdzi¢ warunki (a)�(d) de�nicji. Nale»y
te» udowodni¢ zupeªno±¢ powstaªej przestrzeni metrycznej. W ka»dym przy-
padku przy okre±leniu iloczynu skalarnego b¦dziemy korzysta¢ z nast¦puj¡cej
nierówno±ci, prawdziwej dla dowolnych liczb zespolonych:

2|ab| ≤ |a|2 + |b|2. (1.2)

• L2(Rn). Je»eli f, g ∈ L2(Rn) to funkcja f · g jest absolutnie caªkowalna na
Rn:

|f(x)g(x)| ≤ |f(x)|2
2

+

∣∣∣g(x)
∣∣∣
2

2
,

wi¦c
∫

Rn

∣∣∣f(x)g(x)
∣∣∣ dx ≤ 1

2

∫

Rn

|f(x)|2 dx +
1

2

∫

Rn

|g(x)|2 dx < +∞.

Iloczyn skalarny okre±lamy nast¦puj¡co:

〈f, g〉 =

∫

Rn

f(x)g(x) dx. (1.3)

Jak z tego wynika

‖f‖ =

√∫

Rn

|f(x)|2 dx, (1.4)

a odlegªo±¢ dwóch funkcji

d(f, g) = ‖f − g‖ =

√∫

Rn

|f(x)− g(x)|2 dx.

Zbie»no±¢ ci¡gu funkcji w przestrzeni Hilberta L2(Rn) to nie jest to samo,
co zbie»no±¢ punktowa. Na przykªad, niech

fn(x) =

{
1 : x ∈ [n, n + 1],

0 : poza tym.
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Jak ªatwo zauwa»y¢,
fn(x) → 0, ∀x ∈ R,

czyli {fn} jest zbie»ny w ka»dym punkcji do funkcji stale równej 0. Z drugiej
strony, dla dowolnego n

‖fn‖2 =

∫

R

|fn(x)|2 dx =

∫ n+1

n

dx = 1.

Ci¡g nie jest wi¦c zbie»ny do 0 w L2(R). Mo»na te» poda¢ przykªad ci¡gu
zbie»nego w L2(R), ale nie zbie»nego punktowo. Niech n b¦dzie liczb¡ na-
turaln¡, i niech n = 2k + l, dla pewnego k = 0, 1, 2, . . . i l = 0, . . . , 2k − 1.
Maj¡c taki rozkªad n okre±lamy

fn(x) =

{
1 : x ∈ [2−kl, 2−k(l + 1)),

0 : x /∈ [2−kl, 2−k(l + 1)).

Zauwa»my, »e ci¡g {fn‖ nie jest zbie»ny w »adnym punkcie x ∈ [0, 1), nato-
miast

‖fn‖2 =

∫ 2−k(l+1)

2−kl

dx = 2−k.

�atwo zauwa»y¢, »e k →∞ gdy n →∞, wi¦c

lim
n→∞

‖fn‖ = 0,

ci¡g {fn} zbiega wi¦c do 0 w przestrzeni Hilberta.
Dla caªkowitej ±cisªo±ci trzeba zrobi¢ nast¦puj¡c¡ uwag¦, która odnosi si¦

do wszystkich rozwa»anych przez nas przestrzeni sygnaªów ci¡gªych. Niech

f(x) =

{
1 : x = 0,

0 : x 6= 0.
(1.5)

f nie jest funkcj¡ zerow¡, ale ‖f‖ = 0. Iloczyn skalarny wprowadzony wzo-
rem (1.3) nie speªnia warunku (d) de�nicji dla pewnej grupy specy�cznych
funkcji takich jak (1.5). De�nicj¦ przestrzeni L2(Rn) mogliby±my u±ci±li¢,
posªuguj¡c si¦ poj¦ciem klasy abstrakcji. W przypadku tego kursu a» taka
±cisªo±¢ nie jest potrzebna. Wystarczy pami¦ta¢, »e je»eli dwie funkcje ró»ni¡
si¦ na niewielkim zbiorze, na przykªad na zbiorze sko«czonym, to traktujemy
je jako t¡ sam¡ funkcj¦. Uwagi te nie dotycz¡ funkcji ci¡gªych. Je»eli f i g
s¡ ci¡gªe, oraz

‖f − g‖ = 0,
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to f = g wsz¦dzie.
• L2(Tn). Iloczyn skalarny wprowadzamy nast¦puj¡co

〈f, g〉 =
1

(2π)n

∫ π

−π

· · ·
∫ π

−π

f(x)g(x) dx x = (x1, . . . , xn),

podobnie jak poprzednio, korzystaj¡c z (1.2) pokazujemy, »e caªka zawsze
istnieje.
• L2(Zn). Maj¡c dwa ci¡gi z tej przestrzeni, f = {fm} i g = {gm}, m =
(m1, . . . , mn) okre±lamy

〈f, g〉 =
∞∑

m1,...,mn=−∞
fmgm.

Ze wzgl¦du na (1.2) szereg jest zbie»ny absolutnie.
• L2(Zn

p ). Podobnie dla ci¡gów okresowych

〈f, g〉 =
1

pn

p−1∑
m1,...,mn=0

fmgm.

W ka»dym z powy»szych przypadków nale»y sprawdzi¢ warunki (a)�(d) de-
�nicji przestrzeni Hilberta. Istotnym punktem do sprawdzenia pozostaje
zupeªno±¢ tak zde�niowanych przestrzeni. W przypadku przestrzeni dys-
kretnych zupeªno±¢ wynika z zupeªno±ci zbioru liczb rzeczywistych (ka»dy
ci¡g Cauchy'ego jest zbie»ny). Do dowodu zupeªno±ci R trzeba dokªadnie
przyjrze¢ si¦ de�nicji samych liczb rzeczywistych. W przypadku przestrzeni
sygnaªów ci¡gªych w dowodzie zupeªno±ci korzysta si¦ z konstrukcji caªki
Lebesgue'a (przestrzenie zde�niowane przy u»yciu caªki Riemanna nie s¡
zupeªne). Dowód zupeªno±ci pomijamy. W dalszej cz¦±ci kursu wystarczy
(chciaªoby si¦ powiedzie¢ �w zupeªno±ci�) nam sama ±wiadomo±¢ tego, »e
przestrzenie s¡ zupeªne.

Bazy i rozpi¦cia
Zbiór elementów {en} przestrzeni Hilberta E (sko«czony lub niesko«czony)
nazywa si¦ liniowo niezale»nym, je»eli »aden jego element nie jest kombinacj¡
liniow¡ pozostaªych. Mo»na to zapisa¢ nast¦puj¡co. Je»eli dla jakich± liczb
zespolonych α1, . . . , αk zachodzi

α1e1 + . . . , αkek = 0,
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to α1 = α2 = · · · = αk = 0. Na przykªad, zbiór funkcji {fn}∞n=−∞ gdzie

∆(x) =





x : x ∈ [0, 1],

2− x : x ∈ [1, 2],

0 : x /∈ [0, 2],

(1.6)

oraz fn(x) = ∆(x− n) jest liniowo niezale»ny w L2(R). Je»eli α1, . . . , αk s¡
jakimi± liczbami zespolonymi, a n1, . . . , nk ró»nymi liczbami caªkowitymi, to
funkcja

α1fn1 + . . . αkfnk

ma warto±¢ αl w punkcie caªkowitym nl + 1. Je»eli wi¦c jest równa wsz¦dzie
0, to α1 = α2 = · · · = αk = 0.

Je»eli jednak do tego zbioru dodamy funkcj¦

f(x) =





x : x ∈ [0, 2],

6− 2x : x ∈ [2, 3],

0 : x /∈ [0, 3],

to powstaªy zbiór nie jest ju» liniowo niezale»ny, bo

f(x) = f0(x) + 2f1(x),

a wi¦c
f(x)− f0(x)− 2f1(x) = 0

a wspóªczynniki 1,−1,−2 nie s¡ zerami.
Zbiór elementów {en} (znowu, sko«czony lub nie) nazywa si¦ ortonormal-

nym je»eli

〈en, em〉 =

{
0 : n 6= m,

1 : n = m.

Zbiór ortonormalny skªada si¦ wi¦c z elementów o normie 1, wzajemnie orto-
gonalnych. Zauwa»my, »e zbiór ortonormalny jest zawsze liniowo niezale»ny.
Niech {en} b¦dzie ortonormalny, i niech α1, . . . , αk b¦d¡ liczbami takimi, »e

α1e1 + · · ·+ αkek = 0.

We¹my dowolne j = 1, . . . , k i obliczmy

0 = 〈α1e1 + · · ·+ αkek, ej〉
= α1〈e1, ej〉+ · · ·+ αk〈ek, ej〉
= αj.
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W takim razie α1 = · · · = αk = 0. Pokazali±my wi¦c »e istotnie, zbiór
ortonormalny jest liniowo niezale»ny.

Maj¡c zbiór elementów {en} przestrzeni Hilberta E rozpi¦ciem liniowym

Lin {en}

nazywamy zbiór wszystkich kombinacji liniowych elementów {en}. Jest to
najmniejsza podprzestrze« liniowa przestrzeni E zawieraj¡ca wszystkie ele-
menty zbioru {en}. Mówimy, »e zbiór {en} rozpina t¡ podprzestrze«. Do-
mkni¦cie tego zbioru

Lin {en},
(czyli doª¡czenie do niego granic wszystkich zbie»nych ci¡gów) nazywamy
domkni¦tym rozpi¦ciem liniowym zbioru {en}.

Na przykªad, rozpi¦cie liniowe zbioru funkcji danych przez (1.6) zawiera
dokªadnie te funkcje f ∈ L2(R), które speªniaj¡ nast¦puj¡ce warunki: f jest
ci¡gªa, f jest liniowa na przedziaªach postaci [n, n + 1], dla n ∈ Z, i f jest 0
poza pewnym sko«czonym przedziaªem. Z kolei domkni¦te rozpi¦cie liniowe
tego zbioru to wszystkie funkcje f ∈ L2(R), ci¡gªe i liniowe na przedziaªach
postaci [n, n + 1]. Jak ªatwo sprawdzi¢

Lin {fn; n ∈ Z} =

{
g =

∞∑
n=−∞

αnfn;
∞∑

n=−∞
|αn|2 < ∞

}
.

Innymi sªowy, warunkiem koniecznym i dostatecznym na to, »eby szereg
∞∑

n=−∞
αnfn

byª zbie»ny w przestrzeni L2(R) jest sumowalno±¢ z kwadratem ci¡gu wspóª-
czynników αn.

Mo»na pokaza¢, »e je»eli zbiór {en} jest sko«czony, to

Lin {en} = Lin {en}.

Je»eli mamy przeliczalny zbiór {en} elementów przestrzeni Hilberta E,
to zawsze mo»emy znale¹¢ zbiór ortonormalny {fn}, o tym samym rozpi¦ciu
liniowym

Lin {en} = Lin {fn}.
Konstrukcja zbioru {fn} nazywa si¦ procedur¡ Gramma-Schmidta. Proce-
dura jest indukcyjna. Niech elementy zbioru {en} b¦d¡ ustawione w ci¡g

12



e1, e2, . . . . Je»eli ci¡g zawiera elementy zerowe to odrzu¢my je � nie wpªywa
to na rozpi¦cie liniowe. Niech

f1 =
e1

‖e1‖ .

Mamy wi¦c pocz¡tek procedury indukcyjnej. Teraz opiszemy krok. Zaªó»my,
»e utworzony ju» zostaª zbiór ortonormalny {f1, . . . , fk} o nast¦puj¡cej wªa-
sno±ci: istnieje nk takie, »e

Lin {e1, . . . , enk
} = Lin {f1, . . . , fk}. (1.7)

Zauwa»my, »e element f1 zde�niowany przed chwil¡ speªnia powy»szy waru-
nek, z k = 1, n1 = 1. �eby wykona¢ krok indukcyjny znajd¹my element ci¡gu
{en}, nast¦pny po enk

, który nie nale»y do powy»szego rozpi¦cia (1.7). Je»eli
takiego elementu w ci¡gu nie znajdziemy, innymi sªowy wszystkie pozostaªe
elementy enk+1, enk+2, . . . nale»¡ do rozpi¦cia (1.7), to procedura si¦ ko«czy,
i

Lin {en; n = 1, 2, . . . } = Lin {f1, . . . , fk}.
W tym wypadku procedura Gramma-Schmidta jest zako«czona, a powstaªy
zbiór ortonormalny jest sko«czony. Je»eli natomiast znajdziemy element
ci¡gu {en}, nast¦pny po enk

, który nie nale»y do rozpi¦cia (1.7) (niech to
b¦dzie pierwszy taki element), to nazywamy go enk+1

, i de�niujemy fk+1

fk+1 =
enk+1

−∑k
l=1〈enk+1

, fl〉fl∥∥∥enk+1
−∑k

l=1〈enk+1
, fl〉fl

∥∥∥
.

Wprost z powy»szego wzoru wynika, »e ‖fk+1‖ = 1. Niech j = 1, . . . , k i
zauwa»my, »e fk+1 i fj s¡ ortogonalne

〈fk+1, fj〉 =
1

‖ · · · ‖

〈(
enk+1

−
k∑

l=1

〈enk+1
, fl〉fl

)
, fj

〉

=
1

‖ · · · ‖

(
〈enk+1

, fj〉 −
k∑

l=1

〈enk+1
, fl〉〈fl, fj〉

)

=
1

‖ · · · ‖
(〈enk+1

, fj〉 − 〈enk+1
, fj〉

)

= 0.

Rozszerzony zbiór {f1, . . . , fk+1} jest wi¦c ortonormalny. Pozostaje zauwa-
»y¢, »e

Lin {e1, . . . , enk+1
} = Lin {f1, . . . , fk+1},

13



co natychmiast wynika z zaªo»enia indukcyjnego i konstrukcji elementu fk+1.
Krok indukcyjny jest wi¦c wykonany, i procedura Gramma-Schmidta daje w
wyniku sko«czony lub niesko«czony zbiór ortonormalny {fn} o tym samym
rozpi¦ciu liniowym co Lin {en}. Zauwa»my, »e skoro rozpi¦cia liniowe s¡
identyczne, to tak»e domkni¦te rozpi¦cia liniowe

Lin {en} = Lin {fn}.
Przykªad: Niech

e1(x) =

{
1 : x ∈ [1, 2),

0 : x /∈ [1, 2),

natomiast nast¦pne elementy b¦d¡ dane wzorem

en(x) =

{
1 : x ∈ [n− 1, n + 1),

0 : x /∈ [n− 1, n + 1),
n = 2, 3, . . . .

Poka»emy, »e zbiór {e1, e2, . . . } jest liniowo niezale»ny. Niech b¦d¡ dane
wspóªczynniki α1, . . . , αk i niech

α1e1 + · · ·+ αkek = 0.

We¹my liczb¦ caªkowit¡ j = 1, . . . , k − 1. Wtedy warto±¢ funkcji po lewej
stronie w punkcie j jest równa αj + αj+1, a wi¦c

αj + αj+1 = 0, j = 1, . . . , k − 1,

z kolei warto±¢ lewej strony w punkcie k wynosi αk, czyli αk = 0. Otrzy-
mujemy wiec α1 = · · · = αk = 0. Zbiór wektorów {en} jest wi¦c liniowo
niezale»ny. Nie jest jednak ortonormalny. Na przykªad

〈e1, e2〉 =

∫ ∞

−∞
e1(x)e2(x) dx

=

∫ 2

1

2 dx

= 1.

Zastosujmy wi¦c procedur¦ Gramma-Schmidta. ‖e1‖ = 1, wi¦c f1 = e1.

e2(x)− 〈e2, f1〉f1(x) = e2(x)− e1(x).

Otrzymujemy wi¦c

f2(x) =

{
1 : x ∈ [2, 3),

0 : x /∈ [2, 3).
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Kontynuuj¡c indukcyjnie otrzymujemy

fn(x) =

{
1 : x ∈ [n, n + 1),

0 : x /∈ [n, n + 1).

Zbiór {fn} jest ortonormalny i rozpina t¡ sam¡ podprzestrze« co zbiór wyj-
±ciowy {en}: podprzestrze« funkcji staªych na przedziaªach postaci [n, n+1),
równych 0 dla x < 1 i x ≥ M dla pewnej liczby naturalnej M .

Mówimy, »e zbiór {en}∞n=1 elementów przestrzeni Hilberta E jest zupeªny,
je»eli

Lin {en} = E,

czyli ka»dy element przestrzeni E jest granic¡ ci¡gu kombinacji liniowych
elementów zbioru {en}. Innymi sªowy,

∀ x ∈ E ∀ε > 0 ∃ α1, . . . αk

∥∥∥∥∥x−
k∑

n=1

αnen

∥∥∥∥∥ < ε.

Ta zupeªno±¢ jest poj¦ciem �zupeªnie«ie zwi¡zanym z zupeªno±ci¡�w sensie
przestrzeni metrycznej�dyskutowan¡ wcze±niej. Mo»na pokaza¢ nast¦puj¡cy
fakt, cz¦sto stosowany w sytuacji, gdy trzeba sprawdzi¢ zupeªno±¢ jakiego±
zbioru.

Fakt 1.6. Zbiór {en} ⊂ E jest zupeªny wtedy i tylko wtedy, gdy jedynym
elementem x ∈ E prostopadªym do wszystkich en jest 0.

De�nicja 1.7. Zbiór {en} nazywa si¦ baz¡ przestrzeni Hilberta E je»eli jest
liniowo niezale»ny i zupeªny. {en} nazywa si¦ baz¡ ortonormaln¡ je»eli jest
ortonormalny i zupeªny.

Mówi¡c lu¹no, zbiór tworzy baz¦ je»eli do ka»dego elementu przestrzeni
E mo»na podej±¢ dowolnie blisko jak¡± kombinacj¡ linow¡ elementów bazy
(zupeªno±¢), i zbiór nie zawiera »adnych zb¦dnych elementów (liniowa nieza-
le»no±¢).

Uwaga 1.8. (a) Powy»sza de�nicja ró»ni si¦ zasadniczo od poj¦cia bazy prze-
strzeni liniowej wprowadzanego na wykªadzie z algebry liniowej. W tamtej
de�nicji ka»dy element przestrzeni mo»na przedstawi¢ jako kombinacj¦ li-
niow¡ elementów bazy, a w tej de�nicji wystarczy, »eby do ka»dego elementu
przestrzeni mo»na byªo dowolnie blisko �podej±¢� kombinacjami liniowymi ele-
mentów bazy. Dla unikni¦cia zamieszania tamt¡, algebraiczn¡ baz¦ czasami
nazywa si¦ �baz¡ Hamela�, a t¦ �baz¡ topologiczn¡�. Na tym wykªadzie b¦-
dziemy korzystali tylko z baz topologicznych, i b¦dziemy je po prostu nazywali
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bazami. W przypadku przestrzeni sko«czenie wymiarowych oba poj¦cia baz s¡
identyczne.
(b) Mo»na udowodni¢, »e dwie bazy tej samej przestrzeni s¡ równoliczne.
Liczb¦ elementów bazy (mo»e by¢ niesko«czona) nazywamy wymiarem prze-
strzeni. Rozwa»ane przez nas przestrzenie s¡ zarówno sko«czenie wymiarowe
(na przykªad wymiar przestrzeni `2

p jest równy p) jak i niesko«czenie wymia-
rowe (`2 czy przestrzenie sygnaªów analogowych). Sko«czenie wymiarowe
przestrzenie Hilberta s¡ czasem nazywane przestrzeniami Euklidesowymi.
(c) Ka»dy ukªad liniowo niezale»ny mo»na rozszerzy¢ do bazy (uzupeªni¢).
Ka»dy ukªad ortonormalny mo»na rozszerzy¢ do bazy ortonormalnej. Na tym
wykªadzie b¦dziemy konstruowa¢ konkretne bazy w konkretnych przestrzeniach
Hilberta.

Bazy ortonormalne s¡ szczególnie wygodne w zastosowaniach. Poni»ej
przypomnimy na czym polega ta wygoda.

Twierdzenie 1.9. Je»eli {en} jest baz¡ o.n. przestrzeni E to dla dowolnych
liczb zespolonych α1, . . . , αk i dowolnego x ∈ E zachodzi nierówno±¢

∥∥∥∥∥x−
k∑

n=1

〈x, en〉en

∥∥∥∥∥ ≤
∥∥∥∥∥x−

k∑
n=1

αn en

∥∥∥∥∥ . (1.8)

Równo±¢ zachodzi tylko w przypadku αn = 〈x, en〉, n = 1, . . . , k

Dowód.
∥∥∥∥∥x−

k∑
n=1

αnen

∥∥∥∥∥

2

=

∥∥∥∥∥x−
k∑

n=1

〈x, en〉en +
k∑

n=1

(〈x, en〉 − αn) en

∥∥∥∥∥

2

=

∥∥∥∥∥x−
k∑

n=1

〈x, en〉en

∥∥∥∥∥

2

+

+ 2<
〈

x−
k∑

n=1

〈x, en〉en,

k∑
m=0

(〈x, em〉 − αm) em

〉
+

+

∥∥∥∥∥
k∑

n=1

(〈x, en〉 − αn) en

∥∥∥∥∥

2

.

Powy»sz¡ równo±¢ otrzymali±my jak zwykle: norm¦ sumy do kwadratu zapi-
sali±my jako iloczyn skalarny sumy przez siebie, i skorzystali±my z liniowo±ci
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iloczynu skalarnego. Rozwa»my drugi skªadnik w uzyskanym wyra»eniu:
〈

x−
k∑

n=1

〈x, en〉en,

k∑
m=1

(〈x, em〉 − αm) em

〉
=

=
k∑

m=1

(〈x, em〉 − αm)

〈
x−

k∑
n=1

〈x, en〉en, em

〉
=

=
k∑

m=1

(〈x, em〉 − αm)

(
〈x, em〉 −

k∑
n=1

〈x, en〉〈en, em〉
)

.

Zauwa»my, »e ostatni nawias = 0, gdy» baza jest ortonormalna. Pokazali±my
wi¦c nierówno±¢ (1.8). Je»eli zachodzi równo±¢, to

∥∥∥∥∥
k∑

n=1

(〈x, en〉 − αn) en

∥∥∥∥∥ = 0.

Korzystaj¡c z wªasno±ci normy kombinacja liniowa jest wi¦c zerowa
k∑

n=1

(〈x, en〉 − αn) en = 0.

Korzystaj¡c z liniowej niezale»no±ci elementów bazy otrzymujemy

αn = 〈x, en〉, n = 1, . . . , k.

Udowodnili±my wi¦c ostatni¡ cz¦±¢ twierdzenia.

Z de�nicji bazy wynika, »e do ka»dego elementu mo»na dowolnie blisko po-
dej±¢ jak¡± kombinacj¡ liniow¡ elementów bazy. Powy»sze twierdzenie mówi,
»e je»eli baza jest ortonormalna, to najlepszymi kombinacjami liniowymi s¡
kombinacje

k∑
n=1

〈x, en〉en.

Mamy wi¦c konkretny wzór na wspóªczynniki tych �najefektywniejszych�
kombinacji.

Wniosek 1.10. Je»eli {en} jest baz¡ o.n. przestrzeni E to:

(a). dla dowolnego x ∈ E

x =
∞∑

n=1

〈x, en〉en, (rozkªad x wzgl¦dem bazy)
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(b). je»eli dla jakiego± ci¡gu wspóªczynników α1, α2, . . . zachodzi

x =
∞∑

n=1

αn en,

to wspóªczynniki musz¡ by¢ iloczynami skalarnymi

αn = 〈x, en〉 (jednoznaczno±¢ rozkªadu),

(c). dla dowolnego x ∈ E

‖x‖2 =
∞∑

n=1

|〈x, en〉|2 (równo±¢ Plancherela).

W powy»szym wniosku przyj¦li±my, »e baza jest niesko«czona. Oczywi-
±cie, je»eli jest sko«czona, to wniosek te» jest prawdziwy a wszystkie sumy
niesko«czone zast¦pujemy sko«czonymi

Dowód. (a) Korzystamy z poprzedniego twierdzenia. Niech k ≥ m i niech
αn = 〈x, en〉 dla n = 1, . . . , m i αn = 0 dla n = m + 1, . . . , k. Nierówno±¢ z
poprzedniego twierdzenia wygl¡da wi¦c nast¦puj¡co

∥∥∥∥∥x−
k∑

n=1

〈x, en〉 en

∥∥∥∥∥ ≤
∥∥∥∥∥x−

m∑
n=1

〈x, en〉 en

∥∥∥∥∥ .

Dalej, z de�nicji bazy wiemy, »e dla ka»dego ε > 0 istniej¡ wspóªczynniki
α1, . . . , αk takie, »e ∥∥∥∥∥x−

k∑
n=1

αn en

∥∥∥∥∥ < ε.

Z poprzedniego twierdzenia i poprzedniej uwagi wynika w takim razie, »e dla
tego ε i tego k mamy
∥∥∥∥∥x−

l∑
n=1

〈x, en〉en

∥∥∥∥∥ ≤
∥∥∥∥∥x−

k∑
n=1

〈x, en〉en

∥∥∥∥∥ ≤
∥∥∥∥∥x−

k∑
n=1

αn en

∥∥∥∥∥ < ε ∀ l ≥ k,

a wi¦c szereg
∞∑

n=1

〈x, en〉en,

jest zbie»ny do x.
(b) Je»eli

x =
∞∑

n=1

αn en,
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to stosuj¡c iloczyn skalarny i korzystaj¡c z jego ci¡gªo±ci mamy

〈x, en〉 =

〈 ∞∑
m=1

αm em, en

〉
=

∞∑
m=1

αm〈em, en〉 = αn.

(c) Korzystaj¡c z ci¡gªo±ci iloczynu skalarnego otrzymujemy

‖x‖2 = 〈x, x〉 =

〈 ∞∑
n=1

〈x, en〉en,

∞∑
m=1

〈x, em〉em

〉

=
∞∑

n=1

∞∑
m=1

〈x, en〉〈x, em〉〈en, em〉

=
∞∑

n=1

|〈x, en〉|2 .

Uwaga 1.11. (i) Z powy»szego wniosku wynika, »e je»eli baza {en} jest or-
tonormalna, to szereg

∞∑
n=1

αn en

jest zbie»ny wtedy i tylko wtedy, gdy szereg wspóªczynników jest sumowalny z
kwadratem ∞∑

n=1

|αn|2 < ∞.

(ii) Równo±ci w (a) i (b) s¡ równo±ciami w przestrzeni E i, na przykªad,
równo±¢ w (a) oznacza

lim
N→∞

∥∥∥∥∥x−
N∑

n=1

〈x, en〉 en

∥∥∥∥∥ = 0.

Elementy rozwa»anych przez nas przestrzeni s¡ funkcjami, a zbie»no±¢ szeregu
funkcyjnego w normie przestrzeni nie oznacza z reguªy zbie»no±ci w ka»dym
punkcie.
(iii) Równo±¢ Plancherela

‖x‖2 =
∞∑

n=1

|〈x, en〉|2

mo»na rozumie¢ jako uogólnione (z przypadku 2-wymiarowego) twierdzenie
Pitagorasa: kwadrat dªugo±ci wektora jest sum¡ kwadratów jego skªadowych
w kierunkach elementów bazy ortonormalnej.
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B¦dziemy korzysta¢ z nast¦puj¡cych poj¦¢

De�nicja 1.12. Zbiór {en} elementów przestrzeni Hilberta E (sko«czony
lub nie) nazywamy ukªadem Riesza je»eli istniej¡ staªe A,B > 0 takie, »e dla
dowolnego ci¡gu liczb {αn}

A

∞∑
n=1

|αn|2 ≤
∥∥∥∥∥
∞∑

n=1

αn en

∥∥∥∥∥

2

≤ B

∞∑
n=1

|αn|2. (1.9)

Je»eli ukªad Riesza jest dodatkowo zbiorem zupeªnym (rozpina caª¡ przestrze«
E), to nazywamy go baz¡ Riesza.

Warunek (1.9) wystarczy sprawdzi¢ dla sum sko«czonych. Zauwa»my te»,
»e z warunku (1.9) wynika, »e szereg

∞∑
n=1

αn en

jest zbie»ny wtedy i tylko wtedy gdy szereg wspóªczynników jest sumowalny
z kwadratem

∞∑
n=1

|αn|2 < ∞.

Mo»na pokaza¢, »e je»eli w powy»szej de�nicji A = B = 1, to {en} jest
ukªadem ortonormalnym. Baza Riesza jest wi¦c poj¦ciem ogólniejszym, ni»
baza ortonormalna. Bazy Riesza s¡ cz¦sto stosowane w praktyce. Posiadaj¡
wszystkie gªówne zalety baz ortonormalnych. Na przykªad, mo»na pokaza¢,
»e je»eli baza {en} jest baz¡ Riesza to istnieje inna baza Riesza {fn} taka,
»e dla ka»dego x ∈ E

x =
∞∑

n=1

〈x, fn〉en =
∞∑

n=1

〈x, en〉fn.

Dla bazy Riesza mamy wi¦c, podobnie, jak dla bazy ortonormalnej, jawny
wzór na znajdowanie wspóªczynników bazowych, musimy tylko wygenerowa¢
wcze±niej baz¦ {fn}.
Przykªad: Rozwa»my ponownie przykªad dany przez (1.6), en(x) = ∆(x−
n). Wiemy, »e elementy en, n = 0,±1,±2, . . . s¡ liniowo niezale»ne, ale nie
tworz¡ zbioru ortonormalnego. Poka»emy, »e tworz¡ zbiór Riesza. We¹my
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dowolne wspóªczynniki αn, n = N, . . . , M , gdzie N,M ∈ Z.
∫ ∞

−∞

∣∣∣∣∣
M∑

n=N

αn en(x)

∣∣∣∣∣

2

dx =

∫ ∞

−∞

M∑
n=N

αn ∆(x− n)
M∑

k=N

αk ∆(x− k)dx

=
M∑

n,k=N

αnαk

∫ ∞

−∞
∆(x− n)∆(x− k) dx

=
M∑

n,k=N

αnαkβk−n,

gdzie

βl =

∫ ∞

−∞
∆(x)∆(x− l) dx =





2
3

: l = 0,
1
6

: l = ±1,

0 : |l| ≥ 2.

Tak wi¦c
∥∥∥∥∥

M∑
n=N

αn en

∥∥∥∥∥

2

= β0

M∑
n=N

|αn|2 + β1

M−1∑
n=N

αnαn+1 + β−1

M∑
n=N+1

αnαn−1

= β0

M∑
n=N

|αn|2 + 2β1<
(

M−1∑
n=N

αnαn+1

)
.

Korzystaj¡c z nierówno±ci Schwarza szacujemy ostatni skªadnik
∣∣∣∣∣<

(
M−1∑
n=N

αnαn+1

)∣∣∣∣∣ ≤
∣∣∣∣∣
M−1∑
n=N

αnαn+1

∣∣∣∣∣

≤
(

M−1∑
n=N

|αn|2
)1/2 (

M−1∑
n=N

|αn+1|2
)1/2

≤
M∑

n=N

|αn|2.

Podsumowuj¡c powy»sze otrzymujemy

(2/3− 2/6)
M∑

n=N

|αn|2 ≤
∥∥∥∥∥

M∑
n=N

αn en

∥∥∥∥∥

2

≤ (2/3 + 2/6)
M∑

n=N

|αn|2.

Zgodnie z de�nicj¡, wektory {en}∞n=−∞ tworz¡ ukªad Riesza ze staªymi A =
1/3 i B = 1. U»ywaj¡c procedury Gramma-Schmidta mo»emy wyprodu-
kowa¢ z ukªadu Riesza {en}∞n=−∞ ukªad ortonormalny. Jednak nowy ukªad
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ortonormalny nie posiadaªby wa»nych wªasno±ci, na przykªad tej, »e wszyst-
kie jego elementy s¡ przesuni¦ciami jednej funkcji-matki. Mo»na udowodni¢,
»e dla tego ukªadu Riesza �dualny"ukªad {fn}∞n=−∞, o którym byªa mowa
powy»ej równie» skªada si¦ z caªkowitych przesuni¦¢ jednej funkcji Θ. Ta
jedna funkcja jest ci¡gªa, liniowa pomi¦dzy s¡siednimi liczbami caªkowitymi,
a jej warto±ci w punktach n ∈ Z wynosz¡

Θ(n) =
√

3(
√

3− 2)|n|, n ∈ Z.

De�nicja 1.13. Zbiór elementów {en}∞n=1 przestrzeni Hilberta E (nieko-
niecznie liniowo niezale»ny) nazywamy rozpi¦ciem dokªadnym je»eli dla ka»-
dego x ∈ E

‖x‖2 =
∞∑

n=1

|〈x, en〉|2.

Z de�nicji wynika, »e rozpi¦cie dokªadne musi by¢ zbiorem zupeªnym.
Je»eli {en} jest rozpi¦ciem dokªadnym i jest zbiorem liniowo niezale»nym, to
musi by¢ baz¡ ortonormaln¡. Rozpi¦cie dokªadne jest wi¦c poj¦ciem ogól-
niejszym od bazy ortonormalnej, cz¦sto wykorzystywanym w zastosowaniach.
Je»eli {en} jest rozpi¦ciem dokªadnym, to istnieje inne rozpi¦cie dokªadne
{fn} takie, »e dla ka»dego x ∈ E

x =
∞∑

n=1

〈x, fn〉en =
∞∑

n=1

〈x, en〉fn.

W przypadku rozpi¦cia dokªadnego równie» mamy wi¦c sytuacj¦, gdzie ka»dy
x mo»na przedstawi¢ jako kombinacj¦ elementów rozpi¦cia, i s¡ jawne wzory
na wspóªczynniki tego rozwini¦cia.

Przypomnijmy jeszcze kilka poj¦¢, z których b¦dziemy korzysta¢. Je»eli
H ⊂ E jest podprzestrzeni¡, to dopeªnieniem ortogonalnym H nazywamy
podprzestrze«

H⊥ = {x ∈ E : x ⊥ y ∀ y ∈ H},
(x ⊥ y oznacza 〈x, y〉 = 0). Dopeªnienie ortogonalne podprzestrzeni jest
zawsze domkni¦te, co wynika z ci¡gªo±ci iloczynu skalarnego. Je»eli H ⊂
E jest podprzestrzeni¡ domkni¦t¡ to istnieje rzut prostopadªy na H, czyli
przeksztaªcenie liniowe P : E → H takie, »e

Px = x ∀ x ∈ H,

Px = 0 ∀ x ∈ H⊥.
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P przypisuje dowolnemu x ∈ E najbli»szy mu element podprzestrzeni H.
Je»eli w podprzestrzeni H mamy baz¦ o.n. {en}, to

Px =
∞∑

n=1

〈x, en〉 en.

Je»eli G i H s¡ dwoma podprzestrzeniami przestrzeni Hilberta E, to mówimy,
»e E jest ortogonaln¡ sum¡ prost¡ podprzestrzeni G i H je»eli ka»dy element
x ∈ E mo»na jednoznacznie zapisa¢ jako

x = x1 + x2, x1 ∈ G, x2 ∈ H,

oraz G ⊥ H (czyli x ⊥ y dla dowolnych x ∈ G i y ∈ H). Piszemy wtedy

E = G⊕H.

W takiej sytuacji podprzestrzenie G i H musz¡ by¢ domkni¦te.

Uwaga 1.14. (i) Je»eli E = G⊕H to »eby skonstruowa¢ baz¦ w E wystarczy
osobno skonstruowa¢ bazy w G i w H. Ich suma, jako zbiorów, b¦dzie baz¡ E.
Je»eli te bazy w G i H s¡ ortonormalne, to ich suma te» jest ortonormalna.
(ii) Je»eli H jest domkni¦t¡ podprzestrzeni¡ E, to

E = H ⊕H⊥.
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Rozdziaª 2

Przeksztaªcenie Fouriera

Przypomnimy podstawowe zagadnienia zwi¡zane z transformat¡ Fouriera.
Transformata Fouriera przeksztaªca wyj±ciow¡ funkcj¦ w ten sposób, »e war-
to±ci transformaty nie informuj¡ o warto±ci samej funkcji w jakimkolwiek
punkcie, ale informuj¡ jaka jest zawarto±¢ skªadowej o danej cz¦stotliwo±ci
w funkcji wyj±ciowej. W zwi¡zku z tym obliczanie transformaty Fouriera
nazywa si¦ czasem analiz¡ cz¦stotliwo±ciow¡, analiz¡ harmoniczn¡ lub ana-
liz¡ spektraln¡ funkcji. Transformata Fouriera stanowi przeksztaªcenie funkcji
które zachowuje caª¡ informacj¦, i jest odwracalne. Funkcj¦ wyj±ciow¡ mo»na
odtworzy¢ z transformaty, przy pomocy transformaty odwrotnej. Transfor-
mata Fouriera stanowi wi¦c, intuicyjnie, rozkªad funkcji na skªadowe cz¦sto-
tliwo±ciowe. Nie jest to ±cisªe stwierdzenie, bo na przykªad w przypadku funk-
cji w L2(R) transformata jest funkcj¡ zmiennej rzeczywistej, wi¦c musimy
rozwa»a¢ wszystkie cz¦stotliwo±ci b¦d¡ce liczbami rzeczywistymi, a funkcja
wyj±ciowa w ogóle nie jest okresowa.

Transformata Fouriera jest, matematycznie, poj¦ciem bardzo ogólnym,
które wyst¦puje w wielu sytuacjach. Dla matematyka nie jest wi¦c niczym
dziwnym, »e podobne poj¦cie wyst¦puje w tak wielu formach w praktyce.
Jest ci¡gªa transformata Fouriera, jest rozwini¦cie w szereg Fouriera, w ko«cu
jest dyskretna transformata Fouriera. Z punktu widzenia zastosowa« ogólne
podej±cie do transformaty Fouriera nie jest interesuj¡ce, ale kilka faktów
warto zna¢. Je»eli G jest lokalnie zwart¡ grup¡ abelow¡ to rozwa»amy ho-
momor�zmy grupy G w grup¦ liczb zespolonych o module 1 (z mno»eniem):

f : G → {z ∈ C : |z| = 1}.

Ka»dy taki homomor�zm nazywa si¦ charakterem. Charaktery mo»na mno-
»y¢ (tak jak mno»ymy funkcje, punktowo), i z tak zde�niowanym dziaªaniem
tworz¡ grup¦ abelow¡. Grup¦ charakterów nazywamy grup¡ dualn¡ do G i
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oznaczamy Ĝ. Mo»na zde�niowa¢ �transformat¦ Fouriera�, która jest wza-
jemnie jednoznacznym izometrycznym przeksztaªceniem

F : L2(G) ↔ L2(Ĝ), f 7→ f̂ , f̂(ξ) = 〈f, ξ〉,
(przypomnijmy, »e charakter ξ jest funkcj¡ na G). Nie b¦dziemy zajmowa¢
si¦ t¡ ogóln¡ teori¡, w szczególno±ci nie b¦dziemy wyja±nia¢ szczegóªów po-
wy»szych wzorów czy caªkowania na G i Ĝ. Wspomnijmy jeszcze, »e grup¡
dualn¡ do R jest te» R, a grup¡ dualn¡ do T (liczby rzeczywiste z dodawa-
niem modulo 2π) jest Z, i vice versa.

Transformata Fouriera w L2(R)

Niech funkcja f b¦dzie caªkowalna na R. Wtedy funkcja f(x)e−i xξ te» jest
caªkowalna, dla ka»dego ξ ∈ R. Transformat¡ Fouriera funkcji f nazywamy
funkcj¦

f̂(ξ) =

∫ ∞

−∞
f(x)e−i xξ dx. (2.1)

Korzystaj¡c z twierdzenia o zbie»no±ci ograniczonej otrzymujemy natych-
miast nast¦puj¡cy fakt.

Fakt 2.1. Transformata Fouriera funkcji caªkowalnej jest funkcj¡ ci¡gª¡ i
ograniczon¡ na R.

Przykªady: (a) Funkcja charakterystyczna przedziaªu [−1/2, 1/2];

f(x) = χ[− 1
2
, 1
2
](x) =

{
1 : x ∈ [−1

2
, 1

2
],

0 : x /∈ [−1
2
, 1

2
].

Niech ξ 6= 0. Wtedy

f̂(ξ) =

∫ ∞

−∞
χ[− 1

2
, 1
2
](x)e−i xξ dx =

∫ 1
2

− 1
2

e−i xξ dx =
e−i xξ

−i ξ

∣∣∣∣
1
2

− 1
2

=
1

−i ξ

(
ei ξ/2 − e−i ξ/2

)
=

sin(ξ/2)

ξ/2
.

Dla ξ = 0 rachunek jest jeszcze prostszy:

f̂(0) =

∫ ∞

−∞
χ[− 1

2
, 1
2
](x) dx = 1.

(b) J¡dro Gaussa-Weierstrassa

w(x) =
1√
2π

e−
x2

2 .
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Rysunek 2.1: Funkcja z przykªadu (a) i jej transformata Fouriera

Wiadomo, »e

ŵ(0) =

∫ ∞

−∞
w(x) dx = 1.

To jest jedna z powszechnie znanych caªek, któr¡ mo»na obliczy¢ na przykªad
u»ywaj¡c wspóªrz¦dnych biegunowych w caªce podwójnej. w(x) jest funkcj¡
caªkowaln¡ na R, i

ŵ(ξ) =
1√
2π

∫ ∞

−∞
e−

x2

2 e−i xξ dx.

Transformat¦ t¦ obliczymy korzystaj¡c z nast¦puj¡cego triku: niech F (ξ) =
ŵ(ξ). Wtedy ró»niczkuj¡c pod znakiem caªki i caªkuj¡c przez cz¦±ci otrzy-
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mujemy:

F ′(ξ) =
d

dξ

1√
2π

∫ ∞

−∞
e−

x2

2 e−i xξ dx

=
1√
2π

∫ ∞

−∞
e−

x2

2
d

dξ

(
e−i xξ

)
dx

=
1√
2π

∫ ∞

−∞
e−

x2

2 (−i x) e−i xξ dx

=
i√
2π

∫ ∞

−∞

d

dx

(
e−

x2

2

)
e−i xξ dx

=
i√
2π

e−
x2

2 e−i xξ
∣∣∣
∞

−∞
− i√

2π

∫ ∞

−∞
e−

x2

2
d

dx

(
e−i xξ

)
dx

= 0− ξ√
2π

∫ ∞

−∞
e−

x2

2 e−i xξ dx

= −ξF (ξ).

Transformata F (ξ) speªnia wi¦c proste równanie ró»niczkowe

F ′(ξ) + ξF (ξ) = 0.

Jest to proste równanie stopnia 1 ze zmiennymi rozdzielonymi, które mo»na
ªatwo rozwi¡za¢:

F (ξ) = c e−
ξ2

2 .

Podstawiaj¡c ξ = 0 w ko«cu otrzymujemy

ŵ(ξ) = e−
ξ2

2 .

J¡dro Gaussa-Weierstrassa jest wi¦c niezmiennikiem transformaty Fouriera.
Jest to jedna z przyczyn, dla których ta funkcja pojawia si¦ w wielu sy-
tuacjach. Dla osób, które nie lubi¡ rozwi¡zywa¢ równa« ró»niczkowych, a
które lubi¡ caªkowanie po krzywych na pªaszczy¹nie w Dodatku obliczymy
t¡ transformat¦ w inny sposób.

De�nicja 2.2. Splotem funkcji f i g okre±lonych na R nazywamy funkcj¦

f ∗ g(x) =

∫ ∞

−∞
f(x− y) g(y) dy, (2.2)

o ile caªka (2.2) istnieje dla ka»dego x ∈ R.
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Splot jest przemienny (f ∗ g = g ∗ f). Je»eli f i g s¡ caªkowalne to splot
istnieje i te» jest caªkowalny:

∫ ∞

−∞
|f ∗ g(x)| dx =

∫ ∞

−∞

∣∣∣∣
∫ ∞

−∞
f(x− y) g(y) dy

∣∣∣∣ dx

≤
∫ ∞

−∞

∫ ∞

−∞
|f(x− y)| |g(y)| dy dx

=

∫ ∞

−∞
|g(y)|

∫ ∞

−∞
|f(x− y)| dx dy

=

∫ ∞

−∞
|g(y)| dy

∫ ∞

−∞
|f(x)| dx.

Sploty i �ltry
Poj¦cie splotu b¦dzie dla nas narz¦dziem w dowodach. Warto jednak wspo-
mnie¢, »e splot jest jednym z podstawowych poj¦¢ w praktyce przetwarzania
sygnaªu. Zauwa»my, »e zgodnie z powy»sz¡ obserwacj¡, je»eli funkcja ϕ jest
caªkowalna, to splot z ϕ jest przeksztaªceniem w przestrzeni funkcji caªko-
walnych:

Tϕ(f)(x) = (f ∗ ϕ)(x).

Przeksztaªcenie Tϕ jest liniowe (wynika to z liniowo±ci caªki), oraz przemienne
z przesuni¦ciami. Oznaczmy przez τx0 przesuni¦cie sygnaªu o x0

(τx0f)(x) = f(x− x0).

Wtedy

Tϕ(τx0f)(x) =

∫ ∞

−∞
(τx0f)(x− y) ϕ(y) dy

=

∫ ∞

−∞
f(x− y − x0) ϕ(y) dy

=

∫ ∞

−∞
f((x− x0)− y) ϕ(y) dy

= (Tϕ(f))(x− x0)

= τx0(Tϕ(f))(x).

Innymi sªowy
Tϕ · τx0 = τx0 · Tϕ.

Splot funkcji caªkowalnej g z funkcj¡ f ∈ L2(R) jest funkcj¡ z L2(R), i mamy
nierówno±¢

‖f ∗ g‖ ≤ ‖f‖
∫ ∞

−∞
|g(x)| dx.
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To jest prosty fakt wynikaj¡cy z wªasno±ci caªki (splot nie musi istnie¢ w
ka»dym punkcie, tak jak jest w przypadku splotu dwóch funkcji caªkowal-
nych, ale istnieje w wystarczaj¡co wielu punktach � w prawie wszystkich
punktach � aby okre±li¢ funkcj¦ w L2(R)). Z tego faktu b¦dziemy korzy-
sta¢ w dowodzie twierdzenia Plancherela. Warto zwróci¢ uwag¦, »e powy»sza
nierówno±¢ jest zupeªnie naturalna, i mo»na o niej my±le¢ jako o nierówno±ci
trójk¡ta. Intuicyjnie, mo»emy przybli»y¢ splot sum¡ Riemanna

f ∗ g(x) ≈
M∑

k=−M

f

(
x− k

N

)
g

(
k

N

)
1

N
.

Stosuj¡c do lewej strony norm¦ L2(R) i wykorzystuj¡c nierówno±¢ trójk¡ta,
otrzymujemy

‖f ∗ g‖ ≈
∥∥∥∥∥

M∑

k=−M

f

(
· − k

N

)
g

(
k

N

)
1

N

∥∥∥∥∥

≤
M∑

k=−M

∥∥∥∥f

(
· − k

N

)∥∥∥∥
∣∣∣∣ g

(
k

N

)∣∣∣∣
1

N

= ‖f‖
M∑

k=−M

∣∣∣∣ g

(
k

N

)∣∣∣∣
1

N

≈ ‖f‖
∫ ∞

−∞
|g(x)| dx.

Kropka zast¦puje zmienn¡ caªkowania wyst¦puj¡c¡ w normie L2(R) (której
nie piszemy). Skorzystali±my z faktu, »e norma L2(R) jest niezmiennicza na
przesuni¦cia

‖f( · − t)‖ = ‖f‖.
Przeksztaªcenie sygnaªu, które jest liniowe, przemienne z przesuni¦ciami,

i speªnia jeszcze pewne, niewielkie zaªo»enie ci¡gªo±ci w zastosowaniach na-
zywa si¦ �ltrem. Filtry to wªa±nie sploty z funkcjami. Widzieli±my, »e splot
z funkcj¡ jest przeksztaªceniem liniowym i przemiennym z przesuni¦ciami.
Zaªo»enie ci¡gªo±ci te» jest speªnione, chocia» nie b¦dziemy si¦ zajmowa¢
szczegóªami. Sploty s¡ wi¦c �ltrami. Na odwrót te»: okazuje si¦, »e ka»dy
�ltr jest splotem. �atwo si¦ o tym przekona¢ intuicyjnie. Niech H b¦dzie
przeksztaªceniem liniowym, przemiennym z przesuni¦ciami. Sygnaª f przy-
bli»ymy funkcj¡ schodkow¡:

f(x) ≈
M∑

k=−M

f

(
k

N

)
χ[k/N,(k+1)/N)(x),
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gdzie χ[a,b) jest funkcj¡ charakterystyczn¡

χ[a,b)(x) =

{
1 : x ∈ [a, b)

0 : x /∈ [a, b).

Rysunek 2.2: Sygnaª i jego przybli»enie funkcj¡ schodkow¡

Wtedy

(Hf)(x) ≈ H

(
M∑

k=−M

f

(
k

N

)
χ[k/N,(k+1)/N)

)
(x)

=
M∑

k=−M

f

(
k

N

)
H(χ[k/N,(k+1)/N))(x)

=
M∑

k=−M

f

(
k

N

)
H(χ[0,1/N))

(
x− k

N

)

=
M∑

k=−M

f

(
k

N

)
H(Nχ[0,1/N))

(
x− k

N

)
1

N

≈
∫ ∞

−∞
f(y) g(x− y) dy

= f ∗ g(x),

gdzie
g(x) ≈ H(Nχ[0,1/N))(x).
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Warunek ci¡gªo±ci naªo»ony na �ltr H powinien umo»liwi¢ przej±cie graniczne
w naszym przybli»eniu, czyli powinien umo»liwi¢ zast¡pienie ≈ przez rów-
no±¢. Widzimy wi¦c, »e �ltr H splata sygnaª z pewn¡ funkcj¡ g, która, w
przybli»eniu jest odpowiedzi¡ �ltru H na sygnaª Nχ[0,1/N) dla du»ych N . Z
powy»szych rozwa»a« mo»na wyci¡gn¡¢ nast¦puj¡ce dwa wnioski:

(a). Dziaªanie �ltru sprowadza si¦ do splotu z pewn¡ funkcj¡ g

(b). Funkcja g jest odpowiedzi¡ �ltru na �impuls jednostkowy", czyli funkcj¦
dodatni¡, niezerow¡ tylko w maªym otoczeniu zera, której caªka jest 1.

Uwaga 2.3. Mówi¡c o g u»ywamy sªowa �funkcja". Od razu jednak wida¢, »e
g mo»e by¢ czym± ogólniejszym od funkcji. Je»eli H jest �ltrem identyczno-
±ciowym (czyli takim, który nic nie robi, Hf = f) to g nie mo»e by¢ funkcj¡.
g, jako odpowied¹ �ltru na impuls jednostkowy sama jest takim �impulsem
jednostkowym". In»ynierowie g nazywaj¡ funkcj¡ uogólnion¡, a matematycy
dystrybucj¡. Impuls jednostkowy jest wªa±nie przykªadem funkcji uogólnionej.
Osoby, które chciaªyby lepiej zrozumie¢ opisywane tutaj lu¹no zagadnienia po-
winny zapisa¢ si¦ na jeden z naszych wykªadów z zaawansowanej analizy lub
analizy funkcjonalnej, natomiast na tym wykªadzie poprzestaniemy na takich,
intuicyjnych, uwagach.

Naszym celem teraz jest udowodnienie twierdzenia Plancherela, do któ-
rego b¦dziemy potrzebowali kilka faktów.

Fakt 2.4. Je»eli f i g s¡ caªkowalne, to

(̂f ∗ g)(ξ) = f̂(ξ) ĝ(ξ). (2.3)

Dowód. Podstawiamy do wzorów, i korzystamy z wªasno±ci funkcji wykªad-
niczej

(̂f ∗ g)(ξ) =

∫ ∞

−∞
f ∗ g(x) e−i xξ dx

=

∫ ∞

−∞

∫ ∞

−∞
f(x− y) g(y) e−i xξ dy dx

=

∫ ∞

−∞
g(y) e−i yξ

∫ ∞

−∞
f(x− y) e−i (x−y)ξ dx dy

=

∫ ∞

−∞
g(y) e−i yξ dy

∫ ∞

−∞
f(x) e−i xξ dx

= ĝ(ξ) f̂(ξ).
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Wró¢my na moment do naszych rozwa»a« o �ltrach. Mówili±my, »e �ltry
to sploty z funkcjami lub funkcjami uogólnionymi. Powy»szy Fakt przenosi
si¦ na przypadek splotu z funkcj¡ uogólnion¡. Dziaªanie �ltru na sygnale,
po stronie transformaty Fouriera, sprowadza si¦ wi¦c do mno»enia przez tak
zwan¡ �charakterystyk¦� �ltru. Charakterystyka �ltru to transformata Fo-
uriera jego odpowiedzi impulsowej. Bardzo cz¦sto opisuj¡c �ltr in»ynierowie
podaj¡ jego charakterystyk¦. Mamy te» nast¦puj¡cy prosty wzór

Fakt 2.5. Je»eli f jest caªkowalna i

ft(x) =
1

t
f

(x

t

)
, t > 0, (2.4)

to
f̂t(ξ) = f̂(tξ).

Dowód. Korzystamy ze wzoru na caªkowanie przez podstawienie

f̂t(ξ) =

∫ ∞

−∞

1

t
f

(x

t

)
e−i xξ dx

=

∫ ∞

−∞
f(x) e−i txξ dx

= f̂(tξ).

Korzystaj¡c z powy»szych dwóch faktów udowodnimy twierdzenie o ist-
nieniu transformaty odwrotnej. Je»eli funkcja f jest caªkowalna, i jej trans-
formata Fouriera f̂ , dana wzorem (2.1), te» jest caªkowalna, to funkcj¦ f
mo»na odtworzy¢ z f̂ przy pomocy wzoru

f(x) =
1

2π

∫ ∞

−∞
f̂(ξ) ei xξ dξ. (2.5)

Ten wzór daje nam jeszcze jedn¡, intuicyjn¡ wskazówk¦, co do natury trans-
formaty Fouriera. Funkcja f jest ±redni¡ wa»on¡ oscylacji x 7→ ei xξ, z wagami
|f̂(ξ)|.
Twierdzenie 2.6. Je»eli f i f̂ s¡ caªkowalne (f̂ dana wzorem (2.1)), to
zachodzi wzór (2.5). Innymi sªowy przeksztaªcenie caªkowe

F̌ (x) =
1

2π

∫ ∞

−∞
F (ξ) ei xξ dξ (2.6)

jest przeksztaªceniem odwrotnym do transformaty Fouriera.
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Dowód. Wprowad¹my nast¦puj¡ce oznaczenia:

wt(x) =
1√
t
w

(
x√
t

)
=

1√
2πt

e−
x2

2t , a wi¦c, z (2.4), ŵt(ξ) = ŵ(
√

tξ) = e−
tξ2

2 ,

oraz
ft(x) = f ∗ wt(x), a wi¦c, z (2.3), f̂t(ξ) = f̂(ξ) ŵt(ξ).

Nast¦pnie obliczamy

1

2π

∫ ∞

−∞
f̂t(ξ) ei ξy dξ =

1

2π

∫ ∞

−∞
f̂(ξ) ŵt(ξ) ei ξy dξ

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(x) e−i xξ dx e−

tξ2

2 ei ξy dξ

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(x) e−

tξ2

2 e−i ξ(x−y) dξ dx

=
1√
2πt

√
t

2π

∫ ∞

−∞
f(x)

∫ ∞

−∞
e−

tξ2

2 e−i ξ(x−y) dξ dx

=
1√
2πt

∫ ∞

−∞
f(x)ŵ 1

t
(x− y) dx.

Zauwa»my, »e
1√
2πt

ŵ 1
t
(z) =

1√
2πt

e−
z2

2t = wt(z),

a wi¦c, korzystaj¡c równie» z tego, »e wt(z) = wt(−z), kontynuuj¡c, otrzy-
mujemy

1

2π

∫ ∞

−∞
f̂t(ξ) ei ξy dξ =

∫ ∞

−∞
f(x) wt(x− y) dx

= f ∗ wt(y)

= ft(y).

Innymi sªowy pokazali±my, »e wzór (2.5) zachodzi dla ft:

ft(y) =
1

2π

∫ ∞

−∞
f̂t(ξ) ei yξ dξ. (2.7)

Chcieliby±my teraz przej±¢ w powy»szym wzorze do granicy gdy t → 0. To
jest proste rozumowanie, korzystaj¡ce z wªasno±ci caªki. Wiemy, »e

f̂t(ξ) = f̂(ξ) ŵt(ξ)
t→0−−→ f̂(ξ), i |f̂t(ξ)e

i yξ| ≤ |f̂(ξ)|,
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przy czym ta ostatnia funkcja jest caªkowalna. Korzystaj¡c z twierdzenia o
zbie»no±ci ograniczonej otrzymujemy

ft(y) =
1

2π

∫ ∞

−∞
f̂t(ξ) ei yξ dξ

t→0−−→ 1

2π

∫ ∞

−∞
f̂(ξ) ei yξ dξ, (2.8)

dla ka»dego y ∈ R. Z drugiej strony, korzystaj¡c z faktu, »e
∫ ∞

−∞
wt(x) dx =

∫ ∞

−∞
w(x) dx = 1, i w(x) > 0,

otrzymujemy
∫ ∞

−∞
|f(y)− ft(y)| dy =

∫ ∞

−∞

∣∣∣∣
∫ ∞

−∞
(f(y)− f(y − x)) wt(x) dx

∣∣∣∣ dy

=

∫ ∞

−∞

∣∣∣∣
∫ ∞

−∞
(f(y)− f(y −

√
tx)) w(x) dx

∣∣∣∣ dy

≤
∫ ∞

−∞

∫ ∞

−∞
|f(y)− f(y −

√
tx)|w(x) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
|f(y)− f(y −

√
tx)| dy w(x) dx.

Z wªasno±ci caªki wynika, »e przesuni¦cia s¡ ci¡gªe wzgl¦dem caªki, czyli

lim
t→0

∫ ∞

−∞
|f(y)− f(y −

√
tx)| dy = 0.

Korzystaj¡c ponownie z twierdzenia o zbie»no±ci ograniczonej otrzymujemy,
»e ft → f w sensie caªki:

lim
t→0

∫ ∞

−∞
|ft(y)− f(y)| dy = 0.

Tak wi¦c ft jest zbie»na do f w sensie caªki, i zbie»na w ka»dym punkcie
y ∈ R do

1

2π

∫ ∞

−∞
f̂(ξ) ei yξ dξ.

Z wªasno±ci caªki wynika, »e obie te granice musz¡ by¢ równe:

f(y) =
1

2π

∫ ∞

−∞
f̂(ξ) ei yξ dξ.
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Wnioskiem z powy»szego jest najwa»niejsze twierdzenie, tak zwane twier-
dzenie Plancherela.

Twierdzenie 2.7 (Plancherel). (a) Niech f ∈ L2(R) b¦dzie tak»e caªko-
walna. Wtedy f̂ te» nale»y do L2(R), oraz

‖f‖2 =
1

2π
‖f̂‖2, (2.9)

(b) Podzbiór L2(R) skªadaj¡cy si¦ z funkcji caªkowalnych stanowi g¦st¡ pod-
przestrze« L2(R). Transformata Fouriera rozszerza si¦ z tej podprzestrzeni
na caªe L2(R). W przypadku gdy f ∈ L2(R) nie jest caªkowalna transformat¦
mo»na obliczy¢ ze wzoru

f̂(ξ) = lim
M→∞

∫ M

−M

f(x) e−i xξ dx. (2.10)

Tak okre±lone przeksztaªcenie jest wzajemnie jednoznacznym (1-1 i �na"),
izometrycznym (z dokªadno±ci¡ do czynnika

√
2π, jak we wzorze (2.9)) prze-

ksztaªceniem L2(R) na siebie. Przeksztaªcenie odwrotne, w przypadku gdy f
nie jest caªkowalna, dane jest wzorem

f̌(x) = lim
M→∞

1

2π

∫ M

−M

f(ξ) ei xξ dξ. (2.11)

Dowód. (a) Transformata f̂ jest ograniczona (Fakt 2.1). Zaªó»my najpierw
dodatkowo, »e f̂ te» jest caªkowalna. Wtedy o f mo»na my±le¢ jako o trans-
formacie Fouriera funkcji f̂ , zgodnie z Twierdzeniem 2.6, i w takim razie f
te» jest ograniczona. Jak ªatwo policzy¢

f̂(ξ) =

∫ ∞

−∞
f(x) e−i xξ dx

=

∫ ∞

−∞
f(x) ei xξ dx

= f̂(−ξ),

35



gdy» e−i xξ = ei xξ. Podstawiamy to do wzoru, i obliczamy
∫ ∞

−∞
|f(x)|2 dx =

∫ ∞

−∞
f(x)f(x) dx

=

∫ ∞

−∞
f(x)

1

2π

∫ ∞

−∞
f̂(ξ) ei ξx dξ dx

=
1

2π

∫ ∞

−∞
f̂(−ξ)

∫ ∞

−∞
f(x) ei ξx dx dξ

=
1

2π

∫ ∞

−∞
f̂(−ξ)f̂(−ξ) dξ

=
1

2π

∫ ∞

−∞
f̂(ξ)f̂(ξ) dξ

=
1

2π

∫ ∞

−∞
|f̂(ξ)|2 dξ.

Pozb¦dziemy si¦ teraz dodatkowego zaªo»enia, »e f̂ jest caªkowalna. Niech
wi¦c teraz f b¦dzie w L2(R) i caªkowalna. Podobnie jak w dowodzie po-
przedniego twierdzenia, i z tamtymi oznaczeniami, funkcja

ft = f ∗ wt

(splot z przeskalowanym j¡drem Gaussa-Weierstrassa) jest caªkowalna, w
L2(R) i ma caªkowaln¡ transformat¦ Fouriera (|f̂t(ξ)| ≤ cŵt(ξ)). Fakt, »e
ft jest w L2(R) wynika z wªasno±ci caªki: splot funkcji caªkowalnej z caª-
kowaln¡ z kwadratem jest caªkowalny z kwadratem (byªa o tym mowa przy
okazji omawainia wªasno±ci splotów). Dla ft mo»emy wi¦c skorzysta¢ z prze-
prowadzonego ju» dowodu

‖ft‖2 =
1

2π
‖f̂t‖2. (2.12)

Korzystaj¡c z wªasno±ci caªki, podobnie jak w poprzednim dowodzie mo-
»emy pokaza¢, »e ft → f w L2(R) gdy t → 0, a wi¦c ‖ft‖ → ‖f‖ (norma jest
funkcja ci¡gª¡). Wynika to z ci¡gªo±ci przesuni¦¢ w L2(R), (w poprzednim
twierdzeniu korzystali±my z ci¡gªo±ci przesuni¦¢ w przestrzeni funkcji caªko-
walnych). Z drugiej strony ‖f̂t‖ → ‖f̂‖ korzystaj¡c z twierdzenia o zbie»no±ci
ograniczonej (|f̂t(ξ)|2 ≤ |f̂(ξ)|2). Przechodz¡c do granicy w (2.12) gdy t → 0
otrzymujemy (2.9).
(b) Je»eli f ∈ L2(R), to funkcje obci¦te

fn(x) =

{
f(x) : |x| ≤ n

0 : |x| > n
(2.13)
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tworz¡ ci¡g funkcji caªkowalnych, zbie»ny do f w L2(R):

‖f − fn‖2 =

∫ ∞

−∞
|f(x)− fn(x)|2 dx =

∫

|x|>n

|f(x)|2 dx
n→∞−−−→ 0.

Ka»da funkcja f ∈ L2(R) jest wi¦c granic¡, w normie L2(R), ci¡gu funkcji
caªkowalnych. Transformat¦ Fouriera dla funkcji f ∈ L2(R), które nie s¡
caªkowalne okre±lamy wi¦c nast¦puj¡co. Niech {fn} ⊂ L2(R) b¦dzie ci¡giem
funkcji caªkowalnych, zbie»nym do f :

fn → f w L2(R).

Ci¡g {fn} jest ci¡giem Cauchy'ego, a wi¦c, zgodnie z (2.9), ci¡g {f̂n} te» jest
Cauchy'ego w L2(R), a wi¦c jest zbie»ny do jakiego± elementu F ∈ L2(R).
Ta granica to, z de�nicji, transformata Fouriera f . Zauwa»my, »e ta de�nicja
nie zale»y od wyboru ci¡gu {fn} funkcji caªkowalnych, zbie»nego do f . Je»eli
dwa ró»ne ci¡gi s¡ zbie»ne do f , to ich ró»nice tworz¡ ci¡g zbie»ny do zera:

fn → f, gn → f w L2(R) ⇒ fn − gn → 0 w L2(R).

Zgodnie z (2.9) transformaty Fouriera ró»nic te» zbiegaj¡ do 0, a wi¦c trans-
formaty Fouriera tych dwóch ci¡gów maj¡ t¡ sam¡ granic¦. Zauwa»my, »e
oznacza to te», »e gdy wyj±ciowa funkcja f jest caªkowalna, to nowa de�-
nicja pokrywa si¦ ze star¡ � jako ci¡g funkcji caªkowalnych zbie»ny do f
mo»na wzi¡¢ ci¡g staªy stale równy f . W ko«cu zauwa»my, »e skoro ci¡g
funkcji obci¦tych (2.13) skªada si¦ z funkcji caªkowalnych i jest zbie»ny do f ,
to (2.10) wynika z podanej powy»ej de�nicji, zastosowanej do tego konkret-
nego ci¡gu. Korzystaj¡c z ci¡gªo±ci normy otrzymujemy (2.9) dla dowolnej
funkcji f ∈ L2(R). W ko«cu pozostaª do udowodnienia fakt, »e transfor-
mata Fouriera jest �na� L2(R), oraz wzór (2.11). Niech f b¦dzie dowolnym
elementem L2(R). Niech fn zbiega do f w L2(R), i skªada si¦ z funkcji caªko-
walnych, o caªkowalnych transformatach Fouriera. Taki ci¡g zawsze istnieje.
Mo»na pokaza¢, »e funkcje na przykªad ró»niczkowalne dwukrotnie, równe 0
poza pewnym sko«czonym przedziaªem tworz¡ podzbiór g¦sty L2(R), oraz
maj¡ wymagane wªasno±ci: s¡ caªkowalne, oraz ich transformaty Fouriera
s¡ caªkowalne. Z de�nicji f̂n → f̂ , oraz f̂n s¡ caªkowalne, a wi¦c ˆ̂

fn → ˆ̂
f .

Wiemy z poprzedniego twierdzenia, »e ˆ̂
fn(x) = 2πfn(−x) → 2πf(−x). A

wi¦c f = F̂ , gdzie
F =

1

4π2

ˆ̂
f̂.

Z tych rachunków wynika (2.11) oraz to, »e transformata Fouriera jest �na�.
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Wªasno±ci transformaty w L2(R)

Przy zaªo»eniu, »e wszystkie wyst¦puj¡ce funkcje s¡ w L2(R) mamy

g(x) = f(x− c) −→ ĝ(ξ) = e−i cξf̂(ξ),

g(x) = ei ωxf(x) −→ ĝ(ξ) = f̂(ξ − ω),

g(x) = f(x/s) −→ ĝ(ξ) = sf̂(sξ), s > 0,

g(x) = f ′(x) −→ ĝ(ξ) = i ξf̂(ξ),

g(x) = −i xf(x) −→ ĝ(ξ) = f̂ ′(ξ).

Dowody zostawiamy jako ¢wiczenie. Poka»emy natomiast zastosowanie trans-
formaty Fouriera do rozwi¡zania tak zwanego równania ciepªa, lub równania
dyfuzji.

Równanie ciepªa
Wyobra¹my sobie pr¦t metalowy le»¡cy na pªaszczy¹nie wzdªu» osi OX.
Niech pr¦t b¦dzie niesko«czenie dªugi, o pomijalnie maªej ±rednicy, oraz niech
b¦dzie zrobiony z materiaªu przewodz¡cego ciepªo, na przykªad jakiego± me-
talu. Niech temperatura pr¦ta w punkcie x w czasie t b¦dzie oznaczona przez
u(x, t). Mo»na pokaza¢, »e funkcja u speªnia nast¦puj¡ce równanie ciepªa

∂2u(x, t)

∂t2
= κ2∂2u(x, t)

∂x2
. (2.14)

Równanie to wynika z praw �zyki, i czasem nazywa si¦ równaniem dyfuzji.
Niech rozkªad temperatury na pr¦cie b¦dzie znany w czasie t = 0, czyli niech
u speªnia warunek brzegowy

u(x, 0) = f(x),

dla zadanej funkcji f . Mo»emy zaªo»y¢, »e f speªnia jakie± warunki regular-
no±ci. Nam wystarczy f ∈ L2(R). Klasyczny problem sprowadza si¦ do zna-
lezienia funkcji u(x, t), speªniaj¡cej równanie ciepªa, i zadany warunek brze-
gowy. B¦dziemy szukali funkcji u takiej, »e dla ka»dego t ≥ 0 u( · , t) ∈ L2(R),
oraz ∂u

∂t
( · , t) ∈ L2(R). Okazuje si¦, »e rozwi¡zanie mo»na znale¹¢ u»ywaj¡c

transformaty Fouriera. Teoria transformaty Fouriera powstaªa wªa±nie przy
okazji badania zagadnienia ciepªa. Dla ustalonego t ≥ 0 zastosujmy trans-
format¦ Fouriera, wzgl¦dem zmiennej x, do obu stron równania (2.14). Tak
powstaª¡ transformat¦ oznaczmy przez F (ξ, t). Ró»niczkuj¡c wzgl¦dem t pod
znakiem caªki z (2.14) otrzymujemy

∂F (ξ, t)

∂t
= −κ2 ξ2 F (ξ, t). (2.15)
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Ustalmy teraz ξ i spójrzmy na (2.15) jako na równanie ró»niczkowe zwyczajne
funkcji zmiennej t. Równanie to ªatwo rozwi¡za¢, rozwi¡zanie ma posta¢

F (ξ, t) = c e−κ2ξ2 t,

dla dowolnej staªej c. Podstawiaj¡c warunek pocz¡tkowy (brzegowy), otrzy-
mujemy

c = F (ξ, 0) = f̂(ξ),

a wi¦c
F (ξ, t) = f̂(ξ) e−κ2ξ2 t, czyli u(x, t) = f ∗ wκ2t(x),

gdzie wt jest znanym nam ju» j¡drem Gaussa-Weierstrassa (zwanym tak»e
j¡drem ciepªa), przeskalowanym zgodnie z (2.4). Mamy wi¦c ilustracj¦, jak
wªasno±ci transformaty Fouriera pozwalaj¡ zastosowa¢ j¡ do rozwi¡zywania
równa« ró»niczkowych. Dla in»ynierów to jest gªówne zastosowanie trans-
formaty Fouriera, i stanowi ona jedno z najwa»niejszych narz¦dzi in»ynier-
skich. Poni»ej udowodnimy tak zwan¡ zasad¦ nieoznaczono±ci Heisenberga.
Zasada ta pokazuje pewien problem wyst¦puj¡cy w zastosowaniach trans-
formaty Fouriera. Mówi¡c bardzo ogólnie to jest wªa±nie problem, którego
chcemy unikn¡¢ zamieniaj¡c transformat¦ Fouriera na transformat¦ falkow¡.
Zasada nieoznaczono±ci Heisenberga mówi, »e je»eli rozrzut warto±ci funkcji
wokóª jej warto±ci ±redniej jest maªy (funkcja jest skupiona wokóª jakiego±
punktu, i szybko maleje w miar¦ oddalania si¦ od niego), to rozrzut war-
to±ci transformaty musi by¢ du»y (transformata Fouriera takiej funkcji nie
mo»e by¢ skupiona wokóª pewnej cz¦stotliwo±ci). Intuicyjnie to jest ªatwe do
uzasadnienia. W rzeczywisto±ci jest to ±cisªe twierdzenie.

Twierdzenie 2.8 (Zasada nieoznaczono±ci Heisenberga). Niech f ∈ L2(R)
b¦dzie unormowana, czyli ‖f‖ = 1, oraz taka, »e xf(x) ∈ L2(R) oraz ξf̂(ξ) ∈
L2(R). Wtedy

∫ ∞

−∞
x2 |f(x)|2 dx

∫ ∞

−∞
ξ2|f̂(ξ)|2 dξ ≥ π

2
.

Dowód. Wykorzystamy nast¦puj¡cy wzór na caªkowanie przez cz¦±ci. Je»eli
h′ g, h g′ oraz h g sa caªkowalne na R, to

∫ ∞

−∞
h′(x) g(x) dx = −

∫ ∞

−∞
h(x) g′(x) dx.

Zauwa»my, »e skoro x2|f(x)|2 oraz |f(x)|2 s¡ caªkowalne, wi¦c x|f(x)|2 te»
jest caªkowalna. Mo»emy wi¦c skorzysta¢ z powy»szego wzoru na caªkowanie
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przez cz¦±ci:

1 =

∫ ∞

−∞
|f(x)|2 dx

= −
∫ ∞

−∞
x

d

dx
|f(x)|2 dx

=

∣∣∣∣−
∫ ∞

−∞

(
x f ′(x) f(x) + x f(x)f ′(x)

)
dx

∣∣∣∣

≤ 2

∫ ∞

−∞
|x| |f(x)| |f ′(x)| dx

≤ 2

(∫ ∞

−∞
|x|2 |f(x)|2 dx

)1/2 (∫ ∞

−∞
|f ′(x)|2 dx

)1/2

≤ 2√
2π

(∫ ∞

−∞
|x|2 |f(x)|2 dx

)1/2 (∫ ∞

−∞
|ξ|2|f̂(ξ)|2 dξ

)1/2

.

Przy okazji zauwa»my, »e równo±¢ w powy»szym oszacowaniu mo»e zachodzi¢
tylko wtedy, gdy zachodzi równo±¢ w wykorzystanej nierówno±ci Schwarza,
czyli funkcje x f(x) oraz f ′(x) musz¡ by¢ wspóªliniowe: musi istnie¢ staªa
zespolona c taka, »e

x f(x) = c f ′(x).

Rozwi¡zuj¡c to równanie ró»niczkowe otrzymujemy, »e f musi by¢ wielokrot-
no±ci¡ j¡dra Gaussa-Weiserstrassa.

Transformata Fouriera w L2(Rn)

Teoria w L2(Rn) jest analogiczna do teorii 1-wymiarowej. Je»eli f lub F s¡
caªkowalne, to

f̂(ξ) =

∫

Rn

f(x) e−i x · ξ dx,

F̌ (x) =
1

(2π)n

∫

Rn

F (ξ) ei ξ ·x dξ,

gdzie x · ξ oznacza zwykªy iloczyn skalarny w Rn. Transformata jest wzajem-
nie jednoznacznym przeksztaªceniem L2(Rn) na siebie, a równo±¢ Plancherela
ma posta¢

‖f‖2 =
1

(2π)n
‖f̂‖2.

Wszystkie dowody s¡ takie same, jak w przypadku L2(R).
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Transformata Fouriera w L2(T) (szeregi Fouriera)
Niech f b¦dzie funkcj¡ na R, okresow¡ o okresie 2π, caªkowaln¡ na [−π, π].
Wspóªczynnikami Fouriera f nazywamy ci¡g

f̂(n) =
1

2π

∫ π

−π

f(x) e−i nx dx, n = 0,±1,±2, . . . (2.16)

Przyporz¡dkowanie funkcji f ci¡gu wspóªczynników {f̂(n)} jest te» czasem
nazywane transformat¡ Fouriera. W przypadku funkcji okresowych, w odró»-
nieniu od sytuacji w L2(R) ka»da funkcja w L2(T) jest równie» caªkowalna
na przedziale [−π, π], co wynika z nierówno±ci Schwarza. Dla ka»dej funk-
cji w L2(T) mo»na wi¦c policzy¢ wspóªczynniki Fouriera ze wzoru (2.16).
Zauwa»my, »e funkcje {

e−i nx; n ∈ Z
}

(2.17)

tworz¡ baz¦ ortonormaln¡ w L2(T), wi¦c ci¡g wspóªczynników Fouriera sta-
nowi ci¡g wspóªczynników bazowych. Twierdzenie Plancherela w przypadku
funkcji okresowych jest wi¦c prostsze ni» w przypadku L2(R).

Twierdzenie 2.9 (Plancherel). Transformata Fouriera jest wzajemnie jed-
noznacznym przeksztaªceniem L2(T) na `2. Przeksztaªcenie odwrotne dane
jest przez tak zwany szereg Fouriera

F−1 : `2 → L2(T), {αn}∞n=−∞ 7→ f, f(x) =
∞∑

n=−∞
αn ei nx.

Szereg Fouriera jest zbie»ny w L2(T). Zachodz¡ nast¦puj¡ce równo±ci

‖f‖2 =
∞∑

n=−∞
|f̂(n)|2, 〈f, g〉 =

∞∑
n=−∞

f̂(n)ĝ(n).

Dowód. Przypomnijmy, »e w L2(T)

〈f, g〉 =
1

2π

∫ π

−π

f(x) g(x) dx.

Bior¡c pod uwag¦, »e ukªad (2.17) stanowi baz¦ ortonormaln¡ przestrzeni
L2(T), powy»sze twierdzenie jest szczególnym przypadkiem Wniosku 1.10 i
Uwagi 1.11 z rozdziaªu o przestrzeni Hilberta.
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Przykªad

Niech f ∈ L2(T) b¦dzie dana przez

f(x) =

{
−1 : −π < x ≤ 0

1 : 0 < x ≤ π.
(2.18)

Przypomnijmy, »e elementy w L2(T) mo»na rozwa»a¢ jako funkcje na caªej
prostej, okresowe o okresie 2π, albo jako funkcje na przedziale [−π, π]. (2.18)
de�niuje wi¦c element z L2(T). W j¦zyku in»ynierów powy»sza funkcja (lub
jej 2π okresowe rozszerzenie na R) nazywa si¦ �fal¡ prostok¡tn¡�. Fala pro-
stok¡tna jest typowym przykªadem sygnaªu wyst¦puj¡cym na przykªad w
ka»dym urz¡dzeniu zawieraj¡cym mikroprocesor. Policzymy wspóªczynniki
Fouriera f

f̂(0) =
1

2π

∫ π

−π

f(x) dx = 0.

Niech n 6= 0.

f̂(n) =
1

2π

∫ π

−π

f(x) e−i nx dx

= − 1

2π

∫ 0

−π

e−i nx dx +
1

2π

∫ π

0

e−i nx dx

=
1

2π

∫ π

0

(
e−i nx − ei nx

)
dx

=
−2 i

2π

∫ π

0

sin(nx) dx

=
i

π n
cos(nx)

∣∣∣∣
π

0

=
i

π n
((−1)n − 1)

=

{
2

i πn
: n - nieparzyste

0 : n - parzyste

Zgodnie z twierdzeniem Plancherela funkcja f rozwija si¦ wi¦c w nast¦puj¡cy
szereg Fouriera. Przypomnijmy, »e szereg Fouriera jest zbie»ny do f w L2(T),
a niekoniecznie w poszczególnych punktach x. W tym konkretnym przypadku
szereg Fouriera jest zbie»ny w ka»dym punkcie x, ale w punktach 0,±π jest
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Rysunek 2.3: Funkcja f i jej wspóªczynniki Fouriera

zbie»ny do 0, a nie do warto±ci f(x).

f(x) =
∞∑

n=−∞
n nieparzyste

2

i πn
ei nx

=
∞∑

n=1
n nieparzyste

2

i πn

(
ei nx − e−i nx

)

=
∞∑

n=1
n nieparzyste

4

πn
sin nx

=
4

π

(
sin x +

sin 3x

3
+

sin 5x

5
+ . . .

)
.

Na wykresie 2.4 wida¢ tak zwane zjawisko Gibbsa. W pobli»u nieci¡gªo-
±ci skokowej funkcji f (na przykªad w pobli»u 0) suma cz¦±ciowa szeregu
Fouriera ma �szpilki�. Szpilki maj¡ zawsze okre±lon¡ wysoko±¢: suma sko«-
czona �przestrzela� wysoko±¢ skoku funkcji f o okoªo 9%. Dla coraz dal-
szych sum cz¦±ciowych szeregu Fouriera (coraz dokªadniejszych przybli»e«
f) �szpilki� przysuwaj¡ si¦ bli»ej nieci¡gªo±ci, ale zawsze zachowuj¡ swoj¡
wysoko±¢. Mo»na to udowodni¢. Jako zastosowanie obliczonych powy»ej
wspóªczynników Fouriera fali prostok¡tnej obliczymy klasyczn¡ sum¦. Dla
fali prostok¡tnej (2.18) mamy

‖f‖2 =
1

2π

∫ π

−π

|f(x)|2 dx = 1,

43



−4 −2 0 2 4 

−1  

0   

1   

−4 −2 0 2 4 

−1  

0   

1   

Rysunek 2.4: Przybli»enie funkcji f harmonicznymi do 3 i 19 wª¡cznie

Rysunek 2.5: Zjawisko Gibbsa. Z prawej bardzo dokªadne przybli»enie funk-
cji maj¡cej nieci¡gªo±¢ skokow¡. Szpilki po obu stronach nieci¡gªo±ci zawsze
wyst¦puj¡, i zawsze maj¡ okre±lon¡ wysoko±¢.

a z drugiej strony
∞∑

n=−∞
|f̂(n)|2 =

∞∑
n=−∞

n nieparzyste

4

π2n2
=

8

π2

∞∑
n=1

n nieparzyste

1

n2
.

Podstawiaj¡c do równo±ci Plancherela otrzymujemy wi¦c
∞∑

n=1
n nieparzyste

1

n2
=

π2

8
.
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Nast¦pnie

π2

8
=

∞∑
n=1

n nieparzyste

1

n2

=
∞∑

n=1

1

n2
−

∞∑
n=1

n parzyste

1

n2

=
∞∑

n=1

1

n2
−

∞∑

k=1

1

(2k)2

=
∞∑

n=1

1

n2
− 1

4

∞∑

k=1

1

k2

=
3

4

∞∑
n=1

1

n2
,

i w ko«cu
∞∑

n=1

1

n2
=

π2

6
.

W podobny sposób, stosuj¡c równo±¢ Plancherela dla odpowiedniej funkcji
mo»emy obliczy¢ sum¦

∞∑
n=1

1

nα
(2.19)

dla dowolnej liczby caªkowitej parzystej α. Je»eli α nie jest liczb¡ caªkowit¡
parzyst¡, to o sumach (2.19) niewiele wiadomo. Mo»na, na przykªad, udo-
wodni¢, »e dla α = 3 suma (2.19) jest liczb¡ niewymiern¡, ale dowód jest
skomplikowany. Twierdzenie Plancherela jest wi¦c bardzo przydatne.

De�nicja 2.10. Splotem dwóch funkcji f i g okresowych o okresie 2π nazy-
wamy funkcj¦

f ∗ g(x) =
1

2π

∫ π

−π

f(x− y) g(y) dy, (2.20)

o ile caªka istnieje dla ka»dego x. Splotem dwóch ci¡gów α = {αn}, β = {βn}
nazywamy ci¡g

α ∗ β(n) =
∞∑

m=−∞
αn−mβn, (2.21)

o ile powy»sza suma istnieje dla ka»dego n ∈ Z.
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Je»eli f i g s¡ caªkowalne na [−π, π], to splot f ∗ g istnieje dla (prawie)
ka»dego x, jest okresowy o okresie 2π i jest caªkowalny po okresie. Okre±le-
nie �prawie ka»dy punkt"ma ±cisªe znaczenie, ale nam wystarczy znaczenie
intuicyjne: splot mo»e nie istnie¢ w jakim± punkcie, albo nawet w wielu
punktach, ale tworz¡cych razem zbiór pomijalnie maªy z punktu widzenia
caªkowania. We wzorze (2.20) f i g traktujemy jako funkcje okresowe, o
okresie 2π. Mo»emy równie» my±le¢ o nich jako o funkcjach okre±lonych na
odcinku [−π, π], wtedy dziaªanie x − y nale»y rozumie¢ modulo 2π. Je»eli
oba ci¡gi s¡ sumowalne z kwadratem, α, β ∈ `2, to splot istnieje, a je»eli
s¡ absolutnie sumowalne, to splot istnieje i te» jest absolutnie sumowalny.
Sploty (2.20) i (2.21) s¡ przemienne: f ∗ g = g ∗ f i α ∗ β = β ∗ α.

Wªasno±ci transformaty Fouriera na L2(T)

Transformata w L2(T) ma wªasno±ci analogiczne do wªasno±ci transformaty
w L2(R). Przy odpowiednich zaªo»eniach mamy

(̂f ∗ g)(n) = f̂(n) ĝ(n),

(̂f · g)(n) = (f̂ ∗ ĝ)(n),

g(x) = f(x− c) −→ ĝ(n) = e−i cnf̂(n),

g(x) = ei mxf(x) −→ ĝ(n) = f̂(n−m),

g(x) = f ′(x) −→ ĝ(n) = i nf̂(n).

Szereg Fouriera funkcji caªkowalnej nie musi by¢ zbie»ny do tej funkcji. Znany
jest przykªad funkcji caªkowalnej której szereg Fouriera nie jest zbie»ny w »ad-
nym punkcie. Je»eli funkcja jest w L2(T), to jej szereg Fouriera jest do niej
zbie»ny w L2(T). Jednak nie musi by¢ zbie»ny w ka»dym punkcie. Mo»na
poda¢ przykªad funkcji ci¡gªej, której szereg Fouriera jest rozbie»ny w ja-
kim± punkcie. S¡ te» dobre wiadomo±ci. Poni»sze twierdzenie ma charakter
lokalny, to znaczy zbie»no±¢ szeregu Fouriera funkcji w punkcie zale»y tylko
od zachowania tej funkcji w otoczeniu tego punktu. Jest to o tyle ciekawe, »e
sam szereg Fouriera nie ma charakteru lokalnego. Ka»dy wspóªczynnik Fo-
uriera zale»y od wszystkich warto±ci funkcji, zawiera caªk¦ po caªym okresie
T.

Twierdzenie 2.11. (a) Je»eli f jest okresowa i caªkowalna po okresie [−π, π]
to

lim
n→±∞

f̂(n) = 0.
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(b) Je»eli istnieje pochodna f ′(θ) w jakim± punkcie θ, to szereg Fouriera f
jest zbie»ny w tym punkcie θ do f(θ)

f(θ) =
∞∑

n=−∞
f̂(n) ei nθ.

Dowód. (a) Skorzystamy, jak poprzednio, z ci¡gªo±ci przesuni¦¢ funkcji wzgl¦-
dem caªki. Najpierw zauwa»my, »e je»eli funkcja jest okresowa o okresie 2π,
to caªka z tej funkcji po przedziale [a, a + 2π] nie zale»y od a.Nast¦pnie ob-
liczamy

f̂(n) =
1

2π

∫ π

−π

f(x) e−i nx dx

=
1

2π

∫ π+π/n

−π+π/n

f(x) e−i nx dx

=
1

2π

∫ π

−π

f
(
x +

π

n

)
e−i n(x+π/n) dx

= − 1

2π

∫ π

−π

f
(
x +

π

n

)
e−i nx dx,

a wi¦c

|2f̂(n)| = 1

2π

∣∣∣∣
∫ π

−π

(
f(x)− f

(
x +

π

n

))
e−i nx dx

∣∣∣∣

≤ 1

2π

∫ π

−π

∣∣∣f(x)− f
(
x +

π

n

)∣∣∣ dx
n→±∞−−−−→ 0.

(b) Wprowad¹my funkcj¦ pomocnicz¡

g(x) =
f(x)− f(θ)

e−i x − e−i θ
.

Zauwa»my, »e g jest okresowa o okresie 2π, i caªkowalna po okresie. Caªko-
walno±¢ wynika z tego, »e w pewnym otoczeniu θ jest ograniczona (z istnienia
pochodnej f ′(θ)), a poza otoczeniem θ mianownik jest ograniczony od doªu.
Z (a) wynika, »e ĝ(n) → 0 gdy n → ±∞. Zauwa»my jednak, »e skoro

g(x) e−i x − g(x) e−i θ = f(x)− f(θ),

wi¦c dla wszystkich n

ĝ(n + 1)− ĝ(n) e−i θ = ̂̃f(n),
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gdzie f̃(x) = f(x)− f(θ). Mno»¡c obie strony przez ei (n+1)θ otrzymujemy

ĝ(n + 1) ei (n+1)θ − ĝ(n) ei nθ = ei θ̂̃f(n) ei nθ.

Sumuj¡c obie strony po wszystkich n = −N, . . . , M , i zwijaj¡c sum¦ telesko-
pow¡ po lewej stronie mamy

ĝ(M + 1) ei (M+1)θ − ĝ(−N) ei (−N)θ = ei θ

M∑
n=−N

̂̃f(n) ei nθ.

Korzystaj¡c z (a) lewa strona→ 0 gdy M, N →∞, wi¦c podobnie dzieje si¦ z
praw¡ stron¡. Zauwa»my, »e ̂̃f(n) = f̂(n) dla n 6= 0, oraz ̂̃f(0) = f̂(0)−f(θ).
Tak wi¦c

0 =
∞∑

n=−∞

̂̃f(n) ei nθ =
∞∑

n=−∞
f̂(n) ei nθ − f(θ).

Udowodnili±my wi¦c, »e szereg Fouriera f jest zbie»ny w θ i jego sum¡ jest
f(θ).

Transformata Fouriera w L2(Tn) (wielokrotne szeregi Fo-
uriera)
Teoria jest analogiczna do 1-wymiarowej:

f̂(k) =
1

(2π)n

∫ π

−π

· · ·
∫ π

−π

f(x) e−i k·x dx1 · · · dxn, k = (k1, . . . , kn), x = (x1, . . . , xn),

f̌(x) =
∞∑

k1,...,kn=−∞
f̂(k) ei k·x,

〈f, g〉 =
1

(2π)n

∫ π

−π

· · ·
∫ π

−π

f(x) g(x) dx1 · · · dxn =
∞∑

k1,...,kn=−∞
f̂(k) ĝ(k),

‖f‖2 =
∞∑

k1,...,kn=−∞
|f̂(k)|2.

Nie ma istotnych ró»nic w dowodach powy»szych faktów dla 1 i wielu wy-
miarów.

Transformata Fouriera w `2
p (dyskretna transformata Fo-

uriera)
W przestrzeni p-elementowych wektorów transformata Fouriera jest wzajem-
nie jednoznacznym przeksztaªceniem `2

p na siebie. Dla x = (x(0), . . . , x(p −
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1)) ∈ `2
p mamy

x̂(l) =

p−1∑
j=0

x(j) e−i 2πl j
p , l = 0, . . . , p− 1,

x̌(j) =
1

p

p−1∑

l=0

x(l) ei 2πj l
p , j = 0, . . . , p− 1,

〈x, y〉 =

p−1∑
j=0

x(j)y(j) =
1

p

p−1∑

l=0

x̂(j)ŷ(j) =
1

p
〈x̂, ŷ〉,

‖x‖2 =
1

p
‖x̂‖2.

Powy»sze wzory wynikaj¡ z nast¦puj¡cej obserwacji

p−1∑

l=0

ei 2πjl
p =

{
p : j = 0

0 : j 6= 0.

Splotem dwóch elementów x, y ∈ `2
p nazywamy element

x ∗ y(k) =

p−1∑

l=0

x(k − l) y(l). (2.22)

Je»eli o x i y my±limy jako o wektorach p-elementowych to dziaªanie k −
l nale»y rozumie¢ jako odejmowanie modulo p,i wtedy k przebiega zakres
0, . . . , p− 1 a wi¦c splot te» jest wektorem p-elementowym. Je»eli natomiast
o elementach x i y my±limy jako o ci¡gach p-okresowych, to dziaªanie k− l w
(2.22) jest zwykªym odejmowaniem, i splot x∗y te» jest ci¡giem p-okresowym.
Jak si¦ ªatwo domy±le¢, zachodzi nast¦puj¡cy wzór

x̂ ∗ y(k) = x̂(k) ŷ(k).

Szybka transformata Fouriera
Dyskretna transformata Fouriera wyst¦puje cz¦sto w zastosowaniach. Je»eli
chcemy policzy¢ numerycznie transformat¦ Fouriera funkcji, to w rzeczywi-
sto±ci sprowadza si¦ to do policzenia dyskretnej transformaty Fouriera pewnej
ilo±ci próbek danej funkcji. Obliczenie dyskretnej transformaty Fouriera p-
elementowego wektora x = (x(0), . . . , x(p− 1) sprowadza si¦ do pomno»enia
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go przez macierz: x̂ = Ap x, gdzie Ap jest p× p macierz¡

Ap =




1 1 · · · 1
1 e−i 2π/p · · · e−i 2π(p−1)/p

... ... . . . ...
1 e−i 2π(p−1)/p · · · e−i 2π(p−1)(p−1)/p


 ,

o wspóªczynnikach {e−i 2π(k−1)(l−1)/p}p
k,l=1. Post¦puj¡c naiwnie, do obliczenia

transformaty Fouriera dªugo±ci p b¦dziemy wi¦c musieli wykona¢ p2 mno»e«
zmiennoprzecinkowych. Istnieje szybszy algorytm obliczania transformaty,
wykorzystuj¡cy wyst¦puj¡ce w macierzy Ap symetrie. Jest to tak zwana
szybka transformata Fouriera (FFT), która redukuje liczb¦ mno»e« do p log p.
Korzy±¢ jest wielka: je»eli p = 106, to szybka transformata Fouriera jest 50
tysi¦cy razy szybsza od algorytmu naiwnego. Je»eli nasz komputer, u»ywaj¡c
algorytmu FFT policzy transformat¦ w godzin¦, to u»ywaj¡c algorytmu na-
iwnego potrzebowaªby na to ponad 6 lat. Algorytm FFT odkryto w latach 60
ubiegªego wieku. Sam algorytm jest bardzo prosty, i wkrótce okazaªo si¦, »e
byª stosowany ju» od dawna. Obliczenia z wykorzystaniem algorytmu FFT
znaleziono w pracach Gaussa z ko«ca XVIII wieku. Wniosek pªynie z tego
nast¦puj¡cy: matematycy cz¦±ciej mogliby interesowa¢ si¦ zastosowaniami, a
in»ynierowie cz¦±ciej mogliby zagl¡da¢ do prac teoretyków. I jedni i drudzy
mog¡ znale¹¢ jak¡± niespodziank¦.

Algorytm FFT jest bardzo prosty. Zamiast od razu formuªowa¢ odpo-
wiednie twierdzenie przeprowad¹my proste rachunki, które wszystko wyja-
±ni¡. Niech dªugo±¢ sygnaªu x = (x(0), x(1), . . . , x(p − 1)) b¦dzie pot¦g¡ 2:
p = 2q, gdzie q = 1, 2, . . . , wtedy dla l = 0, 1, 2, . . . , p− 1

x̂(l) =

p−1∑

k=0

x(k) e−
2πi kl

p

=

p−1∑
k=0

n-parzyste

x(k) e−
2πi kl

p +

p−1∑
k=0

n-nieparzyste

x(k) e−
2πi kl

p

=

p/2−1∑

k=0

x(2k) e−
2πi (2k)l

p +

p/2−1∑

k=0

x(2k + 1) e−
2πi (2k+1)l

p

=

p′−1∑

k=0

x′(k) e
− 2πi kl

p′ + e−
2πi l

p

p′−1∑

k=0

x′′(k) e
− 2πi kl

p′

= x̂′(l) + e−
2πi l

p x̂′′(l),

50



gdzie p′ = p/2, x′(k) = x(2k), x′′(k) = x(2k+1), k = 0, . . . , p′−1. Zauwa»my,
»e x̂′ i x̂′′ s¡ okresowe o okresie p′, wi¦c wystarczy je obliczy¢ dla l = 0, . . . , p′−
1. Obliczenie transformaty Fouriera sygnaªu o dªugo±ci p sprowadza si¦ wi¦c
do:

(a). rozdzielenia parzystych i nieparzystych skªadowych x,

(b). obliczenia transformaty Fouriera osobno dla skªadowych parzystych i
nieparzystych, ka»da rz¦du p′ = p/2,

(c). utworzenia kombinacji liniowej:

x̂(l) = x̂′(l) + e−
2πi l

p x̂′′(l),

x̂(l + p′) = x̂′(l)− e−
2πi l

p x̂′′(l)

dla l = 0, . . . , p′.

W ten sposób udowodnili±my nast¦puj¡ce twierdzenie, b¦d¡ce podstaw¡ al-
gorytmu FFT:

Twierdzenie 2.12 (Danielson-Lanczos). Macierz

Ap =




1 1 · · · 1
1 e−i 2π/p · · · e−i 2π(p−1)/p

... ... . . . ...
1 e−i 2π(p−1)/p · · · e−i 2π(p−1)(p−1)/p




mo»na rozªo»y¢ na czynniki

Ap = Ep Ãp/2 Pp,

gdzie macierz Pp jest postaci

Pp =




1 0 0 0 · · · 0
0 0 1 0 · · · 0

... . . . ...
0 1 0 0 · · · 0
0 0 0 1 · · · 0




.

Macierz Pp ma dokªadnie jedn¡ jedynk¦ w ka»dym wierszu, a jej dziaªanie na
wektorze sprowadza si¦ do przestawienia skªadowych: w pierwszej poªówce
umieszczone zostaj¡ skªadowe o numerach parzystych, a w drugiej skªadowe
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o numerach nieparzystych: (x(0), x(2), . . . , x(p− 2), x(1), x(3), . . . , x(p− 1)).
Macierz Ãp/2 ma dwie niezerowe, identyczne klatki

Ãp/2 =

(
Ap/2 0

0 Ap/2

)
.

Dziaªanie macierzy Ãp/2 sprowadza si¦ do obliczenia transformaty Fouriera
rz¦du p/2 osobno dla pierwszych i osobno dla ostatnich p/2 wspóªczynników
sygnaªu. W ko«cu macierz Ep ma posta¢ czterech klatek

Ep =

(
I D
I −D

)
,

gdzie I s¡ macierzami identyczno±ciowymi rz¦du p/2, a D jest macierz¡ dia-
gonaln¡ rz¦du p/2 ze wspóªczynnikami

e−
2πi 0

p , e−
2πi 1

p , . . . , e−
2πi (p/2−1)

p

na przek¡tnej.

Zauwa»my, »e z powy»szego, prostego twierdzenia wynika nast¦puj¡cy
wniosek:

Wniosek 2.13. Transformat¦ Fouriera rz¦du p (pot¦ga 2) mo»na obliczy¢
przy pomocy nie wi¦cej ni» p log2 p mno»e«.

Dowód. Dowód jest indukcyjny wzgl¦dem pot¦gi 2. Transformata rz¦du 21

to
x̂(k) = x(0)± x(1), k = 0, 1,

a wi¦c wyst¦puje tylko 1 mno»enie, przez −1. Krok indukcyjny u»ywa twier-
dzenia. Do policzenia transformaty rz¦du p potrzeba 2 razy tyle mno»e«
co do policzenia transformaty rz¦du p/2 (macierz Ãp/2) i dodatkowo p mno-
»e« (macierz Ep). Macierz Pp nie wymaga mno»e«. Korzystaj¡c z zaªo»enia
indukcyjnego otrzymujemy

2 (p/2 log2(p/2)) + p = p(log2(p/2) + 1) = p log2 p.

Uwaga: Oszacowali±my tylko ilo±¢ koniecznych mno»e«, gdy» to mno»enia
gªównie zajmuj¡ czas procesora. Podobnie jak ilo±¢ koniecznych mno»e«
mo»na oszacowa¢ ilo±¢ wszystkich koniecznych operacji arytmetycznych.
Nast¦puj¡ce twierdzenie daje nam algorytm FFT:
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Twierdzenie 2.14. Niech p = 2q. Macierz Ap rozkªada si¦ na iloczyn

Ap = EpẼp/2 · · · Ẽ2P̃4P̃8 · · · P̃p/2Pp, (2.23)

gdzie E2j oraz P2j maj¡ to samo znaczenie co w twierdzeniu Danielsona-
Lanczosa, Ẽ2j oraz P̃2j to macierze p×p z p/2j klatkami E2j i P2j odpowiednio
na przek¡tnej.

Dowód. Wystarczy zauwa»y¢, »e twierdzenie Danielsona-Lanczosa mo»na ite-
rowa¢:

Ap = EpÃp/2Pp = EpẼp/2Ãp/4P̃p/2Pp = · · · = EpẼp/2 · · · Ẽ2Ã1P̃2 · · · P̃p/2Pp.
(2.24)

Macierze A1 i P2, a wi¦c tak»e Ã1 i P̃2 s¡ macierzami identyczno±ciowymi,
wi¦c z (2.24) wynika (2.23).

Uwagi:(i) Ka»da z macierzy P̃2j jest macierz¡ permutacji, wi¦c ich iloczyn
te» jest macierz¡ permutacji. Wynika z tego, »e przeksztaªcenie

U = P̃4P̃8 · · · P̃p/2Pp

sprowadza si¦ do pewnego przestawienia wspóªczynników wektora x. To prze-
stawienie jest szczególnie proste do zaimplementowania w praktyce. Je»eli
oznaczymy x = (x(0), . . . , x(p− 1)) oraz Ux = x′ = (x′(0), . . . , x′(p− 1)), to
x′(k) = x(l), gdzie k i l maj¡ wzajemnie symetryczne rozwini¦cia w ukªadzie
dwójkowym

(k)2 = eq−1 · · · e0, (l)2 = e0 · · · eq−1, ej = 0, 1.

Jest to tak zwane przeksztaªcenie odwrócenia bitów.

(ii) Przedstawiony powy»ej algorytm FFT jest tylko jednym z mo»liwych.
Niektóre programy komputerowe stosuj¡ inny algorytm. Zauwa»my, »e ma-
cierz dyskretnej transformaty Fouriera Ap jest symetryczna. Twierdzenie
Danielsona-Lanczosa mo»na wi¦c zapisa¢ jako

Ap = At
p = P t

pÃp/2E
t
p, (2.25)

gdzie t oznacza transpozycj¦, i gdzie wykorzystali±my fakt, »e Ap i Ãp/2 s¡
symetryczne, a wi¦c niezmiennicze ze wzgl¦du na transpozycj¦. Powy»szy
wzór mo»na udowodni¢ bezpo±rednio, grupuj¡c elementy sumy inaczej, ni»
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robili±my to wcze±niej. Niech p′ = p/2.

x̂(l) =

p−1∑

k=0

x(k)e−i 2π kl
p

=

p/2−1∑

k=0

x(k)e−i 2π kl
p +

p−1∑

k=p/2

x(k)e−i 2π kl
p

=

p′−1∑

k=0

(
x(k)e−i 2π kl

p + x(k + p′)e−i
2π (k+p′)l

p

)

=

p′−1∑

k=0

(
x(k) + e−i πlx(k + p′)

)
e−i 2π kl

p

=

p′−1∑

k=0

(
x(k) + (−1)lx(k + p′)

)
e−i 2π kl

p

Je»eli l = 2n, n = 0, . . . , p′ − 1 jest parzysta, to

x̂(l) =

p′−1∑

k=0

(x(k) + x(k + p′)) e
−i 2π kn

p′ ,

a je»eli l = 2n + 1 jest nieparzysta, to

x̂(l) =

p′−1∑

k=0

(x(k)− x(k + p′)) e−i 2πk
p e

−i 2π kn
p′ .

Innymi sªowy, parzyste wspóªczynniki x̂ to transformata rz¦du p′ wektora x′

o wspóªczynnikach
x′(k) = x(k) + x(k + p′),

a nieparzyste to transformata wektora x′′

x′′(k) = ( x(k)− x(k + p′) ) e−i 2π k
p .

�atwo sprawdzi¢, »e powy»sze obliczenia daj¡ nam dokªadnie (2.25). Za-
uwa»my te», »e macierz U z poprzedniej uwagi jest symetryczna, wi¦c stosu-
j¡c ten algorytm równie» dochodzimy do przeksztaªcenia odwrócenia bitów,
z tym, »e w poprzednim algorytmie byª to pierwszy krok szybkiej transfor-
maty, a w omawianym teraz wariancie jest to ostatni krok.
(iii) Omawiali±my przypadek, gdy sygnaª miaª dªugo±¢ b¦d¡c¡ pot¦g¡ 2. W
praktyce to jest przypadek najwa»niejszy. Sygnaªy o innych dªugo±ciach s¡
przedªu»ane do najbli»szej pot¦gi 2, na przykªad dodaje si¦ odpowiedni¡ ilo±¢
zer. Szybki algorytm mo»na jednak skonstruowa¢ niezale»nie dla sygnaªów o
innych dªugo±ciach.
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Transformaty trygonometryczne

Naturalnym j¦zykiem transformat Fouriera w ich wszystkich wcieleniach, w
tym tak»e dyskretnej transformaty Fouriera jest j¦zyk liczb zespolonych. W
zastosowaniach jest to niepraktyczne. Sygnaªy rzeczywiste maj¡ transfor-
maty o warto±ciach zespolonych. Takie sygnaªy o warto±ciach zespolonych
wymagaj¡ innych struktur do przechowywania i manipulacji. Nie jest to wiel-
kim problemem, ale w praktyce wygodniejsze jest posªugiwanie si¦ transfor-
matami, które sygnaªy rzeczywiste przeksztaªcaj¡ na rzeczywiste. S¡ to tak
zwane transformaty trygonometryczne. Transformaty takie powstaj¡ przez
proste przeksztaªcenie transformaty Fouriera i w zwi¡zku z tym mo»na sto-
sowa¢ do nich szybkie algorytmy. Podstawow¡ obserwacj¡ jest fakt, »e je»eli
sygnaª rzeczywisty x = (x(0), . . . , x(p− 1)) jest parzysty, czyli

x(p− k) = x(k),

to jego transformata Fouriera te» jest rzeczywista, a je»eli jest nieparzysty,
czyli

x(p− k) = −x(k), x(0) = 0,

to transformata jest czysto urojona. Istniej¡ce sygnaªy mo»na wi¦c odpo-
wiednio przedªu»y¢ i zastosowa¢ do nich transformat¦ Fouriera odpowiedni
wysokiego rz¦du. W praktyce spotyka si¦ kilka odmian transformat sinuso-
wych i cosinusowych, które otrzymuje si¦ wªa±nie mniej wi¦cej wedªug powy»-
szego schematu. Na przykªad, wyprowadzimy wzór na jedn¡ z transformat
cosinusowych. Niech dany b¦dzie sygnaª o dªugo±ci p, x = (x(0), . . . , x(p −
1)). Niech x̃ b¦dzie przedªu»eniem x o dªugo±ci 2p, zde�niowanym nast¦pu-
j¡co:

x̃(k) =

{
x(k) : k = 0, . . . , p− 1

x(2p− k − 1) : k = p, . . . , 2p− 1.

Zauwa»my, »e sygnaª x̃ ma pewn¡ symetri¦ � jest �parzysty"wokóª punktu
p− 1/2:

x̃((p− 1/2) + l) = x̃((p− 1/2)− l),
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gdzie l jest liczb¡ poªówkow¡, 2l = 1, 3, . . . , 2p − 1. Obliczmy transformat¦
Fouriera dªugo±ci 2p sygnaªu rozszerzonego x̃.

̂̃x(l) =

2p−1∑

k=0

x̃(k) e−i 2π kl
2p

=

p−1∑

k=0

x̃(k) e−i 2π kl
2p +

2p−1∑

k=p

x̃(k) e−i 2π kl
2p

=

p−1∑

k=0

x(k) e−i π kl
p +

2p−1∑

k=p

x(2p− k − 1) e−i π kl
p .

Przenumerujmy skªadniki drugiej sumy, niech nowy indeks k′ = 2p − k − 1.
Nowy indeks (te» go potem nazwiemy k) biegnie od 0 do p−1. Otrzymujemy

̂̃x(l) =

p−1∑

k=0

x(k)
(
e−i π kl

p + e−i
π (2p−k−1)l

p

)

=

p−1∑

k=0

x(k)
(
e−i π kl

p + ei π kl
p ei π l

p

)

=

p−1∑

k=0

x(k) ei π l
2p

(
e−i

π (k+1/2)l
p + ei

π (k+1/2)l
p

)

= 2 ei π l
2p

p−1∑

k=0

x(k) cos

(
π(k + 1/2)l

p

)
.

Zauwa»my, »e transformata Fouriera x̃ zale»y tylko od wspóªczynników �co-
sinusowych�

x̂c(l) =

p−1∑

k=0

x(k) cos

(
π(k + 1/2)l

p

)
.

Mamy wi¦c
̂̃x(l) = 2 · ei π l

2p · x̂c(l).

Zróbmy jeszcze nast¦puj¡ce obserwacje

̂̃x(0) = 2 · x̂c(0),

̂̃x(p) = ei π
2

p−1∑

k=0

x(k) cos(π(k + 1/2)) = 0,
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gdy» cos(π(k+1/2)) = 0 dla ka»dej liczby caªkowitej k. W ko«cu zauwa»my,
»e

̂̃x(2p− l) = ̂̃x(l).

Rekonstruuj¡c x̃, korzystaj¡c z odwrotnej transformaty Fouriera, otrzymu-
jemy

x̃(k) =
1

2p

2p−1∑

l=0

̂̃x(l)ei 2π kl
2p

=
1

2p
̂̃x(0) +

1

2p

2p−1∑
l=0
l6=p

̂̃x(l)ei 2π kl
2p

=
1

p
x̂c(0) +

1

2p

p−1∑

l=1

(
̂̃x(l)ei 2π kl

2p + ̂̃x(2p− l)ei
2π k(2p−l)

2p

)

=
1

p
x̂c(0) +

1

2p

p−1∑

l=1

2x̂c(l)

(
ei π l

2p ei 2π kl
2p + ei π l

2p ei 2π kl
2p

)

=
1

p
x̂c(0) +

2

p

p−1∑

l=1

x̂c(l) cos

(
π(k + 1/2)l

p

)
.

Gdy k = 0, . . . , p − 1 to x̃(k) = x(k), wi¦c otrzymali±my wzór na odwrotn¡
transformat¦ cosinusow¡. Podsumowuj¡c: transformata cosinusowa i od-
wrotna transformata cosinusowa dane s¡ wzorami

x̂c(l) =

p−1∑

k=0

x(k) cos

(
π(k + 1/2)l

p

)
, l = 0, . . . , p− 1,

x̌c(k) =
1

p
x(0) +

2

p

p−1∑

l=1

x(l) cos

(
π(k + 1/2)l

p

)
, k = 0, . . . , p− 1.

Transformata cosinusowa zwi¡zana jest z dyskretn¡ transformat¡ Fouriera
wzorem

Cp = RpA2pQp,

gdzie Cp jest macierz¡ odpowiadaj¡c¡ transformacie cosinusowej, natomiast
Rp i Qp s¡ pewnymi macierzami prostok¡tnymi, zawieraj¡cymi w wi¦kszo±ci
zera. Dokªadne wzory na Rp i Qp mo»na otrzyma¢ analizuj¡c przeprowadzone
powy»ej rachunki.

Przypomnijmy, »e powy»sze wzory stanowi¡ tylko jeden z mo»liwych wa-
riantów transformat trygonometrycznych.
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Inne transformaty
• Lokalne transformaty Fouriera i trygonometryczne

• Transformata Laplace'a

• Transformata Mellina

• Transformata Zaka

• Transformata Radona
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Rozdziaª 3

Dodatek: kilka transformat
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Rozdziaª 4

Analiza Wielorozdzielcza

Bazy falkowe
W tym rozdziale przedmiotem naszego zainteresowania b¦dzie konstrukcja
szczególnego rodzaju baz w przestrzeni L2(R), tak zwanych baz falkowych.
Baza falkowa to baza ortonormalna w L2(R) nast¦puj¡cej postaci

{2 j
2 ψ(2jx− n); n, j ∈ Z}, (4.1)

dla pewnej funkcji ψ ∈ L2(R). Baza falkowa powstaje z jednej funkcji ψ,
w ten sposób, »e najpierw tworzymy wszystkie caªkowite przesuni¦cia ψ,
a nast¦pnie tworzymy wszystkie mo»liwe przeskalowania powstaªej rodziny
o wspóªczynniki b¦d¡ce pot¦g¡ 2. Je»eli tak otrzymana rodzina funkcji w
L2(R) jest baz¡ ortonormaln¡, to nazywamy j¡ baz¡ falkow¡, a funkcj¦ ψ
falk¡. Nazwa �falka� pochodzi st¡d, »e ψ jest najcz¦±ciej elementarn¡ oscy-
lacj¡, o wyra¹nej lokalizacji w czasie i o okre±lonej cz¦stotliwo±ci. Buduj¡c z
takiej funkcji baz¦ wedªug schematu (4.1) widzimy, »e funkcje 2j/2ψ(2jx−n)
te» stanowi¡ tak¡ elementarn¡ oscylacj¦, ale o cz¦stotliwo±ci rz¦du 2j i loka-
lizacji w okolicy punktu 2−jn.
Przesuni¦cie i przeskalowanie takiej funkcji powoduje, »e iloczyn skalarny z
ni¡ wychwytuje w sygnale szczegóªy wyst¦puj¡ce w konkretnym miejscu i
posiadaj¡ce okre±lon¡ cz¦stotliwo±¢. Ta wªasno±¢ sprawia, »e bazy falkowe
odniosªy w ostatnich 20 latach ogromny sukces w zastosowaniach. Ana-
liza falkowa jest obecnie obszernym dziaªem matematyki. Z grubsza bior¡c
mo»na wydzieli¢ dwa rodzaje transformaty falkowej. Po pierwsze mamy ci¡-
gª¡ transformat¦ falkow¡

W (f)(a, t) =

∫ ∞

−∞
f(x)

√
aψ(a x− t) dx,
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Rysunek 4.1: Falka Haara i falka �meksyka«ski kapelusz�.

która funkcji f ∈ L2(R) przyporz¡dkowuje funkcj¦ dwóch zmiennych a, t ∈
R, a > 0. Dla ka»dego a > 0 W (f)(a, t) jest, mówi¡c intuicyjnie �obrazem�
funkcji �na poziomie rozdzielczo±ci a�. Drugim rodzajem transformaty falko-
wej jest transformata falkowa dyskretna, czyli rozkªad funkcji f ∈ L2(R) w
bazie falkowej

α(f)n,j =

∫ ∞

−∞
f(x)2

j
2 ψ(2jx− n) dx, n, j ∈ Z.

�atwo zauwa»y¢, »e dyskretna transformata falkowa jest rezultatem prób-
kowania transformaty ci¡gªej w punktach (a, t) = (2j, n), j, n ∈ Z. Je-
»eli ψ jest falk¡, czyli ukªad funkcji (4.1) stanowi baz¦ w L2(R), to funkcj¦
f ∈ L2(R) mo»na zrekonstruowa¢ z tych próbek α(f)n,j. Dla baz falkowych
istnieje szybki algorytm numeryczny, tak zwany algorytm Mallata, wylicza-
j¡cy wspóªczynniki bazowe α(f)n,j. Algorytm Mallata opiszemy w nast¦puj¡-
cym rozdziale. Problem konstrukcji baz falkowych jest o tyle interesuj¡cy, »e
wªasno±ci konkretnej falki ψ maj¡ istotne znaczenie dla zastosowa«. Dlatego
nie wystarczy skonstruowa¢ jednej bazy falkowej do wszystkich zastosowa«.
Istnieje potrzeba konstruowania falek o konkretnych wªasno±ciach. W zasto-
sowaniach najcz¦±ciej pojawiaj¡ si¦ tak zwane falki Daubechies. Jest to ro-
dzina falek o no±niku ograniczonym (czyli ψ ≡ 0 poza pewnym przedziaªem) i
o ró»nym stopniu gªadko±ci. Falek Daubechies u»ywamy w laboratorium. W
tym rozdziale gªównie zajmujemy si¦ przypadkiem jednowymiarowym, czyli
przestrzeni¡ L2(R). Pod koniec poka»emy, jak bazy falkowe mo»na budo-
wa¢ w przypadku wielowymiarowym, u»ywaj¡c skonstruowanych ju» falek
jednowymiarowych.
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Analiza wielorozdzielcza MRA
Narz¦dziem do konstrukcji falek jest tak zwana analiza wielorozdzielcza.

De�nicja 4.1. Analiz¡ wielorozdzielcz¡ (w skrócie: MRA) nazywamy ci¡g
rosn¡cy podprzestrzeni domkni¦tych L2(R)

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2(R)

speªniaj¡cych nast¦puj¡ce warunki

(a).
⋃∞

j=−∞ Vj = L2(R),

(b).
⋂∞

j=−∞ Vj = {0},
(c). f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1,

(d). istnieje funkcja ϕ ∈ V0 (tak zwana funkcja skaluj¡ca analizy) taka, »e
zbiór funkcji

{ϕ(x− n); n ∈ Z}
stanowi baz¦ o.n. (lub baz¦ Riesza) przestrzeni V0.

Dla podkre±lenia, czy funkcja skaluj¡ca generuje baz¦ o.n. czy baz¦ Rie-
sza przestrzeni V0 czasem mówi si¦ �ortogonalna MRA�, lub �MRA Riesza�.
Konstrukcja falek nast¡pi w dwóch krokach. Najpierw poka»emy, »e maj¡c
MRA mo»emy skonstruowa¢ falk¦, a nast¦pnie poka»emy, jak mo»na skon-
struowa¢ interesuj¡ce nas analizy wielorozdzielcze.
Uwagi: (i) Zauwa»my, »e funkcja ϕ caªkowicie okre±la analiz¦ wielorozdziel-
cz¡, dla której jest funkcj¡ skaluj¡c¡. Istotnie, skoro przesuni¦cia ϕ stanowi¡
baz¦ o.n. V0, to

V0 = Lin {ϕ(x− n); n ∈ Z}. (4.2)
Z warunku (c) z kolei wynika, »e

Vj =
{
f ∈ L2(R); f(2−jx) ∈ V0

}
. (4.3)

Konstrukcja MRA b¦dzie wi¦c wygl¡daªa nast¦puj¡co. Znajdziemy funkcj¦
ϕ tak¡, »e jej przesuni¦cia caªkowite stanowi¡ ukªad ortonormalny. Wtedy
przesuni¦cia b¦d¡ stanowiªy baz¦ o.n. przestrzeni V0 zde�niowanej w (4.2).
Nast¦pnie przestrzenie Vj zde�niujemy wzorem (4.3). Znajdziemy dodatkowe
warunki na ϕ, które sprawi¡, »e tak powstaªy ci¡g domkni¦tych podprze-
strzeni jest rosn¡cy (wystarczy, »e V0 ⊂ V1), oraz speªnione s¡ warunki (a) i
(b) de�nicji.
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(ii) Rozró»niamy analizy wielorozdzielcze ortonormalne i Riesza, w zale»no-
±ci od bazy, któr¡ w V0 generuje funkcja skaluj¡ca ϕ. Poka»emy, »e analiza
wielorozdzielcza Riesza te» jest analiz¡ o.n., tylko trzeba wybra¢ inn¡ funkcj¦
skaluj¡c¡. Innymi sªowy, dla analizy Riesza, z funkcj¡ skaluj¡c¡ ϕ mo»na w
V0 znale¹¢ inn¡ funkcj¦ ϕ̃, której przesuni¦cia s¡ baz¡ o.n. V0. Pomimo tego,
»e analiza Riesza jest automatycznie tak»e analiz¡ o.n. warto rozró»nia¢ oba
rodzaje analiz. Na przykªad, zdarza si¦, »e funkcja ϕ̃, chocia» istnieje, ma
bardzo skomplikowan¡ posta¢, i wygodniej jest pracowa¢ z pocz¡tkow¡ funk-
cj¡ ϕ, chocia» generuje jedynie baz¦ Riesza, a nie o.n.
Przykªady: (i) Dla N = 0, 1, 2, . . . mówimy, »e funkcja f jest splinem rz¦du
N (nie znam dobrego polskiego tªumaczenia) je»eli jest ró»niczkowalna w spo-
sób ci¡gªy N − 1 razy oraz jest wielomianem stopnia ≤ N na przedziaªach
postaci [k, k + 1] (pomi¦dzy s¡siednimi liczbami caªkowitymi). Je»eli N = 0
to zaªo»enie o ró»niczkowalno±ci jest puste, funkcja f ma tylko by¢ staªa na
przedziaªach [k, k + 1].

Niech N b¦dzie ustalone. De�niujemy

V0 = {f ∈ L2(R); f jest splinem rz¦du N}.

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Rysunek 4.2: Spliny rz¦du 1 i 2.

Zauwa»my, »e jest to podprzestrze« domkni¦ta. Pozostaªe przestrzenie
de�niujemy tak, aby warunek (c) de�nicji byª speªniony

Vj = {f ∈ L2(R); f(2−jx) ∈ V0}.

Vj zachowuje wszystkie wªasno±ci V0, które s¡ zachowywane przy przeskalo-
waniu: jest podprzestrzeni¡ domkni¦t¡, skªada si¦ z funkcji ró»niczkowalnych
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N−1 razy w sposób ci¡gªy, które s¡ wielomianami stopnia ≤ N na przedzia-
ªach postaci 2−j[k, k+1] = [2−jk, 2−j(k+1)]. W ten sposób skonstruowali±my
ci¡g podprzestrzeni domkni¦tych w L2(R), które speªniaj¡ warunek (c) de�-
nicji MRA. Zauwa»my, »e Vj ⊂ Vj+1. Wynika to z faktu, »e ka»dy przedziaª
postaci 2−(j+1)[k, k + 1] zawiera si¦ w caªo±ci w którym± z dªu»szych prze-
dziaªów 2−j[k′, k′ + 1]:

2−(j+1)[k, k+1] = 2−j[k/2, (k+1)/2] ⊂
{

2−j[k/2, k/2 + 1] k − parzyste
2−j[(k − 1)/2, (k − 1)/2 + 1] k − nieparzyste

Je»eli f ∈ Vj, czyli jest wielomianem na dªu»szych przedziaªach, to jest tak»e
wielomianem na zawartych w nich krótszych przedziaªach, czyli f ∈ Vj+1.
Ci¡g podprzestrzeni {vj} jest wi¦c rosn¡cy. Niech ϕ b¦dzie funkcj¡ Haara,
czyli

ϕ(x) = χ[0,1](x) =

{
1 : x ∈ [0, 1],

0 : x /∈ [0, 1],

oraz
∆N(x) = ϕ ∗ · · · ∗ ϕ(x), (splot N + 1-krotny).

Fakt 4.2. ∆N jest splinem rz¦du N .
Dowód. Wprzypadku N = 0 wynika to od razu z de�nicji: funkcja Haara jest
staªa pomi¦dzy s¡siednimi liczbami caªkowitymi. W rozdziale o przestrzeni
Hilberta pokazali±my, »e ∆1 = ϕ ∗ ϕ jest ci¡gªa, liniowo ro±nie na przedziale
[0, 1], liniowo maleje na [1, 2], i jest równa 0 poza tym. Jest wi¦c splinem
rz¦du 1. Dowód faktu jest indukcyjny. Dla n ≥ 2

∆N(x) = ∆N−1∗ϕ(x) =

∫ ∞

−∞
∆N−1(x−y)ϕ(y) dy =

∫ 1

0

∆N−1(x−y) dy =

∫ x

x−1

∆N−1(y) dy,

gdzie w ostatniej caªce zrobili±my zamian¦ zmiennych y′ = x−y. Korzystaj¡c
z zasadniczego twierdzenia rachunku ró»niczkowego mamy

(∆N)′(x) = ∆N−1(x)−∆N−1(x− 1).

Je»eli wi¦c zaªo»ymy, »e ∆N−1 jest splinem rz¦du N − 1, jest ró»niczkowalna
w sposób ci¡gªy N − 1 razy, to ∆N jest ró»niczkowalna w sposób ci¡gªy o
jeden raz wi¦cej, czyli N razy. Niech x ∈ [k, k + 1]. Wtedy k ∈ [x − 1, x],
oraz

∆N(x) =

∫ x

x−1

∆N−1(y) dy =

∫ k

x−1

∆N−1(y) dy +

∫ x

k

∆N−1(y) dy.

Na obu przedziaªach caªkowania ∆N−1 jest wielomianem stopnia ≤ N − 1,
wi¦c obie caªki s¡ wielomianami stopnia ≤ N zmiennej x, wi¦c ich suma te».
Je»eli wi¦c ∆N−1 jest splinem rz¦du N − 1 to ∆N jest splinem rz¦du N .
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W rozdziale o przestrzeni Hilberta pokazali±my, »e dla N = 0 przesuni¦-
cia caªkowite ϕ stanowi¡ baz¦ o.n. przestrzeni V0, a w przypadku N = 1
przesuni¦cia ∆1 stanowi¡ baz¦ Riesza V0. Dla dowolnego N mo»na poka-
za¢, »e przesuni¦cia caªkowite ∆N stanowi¡ baz¦ Riesza V0, i warunki (a) i
(b) de�nicji MRA s¡ speªnione. Dowód tego odªo»ymy do momentu, kiedy
udowodnimy wygodn¡ charakteryzacj¦ ukªadów Riesza. Dla N = 0 tak po-
wstaª¡ analiz¦ nazywamy analiz¡ Haara, a dla N ≥ 1 nazywamy j¡ analiz¡
splinow¡. S¡ to wa»ne przykªady analiz, które cz¦sto spotyka si¦ w praktyce.
W oparciu o nie konstruuje si¦ falk¦ Haara i falki splinowe. Funkcje ∆N(x)
nazywa si¦ splinami podstawowymi rz¦du N .

(ii) Analiza Shannona. Niech

Vj = {f ∈ L2(R); f̂(ξ) ≡ 0 dla ξ /∈ [−2jπ, 2jπ]}.

Vj skªada si¦ z funkcji o �spektrum� ograniczonym do [−2jπ, 2jπ]. Wida¢
wi¦c od razu, »e jest to rosn¡cy ci¡g podprzestrzeni Vj ⊂ Vj+1. Wida¢ te»,
»e s¡ to podprzestrzenie domkni¦te. Mamy f̂(2·)(ξ) = 1/2f̂(ξ/2). f̂(ξ) ≡ 0
poza [−2jπ, 2jπ] dokªadnie wtedy, gdy f̂(ξ/2) ≡ 0 poza [−2j+1π, 2j+1π], czyli
(c) de�nicji MRA jest speªnione. Poka»emy, »e ϕ zde�niowane przez swoj¡
transformat¦ Fouriera

ϕ̂(ξ) = χ[−π,π](ξ) =

{
1 : ξ ∈ [−π, π]

0 : ξ /∈ [−π, π],

jest o.n. funkcj¡ skaluj¡c¡. Dowód tego jest bardzo prosty. f ∈ V0 dokªadnie
wtedy, gdy f ∈ L2(R) i f̂(ξ) ≡ 0 dla ξ /∈ [−π, π]. Niech {αk} ∈ `2 b¦d¡
wspóªczynnikami Fouriera funkcji f̂(ξ) na przedziale [−π, π], czyli

f̂(ξ) =
∞∑

k=−∞
αke

i kξ w L2(T). (4.4)

Poniewa» ϕ̂(ξ) jest równa 1 wsz¦dzie tam, gdzie f̂(ξ) 6= 0, wi¦c

f̂(ξ) = ϕ̂(ξ)f̂(ξ) =
∞∑

k=−∞
αke

i kξϕ̂(ξ). (4.5)
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Powy»sza równo±¢, jak ªatwo sprawdzi¢, zachodzi w L2(R):
∥∥∥∥∥f̂ −

N∑

k=−M

αk ei k·ϕ̂

∥∥∥∥∥

2

=

∫ ∞

−∞

∣∣∣∣∣f̂(ξ)−
N∑

k=−M

αk ei kξϕ̂(ξ)

∣∣∣∣∣

2

dξ

=

∫ π

−π

∣∣∣∣∣f̂(ξ)−
N∑

k=−M

αk ei kξ

∣∣∣∣∣

2

dξ

N,M→∞−−−−−→ 0,

korzystaj¡c z (4.4). Skoro równo±¢ (4.5) zachodzi w L2(R), to mo»emy od-
wróci¢ transformat¦ Fouriera, i mamy

f(x) =
∞∑

k=−∞
α−kϕ(x− k) w L2(R). (4.6)

Innymi sªowy, f ∈ V0 dokªadnie wtedy, gdy istniej¡ wspóªczynniki ‖αk‖ ∈
`2 takie, ze zachodzi (4.6). Przesuni¦cia caªkowite ϕ stanowi¡ wi¦c ukªad
zupeªny w V0. �atwo pokaza¢, »e s¡ te» ukªadem o.n.:

〈ϕ( · − n), ϕ( · − k)〉 =
1

2π
〈 ̂ϕ( · − n), ̂ϕ( · − k)〉

=
1

2π

∫ ∞

−∞
ϕ̂(ξ) e−i nξ ϕ̂(ξ) ei kξ dξ

=
1

2π

∫ π

−π

ei (k−n)ξ dξ

=

{
1 : k = n

0 : k 6= n.

Warunki (a) i (b) de�nicji MRA s¡ speªnione automatycznie, co wynika z
faktu, udowodnionego przed twierdzeniem ??, dalej w tym rozdziale.

Konstrukcja falki
Niech b¦dzie dana o.n. analiza wielorozdzielcza z funkcj¡ skaluj¡c¡ ϕ. Niech
W0 b¦dzie dopeªnieniem ortogonalnym V0 w V1:

W0 = {f ∈ V1; f ⊥ g ∀ g ∈ V0}, czyli W0 = V1 ª V0. (4.7)

Poniewa» V0 jest domkni¦ta, wi¦c

V1 = V0 ⊕W0. (4.8)
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Naszym celem b¦dzie znalezienie takiej funkcji ψ ∈ W0, »e ukªad

{ψ(x− n); n ∈ Z}
stanowi baz¦ o. n. W0. Poka»emy potem, »e taka ψ jest falk¡.

Filtr dolnoprzepustowy
Z de�nicji MRA wynika, »e funkcja (1/2) ϕ(x/2) jest elementem V−1 ⊂ V0.
Mo»na j¡ wi¦c zapisa¢ w bazie jako

1

2
ϕ

(x

2

)
=

∞∑
n=−∞

hnϕ(x− n), (4.9)

gdzie szereg jest zbie»ny w L2(R), wspóªczynniki bazowe dane s¡ przez

hn =

〈
1

2
ϕ

( ·
2

)
, ϕ(· − n)

〉
,

oraz ∞∑
j=−∞

|hn|2 =

∫ ∞

j=−∞

∣∣∣∣
1

2
ϕ

(x

2

)∣∣∣∣
2

dx =
1

2
‖ϕ‖2 =

1

2
.

Zastosujmy transformat¦ Fouriera do (4.9). Poniewa» szereg jest zbie»ny w
L2(R), to mo»emy z transformat¡ wej±¢ pod znak sumy.

ϕ̂(2ξ) =
∞∑

n=−∞
hnϕ̂(ξ)e−inξ. (4.10)

Szereg jest zbie»ny w L2(R). Skoro ci¡g {hn}∞n=−∞ jest sumowalny z kwadra-
tem, to szereg

∑∞
n=−∞ hne−inξ jest zbie»ny w L2(T) do funkcji któr¡ ozna-

czymy przez m0:

m0(ξ) =
∞∑

n=−∞
hn e−inξ. (4.11)

�¡cz¡c te dwie zbie»no±ci mo»na uzasadni¢, »e w takim razie

ϕ̂(2ξ) = m0(ξ) ϕ̂(ξ). (4.12)

Funkcj¦ m0(ξ) nazywamy �ltrem dolnoprzepustowym. Czasem sam ci¡g
wspóªczynników {hn}∞n=−∞ te» b¦dziemy nazywali �ltrem dolnoprzepusto-
wym. Pokazali±my wi¦c, »e funkcja (1/2) ϕ(x/2) (lub, co na jedno wychodzi
ϕ(x/2)) jest wynikiem dziaªania �ltru m0 na ϕ. Filtr m0 nazywamy dolno-
przepustowym, gdy» jego warto±ci (je»eli jest funkcj¡ ci¡gª¡) w otoczeniu 0
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0

1

0

0

1

Rysunek 4.3: Filtr dolnoprzepustowy Haara |m0| i idealny �ltr dolnoprzepu-
stowy.

s¡ zbli»one do 1, w czym przypomina charakterystyk¦ typowego �ltru dolno-
przepustowego.
Na obrazku 4.3 pokazany jest wykres |m0(ξ)| dla analizy wielorozdzielczej
Haara. Oczywi±cie nazwanie �ltru dolnoprzepustowym jest uproszczeniem.
Na przykªad funkcja m0 jest okresowa. Dziaªanie �ltru m0 na funkcjach nie
jest splotem z funkcj¡ caªkowaln¡. �atwo zauwa»y¢, »e jest ono splotem z
funkcj¡ uogólnion¡

H(x) =
∞∑

k=−∞
hkδ(x− k),

1

2
ϕ

(
1

2
x

)
= (H ∗ ϕ)(x),

gdzie symbol δ oznacza impuls jednostkowy (delt¦ Diraca). Nie b¦dziemy
u±ci±la¢ powy»szej uwagi.

W podobny sposób jak (4.12) poka»emy nast¦puj¡ce twierdzenie
Twierdzenie 4.3. (i) f ∈ V0 ⇔ ∃λ ∈ L2(T) taka, »e

f̂(ξ) = λ(ξ)ϕ̂(ξ).

Mamy te» nast¦puj¡c¡ równo±¢

‖f‖2 = ‖λ‖2 =
∞∑

k=−∞
|λ̂(k)|2,

(normy w odpowiednich przestrzeniach).
(ii) f ∈ Vj ⇔ ∃λ ∈ L2(T) taka, »e

f̂(2jξ) = λ(ξ)ϕ̂(ξ),
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oraz
‖f‖2 = 2j ‖λ‖2 = 2j

∞∑

k=−∞
|λ̂(k)|2.

Dowód. (i) f nale»y do V0 dokªadnie wtedy, gdy

f(x) =
∞∑

n=−∞
αnϕ(x− n) w L2(R),

gdzie {αn} jest pewnym ci¡giem w `2. To z kolei, stosuj¡c jak poprzednio
transformat¦ Fouriera, jest równowa»ne

f̂(ξ) = λ(ξ)ϕ̂(ξ) gdzie λ(ξ) =
∞∑

n=−∞
αn e−inξ.

Dodatkowo,

‖f‖2 =
∞∑

n=−∞
|αn|2, a αn = λ̂(−n),

a wi¦c otrzymujemy (i). Do (ii) wystarczy zauwa»y¢, »e

f ∈ Vj ⇔ f(2−jx) ∈ V0, oraz ‖f‖2 = 2−j ‖f(2−j · )‖2.

Kluczowym narz¦dziem w konstrukcji falki jest nast¦puj¡ce twierdzenie
Twierdzenie 4.4. (i) Dla dowolnej funkcji f ∈ L2(R) ukªad

{f(x− n); n ∈ Z}
jest ortonormalny wtedy i tylko wtedy gdy

∞∑

k=−∞
|f̂(ξ + 2kπ)|2 = 1. (4.13)

(ii) Dla dowolnych funkcji f, g ∈ L2(R) ukªady

{f(x− n); n ∈ Z} i {g(x− n); n ∈ Z}
s¡ wzajemnie ortogonalne (czyli ka»da funkcja z jednego zbioru jest ortogo-
nalna do ka»dej funkcji z drugiego) wtedy i tylko wtedy gdy

∞∑

k=−∞
f̂(ξ + 2kπ)ĝ(ξ + 2kπ) = 0. (4.14)

(W ka»dym przypadku szeregi s¡ zbie»ne prawie wsz¦dzie.)
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Dowód. Cz¦±ci (i) i (ii) s¡ bardzo podobne. Przeprowadzimy dowód (i).

〈f( · − n), f( · − k)〉 =
1

2π
〈 ̂f( · − n), ̂f( · − k)〉

=
1

2π

∫ ∞

−∞
f̂(ξ)e−i nξf̂(ξ)e−i kξ dξ

=
1

2π

∫ ∞

−∞
|f̂(ξ)|2e−i (n−k)ξ dξ.

Caªk¦ po R zapiszemy jako sum¦ caªek po kolejnych przedziaªach [(2l −
1)π, (2l + 1)π), l = 0,±1,±2, . . . , a nast¦pnie zamienimy zmienne.

=
1

2π

∞∑

l=−∞

∫ (2l+1)π

(2l−1)π

|f̂(ξ)|2e−i (n−k)ξ dξ

=
1

2π

∞∑

l=−∞

∫ π

−π

|f̂(ξ + 2lπ)|2e−i (n−k)ξ dξ,

gdzie w ostatniej caªce zamienili±my zmienne ξ 7→ ξ+2lπ. Funkcja wykªadni-
cza nie zmieniªa si¦, bo jest okresowa. Zamienimy teraz kolejno±¢ sumowania
i caªkowania. W tym wypadku jest to mo»liwe na mocy twierdzenia o zbie»-
no±ci ograniczonej, gdy» funkcja

F (ξ) =
∞∑

l=−∞
|f̂(ξ + 2lπ)|2

jest caªkowalna na [−π, π], je»eli f ∈ L2(R). Kontynuuj¡c rachunki otrzy-
mujemy

=
1

2π

∫ π

−π

( ∞∑

l=−∞
|f̂(ξ + 2lπ)|2

)
e−i (n−k)ξ dξ

=
1

2π

∫ π

−π

F (ξ)e−i (n−k)ξ dξ.

Zauwa»my, »e ostatnie wyra»enie jest wspóªczynnikiem Fouriera rz¦du n− k
funkcji F (ξ). Funkcja ta jest caªkowalna na [−π, π], ale niekoniecznie caªko-
walna z kwadratem. Dla funkcji caªkowalnych te» mo»na oblicza¢ wspóªczyn-
niki Fouriera i te wspóªczynniki s¡ jednoznaczne. To znaczy »e dwie funkcje
caªkowalne o identycznych wspóªczynnikach Fouriera musz¡ by¢ równe, pra-
wie wsz¦dzie. Funkcja F (ξ) ma wi¦c wspóªczynniki Fouriera

F̂ (n) = 〈f, f( · − n)〉.
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A wi¦c,

〈f( · − n), f( · − k)〉 =

{
1 n = k,

0 n 6= k

wtedy i tylko wtedy, gdy F (ξ) ≡ 1.
Dowód cz¦±ci (ii) wygl¡da podobnie. Zaczynamy od

〈f( · − n), g( · − k)〉
i otrzymujemy, »e jest to (n−k)-ty wspóªczynnik Fouriera funkcji caªkowalnej

∞∑

l=−∞
f̂(ξ + 2lπ)ĝ(ξ + 2lπ).

Wszystkie wspóªczynniki s¡ zerami wtedy i tylko wtedy, gdy sama funkcja
jest stale 0.

Zastosujemy teraz cz¦±¢ (i) twierdzenia do funkcji skaluj¡cej ϕ. W nast¦-
puj¡cej sumie, która zgodnie z twierdzeniem jest równa 1 rozdzielamy wyrazy
parzyste i nieparzyste, stosujemy (4.12) i korzystamy z okresowo±ci m0:

1 =
∞∑

k=−∞
|ϕ̂(2ξ + 2kπ)|2

=
∞∑

k=−∞
parzyste

|ϕ̂(2ξ + 2kπ)|2 +
∞∑

k=−∞
nieparzyste

|ϕ̂(2ξ + 2kπ)|2

=
∞∑

k=−∞
|ϕ̂(2ξ + 2(2k)π)|2 +

∞∑

k=−∞
|ϕ̂(2ξ + 2(2k + 1)π)|2

=
∞∑

k=−∞
|m0(ξ + 2kπ)|2 |ϕ̂(ξ + 2kπ)|2+

+
∞∑

k=−∞
|m0(ξ + π + 2kπ)|2 |ϕ̂(ξ + π + 2kπ)|2

= |m0(ξ)|2
∞∑

k=−∞
|ϕ̂(ξ + 2kπ)|2 + |m0(ξ + π)|2

∞∑

k=−∞
|ϕ̂(ξ + π + 2kπ)|2

= |m0(ξ)|2 + |m0(ξ + π)|2.
Filtr dolnoprzepustowy speªnia wi¦c tak zwane równanie Barnwella-Smitha

|m0(ξ)|2 + |m0(ξ + π)|2 = 1. (4.15)
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Filtr górnoprzepustowy
Przypomnijmy, »e szukamy funkcji ψ ∈ V1. Korzystaj¡c z twierdzenia 4.3
(ii) widzimy, »e ψ̂ musi mie¢ posta¢

ψ̂(2ξ) = λ(ξ)ϕ̂(ξ) (4.16)

dla pewnej funkcji λ ∈ L2(T). Ponadto przesuni¦cia caªkowite ψ maj¡ sta-
nowi¢ ukªad ortonormalny, i maj¡ by¢ ortogonalne do przesuni¦¢ ϕ (maj¡
stanowi¢ baz¦ o.n. W0). Przeprowadzaj¡c rachunek podobny do powy»szego,
i stosuj¡c twierdzenie 4.4 (i) oraz (ii) otrzymujemy

|λ(ξ)|2 + |λ(ξ + π)|2 = 1, (4.17)
m0(ξ)λ(ξ) + m0(ξ + π)λ(ξ + π) = 0. (4.18)

Znalezienie odpowiedniej funkcji λ jest ju» proste Zauwa»my, »e nast¦puj¡ca
funkcja wstawiona w miejsce λ speªnia (4.17) i (4.18):

m1(ξ) = e−i ξm0(ξ + π). (4.19)

Funkcj¦ m1 nazywamy �ltrem górnoprzepustowym analizy wielorozdzielczej.
Poniewa» ψ ∈ V1, wi¦c (1/2)ψ(x/2) ∈ V0, a wi¦c istnieje ci¡g wspóªczynników
{gn}∞n=−∞, taki, »e

1

2
ψ

(x

2

)
=

∞∑
n=−∞

gnϕ(x− n). (4.20)

Wspóªczynniki gn s¡ wspóªczynnikami �ltru górnoprzepustowego

m1(ξ) =
∞∑

n=−∞
gn e−i nξ, (4.21)

a wi¦c mo»emy je wyliczy¢ znaj¡c wspóªczynniki �ltru dolnoprzepustowego.

m1(ξ) = e−i ξ m0(ξ + π)

= e−i ξ

∞∑
n=−∞

hn e−i n(ξ+π)

=
∞∑

n=−∞
hn (−1)n ei (n−1)ξ

=
∞∑

n=−∞
h1−n (−1)1−n e−i nξ.
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Z jednoznaczno±ci rozwini¦cia w szereg Fouriera mamy

gn = (−1)1−n h1−n. (4.22)

Sam ci¡g wspóªczynników {gn} te» czasem nazywa si¦ �ltrem górnoprzepu-
stowym analizy.

Filtry QMF
Podstawowe wªasno±ci pary �ltrów m0 i m1 to

|m0(ξ)|2 + |m0(ξ + π)|2 = 1,

|m1(ξ)|2 + |m1(ξ + π)|2 = 1,

m0(ξ)m1(ξ) + m0(ξ + π)m1(ξ + π) = 0.

Wªasno±ci te mo»na sformuªowa¢ bezpo±rednio w j¦zyku wspóªczynników
�ltrów:

∞∑

k=−∞
hk+2nhk =

{
1
2

n = 0

0 n 6= 0,

i podobnie dla {gn}, oraz
∞∑

k=−∞
h2n+kgk = 0, n ∈ Z.

Par¦ �ltrów (m0,m1) speªniaj¡cych powy»sze warunki nazywa si¦ �ltrem
QMF (quadrature mirror �lter). Maj¡ one zastosowanie w teorii przetwarza-
nia sygnaªu niezale»nie od teorii falek.

Sformuªujemy teraz ostateczne twierdzenia, które mówi¡, »e ψ istotnie
jest falk¡.

Twierdzenie 4.5. Niech funkcja ψ b¦dzie dana przez

ψ̂(2ξ) = m1(ξ)ϕ̂(ξ) = e−i ξm0(ξ + π)ϕ̂(ξ). (4.23)

Wtedy zbiór funkcji
{ψ(x− n); n ∈ Z} (4.24)

stanowi baz¦ o.n. przestrzeni W0 = V1 ª V0.

Dowód. Przypomnijmy, »e z de�nicji ψ ∈ V1, a przestrze« V1 jest niezmien-
nicza na przesuni¦cia caªkowite (nawet na przesuni¦cia poªówkowe). Caªy
zbiór funkcji (4.24) le»y wi¦c w V1, jest ortonormalny i ortogonalny do V0
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(przypomnijmy warunki (4.18) i (4.19)), a wi¦c jest ukªadem ortonormalnym
w W0. Pozostaje pokaza¢, »e jest to ukªad zupeªny, to znaczy, »e kombina-
cje liniowe elementów (4.24) le»¡ g¦sto w W0. Wystarczy pokaza¢, »e je»eli
f ∈ W0 i f jest ortogonalna do wszystkich elementów (4.24) to f ≡ 0. Niech
wi¦c f ∈ W0. W szczególno±ci f ∈ V1, wi¦c istnieje λ ∈ L2(T) taka, »e

f̂(2ξ) = λ(ξ)ϕ̂(ξ).

f jako element W0 jest ortogonalna do wszystkich przesuni¦¢ ϕ. Zakªadamy
dodatkowo, »e jest ortogonalna do wszystkich przesuni¦¢ ψ. Oczywi±cie caª-
kowite przesuni¦cia f te» maj¡ te wªasno±ci. Korzystaj¡c z twierdzenia 4.4
(ii), podobnie jak poprzednio, otrzymujemy

m0(ξ)λ(ξ) + m0(ξ + π)λ(ξ + π) = 0 (4.25)
m1(ξ)λ(ξ) + m1(ξ + π)λ(ξ + π) = 0. (4.26)

Pomnó»my stronami (4.25) przez m0(ξ). W (4.26) wstawmy wzór na m1,
pomnó»my stronami przez ei ξ m0(ξ + π) i uwzgl¦dnijmy, »e e−i π = −1. Po-
zostaje doda¢ równania stronami, aby otrzyma¢ λ(ξ) = 0, a poniewa» ξ jest
dowolne, to

f̂(2ξ) = 0.

Widzimy wi¦c, »e ukªad (4.24) jest baz¡ o.n. przestrzeni W0.

Podsumowuj¡c, skonstruowali±my funkcj¦ ψ, której caªkowite przesuni¦-
cia (4.24) stanowi¡ baz¦ o.n. przestrzeni W0 = V1 ª V0. Teraz poka»emy,
»e ukªad falkowy (4.1) stanowi baz¦ o.n. caªej przestrzeni L2(R). Niech Wj

b¦dzie dopeªnieniem ortogonalnym Vj w Vj+1

Wj = Vj+1 ª Vj, czyli Vj+1 = Vj ⊕Wj, j ∈ Z. (4.27)

Ta de�nicja rozszerza wcze±niejsz¡ de�nicj¦ W0. Mamy nast¦puj¡cy fakt

Fakt 4.6. (i) Wj = {f ∈ L2(R) : f(2−jx) ∈ W0},
(ii) Ukªad funkcji {

2
j
2 ψ(2jx− n) : n ∈ Z

}
(4.28)

jest baz¡ o.n. przestrzeni Wj.

Dowód. (i) Z de�nicji MRA mamy, »e f ∈ Vj+1 ⇔ f(2−j·) ∈ V1, g ∈ Vj ⇔
g(2−j·) ∈ V0, a przez zamian¦ zmiennych mamy

f ⊥ g ⇔ f(2−j·) ⊥ g(2−j·).
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Stwierdzenie, »e f ∈ Vj+1ªVj jest wi¦c równowa»ne stwierdzeniu, »e f(2−j·) ∈
V1 ª V0.
(ii) Przez zamian¦ zmiennych ξ 7→ 2−jξ sprowadzamy (ii) do przypadku
j = 0, który z kolei jest udowodniony w Twierdzeniu 4.5.

Zauwa»my, »e podprzestrzenie Wj s¡ do siebie wzajemnie ortogonalne.
Je»eli j < k to Wj ⊂ Vj+1 ⊂ Vk, a Wk jest z de�nicji ortogonalna do Vk.
W ka»dej z tych podprzestrzeni Wj mamy baz¦ o.n. (4.28). Nast¦puj¡ce
twierdzenie pokazuje, »e niesko«czona suma prosta tych podprzestrzeni jest
caªo±ci¡ L2(R), a ukªad (4.1) baz¡ o.n.

Twierdzenie 4.7. (i) Dla J ∈ Z mamy
J⊕

j=−∞
Wj = VJ+1, (4.29)

i dla tej podprzestrzeni ukªad funkcji
{

2
j
2 ψ(2jx− n) : n, j ∈ Z, j ≤ J

}
(4.30)

stanowi baz¦ o.n.,
(ii)

∞⊕
j=−∞

Wj = L(R), (4.31)

i ukªad funkcji (4.1), czyli
{

2
j
2 ψ(2jx− n) : n, j ∈ Z

}

stanowi baz¦ o.n. (falkow¡).

Dowód. (i) Jak zauwa»yli±my powy»ej przestrzenie Wj s¡ do siebie wzajemnie
ortogonalne

Wj ⊥ Wk j 6= k,

oraz, dla j ≤ J
Wj ⊂ Vj+1 ⊂ VJ+1.

Przypomnijmy, »e niesko«czona suma prosta (4.29) jest domkni¦ciem zbioru
kombinacji liniowych elementów podprzestrzeni Wj, j ≤ J . W takim razie

J⊕
j=−∞

Wj ⊂ VJ+1.
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Chcemy pokaza¢ równo±¢. Niech f ∈ VJ+1 i niech f b¦dzie ortogonalna do
ka»dej podprzestrzeni Wj, j ≤ J . Skoro f ∈ VJ+1 i f ⊥ WJ to f ∈ VJ .
Skoro f ⊥ WJ−1 to f ∈ VJ−1. Post¦puj¡c tak dalej, pokazujemy, »e f ∈ Vj

dla ka»dego j ≤ J + 1, a wi¦c

f ∈
J+1⋂

j=−∞
Vj =

∞⋂
j=−∞

Vj,

czyli, zgodnie z punktem (b) de�nicji MRA f ≡ 0. Pokazali±my wi¦c (4.29).
Fakt, »e zbiór funkcji (4.30) stanowi baz¦ o.n. sumy prostej wynika z tego,
»e jest to zbiór baz o.n. podprzestrzeni skªadowych sumy.
(ii) Z (i) wynika, »e

VJ =
J−1⊕

j=−∞
Wj ⊂

∞⊕
j=−∞

Wj,

a wi¦c
∞⋃

J=−∞
VJ ⊂

∞⊕
j=−∞

Wj.

Poniewa» suma prosta jest domkni¦ta, wi¦c domkni¦cie lewej strony te» si¦ w
niej zawiera. Z punktu (a) de�nicji MRA mamy, »e domkni¦cie lewej strony
jest caªo±ci¡ L2(R). Fakt, »e zbiór funkcji (4.1) stanowi baz¦ o.n. sumy
prostej wynika, podobnie jak w cz¦±ci (i) z tego, »e jest to zbiór wszystkich
baz ortonormalnych przestrzeni skªadowych Wj, j ∈ Z.

Przykªady: (i) MRA Haara ma funkcj¦ skaluj¡c¡ ϕ = χ[0,1]. Wida¢ wi¦c,
»e

1

2
ϕ

(
1

2
x

)
=

1

2
ϕ(x) +

1

2
ϕ(x− 1),

czyli h0 = h1 = 1/2, oraz hk = 0 dla k 6= 0, 1. W takim razie

g0 = −h1 = −1

2
, g1 = h0 =

1

2
oraz gk = 0 dla n 6= 0, 1,

1

2
ψ

(
1

2
x

)
= −1

2
ϕ(x) +

1

2
ϕ(x− 1) ⇒ ψ(x) = −ϕ(2x) + ϕ(2x− 1),

m0(ξ) =
1

2
+

1

2
ei ξ = ei ξ/2 cos(ξ/2), m1(ξ) = −1

2
+

1

2
ei ξ = i ei ξ/2 sin(ξ/2).

(ii) Filtry analizy Shannona wygodniej jest rozwa»a¢ po stronie transformaty
Fouriera. Mamy

ϕ̂(ξ) = χ[−π,π](ξ), ϕ̂(2ξ) = χ[−π/2,π/2](ξ),
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Rysunek 4.4: Wykresy |m0(ξ)|2 i |m1(ξ)|2.

wi¦c
m0(ξ) = ϕ̂(2π) = χ[−π/2,π/2](ξ) na [−π, π],

m1(ξ) = e−i ξ χ[−π,−π/2]∪[π/2,π](ξ) na [−π, π],

ψ̂(ξ) = m1(ξ/2)ϕ̂(ξ/2) = e−i ξ/2 χ[−2π,−π]∪[π,2π](ξ).

Mo»emy policzy¢ ϕ i ψ analizy Shannona

ϕ(x) =
1

2π

∫ π

−π

ϕ̂(ξ) ei ξx dξ =
1

2π

ei ξx

i x

∣∣∣∣
π

−π

=
1

2π i x

(
ei xπ − e−i xπ

)
=

sin(xπ)

xπ
,

ψ(x) =
1

2π

∫ 2π

−2π

ψ̂(ξ) ei ξx dξ =
1

2π

∫ −π

−2π

e−i ξ/2 ei ξx dξ +
1

2π

∫ 2π

π

e−i ξ/2 ei ξx dξ

=
1

2π

ei ξ(x−1/2)

i (x− 1/2)

∣∣∣∣
−π

−2π

+
1

2π

ei ξ(x−1/2)

i (x− 1/2)

∣∣∣∣
2π

π

=
1

2π i (x− 1/2)

((
e−i π(x−1/2) − e−i 2π(x−1/2)

)
+

(
ei 2π(x−1/2) − ei π(x−1/2)

))

=
1

π(x− 1/2)
(sin(2π(x− 1/2))− sin(π(x− 1/2))) .

Pakiety falkowe
Zauwa»my, »e w przestrzeniach Vj mamy w tej chwili wiele ró»nych baz o.n.
Z de�nicji, mamy baz¦

{
2

j
2 ϕ(2jx− n); n ∈ Z

}
. (4.32)
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Rysunek 4.5: Funkcja skaluj¡ca i falka Shannona.

Dodatkowo, mamy rozkªad
Vj = Vj−1 ⊕Wj−1,

i w ka»dej z przestrzeni skªadowych bazy o.n.{
2

j−1
2 ϕ(2j−1x− n); n ∈ Z

}
oraz

{
2

j−1
2 ψ(2j−1x− n); n ∈ Z

}
(4.33)

odpowiednio. W przestrzeni Vj mamy wi¦c do wyboru baz¦ (4.32) lub sum¦
baz (4.33). Mo»emy tak post¦powa¢ dalej, rozkªadaj¡c Vj−1, i widzimy, »e w
przestrzeniach Vj mamy, dla ka»dego J ≥ 0 baz¦ o.n.

{
2

j−J
2 ϕ(2j−Jx− n), 2

j−k
2 ψ(2j−kx− n); n ∈ Z, 1 ≤ k ≤ J

}
.

W takiej sytuacji mówimy, »e w Vj mamy bibliotek¦ baz o.n. W rozdziale o
pakietach falkowych wrócimy do tego zagadnienia. B¦dziemy konstruowali
jeszcze inne bazy, rozkªadaj¡c równie» przestrzenie Wj na sumy proste, u»y-
waj¡c pary �ltrów dolno- i górnoprzepustowego. W ten sposób, maj¡c kon-
kretny sygnaª i bibliotek¦ baz mo»emy dobra¢ do niego indywidualn¡ baz¦ z
biblioteki, i w tej bazie go rozªo»y¢. Kryteria wyboru baz mog¡ by¢ ró»ne,
ale generalnie chodzi o to, »eby w rozkªadzie byªo jak najmniej du»ych wspóª-
czynników.

MRA Riesza
Wspomnieli±my, »e analiza wielorozdzielcza Riesza jest tak»e, po zamianie
funkcji skaluj¡cej ale dla tych samych podprzestrzeni Vj, analiz¡ ortonor-
maln¡. Teraz to uzasadnimy. B¦dzie nam potrzebna nast¦puj¡ca wersja
Twierdzenia 4.4 (i).
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Twierdzenie 4.8. Niech f ∈ L2(R). Wtedy ukªad

{f(x− n); n ∈ Z} (4.34)

jest ukªadem Riesza, to znaczy istniej¡ staªe A,B > 0 takie, »e

A

∞∑
n=−∞

|αn|2 ≤
∥∥∥∥∥

∞∑
n=−∞

αn f( · − n)

∥∥∥∥∥

2

≤ B

∞∑
n=−∞

|αn|2, {αn}∞n=−∞ ∈ `2

(4.35)
wtedy i tylko wtedy, gdy

A ≤
∞∑

k=−∞
|f̂(ξ + 2kπ)|2 ≤ B. (4.36)

Dowód. Dowód przebiega podobnie do dowodu Twierdzenia 4.4. Je»eli f ∈
L2(R) to funkcja

F (ξ) =
∞∑

k=−∞
|f̂(ξ + 2kπ)|2 (4.37)

jest caªkowalna na [−π, π]. Niech ci¡g α = {αn} b¦dzie sko«czony, i niech

α̂(ξ) =
∞∑

k=−∞
αk e−i kξ (4.38)

b¦dzie odpowiadaj¡cym mu elementem L2(T) � wielomianem trygonome-
trycznym. Poka»emy, »e

∥∥∥∥∥
∞∑

k=−∞
αkf( · − k)

∥∥∥∥∥

2

=
1

2π

∫ π

−π

|α̂(ξ)|2F (ξ) dξ (4.39)

Dowód powy»szej równo±ci przeprowadzimy za chwil¦, a teraz zauwa»my, »e
twierdzenie wynika z (4.39). Zaªó»my, »e funkcje (4.34) tworz¡ ukªad Riesza,
to znaczy zachodzi (4.35). Niech

E = {ξ ∈ [−π, π]; F (ξ) > B},

i niech
χE(ξ) =

∞∑

k=−∞
αke

−i kξ,

czyli αk sa wspóªczynnikami Fouriera funkcji charakterystycznej χE. Ta funk-
cja nie jest wielomianem trygonometrycznym (ci¡g {αk} nie jest sko«czony),
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ale przy zaªo»eniu (4.35) równo±¢ (4.39) rozszerza si¦ automatycznie na ci¡gi
{αk} ∈ `2. Mamy wi¦c

1

2π

∫ π

−π

|χE(ξ)|2F (ξ) dξ =
1

2π

∫ π

−π

χE(ξ)F (ξ) dξ ≥ 1

2π
B

∫ π

−π

χE(ξ) dξ =
1

2π
B |E|.

(4.40)
|E| oznacza miar¦ (dªugo±¢) zbioru E. Je»eli F (ξ) jest ci¡gªa, to E jest
otwarty, a wi¦c jest sum¡ rozª¡cznych odcinków. Wtedy |E| jest ich ª¡czn¡
dªugo±ci¡. Miara jest uogólnieniem dªugo±ci na inne zbiory. Nie wchodz¡c
w szczegóªy, pozosta«my przy takim intuicyjnym rozumieniu miary. Za-
uwa»my, »e w (4.40) równo±¢ mo»e zachodzi¢ tylko je»eli |E| = 0, w przeciw-
nym wypadku zachodzi nierówno±¢ ostra. �¡cz¡c (4.35), (4.39) oraz (4.40)
otrzymujemy

1

2π
B |E| ≤

∥∥∥∥∥
∞∑

k=−∞
αkf( · − k)

∥∥∥∥∥

2

≤ B

∞∑

k=−∞
|αk|2

= B
1

2π

∫ π

−π

|α̂(ξ)|2 dξ

= B
1

2π
|E|.

Widzimy wi¦c, »e w (4.40) musi zachodzi¢ równo±¢, a wi¦c |E| = 0, a wi¦c
F (ξ) ≤ B prawie wsz¦dzie. Podobnie pokazujemy, »e F (ξ) ≥ A. W drug¡
stron¦ jest pro±ciej. Zaªó»my (4.36), i maj¡c (4.39) otrzymujemy

∥∥∥∥∥
∞∑

k=−∞
αkf( · − k)

∥∥∥∥∥

2

=
1

2π

∫ π

−π

|α̂(ξ)|2F (ξ) dξ

≤ B

2π

∫ π

−π

|α̂(ξ)|2 dξ

= B

∞∑

k=−∞
|αk|2.

Podobnie z drug¡ nierówno±ci¡. Pozostaje pokaza¢ (4.39). Niech {αk} b¦dzie
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ci¡giem sko«czonym.
∥∥∥∥∥

∞∑

k=−∞
αkf( · − k)

∥∥∥∥∥

2

=

∫ ∞

−∞

∞∑

k,n=−∞
αkαnf(x− k)f(x− n) dx

=
∞∑

k,n=−∞
αkαn

∫ ∞

−∞
f(x− k)f(x− n) dx

=
∞∑

k,n=−∞
αkαn

1

2π

∫ ∞

−∞
f̂(ξ) e−i kξf̂(ξ) ei nξ dξ

=
∞∑

k,n=−∞
αkαn

1

2π

∫ ∞

−∞
|f̂(ξ)|2 e−i (k−n)ξ dξ

=
∞∑

k,n=−∞
αkαn

1

2π

∞∑

l=−∞

∫ π(2l+1)

π(2l−1)

|f̂(ξ)|2 e−i (k−n)ξ dξ

=
∞∑

k,n=−∞
αkαn

1

2π

∫ π

−π

F (ξ) e−i (k−n)ξ dξ

=
∞∑

k,n=−∞
αkαn F̂ (k − n)

= 〈α, α ∗ F̂ 〉

=
1

2π

∫ π

−π

α̂(ξ)
̂(
α ∗ F̂

)
(ξ) dξ

=
1

2π

∫ π

−π

α̂(ξ) α̂(ξ)
̂̂
F (ξ) dξ

=
1

2π

∫ π

−π

|α̂(ξ)|2 ̂̂
F (ξ) dξ

Zabawny symbol w ostatniej caªce to F (ξ):

̂̂
F (ξ) =

∞∑

k=−∞
F̂ (k) e−i kξ

=
∞∑

k=−∞
F̂ (k) ei kξ

= F (ξ),

a wi¦c udowodnili±my (4.39). Jest jeszcze drobny szczegóª techniczny. Poka-
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zuj¡c równo±¢
∞∑

k,n=−∞
αkαn F̂ (k − n) =

1

2π

∫ π

−π

|α̂(ξ)|2 F (ξ) dξ (4.41)

korzystali±my z twierdzenia Plancherela, w ten sposób po cichu zakªadaj¡c,
»e F (ξ) ∈ L2(T). W rzeczywisto±ci wiemy tylko, »e F (ξ) jest caªkowalna.
Mo»emy sobie z tym poradzi¢ w standardowy sposób. Niech, dla N ∈ N
funkcja FN(ξ) b¦dzie obci¦ciem F (ξ) do poziomu N :

FN(ξ) = min{F (ξ), N}.
FN(ξ) jako funkcja ograniczona jest w L2(T). Mamy wi¦c (4.41) z FN w
miejsce F :

∞∑

k,n=−∞
αkαn F̂N(k − n) =

1

2π

∫ π

−π

|α̂(ξ)|2 FN(ξ) dξ (4.42)

Nast¦pnie przechodzimy do granicy, gdy N → ∞. Na mocy twierdzenia o
zbie»no±ci ograniczonej prawa strona (4.42) d¡»y do prawej strony (4.41). Z
drugiej strony wida¢, »e

F̂N(k)
N→∞−−−→ F̂ (k),

(znowu twierdzenie o zbie»no±ci ograniczonej), a sumy po lewych stronach
s¡ sko«czone, wi¦c z (4.42) wynika (4.41).

Mo»emy teraz sformuªowa¢ wniosek dotycz¡cy analiz wielorozdzielczych
Riesza.

Wniosek 4.9. Je»eli {Vj}∞j=−∞ i ϕ tworz¡ MRA Riesza, to istnieje ϕ̃ ∈ V0

taka, »e {Vj}∞j=−∞ i ϕ̃ tworz¡ o.n. MRA.

Dowód. Wiemy, »e funkcja

F (ξ) =
∞∑

k=−∞
|ϕ̂(ξ + 2kπ)|2

jest ograniczona od góry i odci¦ta od 0 od doªu. W takim razie funkcja
F (ξ)−1/2 jest ograniczona, a wi¦c w L2(T), a wi¦c istniej¡ wspóªczynniki
{αn} ∈ `2 takie, »e

1√
F (ξ)

=
∞∑

n=−∞
αn e−i nξ.
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Niech

ˆ̃ϕ(ξ) =
ϕ̂(ξ)√
F (ξ)

=
∞∑

n=−∞
αn e−i nξ ϕ̂(ξ),

czyli, jak wiemy,

ϕ̃(x) =
∞∑

n=−∞
αnϕ(x− n).

Wynika z tego, »e ϕ̃ ∈ V0, a w zwi¡zku z tym wszystkie caªkowite przesuni¦cia
ϕ̃ te» nale»¡ do V0. Tworz¡ one ukªad o.n. w V0:

∞∑

k=−∞
| ˆ̃ϕ(ξ + 2kπ)|2 =

∞∑

k=−∞

|ϕ̂(ξ + 2kπ)|2
F (ξ + 2kπ)

=
1

F (ξ)

∞∑

k=−∞
|ϕ̂(ξ + 2kπ)|2

= 1.

Korzystaj¡c z tego, »e F (ξ)1/2 ∈ L2(T) widzimy, »e istniej¡ równie» wspóª-
czynniki {βn} ∈ `2, takie, »e

ϕ(x) =
∞∑

n=−∞
βnϕ̃(x− n),

a wi¦c domkni¦te rozpi¦cia liniowe przesuni¦¢ caªkowitych ϕ̃ i ϕ s¡ takie
same, równe V0.

Skoro analiza Riesza jest tak»e analiz¡ o.n., wi¦c równie» generuje baz¦
falkow¡. W szczególno±ci dla dowolnego N ∈ N istnieje falka ψ b¦d¡ca
splinem rz¦du N .

Analizy splinowe
Wró¢my na chwil¦ do analiz splinowych. W rozdziale o przestrzeni Hilberta
pokazali±my, »e przesuni¦cia caªkowite funkcji Haara ϕ = ∆0 = χ[0,1] stano-
wi¡ ukªad o.n., a przesuni¦cia ∆1 = ϕ ∗ ϕ stanowi¡ ukªad Riesza ze staªymi
A = 1/3 i B = 1. Korzystaj¡c z Twierdzenia 4.8 poka»emy teraz ogóln¡ me-
tod¦, przy pomocy której mo»na pokaza¢, »e przesuni¦cia dowolnego splinu

83



∆N stanowi¡ ukªad Riesza. Niech

FN(ξ) =
∞∑

k=−∞
|∆̂N(ξ + 2kπ)|2.

Wiemy, ze
∣∣∣∆̂0(ξ)

∣∣∣ = |ϕ̂(ξ)| =
∣∣∣∣
sin(ξ/2)

ξ/2

∣∣∣∣ ,

F0(ξ) =
∞∑

k=−∞
|ϕ̂(ξ + 2kπ)|2 = 4 sin2(ξ/2)

∞∑

k=−∞

1

(ξ + 2kπ)2
= 1, (4.43)

FN(ξ) =
∞∑

k=−∞
|ϕ̂(ξ + 2kπ)|2(N+1) = 22(N+1) sin2(N+1)(ξ/2)

∞∑

k=−∞

1

(ξ + 2kπ)2(N+1)
.

Oszacujemy warto±ci FN(ξ) obliczaj¡c sum¦ w ostatnim wierszu. Z (4.43)
wynika

∞∑

k=−∞

1

(ξ + 2kπ)2
=

1

4 sin2(ξ/2)
=

1

2 (1− cos(ξ))
. (4.44)

Zauwa»my, ze powy»sz¡ sum¦ mo»na ró»niczkowa¢ wyraz za wyrazem. Wy-
nika to z tego, »e szereg, a tak»e szereg pochodnych jest zbie»ny jednostajnie
na ka»dym domkni¦tym podprzedziale otwartego przedziaªu (0, 2π) (w ta-
kiej sytuacji mówimy, »e szereg jest zbie»ny niemal jednostajnie na (0, 2π)).
Ró»niczkuj¡c (4.45) 4 krotnie otrzymujemy

6
∞∑

k=−∞

1

(ξ + 2kπ)4
=

2 + cos(ξ)

2(1− cos(ξ))2
,

120
∞∑

k=−∞

1

(ξ + 2kπ)6
=

1 + 2 cos(ξ)

2(1− cos(ξ))2
+

15− 12 cos2(ξ)− 3 cos3(ξ)

2(1− cos(ξ))4
.

Otrzymujemy wi¦c

F1(ξ) = 16 sin4(ξ/2)
∞∑

k=−∞

1

(ξ + 2kπ)4
=

2 + cos(ξ)

3
,

F2(ξ) = 64 sin6(ξ/2)
∞∑

k=−∞

1

(ξ + 2kπ)6
=

16 + 16 cos(ξ) + cos2(ξ)

30
.

Pierwsz¡ funkcj¦ ªatwo jest oszacowa¢ dokªadnie od góry i od doªu
1

3
≤ F1(ξ) ≤ 1,
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i otrzymujemy te same staªe A i B, które otrzymali±my wcze±niej, bezpo±red-
nio badaj¡c przesuni¦cia ∆1. Dla F2(ξ) obliczymy pochodn¡, i znajdziemy
maksima i minima. �atwo mo»na sprawdzi¢, »e F2(ξ) osi¡ga swoj¡ warto±¢
maksymaln¡ w punktach 2nπ a minimaln¡ w punktach (2n + 1)π. Wynika
st¡d, »e

1

30
≤ F (ξ) ≤ 11

10
.

W ten sposób udowodnili±my, »e przesuni¦cia splinu podstawowego ∆2(x)
stanowi¡ ukªad Riesza, ze staªymi 1/30 i 11/10. Ró»niczkuj¡c (4.45) mo»na
uzyska¢ staªe Riesza ogólnie, dla dowolnego ∆N(x).

Konstrukcja falek Daubechies
Falki Daubechies to falki o ograniczonym no±niku i, w zale»no±ci od wersji,
ró»nej gªadko±ci. Powstaj¡ one z analizy wielorozdzielczej, której funkcja
skaluj¡ca ma te same wªasno±ci co falka, czyli ograniczony no±nik i gªad-
ko±¢. Filtr dolnoprzepustowy takiej analizy wielorozdzielczej musi wi¦c by¢
wielomianem trygonometrycznym, czyli jego ci¡g wspóªczynników musi by¢
sko«czony. Konstrukcja takiej analizy wielorozdzielczej rozpoczyna si¦ wi¦c
od znalezienia odpowiedniego �ltru. Pierwszym krokiem b¦dzie twierdze-
nie, mówi¡ce, »e je»eli funkcja m0 speªnia okre±lone warunki, to jest �ltrem
dolnoprzepustowym pewnej analizy. Dowód twierdzenia jest dªugi, ale intu-
icyjnie jasny i dosy¢ interesuj¡cy. Idea jest nast¦puj¡ca. Maj¡c funkcj¦ m0

konstruujemy funkcj¦ skaluj¡c¡ wzorem

ϕ̂(ξ) = m0(2
−1ξ)ϕ̂(2−1ξ) = m0(2

−1ξ)m0(2
−2ξ)ϕ̂(2−2ξ) = · · · =

∞∏
j=1

m0(2
−jξ).

Pytania s¡ wi¦c dwa: co trzeba zaªo»y¢ o ϕ, »eby byªa to funkcja skaluj¡ca
pewnej analizy, i co trzeba zaªo»y¢ o m0, »eby powy»szy iloczyn niesko«-
czony dawaª odpowiednie ϕ. To zostanie rozstrzygni¦te w Twierdzeniu 6.
Nast¦pnie, kiedy ju» b¦dzie wiadomo jakie warunki ma speªnia¢ m0, skon-
struujemy j¡. Teraz odpowiemy na pierwsze pytanie. Potrzebny nam b¦dzie
nast¦puj¡cy fakt.
Fakt 4.10. Niech

· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · ·
b¦dzie rosn¡cym ci¡giem podprzestrzeni domkni¦tych L2(R), i niech b¦d¡
speªnione warunki (c) i (d) de�nicji analizy wielorozdzielczej. Wtedy wa-
runek (b) jest speªniony automatycznie, a warunek (a) jest równowa»ny na-
st¦puj¡cemu

lim
j→∞

|ϕ̂(2−jξ)| = 1,
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dla prawie ka»dego ξ ∈ R.

Dowód. Niech f ∈ Vj. Z warunku (c) de�nicji analizy wynika, »e

fj(x) = 2j/2f(2j x) ∈ V0.

Je»eli f ∈ ⋂
Vj to fj ∈ V0 dla ka»dego j ∈ Z. Zamieniaj¡c zmienne widzimy,

»e dla ka»dego j ∈ Z
‖fj‖ = ‖f‖.

Korzystaj¡c z Twierdzenia 4.3 (i) mamy, »e istniej¡ mj ∈ L2(T) takie, »e

f̂j(ξ) = mj(ξ)ϕ̂(ξ), mj ∈ L2(T), ‖mj‖ = ‖fj‖ = ‖f‖,
czyli

f̂(ξ) = 2j/2f̂j(2
jξ) = 2j/2mj(2

jξ)ϕ̂(2jξ).

Zauwa»my, »e w takim razie, z nierówno±ci Schwarza
∫ 4π

2π

|f̂(ξ)| dξ = 2j/2

∫ 4π

2π

|mj(2
jξ)||ϕ̂(2jξ)| dξ

≤ 2j/2

(∫ 4π

2π

|mj(2
ξ)|2 dξ

)1/2 (∫ 4π

2π

|ϕ̂(2jξ)|2 dξ

)1/2

.

Zamieniamy zmienne w obu caªkach. mj jest 2π-okresowa, a przedziaª [2j+1π, 2j+2π]
skªada si¦ z 2j okresów, wi¦c

∫ 4π

2π

|mj(2
jξ)|2 dξ = 2−j

∫ 2j+2π

2j+1π

|mj(ξ)|2 dξ

=

∫ π

−π

|mj(ξ)|2 dξ

= 2π‖mj‖2

= 2π‖f‖2.

∫ 4π

2π

|ϕ̂(2jξ)|2 dξ = 2−j

∫ 2j+2π

2j+1π

|ϕ̂(ξ)|2 dξ

≤ 2−j

∫ ∞

2j+1π

|ϕ̂(ξ)|2 dξ.

Wstawiaj¡c powy»sze do naszych rachunków
∫ 4π

2π

|f̂(ξ)| dξ ≤
√

2π‖f‖
(∫ ∞

2j+1π

|ϕ̂(ξ)|2 dξ

)1/2

.
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Caªka po prawej stronie jest �ogonem� sko«czonej caªki, wi¦c prawa strona
→ 0 gdy j →∞, a wi¦c

∫ 4π

2π

|f̂(ξ)| dξ = 0 ⇒ f̂(ξ) ≡ 0 na [2π, 4π].

W podobny sposób pokazujemy, »e f̂(ξ) ≡ 0 dla ξ ∈ [−4π,−2π]. Nast¦pnie
mo»emy przeprowadzi¢ ten sam argument dla funkcji f(2kx), która te» nale»y
do

⋂
Vj. Otrzymujemy

f̂(ξ) ≡ 0 dla |ξ| ∈ 2−k[2π, 4π] dla ka»dego k ∈ Z,

czyli f̂ ≡ 0. Pokazali±my wi¦c, »e speªniony jest warunek (b) de�nicji MRA.
Teraz zajmiemy si¦ warunkiem (a). Przypomnijmy, »e niezale»nie od (a)

(nie korzystaj¡c z niego) mo»emy pokaza¢ istnienie �ltru dolnoprzepustowego
m0 takiego, »e

ϕ̂(2ξ) = m0(ξ)ϕ̂(ξ), (4.45)
∞∑

k=−∞
|ϕ̂(ξ + 2kπ)|2 = 1, (4.46)

|m0(ξ)|2 + |m0(ξ + π)|2 = 1. (4.47)
Z (4.47) wynika, »e |m0(ξ)| ≤ 0 co, bior¡c pod uwag¦ (4.45) daje nam, »e
ci¡g |ϕ̂(2−jξ)| jest niemalej¡cy

|ϕ̂(2−jξ)| = |m0(2
−(j+1)ξ)| · |ϕ̂(2−(j+1)ξ)| ≤ |ϕ̂(2−(j+1)ξ)|.

Z (4.46) wynika, ze jest to ci¡g ograniczony od góry przez 1, wi¦c dla ka»dego
ξ ∈ R mamy granic¦

g(ξ) = lim
j→∞

|ϕ̂(2−jξ)| i 0 ≤ g(ξ) ≤ 1.

Wykorzystamy fakt, ze w ka»dej podprzestrzeni Vj mamy baz¦ o.n. skªada-
j¡c¡ si¦ z funkcji

ϕj,k(x) = 2j/2ϕ(2jx− k); k ∈ Z.

Rzut ortogonalny na Vj mo»na wi¦c zapisa¢ wzorem

(Pjf)(x) =
∞∑

k=−∞
〈f, ϕj,k〉ϕj,k(x) w L2(R),

oraz
‖Pjf‖2 =

∞∑

k=−∞
|〈f, ϕj,k〉|2.

Dowód nast¦puj¡cego faktu zostawiamy jako ¢wiczenie.
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Fakt 4.11. Mamy nast¦puj¡c¡ równowa»no±¢:

∞⋃
j=−∞

Vj = L2(R) ⇔ ‖Pjf‖ j→∞−−−→ ‖f‖, ∀ f ∈ L2(R).

Warunek po prawej mo»na nieco osªabi¢, zachowuj¡c równowa»no±¢. Wy-
starczy »eby zbie»no±¢ zachodziªa dla f z jakiego± g¦stego podzbioru.

Niech g¦stym podzbiorem L2(R) b¦dzie zbiór funkcji f o ograniczonym
spektrum, czyli takich, których transformata Fouriera ma ograniczony no-
±nik. Niech f b¦dzie tak¡ funkcj¡.

〈f, ϕj,k〉 =
1

2π
〈f̂ , ϕ̂j,k〉

=
1

2π

∫ ∞

−∞
f̂(ξ) 2−j/2 ϕ̂(2−jξ) ei 2−jξk dξ

=
2j/2

2π

∫ ∞

−∞
f̂(2jξ) ϕ̂(ξ) ei ξk dξ.

Niech j b¦dzie dostatecznie du»e, tak, aby f̂(2jξ) ≡ 0 dla ξ /∈ [−π, π]. Wtedy

=
2j/2

2π

∫ π

−π

f̂(2jξ) ϕ̂(ξ) ei ξk dξ.

Tak wi¦c 〈f, ϕj,k〉 jest wspóªczynnikiem Fouriera funkcji z L2(T):

〈f, ϕj,k〉 = F̂ (−k), dla F (ξ) = f̂(2jξ) ϕ̂(ξ).

Skorzystamy z równo±ci Plancherela w L2(T)

‖Pjf‖2 =
∞∑

k=−∞
|〈f, ϕj,k〉|2

=
1

2π

∫ π

−π

∣∣∣2j/2 f̂(2jξ) ϕ̂(ξ)
∣∣∣
2

dξ

=
2j

2π

∫ π

−π

|f̂(2jξ)|2|ϕ̂(ξ)|2 dξ

=
1

2π

∫ 2jπ

−2jπ

|f̂(ξ)|2|ϕ̂(2−jξ)|2 dξ

j→∞−−−→ 1

2π

∫ ∞

−∞
|f̂(ξ)|2 g(ξ)2 dξ,
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gdzie w ostatniej linijce skorzystali±my z twierdzenia o zbie»no±ci ograniczo-
nej. Widzimy wi¦c, »e

‖Pj‖2 j→∞−−−→ ‖f‖2 =
1

2π

∫ ∞

−∞
|f̂(ξ)|2 dξ

dokªadnie wtedy, gdy∫ ∞

−∞
|f̂(ξ)|2 g(ξ)2 dξ =

∫ ∞

−∞
|f̂(ξ)|2 dξ.

Poniewa» 0 ≤ g(ξ) ≤ 1 to powy»sza równo±¢ zachodzi dla ka»dej funkcji f̂ o
no±niku ograniczonym wtedy i tylko wtedy gdy g(ξ) = 1 prawie wsz¦dzie.

Skorzystamy teraz z udowodnionego wªa±nie faktu. Widzimy, »e funk-
cja ϕ ∈ L2(R) jest funkcj¡ skaluj¡c¡ pewnej analizy wielorozdzielczej je»eli
speªnia nast¦puj¡ce warunki

∞∑

k=−∞
|ϕ̂(ξ + 2kπ)|2 = 1, (4.48)

istnieje m0 ∈ L2(T) taka, »e ϕ̂(2ξ) = m0(ξ)ϕ̂(ξ). (4.49)
lim
j→∞

|ϕ̂(2−jξ)| = 1 dla prawie ka»dego ξ ∈ R. (4.50)

Warunek (4.48) mówi, »e przesuni¦cia caªkowite ϕ stanowi¡ ukªad o.n., a
wi¦c je»eli V0 zde�niujemy jako domkni¦te rozpi¦cie liniowe tych przesuni¦¢,
to stanowi¢ one b¦d¡ baz¦ o.n. V0. Warunek (4.49) z kolei mówi, »e je-
»eli zde�niujemy Vj jako odpowiednie przeskalowanie V0, to Vj ⊂ Vj+1. W
ko«cu, jak wynika z faktu powy»ej warunek (4.50) gwarantuje (a) w de�nicji
MRA. Teraz odpowiemy na drugie pytanie, czyli sformuªujemy warunki na
m0, dzi¦ki którym funkcja ϕ zde�niowana przy pomocy iloczynu niesko«czo-
nego (po stronie transformaty Fouriera), b¦dzie speªniaªa (37)�(39).
Twierdzenie 4.12. Niech funkcja m0(ξ) ∈ L2(T) speªnia nast¦puj¡ce wa-
runki
(i) |m0(ξ)|2 + |m0(ξ + π)|2 = 1,
(ii) m0 jest ró»niczkowalna w 0 i m0(0) = 1,
(iii) m0 ma warto±ci rzeczywiste na [−π/2, π/2], oraz

inf
ξ∈[−π/2,π/2]

m0(ξ) = K > 0.

Wtedy m0 jest �ltrem dolnoprzepustowym pewnej analizy wielorozdzielczej.
Dodatkowo, je»eli m0 jest wielomianem trygonometrycznym (to znaczy ci¡g
wspóªczynników Fouriera {m̂0(k)} jest sko«czony), to funkcja skaluj¡ca i
falka tej analizy maj¡ no±nik ograniczony (poza pewnym sko«czonym prze-
dziaªem s¡ równe 0).
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Dowód. Zauwa»my, »e iloczyn niesko«czony
∞∏

j=1

m0(2
−jξ)

jest zbie»ny dla ka»dego ξ ∈ R. Poniewa» 2−jξ → 0 dla j → ∞, wi¦c
wystarczy pokaza¢ zbie»no±¢ iloczynu dla ξ dostatecznie maªych. Niech wi¦c
ξ ∈ [−π/2, π/2]. Wtedy, zgodnie z (iii) wszystkie czynniki s¡ dodatnie. Z (i)
wynika, »e |m0(ξ)| ≤ 1, a wi¦c

0 < m0(2
−jξ) ≤ 1 j = 1, 2, . . . , ξ ∈ [−π, π].

Iloczyny cz¦±ciowe
N∏

j=1

m0(2
−jξ) (4.51)

tworz¡ wi¦c ci¡g nierosn¡cy, ograniczony od doªu przez 0, a wi¦c zbie»ny.
Granic¦ iloczynu oznaczamy przez ϕ̂(ξ). Poka»emy, »e istotnie ta granica jest
elementem L2(R), a wi¦c transformat¡ Fouriera czego±, ale obecnie niech to
b¦dzie tylko oznaczenie jakiej± funkcji. Mamy wi¦c

ϕ̂(ξ) =
∞∏

j=1

m0(2
−jξ). (4.52)

Zauwa»my, »e ϕ̂ speªnia (4.49):

ϕ̂(2ξ) =
∞∏

j=1

m0(2
−j+1ξ)

=
∞∏

j=0

m0(2
−jξ)

= m0(ξ)
∞∏

j=1

m0(2
−jξ)

= m0(ξ)ϕ̂(ξ).

Poka»emy teraz, »e ϕ̂ speªnia (4.50). Z (i) wynika, »e 0 ≤ |m0(ξ)| ≤ 1, a wi¦c
tak»e 0 ≤ |ϕ̂(ξ)| ≤ 1. Zamienimy iloczyn na sum¦ korzystaj¡c z logarytmu.
Zauwa»my, »e log m0(ξ) jest okre±lona na [−π/2, π/2], i jej pochodna w 0
jest 0:

d

dξ
log m0(ξ)

∣∣∣∣
ξ=0

=
1

m0(0)
m′

0(0) = 0,
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gdy» m′
0(0) = 0. Wynika to z faktu, »e m0 jest ró»niczkowalna w 0 i ma tam

lokalne maksimum. Tak wi¦c dla ka»dego ε > 0 istnieje δ > 0 taka, »e

log m0(ξ) > −ε|ξ| dla |ξ| < δ.

Niech wi¦c |ξ| < 2δ i |ξ| < π, wtedy ϕ̂(ξ) > 0 oraz

log ϕ̂(ξ) =
∞∑

j=1

log m0(2
−jξ)

>

∞∑
j=1

−ε 2−j |ξ|

> −επ

∞∑
j=1

2−j

= −επ,

czyli

|ϕ̂(ξ)| > e−επ dla |ξ| < δ, |ξ| < π.

Funkcja |ϕ̂(ξ)| jest wi¦c ci¡gªa w 0 i ma tam warto±¢ 1, a wi¦c speªnione
jest (4.50). Musimy jeszcze pokaza¢, »e ϕ̂ ∈ L2(R) oraz (4.48). W tym celu
wprowad¹my nast¦puj¡ce funkcje

ϕ̂N(ξ) = χ[−2Nπ,2Nπ](ξ)
N∏

j=1

m0(2
−jξ). (4.53)

Zauwa»my, »e dla ka»dego ξ ∈ L2(R) mamy

ϕ̂(ξ) = lim
N→∞

ϕ̂N(ξ).

Przypomnijmy, »e iloczyny cz¦±ciowe (4.51) nie s¡ elementami L2(R) (cho-
cia»by dlatego, »e s¡ okresowe). Chcemy pokaza¢, »e ϕ̂ ∈ L2(R), wi¦c utwo-
rzyli±my ci¡g (4.53), który nale»y do L2(R) i jest zbie»ny do ϕ̂ w ka»dym
punkcie. Poka»emy teraz, »e wszystkie ϕ̂N maj¡ t¡ sam¡ norm¦, równ¡

√
2π.
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Niech N ≥ 2

‖ϕ̂N‖2 =

∫ ∞

−∞
|ϕ̂N(ξ)|2 dξ

=

∫ 2Nπ

−2Nπ

N∏
j=1

|m0(2
−jξ)|2 dξ

=

∫ 0

−2Nπ

N∏
j=1

|m0(2
−jξ)|2 dξ +

∫ 2Nπ

0

N∏
j=1

|m0(2
−jξ)|2 dξ

=

∫ 2Nπ

0

(
N∏

j=1

|m0(2
−j(ξ − 2Nπ))|2 +

N∏
j=1

|m0(2
−jξ)|2

)
dξ

=

∫ 2Nπ

0

(
N∏

j=1

|m0(2
−jξ − 2N−jπ)|2 +

N∏
j=1

|m0(2
−jξ)|2

)
dξ.

m0 jest 2π-okresowa, wi¦c wszystkie czynniki w obu iloczynach z wyj¡tkiem
N -tego s¡ równe. Mo»emy je wi¦c wyci¡gn¡¢ przed nawias, i mamy

=

∫ 2Nπ

0

(|m0(2
−Nξ − π)|2 + |m0(2

−Nξ)|2)
N−1∏
j=1

|m0(2
−jξ)|2 dξ

=

∫ 2Nπ

0

N−1∏
j=1

|m0(2
−jξ)|2 dξ.

Funkcja podcaªkowa jest okresowa o okresie 2Nπ, wi¦c caªk¦ po okresie mo-
»emy �przesun¡¢�:

= int2
N−1π
−2N−1π

N−1∏
j=1

|m0(2
−jξ)|2 dξ

=

∫ ∞

−∞
|ϕ̂N−1(ξ)|2 dξ

= ‖ϕ̂N−1‖2.

Widzimy wi¦c, »e normy wszystkich funkcji ϕ̂N s¡ równe, N = 1, 2, . . . .
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Policzymy norm¦ ϕ̂1

‖ϕ̂1‖2 =

∫ 2π

−2π

|m0(2
−1ξ)|2 dξ

=

∫ 0

−2π

|m0(2
−1ξ)|2 dξ +

∫ 2π

0

|m0(2
−1ξ)|2 dξ

=

∫ 2π

0

(|m0(2
−1(ξ − 2π))|2 + |m0(2

−1ξ)|2) dξ

=

∫ 2π

0

1 dξ

= 2π.

Wiemy, »e
ϕ̂(ξ) = lim

N→∞
ϕ̂N(ξ), oraz ‖ϕ̂N‖2 = 1.

Skorzystamy teraz z drugiego podstawowego narz¦dzia teorii caªki Lebes-
gue'a, czyli z lematu Fatou.

∫ ∞

−∞
|ϕ̂(ξ)|2dξ =

∫ ∞

−∞
lim

N→∞
|ϕ̂N(ξ)|2dξ ≤ lim

N→∞

∫ ∞

−∞
|ϕ̂N(ξ)|2dξ = 2π.

Widzimy wi¦c, »e ϕ̂ ∈ L2(R), a wi¦c istotnie, zgodnie z jej oznaczeniem, jest
transformat¡ Fouriera elementu ϕ ∈ L2(R). Poka»emy teraz, »e

ϕ̂(ξ) = lim
N→∞

ϕ̂N(ξ)

nie tylko w ka»dym punkcie, ale tak»e w L2(R). W tym celu poka»emy, »e
istnieje staªa c taka, »e

|ϕ̂N(ξ)| ≤ c|ϕ̂(ξ)|. (4.54)
Je»eli ξ /∈ [−2Nπ, 2Nπ] to ϕ̂N(ξ) = 0, i (4.54) jest speªnione. Dla ξ ∈
[−2Nπ, 2Nπ] mamy

ϕ̂(ξ) =
∞∏

j=1

m0(2
−jξ)

=
N∏

j=1

m0(2
−jξ)

∞∏
j=N+1

m0(2
−jξ)

= ϕ̂N(ξ)
∞∏

j=1

m0(2
−j(2−Nξ))

= ϕ̂N(ξ) ϕ̂(2−Nξ),
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a wi¦c
|ϕ̂N(ξ)| = |ϕ̂(ξ)|

|ϕ̂(2−Nξ)| .

Poniewa» dla ξ ∈ [−2Nπ, 2Nπ] mamy 2−Nξ ∈ [−π, π], wi¦c wystarczy poka-
za¢, »e

|ϕ̂(ξ)| > 1

c
dla ξ ∈ [−π, π].

Niech wi¦c ξ ∈ [−π, π]. Wcze±niej pokazali±my, »e dla ka»dego ε > 0 istnieje
δ > 0, taka, »e

ϕ̂(η) > e−επ dla |η| < δ, |η| < π.

Wybierzmy, na przykªad, ε = 1, i niech δ ≤ π b¦dzie zgodna z powy»szym.
Niech L ∈ N b¦dzie wystarczaj¡co du»e, tak aby |2−Lξ| < δ. Wtedy dla
j = 1, 2, . . . , L− 1 mamy 2−jξ ∈ [−π/2, π/2], oraz

|ϕ̂(ξ)| =
∞∏

j=1

|m0(2
−jξ)|

=
L−1∏
j=1

|m0(2
−jξ)| · |ϕ̂(2−Lξ)|

≥
L−1∏
j=1

K · e−π

= KL−1 e−π.

Niech wi¦c c = eπ/KL−1. Maj¡c (4.54) poka»emy ϕN → ϕ w L2(R).

lim
N→∞

‖ϕN − ϕ‖2 = lim
N→∞

1

2π

∫ ∞

−∞
|ϕ̂N(ξ)− ϕ̂(ξ)|2 dξ = 0,

na mocy twierdzenia o zbie»no±ci ograniczonej, gdy»

|ϕ̂N(ξ)− ϕ̂(ξ)|2 ≤ (|ϕ̂N(ξ)|+ |ϕ̂(ξ)|)2 ≤ |ϕ̂(ξ)|2(c + 1)2,

a funkcja |ϕ̂(ξ)|2 jest caªkowalna. Poka»emy teraz, »e funkcje ϕN speªniaj¡
(4.48). W tym celu wykonamy rachunek podobny do tego, w którym poka-
zali±my, »e wszystkie ϕN maj¡ t¡ sam¡ norm¦ 1. Niech

FN(ξ) =
∞∑

k=−∞
|ϕ̂N(ξ + 2kπ)|2.
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Najpierw poka»emy, »e F̂N(m) = F̂1(m), m ∈ Z niezale»nie od N . Niech
N ≥ 2

F̂N(m) =
1

2π

∫ π

−π

FN(ξ) e−i mξ dξ

=
1

2π

∫ π

−π

∞∑

k=−∞
|ϕ̂N(ξ + 2kπ)|2 e−i mξ dξ

=
1

2π

∫ ∞

−∞
|ϕ̂N(ξ)|2 e−i mξ dξ

=
1

2π

∫ 2Nπ

−2Nπ

N∏
j=1

|m0(2
−jξ)|2 e−i mξ dξ

=
1

2π

∫ 2Nπ

0

(
N∏

j=1

|m0(2
−j(ξ − 2Nπ))|2 +

N∏
j=1

|m0(2
−jξ)|2

)
e−i mξ dξ

=
1

2π

∫ 2Nπ

0

N−1∏
j=1

|m0(2
−jξ)|2 e−i mξ dξ

=
1

2π

∫ 2N−1π

−2N−1π

N−1∏
j=1

|m0(2
−jξ)|2 e−i mξ dξ

=
1

2π

∫ ∞

−∞
|ϕ̂N−1(ξ)|2 e−i mξ dξ

= F̂N−1(m).

Funkcje FN(ξ) maj¡ wiec identyczne wspóªczynniki Fouriera, a poniewa» s¡
caªkowalne na T, wi¦c musz¡ by¢ sobie równe. Obliczymy wspóªczynniki
Fouriera F1(ξ). Podobnie jak powy»ej

F̂1(m) =
1

2π

∫ 2π

−2π

|m0(2
−1ξ)|2e−i mξdξ

=
1

2π

∫ 2π

0

(|m0(2
−1(ξ − 2π))|2 + |m0(2

−1ξ)|2) e−i mξdξ

=
1

2π

∫ 2π

0

e−i mξdξ

=

{
1 : m = 0

0 : m 6= 0.

Dla ka»dego N mamy wi¦c
FN(ξ) ≡ 1,
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czyli dla ka»dego N

〈ϕN( · − k), ϕN( · − l)〉 =

{
1 : k = l

0 : k 6= l.

Korzystaj¡c ze zbie»no±ci ϕN → ϕ w L2(R), oraz ci¡gªo±ci iloczynu skalar-
nego otrzymujemy (4.48).

Do udowodnienia pozostaªo jeszcze stwierdzenie o ograniczonym no±niku
funkcji skaluj¡cej i falki, zwi¡zanych z analiz¡ wielorozdzielcz¡, w przypadku,
gdy m0 jest wielomianem trygonometrycznym

m0(ξ) =
L∑

n=−L

hn e−i nξ. (4.55)

Do udowodnienia tego ostatniego stwierdzenia najwygodniej jest skorzysta¢ z
j¦zyka teorii funkcji uogólnionych (dystrybucji). Dlatego tylko naszkicujemy
ide¦. Iloczyny cz¦±ciowe zbiegaj¡ do ϕ̂ w ka»dym punkcie ξ

N∏
j=1

m0(2
−jξ) → ϕ̂(ξ),

ale nie w L2(R), gdy» nie s¡ elementami L2(R). S¡ natomiast funkcjami
uogólnionymi i jako takie zbiegaj¡ do ϕ̂, która te» jest funkcja uogólnion¡.
Korzystaj¡c z (4.55) widzimy, »e iloczyny cz¦±ciowe maj¡ posta¢

N∏
j=1

(
L∑

n=−L

hne−i n2−jξ

)
=

L∑
n1,...,nN=−L

hn1 · · ·hnN
e−i (n12−1+···+nN2−N )ξ.

Widzimy wi¦c, »e taki iloczyn cz¦±ciowy jest kombinacj¡ liniow¡ transformat
Fouriera impulsów Diraca w punktach n12

−1+· · ·+nN2−N . Poniewa» wszyst-
kie wspóªczynniki |ni| ≤ L, wi¦c wszystkie impulsy Diraca zlokalizowane s¡ w
przedziale [−L,L]. Wida¢ wi¦c, przynajmniej intuicyjnie, »e funkcja ϕ, która
jako funkcja uogólniona jest granic¡ funkcji uogólnionych o no±nikach zawar-
tych w [−L,L] te» ma t¡ wªasno±¢. Z kolei falka jest sko«czon¡ kombinacj¡
liniow¡ (gdy» �ltr m1 te» jest wielomianem trygonometrycznym) przesuni¦¢
ϕ, a wi¦c te» ma no±nik ograniczony.

Uwaga 4.13. Oszacowanie rozmiaru no±nika ϕ(x) mo»na zrobi¢ dokªadniej.
Je»eli

m0(ξ) =
N∑

n=M

hn e−i nξ, M < N, M,N ∈ Z, (4.56)
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to no±nik ϕ(x) zawiera si¦ w przedziale [M,N ]. Podobnie mo»emy oszacowa¢
no±nik falki ψ(x) zwi¡zanej konstruowan¡ analiz¡ wielorozdzielcz¡. Je»eli
�ltr dolnoprzepustowy jest postaci (4.56), to �ltr górnoprzepustowy jest wie-
lomianem trygonometrycznym postaci

m1(ξ) =
1−M∑

n=1−N

gn e−i nξ oraz ψ̂(ξ) = m1(2
−1ξ)

∞∏
j=2

m0(2
−jξ).

Przeprowadzaj¡c takie samo rozumowanie jak dla no±nika ϕ(x) otrzymujemy,
»e no±nik ψ(x) jest zawarty w przedziale [1/2−(N−M)/2, 1/2+(N−M)/2].

Konstrukcja falek o no±niku ograniczonym sprowadzili±my wi¦c do pro-
blemu znalezienia wielomianu trygonometrycznego m0 speªniaj¡cego zaªo»e-
nia Twierdzenia 4.12. Konstrukcja takiego wielomianu podzielimy na 2 kroki.
W pierwszym znajdziemy wielomian trygonometryczny g(ξ) speªniaj¡cy

g(0) = 1, g(ξ) ≥ 0, oraz g(ξ) > 0 na [−π/2, π/2], (4.57)
g(ξ) + g(ξ + π) = 1. (4.58)

W drugim kroku �wyci¡gniemy pierwiastek� z g, czyli znajdziemy wielomian
taki, ze

|m0(ξ)|2 = g(ξ).

Filtry Daubechies
Filtry Daubechies mog¡ mie¢ dowolne, parzyste dªugo±ci. Ustalmy pewne
k = 0, 1, 2, . . . . Niech

ck =

∫ π

0

sin(t)2k+1 dt,

oraz

gk(ξ) = 1− 1

ck

∫ ξ

0

sin(t)2k+1 dt.

Poka»emy, »e gk s¡ wielomianami trygonometrycznymi speªniaj¡cymi (4.57)
i (4.58). Przede wszystkim sin(t) jest wielomianem trygonometrycznym

sin(t) =
ei t − e−i t

2 i
,
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po podniesieniu do pot¦gi mamy

sin(t)2k+1 =
1

(2 i)2k+1

2k+1∑

l=0

(
2k + 1

l

)
ei lte−i (2k+1−l)t

=
1

(2 i)2k+1

2k+1∑

l=0

(
2k + 1

l

)
e−i (2k+1−2l)t

==
2k+1∑

l=−2k−1
l-nieparz.

αl e
i lt,

a wi¦c tak»e wielomian trygonometryczny. Wielomian ten nie ma wyrazu
wolnego, wi¦c po scaªkowaniu w dalszym ci¡gu jest wielomianem trygonome-
trycznym:

∫ ξ

0

sin(t)2k+1 dt =
2k+1∑

l=−2k−1
l-nieparz.

αl

∫ ξ

0

ei lt dt

=
2k+1∑

l=−2k−1
l-nieparz.

αl
(ei lξ − 1)

i l

=
2k+1∑

l=−2k−1

βl e
i lt.

Widzimy wi¦c, »e gk(ξ) jest wielomianem trygonometrycznym stopnia 2k+1.
Zakres warto±ci gk ustalimy wyznaczaj¡c ekstrema.

g′k(ξ) = − 1

ck

d

dξ

∫ ξ

0

sin(t)2k+1 dt = − 1

ck

sin(ξ)2k+1.

Funkcja gk ro±nie wi¦c na przedziaªach postaci [(2n − 1)π, 2nπ], a maleje
na przedziaªach postaci [2nπ, (2n + 1)π]. Ma wi¦c lokalne ±cisªe maksima
w punktach 2nπ i lokalne, scisªe minima w punktach postaci (2n + 1)π.
Poniewa» jest 2π-okresowa, wi¦c wystarczy sprawdzi¢ warto±ci w punktach
0 i π.

gk(0) = 1, gk(π) = 1− 1

ck

ck = 0.

gk ma wi¦c maksimum 1 w punktach 2nπ i minimum 0 w punktach (2n+1)π.
W innych punktach 0 < gk(ξ) < 1, czyli gk speªnia (??). Udowodnimy
teraz (4.58), przy czym wystarczy ograniczy¢ si¦ do ξ > 0, ze wzgl¦du na
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okresowo±¢.

gk(ξ) + gk(ξ + π) = 1− 1

ck

∫ ξ

0

sin(t)2k+1 dt + 1− 1

ck

∫ ξ+π

0

sin(t)2k+1 dt

= 2− 1

ck

∫ ξ

0

sin(t)2k+1 dt− 1

ck

∫ ξ+π

0

sin(t)2k+1 dt.

(4.59)
Zauwa»my, »e

∫ ξ+π

0

sin(t)2k+1 dt =

∫ ξ

−π

sin(t + π)2k+1 dt = −
∫ ξ

−π

sin(t)2k+1 dt,

czyli, kontynuuj¡c (4.59) i korzystaj¡c z wªasno±ci caªki

= 2− 1

ck

∫ ξ

0

sin(t)2k+1 dt +
1

ck

∫ ξ

−π

sin(t)2k+1 dt

= 2 +
1

ck

∫ 0

−π

sin(t)2k+1 dt

= 2− 1

ck

∫ π

0

sin(t)2k+1 dt

= 2− 1 = 1.

Mamy wi¦c (4.58), czyli dla ka»dego k = 0, 1, 2, . . . skonstruowali±my odpo-
wiednie gk. Dla ka»dego k mo»emy ªatwo wyliczy¢ wspóªczynniki wielomianu
gk. Drugim krokiem w konstrukcji �ltrów Daubechies jest nast¦puj¡ce twier-
dzenie, które umo»liwia �wyci¡gni¦cie pierwiastka� z gk.
Twierdzenie 4.14. Niech g(ξ) b¦dzie wielomianem trygonometrycznym

g(ξ) =
M∑

n=−M

αn ei nξ, (4.60)

takim, »e g(ξ) ≥ 0. Wtedy istnieje wielomian trygonometryczny m0(ξ)

m0(ξ) =
M∑

n=0

βn e−i nξ

taki, »e |m0(ξ)|2 = g(ξ).
Dowód. Dowód sprowadza si¦ do tego, »e pierwiastki g mo»na pogrupowa¢ w
pary, a nast¦pnie te pary mo»na rozdzieli¢. Niech P (z) b¦dzie wielomianem
zespolonym danym wzorem

P (z) =
2M∑

k=0

αk−Mzk,
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czyli, dla z na okr¦gu jednostkowym, z = ei ξ mamy

P (ei ξ) = (ei ξ)M g(ξ).

P (z) speªnia nast¦puj¡ce równanie

z2MP

(
1

z

)
= z2M

2M∑

k=0

αk−Mz−k

= z2M

2M∑

k=0

αk−Mz−k

=
2M∑

k=0

αk−Mz2M−k

=
2M∑

k=0

αM−kz
k

=
2M∑

k=0

αk−Mzk

= P (z).

Po drodze skorzystali±my z tego, »e g ma warto±ci rzeczywiste, a wi¦c α−k =
αk. Wielomiany P (z) i P (1/z) maj¡ wi¦c te same pierwiastki (ró»ne od
zera), z tymi samymi krotno±ciami. Niech r1, . . . , rl b¦d¡ ró»nymi pierwiast-
kami P , le»¡cymi wewn¡trz okr¦gu jednostkowego (|ri| < 1, i = 1, . . . , l), o
krotno±ciach n1, . . . , nl. Wtedy 1/ri, i = 1, . . . , l s¡ ró»nymi pierwiastkami
P le»¡cymi poza okr¦giem jednostkowym, o krotno±ciach n1, . . . , nl.

r1, . . . , rl oraz 1/r1, . . . , 1/rl

s¡ wszystkimi pierwiastkami P ró»nymi od 0 i nie le»¡cymi dokªadnie na
okr¦gu jednostkowym. Niech s1, . . . , sp b¦d¡ ró»nymi pierwiastkami P le-
»¡cymi dokªadnie na okr¦gu jednostkowym, |sj| = 1, j = 1, . . . , p. Mo»na
uzasadni¢, »e krotno±ci pierwiastków sj s¡ liczbami parzystymi. W skrócie,
dodajemy ε > 0 do naszego wielomianu g(ξ) i staje si¦ on ±ci±le dodatni.
Odpowiadaj¡cy mu wielomian nie ma wi¦c zer na kole jednostkowym, tylko
poza nim, wyst¦puj¡ce w parach. Gdy ε → 0 pierwiastki, które przesun¡ si¦
na okr¡g jednostkowy zejd¡ si¦ na nim parami, jeden przesunie si¦ ze ±rodka,
drugi z zewn¡trz. Mo»na to u±ci±li¢. Krotno±ci pierwiastków na okr¦gu
jednostkowym oznaczmy wi¦c przez 2k1, . . . , 2kp. Wielomian P (z) nie ma
pierwiastka w 0. To jest równowa»ne warunkowi α−M 6= 0, czyli temu, »e
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M w (48) jest najmniejsze. Skoro P (z) nie ma innych pierwiastków oprócz
wypisanych powy»ej, wi¦c mo»emy rozªo»y¢ go na czynniki

P (z) = A

l∏
i=1

(z − ri)
ni(z − 1/ri)

ni

p∏
j=1

(z − sj)
2kj .

Zrobimy nast¦puj¡ce przeksztaªcenia

(z − sj) = −zsj

(
1

z
− sj

)
,

(
gdy» sj =

1

sj

)
,

czyli

(z − sj)
2kj = (−zsj)

kj(z − sj)
kj

(
1

z
− sj

)kj

.

Podobnie (
z − 1

ri

)
=
−z

ri

(
1

z
− ri

)
,

czyli

P (z) = A

l∏
i=1

(−z

ri

)ni l∏
i=1

(z − ri)
ni

(
1

z
− ri

)ni p∏
j=1

(−zsj)
kj

p∏
j=1

(z − sj)
kj

(
1

z
− sj

)kj

= B zn1+···+nl+k1+···+kp

l∏
i=1

(z − ri)
ni

(
1

z
− ri

)ni p∏
j=1

(z − sj)
kj

(
1

z
− sj

)kj

gdzie n1 + · · · + nl + k1 + · · · + kp jest poªow¡ sumy krotno±ci wszystkich
pierwiastków wielomianu P (z), czyli poªow¡ stopnia P (z)

n1 + · · ·+ nl + k1 + · · ·+ kp =
2M

M
= M.

Mamy wi¦c

P (z) = zM B

l∏
i=1

(z − ri)
ni

(
1

z
− ri

)ni p∏
j=1

(z − sj)
kj

(
1

z
− sj

)kj

.

Dla z na okr¦gu jednostkowym z = ei ξ mamy wi¦c

g(ξ) = B

l∏
i=1

(ei ξ − ri)
ni

(
1

ei ξ
− ri

)ni p∏
j=1

(ei ξ − sj)
kj

(
1

ei ξ
− sj

)kj

,
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ale 1/ei ξ = e−i ξ = ei ξ, czyli

g(ξ) = B

l∏
i=1

|ei ξ − ri|2ni

p∏
j=1

|ei ξ − sj|2kj .

Poniewa» g(ξ) ≥ 0, wi¦c B ≥ 0. Niech wi¦c

m0(ξ) =
√

B

l∏
i=1

(e−i ξ − ri)
ni

p∏
j=1

(e−i ξ − sj)
kj .

Zauwa»my jeszcze na koniec, »e znalezienie m0 wymaga rozªo»enia wielo-
mianu P (z) na czynniki liniowe. Cz¦sto jest to robione numerycznie.
Uwaga 4.15. Dla k = 0, 1, 2, . . . skonstruowali±my �ltry gk(ξ), speªniaj¡ce
warunki powy»szego twierdzenia z M = 2k + 1. Filtry m0(ξ) które otrzymu-
jemy z powy»szego twierdzenia s¡ wi¦c postaci

m0(ξ) =
2k+1∑
n=0

hn e−i nξ. (4.61)

S¡ to standardowe �ltry Daubechies, które sªu»¡ do konstrukcji standardowych
falek Daubechies. Korzystaj¡c z (4.61) i uwagi po dowodzie Twierdzenia 4.12
mamy, »e dla ustalonego k (odpowiada to �ltrowi dªugo±ci 2k + 2) no±nik
funkcji skaluj¡cej ϕ(x) zawiera si¦ w przedziale [0, 2k + 1], a no±nik falki
ψ(x) zawiera si¦ w przedziale [−k, k + 1].

Przykªady: Policzymy wspóªczynniki �ltrów Daubechies dªugo±ci 2 i 4. W
przypadku �ltrów Daubechies rozkªad wielomianu P (z) jest troche ªatwiejszy.
Wielomiany gk(ξ) które skonstruowali±my maj¡ pierwiastek rz¦du k +2 w π,
a wi¦c wielomian P (z) ma pierwiastek rz¦du co najmniej k + 2 w −1. Niech
k = 0.

c0 =

∫ π

0

sin(t) dt = 2,

g0(ξ) = 1− 1

2

∫ ξ

0

sin(t) dt =
1

2
+

1

2
cos(ξ) =

1

4
e−i ξ +

1

2
+

1

4
ei ξ

P (z) =
1

4
+

1

2
z +

1

4
z2 =

1

4
(z + 1)2.

P (z) ma 1 podwójny pierwiastek na okr¦gu jednostkowym, z = −1, czyli
l = 0, p = 1, k1 = 2. Otrzymujemy

m0(ξ) =
1

2
(e−i ξ + 1) = e−i ξ/2 cos(ξ/2), h0 = h1 =

1

2
, hk = 0, k 6= 0, 1.
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To jest �ltr dolnoprzepustowy analizy Haara, który jest tak»e najkrótszym z
�ltrów Daubechies.

Niech k = 1. Mamy

c1 =

∫ π

0

sin3(t) dt =
4

3
,

g1(ξ) =
1

2
+

3

4
cos(ξ)− 1

4
cos3(ξ) =

1

2
+

9

16
cos(ξ)− 1

16
cos(3ξ),

P (z) = − 1

32
+

9

32
z2 +

1

2
z3 +

9

32
z4 − 1

32
z6.

�atwo zauwa»y¢, »e P (z) ma pierwiastki rzeczywiste, na okr¦gu jednost-
kowym jest pierwiastek −1 krotno±ci 4, oraz poza okr¦giem jednostkowym
pierwiastki 2 +

√
3 i 2−√3. W naszych oznaczeniach l = 1, n1 = 1, p = 1,

k1 = 4. Otrzymujemy nast¦puj¡cy wzór

m0(ξ) =
1√

32(2 +
√

3)

(
−(2 +

√
3)− (3 + 2

√
3) e−i ξ −

√
3 e−i 2ξ + e−i 3ξ

)
.

W literaturze wspóªczynniki �ltrów podaje si¦ najcz¦±ciej pomno»one przez√
2. Jak zobaczymy w nast¦pnym rozdziale w ten sposób oszcz¦dza si¦ mno-

»enie przez ten pierwiastek a algorytmie obliczeniowym.
Funkcji skaluj¡cych i falek odpowiadaj¡cych �ltrom Daubechies nie da si¦

zapisa¢ »adnym rozs¡dnym wzorem. Natomiast istnieje metoda numerycz-
nego generowania ich przybli»onych wykresów. Jest to tak zwany algorytm
kaskadowy, który opiszemy w nast¦pnym rozdziale.

Falki w wymiarze n > 1

W Rn baza falkowa ma posta¢
{

2
jn
2 ψl(2jx− n); n ∈ Zn, j ∈ Z, l = 1, . . . , 2n − 1

}
(368)

Na przykªad, w wymiarze n = 2 baza falkowa generowana jest przez 3 falki.
Dla Rn mo»na zde�niowa¢ poj¦cie analizy wielorozdzielczej MRA i przepro-
wadzi¢ konstrukcj¦ falek w sposób zupeªnie analogiczny do konstrukcji w
przypadku n = 1. Post¦puj¡c tak zauwa»yliby±my, »e w sposób naturalny
pojawia si¦ 2n−1 �ltrów górnoprzepustowych, przy minimalnych zaªo»eniach
o regularno±ci funkcji skaluj¡cej. Analiz¦ wielorozdzielcz¡ i zwi¡zane z ni¡
falki w wielu wymiarach mo»na skonstruowa¢ u»ywaj¡c analizy jednowymia-
rowej. Maj¡c analiz¦ w L2(R) z funkcj¡ skaluj¡c¡ ϕ(x) i falk¡ ψ(x) mo»emy
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zde�niowa¢ funkcj¦ skaluj¡c¡ Φ(x, y) i falki Ψl(x, y), l = 1, 2, 3 w L2(R2)
wzorami

Φ(x, y) = ϕ(x) ϕ(y), Ψ1(x, y) = ϕ(x) ψ(y), Ψ2(x, y) = ψ(x) ϕ(y), Ψ3(x, y) = ψ(x) ψ(y).
(4.62)

Sformuªowanie de�nicji MRA w L2(R2) i sprawdzenie, »e funkcje (4.62) speª-
niaj¡ wszystkie warunki tej de�nicji zostawiamy jako ¢wiczenie.

Uwagi 4.16. (i) w (??) zastosowali±my zamian¦ skali w postaci macierzy

A =




2 0 · · · 0
0 2 · · · 0
... ... . . . ...
0 0 · · · 2


 .

Bazy falkowe mo»na generowa¢ równie» u»ywaj¡c innych macierzy A, w któ-
rych, na przykªad, rozci¡gni¦cie poª¡czone jest z jakim± obrotem.
(ii) Bazy falkowe o zmiennych rozdzielonych takie, jak we wzorze (4.62) to
tylko jeden szczególny rodzaj baz falkowych w wielu wymiarach. Cz¦sto sto-
suje si¦ bazy w których poszczególne falki maj¡ szczególny ksztaªt. Takie falki
s¡ u»yteczne w wychwytywaniu w sygnale elementów o tego typu ksztaªcie.
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Rozdziaª 5

Algorytmy Numeryczne

Algorytm Mallata
Algorytm Mallata jest podstaw¡ dyskretnej transformaty falkowej (dyskret-
nej, to znaczy transformaty sygnaªów b¦d¡cych ci¡gami próbek). Algorytm
pozwala w sposób efektywny numerycznie oblicza¢ wspóªczynniki bazowe sy-
gnaªu w jednej bazie na podstawie wspóªczynników w innej bazie. Opiszemy
teraz o jakie bazy chodzi.

Przypomnijmy, »e dla danej analizy MRA i dowolnego j ∈ Z przestrze«
Vj rozkªada si¦ jako ortogonalna suma prosta podprzestrzeni

Vj = Vj−1 ⊕Wj−1.

Zauwa»my, »e zgodnie z tym, co wiemy o analizie wielorozdzielczej, w prze-
strzeni Vj mamy baz¦ ortonormaln¡

{ϕj,n(x); n ∈ Z}, (5.1)

gdzie ϕ jest funkcj¡ skaluj¡c¡ analizy. Dla j = 0 jest to cz¦±¢ de�nicji analizy
wielorozdzielczej, dla pozostaªych j ∈ Z wynika z zamiany zmiennych x 7→
2jx. Poniewa» j jest dowolne, to tak»e w przestrzeni Vj−1 mamy baz¦ o. n.

{ϕj−1,n(x); n ∈ Z}.
W przestrzeni Wj−1 mamy z kolei baz¦ o. n.

{ψj−1,n(x); n ∈ Z},
gdzie ψ jest falk¡ zwi¡zan¡ z nasz¡ analiz¡ wielorozdzielcz¡. Przypomnijmy,
»e u»ywamy nast¦puj¡cych oznacze«

ϕj,n(x) = 2j/2ϕ(2jx− n), ψj,n(x) = 2j/2ψ(2jx− n).
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W przestrzeni Vj mamy wi¦c do dyspozycji dwie ró»ne bazy o. n., baz¦ (5.1),
oraz baz¦

{ϕj−1,n(x), ψj−1,n(x); n ∈ Z}. (5.2)
Algorytm Mallata pozwala oblicza¢ wspóªczynniki sygnaªu w jednej z tych
baz przy pomocy wspóªczynników w drugiej.

Niech f ∈ L2(R), i wprowad¹my nast¦puj¡ce oznaczenia na ci¡gi wspóª-
czynników f w ró»nych bazach. Niech j ∈ Z b¦dzie dowolne, i niech

aj(n) = 〈f, ϕj,n〉, dj(n) = 〈f, ψj,n〉, n ∈ Z. (5.3)

Przypomnijmy, »e {hn}∞n=−∞ i {gn}∞n=−∞ oznaczaj¡ �ltry dolno- i górno-
przepustowy analizy wielorozdzielczej. Nast¦puj¡ce twierdzenie przedstawia
algorytm.
Twierdzenie 5.1 (Mallat). Transformata:

aj−1(k) =
√

2
∞∑

n=−∞
hn−2k aj(n),

dj−1(k) =
√

2
∞∑

n=−∞
gn−2k aj(n).

(5.4)

Transformata odwrotna:

aj(n) =
√

2
∞∑

k=−∞
hn−2k aj−1(k) +

√
2

∞∑

k=−∞
gn−2k aj−1(k). (5.5)

Uwaga 5.2. (a) Zauwa»my, »e algorytm odwoªuje si¦ tylko do �ltrów dolno-
i górnoprzepustowego. Same warto±ci funkcji ϕ i ψ nigdzie nie s¡ potrzebne.
Zauwa»my te», »e wzory powy»sze s¡ tym efektywniejsze numerycznie, im
krótsze s¡ �ltry, a je»eli s¡ niesko«czone to im szybciej malej¡.
(b) Zwró¢my uwag¦ na wspóªczynniki

√
2 wyst¦puj¡ce w powy»szych wzorach.

W praktyce po prostu �ltry {hn} i {gn} normalizuje si¦ w ten sposób, »e√
2 jest ju» w nich zawarte. Oszcz¦dza si¦ w ten sposób ci¡gªego mno»e-

nia przez ten wspóªczynnik. Filtry Daubechies generowane przez polecenie
daubcqf() pakietu RWT s¡ wªa±nie tak znormalizowane, na przykªad �ltr
Haara to ( 1√

2
, 1√

2
), a nie, tak jak na naszym wykªadzie (1

2
, 1

2
).

Dowód (twierdzenia Mallata). Przypomnijmy wzory

hn =

〈
1

2
ϕ

( ·
2

)
, ϕ(· − n)

〉
,

gn =

〈
1

2
ψ

( ·
2

)
, ϕ(· − n)

〉
.

(5.6)
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Liczba caªkowita n jest dowolna, wi¦c w pierwszym ze wzorów (5.6) wpiszmy
w jej miejsce n− 2l, gdzie n, l ∈ Z.

hn−2l =

〈
1

2
ϕ

( ·
2

)
, ϕ(· − (n− 2l))

〉

=

∫ ∞

−∞

1

2
ϕ

(x

2

)
ϕ(x− n + 2l) dx

=

∫ ∞

−∞

1

2
ϕ

(
x− 2l

2

)
ϕ(x− n) dx

=

∫ ∞

−∞

1

2
ϕ

(x

2
− l

)
ϕ(x− n) dx.

Dokonujemy zamiany zmiennych x 7→ 2jx. Granice caªkowania nie zmieniaj¡
si¦

hn−2l =

∫ ∞

−∞

1

2
ϕ(2j−1x− l) ϕ(2jx− n) 2j dx

=

∫ ∞

−∞

1√
2

2
j−1
2 ϕ(2j−1x− l) 2

j
2 ϕ(2jx− n) dx

=

∫ ∞

−∞

1√
2

ϕj−1,l(x) ϕj,n(x) dx

=
1√
2
〈ϕj−1,l, ϕj,n〉.

Podobnie wyprowadzamy wzór dla gn−2l i otrzymujemy

√
2 hn−2l = 〈ϕj−1,l, ϕj,n〉,√
2 gn−2l = 〈ψj−1,l, ϕj,n〉.

(5.7)

Obliczyli±my wspóªczynniki bazowe funkcji ϕj−1,l i ψj−1,l w bazie (5.1), wi¦c
funkcje te maj¡ rozwini¦cia

ϕj−1,l =
√

2
∞∑

n=−∞
hn−2l ϕj,n,

ψj−1,l =
√

2
∞∑

n=−∞
gn−2l ϕj,n.

(5.8)
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Wzory te wstawiamy do de�nicji naszych ci¡gów

aj−1(k) = 〈f, ϕj−1,k〉

=

〈
f,
√

2
∞∑

n=−∞
hn−2k ϕj,n

〉

=
√

2
∞∑

n=−∞
hn−2k 〈f, ϕj,n〉

=
√

2
∞∑

n=−∞
hn−2k aj(n).

Podobnie obliczamy dj−1(k). W ten sposób pokazali±my pierwsz¡ cz¦±¢ twier-
dzenia.

Wzory (5.7) mo»emy te» potraktowa¢ jako wzory na wspóªczynniki ba-
zowe funkcji ϕj,n ∈ Vj w bazie (5.2). W takim razie

ϕj,n =
∞∑

k=−∞
〈ϕj,n, ϕj−1,k〉 ϕj−1,k +

∞∑

k=−∞
〈ϕj,n, ψj−1,k〉 ψj−1,k

=
√

2
∞∑

k=−∞
hn−2k ϕj−1,k +

√
2

∞∑

k=−∞
gn−2k ψj−1,k.

(5.9)

Mo»emy wi¦c obliczy¢ wspóªczynniki bazowe f

aj(n) = 〈f, ϕj,n〉

=

〈
f,
√

2
∞∑

k=−∞
hn−2k ϕj−1,k +

√
2

∞∑

k=−∞
gn−2k ψj−1,k

〉

=
√

2
∞∑

k=−∞
hn−2k 〈f, ϕj−1,k〉+

√
2

∞∑

k=−∞
gn−2k 〈f, ψj−1,k〉

=
√

2
∞∑

k=−∞
hn−2k aj−1(k) +

√
2

∞∑

k=−∞
gn−2k dj−1(k),

co ko«czy dowód.

Przyjrzyjmy si¦ wzorom. Niech ci¡gi {h̃n} i {g̃n} maj¡ wspóªczynniki

h̃n = h−n, g̃n = g−n.
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Wtedy, zgodnie z twierdzeniem Mallata

aj−1(k) =
√

2
∞∑

n=−∞
h̃2k−n aj(n) =

√
2 (h̃ ∗ aj)(2k),

dj−1(k) =
√

2
∞∑

n=−∞
g̃2k−n aj(n) =

√
2 (g̃ ∗ aj)(2k).

Obliczenie ci¡gów aj−1 i dj−1 sprowadza si¦ wi¦c do splotu wyj±ciowego ci¡gu
aj z ci¡gami h̃ i g̃, a nast¦pnie wybrania co drugiego elementu powstaªych
ci¡gów (i pomno»enia przez

√
2). Odrzucenie co drugiego wyrazu po angiel-

sku nazywa si¦ downsampling. W teorii przetwarzania sygnaªu operacje na
sygnale cz¦sto opisuje si¦ przy pomocy schematów blokowych. Nasz¡ ope-
racj¦ mo»emy przedstawi¢ schematycznie nast¦puj¡co (operatory H i G to
sploty z �ltrami {h̃n} i {g̃n}, oraz pomno»enie przez 1√

2
)

Rysunek 5.1: Jeden krok dyskretnej transformaty falkowej.

Podobnie przyjrzyjmy si¦ drugiej cz¦±ci twierdzenia Mallata. Wprowad¹my
nast¦puj¡ce oznaczenie. Je»eli dany jest ci¡g {αn}, to przez {α′n} oznaczamy
jego �rozrzedzenie�:

α′n =

{
αn/2 : n - parzyste

0 : n - nieparzyste.

Ci¡g {αn} zostaª wi¦c �przepleciony� zerami:

. . . , α−1, α0, α1, . . . ⇒ . . . , α−1, 0, α0, 0, α1, 0, α2, . . .
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Wzór (5.5) mo»na wtedy zapisa¢

aj(n) =
√

2
∞∑

k=−∞
hn−2k aj−1(k) +

√
2

∞∑

k=−∞
gn−2k dj−1(k)

=
√

2
∞∑

k=−∞
k-parzyste

hn−k aj−1(k/2) +
√

2
∞∑

k=−∞
k-parzyste

gn−k dj−1(k/2)

=
√

2
∞∑

k=−∞
hn−k a′j−1(k) +

√
2

∞∑

k=−∞
gn−k d′j−1(k)

=
√

2 (h ∗ a′j−1)(k) +
√

2 (g ∗ d′j−1)(k).

Zauwa»my wi¦c, »e 1 krok odwrotnej transformaty falkowej sprowadza si¦
najpierw do rozrzedzenia sygnaªów wej±ciowych aj−1 i dj−1 (po angielsku
upsampling), a nast¦pnie splotu ka»dego sygnaªu z odpowiednim ci¡giem,
i w ko«cu zªo»enia (sumy). Sploty s¡ w zasadzie z tymi samymi ci¡gami
co w transformacie. Odwrotn¡ transformat¦ mo»emy przedstawi¢ w postaci
schematu blokowego (tutaj operatory H i G to sploty z �ltrami {hn} i {gn},
oraz pomno»enie przez 1√

2
)

Rysunek 5.2: Jeden krok odwrotnej dyskretnej transformaty falkowej.

Sygnaªy dyskretne
Sygnaªy dyskretne to ci¡gi warto±ci {fn}, sko«czone lub nie (tymczasem
rozwa»amy sygnaªy 1-wymiarowe). Najcz¦±ciej taki ci¡g warto±ci to ci¡g
próbek jakiego± sygnaªu ci¡gªego, na przykªad d¹wi¦ku. Analiza falkowa ta-
kiego sygnaªu polega wyborze analizy wielorozdzielczej (czyli wyborze falki),
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nast¦pnie umieszczeniu tego sygnaªu w przestrzeni V0, a nast¦pnie oblicze-
niu wspóªczynników bazowych w bazie falkowej (ci¡gów {dj}). Numerycznie
caªy ten proces sprowadza si¦ do prostego i szybkiego algorytmu rekurencyj-
nego, w którym warto±ci funkcji skaluj¡cej ani falki w ogóle si¦ nie pojawiaj¡.
Jedynym elementem analizy wielorozdzielczej wyst¦puj¡cym w obliczeniach
s¡ �ltry dolno- i górnoprzepustowy. Algorytm opiera si¦ na twierdzeniu
Mallata i nazywa si¦ algorytmem Mallata. Niech naszym sygnaªem b¦dzie
ci¡g {fn}. Wybrawszy analiz¦ wielorozdzielcz¡ przyporz¡dkujemy sygnaªowi
funkcj¦ f ∈ V0

f(x) =
∞∑

n=−∞
fn ϕ(x− n). (5.10)

Takie przyporz¡dkowanie jest bardzo naturalne. Najcz¦±ciej warto±ci fn s¡
próbkami jakiej± ci¡gªej warto±ci �zycznej, pobieranymi w regularnych od-
st¦pach czasu. Czujnik pobieraj¡cy próbk¦ z reguªy pobieraj¡c j¡ dokonuje
u±rednienia warto±ci w jakim± przedziale czasu. Caªy proces pobrania pró-
bek i przyporz¡dkowania im elementu f ∈ V0 jest wi¦c rzutem wyj±ciowego
sygnaªu ci¡gªego na V0. W sumie bardzo naturalna i ªagodna operacja, je-
»eli analiz¦ wielorozdzielcz¡ dobierzemy wªa±ciwie do charakteru badanego
sygnaªu.

Dyskretna transformata falkowa dyskretnego sygnaªu {fn} to zbiór wspóª-
czynników bazowych

{dj(n) = 〈f, ψj,n〉; j, n ∈ Z, j ≤ −1}. (5.11)

Widzimy wi¦c, »e obliczenie transformaty sprowadza si¦ do rekurencyjnego
stosowania twierdzenia Mallata, z a0 = {fn}. Sygnaª mo»na odtworzy¢ z jego
transformaty falkowej (5.11) stosuj¡c rekurencyjnie drug¡ cz¦±¢ twierdzenia
Mallata. W praktyce sygnaª analizowany jest zawsze sko«czony i algorytm
Mallata ma sko«czon¡ liczb¦ kroków.

Sygnaªy sko«czone
W przypadku sygnaªu sko«czonego skªadaj¡cego si¦ z N próbek

{f0, f1, . . . , fN−1}
algorytm wygl¡da nast¦puj¡co. Algorytm ma zastosowanie do sygnaªów,
których dªugo±¢ jest pot¦g¡ 2, wi¦c najpierw ewentualnie wydªu»amy sygnaª,
poprzez dodanie zer, tak, aby jego dªugo±¢ byªa pot¦g¡ 2, niech N = 2J .
Nast¦pnie okre±lamy wyj±ciowy ci¡g a0, jako N -periodyzacj¦ sygnaªu:

a0(n) = fn, n = 0, . . . , N − 1,
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oraz
a0(n + kN) = a0(n), k ∈ Z, n = 0, . . . , N − 1.

�atwo zauwa»y¢, »e zastosowanie 1 kroku transformaty falkowej do nam 2
ci¡gi

{a−1(n)}∞n=−∞ i {d−1(n)}∞n=−∞,

które s¡ okresowe o okresach dwukrotnie krótszych
a−1(n + N/2) = a−1(n), d−1(n + N/2) = d−1(n).

Wynika to wprost ze wzorów, na przykªad

a−1(n + N/2) =
√

2
∞∑

k=−∞
hk−2(n+N/2) a0(k)

=
√

2
∞∑

k=−∞
hk−2n−N a0(k)

=
√

2
∞∑

k=−∞
hk−2n a0(k + N)

=
√

2
∞∑

k=−∞
hk−2n a0(k)

= a−1(n).

Ze wzgl¦du na t¡ okresowo±¢ sygnaªy a−1 i d−1 s¡ o poªow¦ krótsze, bo wy-
starczy zapami¦tywa¢ tylko jeden okres ka»dego ci¡gu. Iteruj¡c procedur¦,
czyli stosuj¡c twierdzenie Mallata kolejno do ci¡gów aj okresowych o coraz
krótszych okresach, po J krokach uzyskujemy kompletn¡ transformat¦ fal-
kow¡ wyj±ciowego sygnaªu {f0, . . . , fN−1}:

a−J(0), d−J(0), d−J+1(0), d−J+1(1), . . . , d−1(0), . . . , d−1(N/2− 1).

Odwrotn¡ transformat¦ obliczamy podobnie. Ka»dy ze sko«czonych ci¡gów
dj przedªu»amy okresowo do ci¡gu niesko«czonego, nast¦pnie stosujemy J
razy twierdzenie Mallata. W ka»dym kroku rekonstruujemy ci¡g aj, o coraz
dªu»szym okresie.

Algorytm kaskadowy
Przypomnijmy, »e analizy wielorozdzielcze Daubechies, a, co za tym idzie,
falki Daubechies skonstruowali±my konstruuj¡c odpowiednie �ltry dolnoprze-
pustowe m0. Dzieki wªasno±ciom tych konkretnych �ltrów mogli±my udo-
wodni¢ wa»ne wªasno±ci funkcji skaluj¡cych i falek, takie jak na przykªad
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ograniczony no±nik (to znaczy, »e funkcje znikaj¡ poza sko«czonym przedzia-
ªem), oraz ró»niczkowalno±¢. Wspominali±my, »e funkcji skaluj¡cych i falek
Daubechies nie da si¦ zapisa¢ »adnym jawnym wzorem (z wyj¡tkiem przy-
padku �ltru dªugo±ci 2, dla którego funkcje te s¡ funkcjami Haara). Nie
ma to znaczenia dla algorytmu Mallata, w którym wyst¦puj¡ tylko wspóª-
czynniki �ltrów. Bardzo ªatwo mo»na jednak obliczy¢ przybli»one warto±ci
funkcji skaluj¡cej i falki, dla dowolnej analizy wielorozdzielczej, dla której te
funkcje s¡ wystarczaj¡co regularne (czyli ró»niczkowalne odpowiedni¡ ilo±¢
razy). Dzi¦ki temu, na przykªad, mo»na narysowa¢ wykresy tych funkcji.
Do przybli»onego obliczenia warto±ci sªu»y tak zwany algorytm kaskadowy,
oparty na algorytmie Mallata.

Zilustrujemy teraz algorytm kaskadowy, rysuj¡c wykresy funkcji skalu-
j¡cych i falek Daubechies. Funkcja skaluj¡ca Daubechies jest ci¡gªa, ma
ograniczony no±nik, oraz

1 = ϕ̂(0) =

∫ ∞

−∞
ϕ(x) dx,

∫ ∞

−∞
|ϕ(x)| dx < ∞

(ograniczmy si¦ do przypadku �ltrów dªu»szych ni» 2). Mamy nast¦puj¡cy
fakt

Fakt 5.3. Je»eli funkcja f(x) jest ci¡gªa, to dla ka»dego x ∈ R

∫ ∞

−∞
f(x + y) 2j ϕ(2j y) dy

j→∞−−−→ f(x).

Je»eli f(x) jest ci¡gªa jednostajnie, to zbie»no±¢ jest jednostajna, a je»eli f(x)
jest ci¡gªa w sensie Höldera, czyli

|f(x)− f(y)| ≤ C|x− y|α, dla jakiego± 0 < α ≤ 1,

to zbie»no±¢ jest wykªadnicza
∣∣∣∣f(x)−

∫ ∞

−∞
f(x + y) 2j ϕ(2j y) dy

∣∣∣∣ ≤ C ′ 2−jα.

Dowód. Niech [−R, R] b¦dzie przedziaªem, poza którym ϕ(x) ≡ 0. Na przy-
kªad, z dowodu twierdzenia ?? z rozdziaªu o analizie MRA wynika, »e dla
�ltru o dªugo±ci 2k mamy R = 2k − 1. Ustalmy x oraz ε > 0 i niech N ∈ N
b¦dzie takie, »e

∀j ≥ N |y| < 2−j R ⇒ |f(x)− f(x + y)| < ε.
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Dla j ≥ N mamy wtedy oszacowanie
∣∣∣∣f(x)−

∫ ∞

−∞
f(x + y) 2j ϕ(2j y) dy

∣∣∣∣ =

∣∣∣∣
∫ ∞

−∞
(f(x)− f(x + y)) 2j ϕ(2j y) dy

∣∣∣∣

≤
∫ ∞

−∞
|f(x)− f(x + y)| 2j |ϕ(2j y)| dy

=

∫ ∞

−∞
|f(x)− f(x + 2−j y)| |ϕ(y)| dy

=

∫ R

−R

|f(x)− f(x + 2−j y)| |ϕ(y)| dy

≤ ε

∫ R

−R

|ϕ(y)| dy

≤ Cε,

gdzie
C =

∫ ∞

−∞
|ϕ(y)| dy.

Zauwa»my, »e wszystkie tezy faktu wynikaj¡ z powy»szego oszacowania.

Funkcja skaluj¡ca i falka Daubechies s¡ ró»niczkowalne, a wi¦c speªniaj¡
warunek Höldera z α = 1. Zbie»no±¢ w powy»szym fakcie jest wi¦c dla
nich wykªadnicza, czyli szybka. Niech x b¦dzie liczb¡ diadyczn¡, czyli liczb¡
postaci x = 2−J n, J ∈ Z. Wtedy

ϕ(x) = lim
j→∞

2j

∫ ∞

−∞
ϕ(2−J n + y) ϕ(2j y) dy

= lim
j→∞

2j/2

∫ ∞

−∞
ϕ(y) 2j/2 ϕ(2j y − 2−J+j n) dy

= lim
j→∞

2j/2
〈
ϕ, ϕj,2−J+j n

〉
,

czyli, w punktach diadycznych 2−J n, dla odpowiednio du»ego j ≥ J

ϕ(2−J n) ' 2j/2〈ϕ, ϕj,2j−J n〉 = 2j/2aj(2
j−J n), (5.12)

gdzie ci¡g aj z twierdzenia Mallata jest obliczony dla f = ϕ. Ci¡g ten
mo»emy obliczy¢ dla dowolnego j > 0 korzystaj¡c z drugiej cz¦±ci twierdzenia
Mallata. Wiemy, »e dla f = ϕ ci¡g a0 skªada si¦ z 1 w zerze i poza tym samych
zer, a ci¡gi dj skªadaj¡ si¦ z samych zer, dla j ≥ 0. Aby narysowa¢ wykres
ϕ(x) post¦pujemy wi¦c nast¦puj¡co. Wybieramy J ∈ Z odpowiednio du»e, w
zale»no±ci od potrzebnej dokªadno±ci. Warto±¢ J decyduje o tym, jak g¦sta
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jest siatka liczb postaci 2−J n, ale tak»e o dokªadno±ci przybli»enia (5.12), w
którym we¹miemy j = J . Nast¦pnie stosujemy twierdzenie Mallata J razy.
Podobnie post¦pujemy w celu narysowania wykresu falek. Wychodzimy od
ci¡gów

a0(k) ≡ 0, d0(k) = δ0(k), (jedynka w 0 i same 0 poza tym),

oraz dj(k) ≡ 0 dla j ≥ 1. Nast¦pnie stosujemy twierdzenie Mallata J razy.
Na obrazkach pokazujemy kilka przykªadów. W ka»dym przypadku stosowa-
li±my J = 15.
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1

−1 0 1 2

−1

0

1

Rysunek 5.3: Funkcja skaluj¡ca i falka Daubechies, �ltry dªugo±ci 4.

Wykresy funkcji skaluj¡cych zostaªy wygenerowane przy pomocy nast¦-
puj¡cego skryptu w Matlabie. Nale»y wybra¢ N w 1 linijce (dªugo±¢ �ltra),
oraz J w linijce 5 (dokªadno±¢).

N=20;\%dªugo±¢ filtra, musi by¢ parzysta
A=-1;\%lewy zakres wykresu funkcji skaluj¡cej, musi by¢ ujemny
B=N;\%prawy zakres wykresu funkcji skaluj¡cej, musi by¢ > N-1
h=daubcqf(N);
J=15;
a=2^J*(N-1);
dx=2^(-J);
X=[floor(A):dx:floor(B)];
phi1=zeros(1,size(X,2));
offset=-floor(A)/dx;
phi=zeros(1,a+1);
temp=zeros(1,a+1);
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phi(1)=1;
for j=1:J

temp=phi;
for n=0:a

c=0;
par=n-2*floor(n/2);
for l=par:2:N-1
ind=(n-l)/2;
if (ind>=0)\&(ind<=a)

c=c+h(l+1)*temp(ind+1);
end;

end;
phi(n+1)=c;

end;
end;
for i=1:a+1

phi1(offset+i)=phi(i);
end;
phi1=sqrt(2^J)*phi1;
plot(X,phi1,'black');
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Rysunek 5.4: Funkcja skaluj¡ca i falka Daubechies, �ltry dªugo±ci 10.

Próbkowanie i kwantyzacja
Sygnaªy dyskretne (czyli sko«czone lub niesko«czone ci¡gi warto±ci) w prak-
tyce powstaj¡ jako wynik próbkowania sygnaªów ci¡gªych. Naturalne pyta-
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Rysunek 5.5: Funkcja skaluj¡ca i falka Daubechies, �ltry dªugo±ci 20.

nie, jakie si¦ pojawia, to czy i w jakim stopniu taki ci¡g próbek reprezentuje
wyj±ciowy sygnaª. Na przykªad, czy i w jaki sposób sygnaª ci¡gªy mo»na z
takich próbek odtworzy¢. Podstawowym twierdzeniem wi¡zanym z próbko-
waniem jest nast¦puj¡ce twierdzenie.

Twierdzenie 5.4 (Shannon, Whittaker). Je»eli funkcja f ∈ L2(R) ma ogra-
niczone spektrum cz¦stotliwo±ciowe, to znaczy dla pewnego T0

f̂(ξ) ≡ 0 dla ξ /∈ [−T0, T0],

to funkcja ta jest caªkowicie reprezentowana przez ci¡g próbek (w jednako-
wych odst¦pach) {f(n p)}n∈Z, je»eli próbkowanie jest wystarczaj¡co g¦ste, a
dokªadnie je»eli p ≤ π

T0
. Warto±ci funkcji mo»na odtworzy¢ z próbek przy

pomocy wzoru

f(x) =
∞∑

n=−∞
f(n p) sinc (π

p
x− π n), (5.13)

gdzie funkcja interpoluj¡ca sinc ( ) dana jest wzorem

sinc (x) =
sin(x)

x
.

Uwaga 5.5. (i) Zauwa»my, »e funkcja interpoluj¡ca

sinc (π
p
x− π n)

jest równa 0 w punktach postaci x = k p, dla k ∈ Z, k 6= n, oraz jest równa 1
dla x = n p. Od razu wi¦c wida¢, »e prawa strona (5.13) zgadza si¦ z lew¡ w
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punktach postaci k p, czyli prawa strona jest funkcj¡ interpoluj¡c¡ warto±ci
pomi¦dzy próbkami.
(ii) Powy»sze twierdzenie mówi nam, »e interpolacja warto±ci pomi¦dzy prób-
kami odtwarza funkcj¦ wyj±ciow¡, je»eli ta ma odpowiednio ograniczone spek-
trum cz¦stotliwo±ciowe. Wi¦kszo±¢ funkcji wyst¦puj¡cych w praktyce jest tego
typu, i dlatego twierdzenie Shannona-Whittakera jest wa»ne. Mo»na jednak
bada¢ inne przestrzenie funkcji (na przykªad spliny, dla których funkcja inter-
poluj¡ca, »eby odtwarza¢ dokªadnie wyj±ciowy sygnaª analogowy, musi mie¢
inn¡ posta¢.
(iii) Ciekawe jest pytanie o odtwarzanie funkcji z próbek pobieranych niere-
gularnie. W tym przypadku równie» mo»na udowodni¢ wa»ne twierdzenia,
wyja±niaj¡ce spraw¦, i daj¡ce in»ynierom praktyczne narz¦dzia.
(iv) Powy»sze twierdzenie jest sformuªowane w ten sposób, »e podaje jak cz¦-
sto trzeba próbkowa¢ sygnaª wyj±ciowy, o spektrum cz¦stotliwo±ciowym ogra-
niczonym do T0, »eby móc sygnaª odtworzy¢. Mo»na to przeformuªowa¢: je-
»eli próbki pobierane s¡ w odst¦pach p, to jaka jest maksymalna cz¦stotliwo±¢
sygnaªu, która zostanie odtworzona bez znieksztaªce«. Jest to tak zwana cz¦-
stotliwo±¢ Nyquista i, jak ªatwo odczyta¢ z twierdzenia Shannona-Whittakera,
wynosi π

p
. Uwaga: cz¦stotliwo±¢, o której mówimy tutaj, to w j¦zyku in»ynie-

rów tak zwana cz¦stotliwo±¢ koªowa. Cz¦stotliwo±¢, któr¡ najcz¦±ciej posªu-
guj¡ si¦ in»ynierowie (czyli 1/okres) to nasza cz¦stotliwo±¢ podzielona przez
2π. W j¦zyku in»ynierów cz¦stotliwo±¢ Nyquista wynosi wi¦c 1

2 p
.

(v) Mo»na zastanowi¢ si¦, co si¦ dzieje, je»eli sygnaª próbkowany jest za
rzadko, w stosunku do zakresu swoich skªadowych cz¦stotliwo±ciowych. Prawa
strona (5.13) jest wtedy zaledwie przybli»eniem lewej strony, a znieksztaªcenia
(czyli bª¡d tego przybli»enia) maj¡ charakterystyczn¡ posta¢, i nosz¡ nazw¦
aliasingu. Wrócimy jeszcze do zjawiska aliasingu.

Dowód twierdzenia Shannona-Whittakera. Zaªó»my, »e

f̂(ξ) ≡ 0 dla ξ /∈ [−T0, T0],

Niech T ≥ T0, i niech funkcja pomocnicza g(ξ) b¦dzie dana wzorem

g(ξ) = f̂

(
T

π
ξ

)
, ξ ∈ [−π, π],

a nast¦pnie tak zde�niowan¡ w przedziale [−π, π] funkcj¦ g przedªu»amy
jako okresow¡ o okresie 2π na caª¡ prost¡ R. Zauwa»my, »e g ∈ L2(R). To
proste, f̂ jest caªkowalna z kwadratem na prostej, a wi¦c te» na przedziale
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[−T0, T0], a caªka kwadratu g na przedziale [−π, π] jest jej równa, po zamianie
zmiennych. Funkcj¦ g rozwijamy w szereg Fouriera

g(ξ) =
∞∑

n=−∞
ĝ(n) einξ, w L2(T),

a wspóªczynniki Fouriera maj¡ nast¦puj¡c¡ posta¢:

ĝ(n) =
1

2π

∫ π

−π

g(ξ) e−i nξ dξ

=
1

2π

∫ π

−π

f̂(T
π

ξ) e−i nξ dξ

=
1

2T

∫ T

−T

f̂(ξ) e−i n π
T

ξ dξ

=
1

2T

∫ ∞

−∞
f̂(ξ) e−i n π

T
ξ dξ

=
π

T
f(−n π

T
).

Zauwa»my, »e wszystkie caªki �po drodze� s¡ absolutnie zbie»ne, wi¦c mo»emy
skorzysta¢ ze wzoru na odwrotn¡ transformat¦ Fouriera. Wykorzystali±my
te» fakt, »e f̂ jest zerem poza przedziaªem [−T, T ] ⊇ [−T0, T0], wi¦c caªka z
f̂ po przedziale [−T, T ] i po caªej prostej s¡ sobie równe. Z de�nicji funkcji
g mamy

f̂

(
T

π
ξ

)
= g(ξ) · χ[−π,π](ξ)

=
∞∑

n=−∞
ĝ(n) χ[−π,π](ξ) ei nξ

=
π

T

∞∑
n=−∞

f
(
−n

π

T

)
χ[−π,π](ξ) ei nξ.

W ko«cu obliczmy warto±¢ f(x) wykorzystuj¡c odwrotn¡ transformat¦ Fo-
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uriera.

f(x) =
1

2π

∫ ∞

−∞
f̂(ξ) ei xξ dξ

=
1

2π

∫ ∞

−∞
f̂

(
T

π
ξ

)
ei x T

π
ξ T

π
dξ

=
T

2π2

∫ ∞

−∞
g(ξ)χ[−π,π](ξ) ei x T

π
ξ dξ

=
T

2π2

∫ π

−π

∞∑

k=−∞
ĝ(k) ei kξ+i x T

π
ξ dξ

=
T

2π2

∞∑

k=−∞
ĝ(k)

∫ π

−π

ei ξ(k+x T
π

) dξ

=
1

2π

∞∑

k=−∞
f

(
−π

T
k

) ∫ π

−π

ei ξ(k+x T
π

) dξ

=
∞∑

k=−∞
f

( π

T
k

) 1

2π

∫ π

−π

ei ξ(x T
π
−k ) dξ

=
∞∑

k=−∞
f

( π

T
k

)
sinc

(
π

(
x

T

π
− k

))

=
∞∑

k=−∞
f

( π

T
k

)
sinc (T x− π k)

Niech teraz p = π
T
, i koniec dowodu.
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Rozdziaª 6

Materiaªy na laboratorium

Odczytywanie, zapisywanie i wy±wietlanie ob-
razków w Matlabie
Obrazki w postaci cyfrowej wyst¦puj¡ w kilku rodzajach. S¡ tak zwane for-
maty indeksowane, gdzie ka»demu pikselowi (elementowi obrazu) przypisy-
wana jest liczba (najcz¦±ciej 1 bajt) b¦d¡ca numerem koloru na li±cie. Lista
kolorów, tak zwana paleta, najcz¦±ciej skªada si¦ z 256 kolorów, które repre-
zentowane s¡ przez 3 bajty, odpowiadaj¡ce zawarto±ci skªadowej czerwonej,
zielonej i niebieskiej. Przykªadami formatów indeksowanych s¡ formaty bmp
i gif. Format gif zawiera obraz oraz palet¦ w postaci skompresowanej (bez-
stratnie). W tym formacie w jednym pliku obrazów mo»e by¢ kilka, i ka»dy
mo»e mie¢ wªasn¡ palet¦. Je»eli obrazów jest kilka, to caªo±¢ mo»e by¢ ani-
mowana. Jeden z kolorów mo»e by¢ zadeklarowany jako przezroczysty. Plik
w formacie bmp zawiera obraz i palet¦, najcz¦±ciej w postaci nieskompreso-
wanej. Sam format dopuszcza prost¡ kompresj¦, ale w praktyce nie spotyka
si¦ skompresowanych plików w formacie bmp. Drugim rodzajem obrazów
cyfrowych s¡ obrazy w odcieniach szaro±ci. Obrazy tego typu najcz¦±ciej za-
pisywane s¡ w jednym z formatów indeksowanych, z u»yciem standardowej
palety. Standardowa paleta zawiera równomiernie rozªo»one odcienie szaro-
±ci (3 bajty kolorów skªadowych równe sobie), od koloru (0,0,0), czyli czerni
(indeks 0) do (255,255,255), czyli bieli (indeks 255). Trzecim rodzajem obra-
zów cyfrowych s¡ tak zwane obrazy true color, w których ka»demu pikselowi
bezpo±redni przypisane s¡ 3 bajty okre±laj¡ce zawarto±¢ 3 kolorów skªado-
wych. Obrazy tego typu zapisywane s¡ w formatach tiff (skompresowane
bezstratnie) i jpeg (skompresowane stratnie).

W tym laboratorium b¦dziemy zajmowali si¦ obrazami drugiego typu, to
znaczy obrazami w odcieniach szaro±ci. Kolorowe obrazy indeksowane nie
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mog¡ by¢ sensownie przetwarzane przy pomocy stosowanych przez nas me-
tod, poniewa» numery kolorów w palecie nie maj¡ zwi¡zku z wªasno±ciami
�kolorystycznymi�. Innymi sªowy, to, »e dwa kolory maj¡ bliskie sobie in-
deksy nie oznacza, »e s¡ do siebie podobne. Oczywi±cie kolorowy obrazek w
formacie indeksowanym mo»na najpierw przeksztaªci¢ do formatu true color
lub odcieni szaro±ci, i wtedy obrabia¢. Obrazki true color mo»na przetwarza¢
traktuj¡c ka»dy kolor skªadowy (tak zwany kanaª) jako oddzielny obrazek.
Lepiej jest najpierw przeksztaªci¢ kanaªy z tak zwanej przestrzeni RGB (ka-
naªy to skªadowe czerwone, zielone i niebieskie) do przestrzeni YCbCr (ka-
naªy to mieszanki kolorów skªadowych, przy czym Y to kanaª luminancji,
czyli najwa»niejsza skªadowa zawieraj¡ca odcienie szaro±ci, Cb i Cr to kanaªy
chrominancji, odpowiednio niebieski i czerwony). Przeksztaªcenia pomi¦dzy
przestrzeniami RGB i CbCr implementuje si¦ przy pomocy konkretnej, od-
wracalnej macierzy 3× 3. By¢ mo»e starczy nam czasu na zaj¦cie si¦ obraz-
kami kolorowymi, wtedy poznamy wi¦cej szczegóªów na temat zarz¡dzania
barwami.

Do wczytania obrazka sªu»y funkcja imread. Je»eli chcemy wczyta¢ obraz
Lena.bmp, który jest w bie»¡cym katalogu, wydajemy instrukcj¦
A=imread('Lena.bmp','bmp');

Powstaje w ten sposób macierz pikseli o warto±ciach od 0 do 255. B¦dziemy
korzystali z formatów gif i bmp. S¡ to tak zwane formaty indeksowane, to
znaczy warto±¢ piksela jest numerem koloru w palecie. W obrazach z których
b¦dziemy korzystali paleta jest zawsze taka sama, standardowa. Skªada si¦ z
256 odcieni szaro±ci, zmieniaj¡cych si¦ jednostajnie od czerni (pierwszy kolor
palety, odpowiada mu indeks 0) do bieli (256 kolor, o indeksie 255). Je»eli
u»yjemy innej palety to nasz obraz b¦dzie miaª zmienione kolory. Wczytuj¡c
obrazek mo»emy wczyta¢ te» jego palet¦, zakodowan¡ wraz z obrazkiem w
pliku (dotyczy to, oczywi±cie formatów indeksowanych, takich jak gif lub
bmp), wywoªuj¡c funkcj¦ imread w nast¦puj¡cy sposób:
[A,MAP]=imread('goldhill.gif','gif');

Paleta obrazka skªada si¦ z trójek bajtów, reprezentuj¡cych intensywno±¢ ko-
lorów czerwonego, zielonego i niebieskiego w skali od 0 do 255. Przy wczyty-
waniu do tablicy MAP (MAP jest tablic¡ 256 na 3, o warto±ciach typu double) te
warto±ci s¡ przeskalowane do zakresu [0,1]. Taki jest format u»ywanej przez
Matlab palety (tak zwanej colormapy): dowolna ilo±¢ wierszy, 3 kolumny, i
warto±ci typu double z przedziaªu [0,1].

Otrzymana macierz pikseli A zawiera dane typu uint8. Niektórych ob-
licze« w Matlabie nie mo»na wykonywa¢ na liczbach typu uint8 i najpierw
trzeba je przeksztaªci¢ do typu double.
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B=double(A);

Podstawowe funkcje pakietu RWT, z którego b¦dziemy korzysta¢ nie mog¡
operowa¢ na danych typu uint8, wi¦c nasze dane typu uint8 zawsze b¦-
dziemy przed obliczeniami przeksztaªca¢ na double. To nic nie kosztuje.
Zmieniany jest tylko typ danych, warto±ci pozostaj¡ bez zmian.

Do zapisu macierzy do pliku gra�cznego sªu»y funkcja imwrite:

imwrite(A,'lena.bmp','bmp');

Macierz A powinna by¢ typu uint8. Mo»na j¡ do tego typu przeksztaªci¢ z
dowolnego innego (na przykªad double) u»ywaj¡c funkcji uint8

A=uint8(B);

Funkcja uint8 zaokr¡gla liczby double do najbli»szej caªkowitej, p czym
obcina zakres do przedziaªu [0,255]. Je»eli funkcj¦ imwrite zastosujemy do
tablicy o warto±ciach typu double to warto±ci zostan¡ najpierw pomno»one
przez 255, a nastepnie przeksztaªcone przy pomocy funkcji uint8. Warto±ci
poni»ej 0 przejd¡ na 0 a powy»ej 1 na 255. Caªy u»ywany przez macierz
A zakres warto±ci powinien wi¦c si¦ zawiera¢ w przedziale [0,1]. Dlatego
przed zapisem do pliku warto r¦cznie obrobi¢ warto±ci macierzy A tak, aby
zawieraªy si¦ w przedziale [0,1]. Na przykªad, niech

M = max
i,j

A(i, j), N = min
i,j

A(i, j),

i
A′(i, j) =

A(i, j)−N

M −N
.

Po takim przeksztaªceniu warto±ci macierzy A′ s¡ w przedziale [0,1], a po-
niewa» przeksztaªcenie warto±ci jest liniowe wi¦c obraz �gra�cznie� nie ulegª
zmianie. Wraz z macierz¡ do pliku zapisywana jest tak»e standardowa paleta,
skªadaj¡ca si¦ z 256 równomiernie rozªo»onych odcieni szaro±ci (dotyczy to
formatów indeksowanych, takich jak bmp). Je»eli chcemy zapisa¢ inn¡ palet¦
mo»emy u»y¢ instrukcji

imwrite(A,MAP,'lena.bmp','bmp');

gdzie MAP jest dowoln¡ colormap¡ Matlaba. Zostanie ona przeskalowana do
formatu palety odpowiedniego pliku gra�cznego, uci¦ta do 256 wierszy je»eli
jest dªu»sza, i uzupeªniona wierszami zer, je»eli jest krótsza ni» 256 kolorów.
Matlab nie zapisuje plików w formacie gif.

Macierz A mo»na wy±wietli¢ jako obraz nie zapisuj¡c jej do pliku gra�cz-
nego. Sªu»y do tego instrukcja image
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image(A);

Warto±ci wy±wietlanej macierzy A s¡ traktowane jako indeksy do bie»¡cej
colormapy Matlaba. Je»eli s¡ typu uint8 to s¡ bezpo±rednio traktowane
jako indeksy kolorów. Je»eli s¡ typu double to najpierw odejmowana jest od
nich 1, nast¦pnie s¡ zaokr¡glane do najbli»szej liczby caªkowitej, a nast¦pnie
obcinane na poziomie 0 i 255. Tak powstaªe warto±ci s¡ traktowane jako
indeksy kolorów. Wygodn¡ instrukcj¡ jest te» imagesc. Warto±ci tablicy
A s¡ najpierw przeskalowane liniowo, tak, »eby najmniejsza warto±¢ (mo»e
by¢ ujemna) przyj¦ªa warto±¢ 0 a najwi¦ksza 255. Tak otrzymane warto±ci
s¡ zaokr¡glane w dóª do liczb caªkowitych, i traktowane jako indeksy kolo-
rów bie»¡cej colormapy. Je»eli chcemy przeskalowa¢ inaczej, mo»emy u»y¢
skªadni

imagesc(A,[a,b]);

wtedy zakres [a,b] zostanie rozci¡gni¦ty liniowo do zakresu [0,255].
Do podgl¡du naszych obrazów b¦dzie nam potrzebna standardowa color-

mapa, któr¡ musimy sami wygenerowa¢:

szara=zeros(256,3);
for i=1:256

szara(i,1)=(i-1)/255;
szara(i,2)=szara(i,1);
szara(i,3)=szara(i,1);

end;

Nast¦pnie ustalamy bie»¡c¡ colormap¦ instrukcj¡

colormap(szara);

Colormapa pozostaje ustalona dla danego okna obrazka a» do jego zamkni¦-
cia. Przy nast¦pnym otwarciu colormap¦ trzeba ustawi¢ ponownie. Mo»na
najpierw zaªadowa¢ obrazek, a nast¦pnie wyda¢ instrukcj¦ colormap. Dopóki
nie zamkniemy okna obrazka ta sama colormapa b¦dzie stosowana do wszyst-
kich kolejno ªadowanych obrazków. Nasz¡ colormap¦ szaramo»emy zachowa¢
w pliku instrukcj¡ save, i na nast¦pnych zaj¦ciach zaªadowa¢ z pliku instruk-
cj¡ load. Matlab ma pewn¡ ilo±ci prede�niowanych colormap, jedn¡ z nich
jest colormapa domy±lna. Zawiera ona tylko 64 kolory. W przypadku gdy
ustalona colormapa ma mniej kolorów ni» zakres warto±ci wy±wietlanej ma-
cierzy A, to brakuj¡ce kolory s¡ zast¦powane czarnym. Obrazki w domy±lnej
colormapie s¡ bardzo niewyra¹ne. Inne standardowe colormapy to gray, hot,
cool, copper czy pink. Standardowe colormapy s¡ z reguªy krótsze ni» 256
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kolorów, ale ka»dej z powy»szych nazw mo»na u»y¢ do wygenerowania color-
mapy dowolnej dªugo±ci. Na przykªad zamiast podanej powy»ej procedury
generowania colormapy �szara� mo»na w Matlabie u»y¢ instrukcji

szara=gray(256);

albo do ustawienia bie»¡cej colormapy instrukcji

colormap(gray(256));

Podstawowe operacje na obrazkach
Wypróbujemy niektóre typowe przeksztaªcenia na obrazkach. Niektóre z ope-
racji wyst¦puj¡cych w przykªadowych skryptach mo»na w Matlabie wykona¢
pro±ciej, wykorzystuj¡c wbudowane funkcje. Na przykªad w Matlabie s¡ spe-
cjalne funkcje zwracaj¡ce najwi¦ksz¡ i najmniejsz¡ warto±¢ wspóªczynników
tablicy. W prezentowanych skryptach raczej wszystko wykonywane jest �na
piechot¦�.

Rozja±nij
Zwi¦kszamy warto±¢ pikseli. Warto±ci powy»ej 255 b¦d¡ uci¦te

A=imread('Lena.bmp','bmp');
B=double(A);
B=1.2*B;
A=uint8(B);
imwrite(A,'Lena2a.bmp','bmp');

Przyciemnij
Zmniejszamy warto±¢ pikseli:

A=imread('Lena.bmp','bmp');
B=double(A);
B=B/1.2;
A=uint8(B);
imwrite(A,'Lena2b.bmp','bmp');
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Rysunek 6.1: Lekkie rozja±nienie.

Rysunek 6.2: Lekkie przyciemnienie.

Zwi¦ksz kontrast
Znajdziemy najwi¦ksz¡ i najmniejsz¡ warto±¢ pikseli. Nast¦pnie przeksztaª-
cimy, liniowo, obraz tak, »eby najmniejsza warto±¢ wynosiªa 0 a najwi¦ksza
255. W ten sposób maksymalizujemy kontrast. Je»eli kontrast byª ju» mak-
symalny to operacja nie daje »adnego efektu.

A=imread('Lena.bmp','bmp');
B=double(A);
min=B(1,1);
max=B(1,1);
for i=1:512
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for j=1:512
if B(i,j)>max

max=b(i,j);
end;
if B(i,j)<min

min=B(i,j);
end;

end;
end;
c=255/(max-min);
for i=1:512

for j=1:512
B(i,j)=(B(i,j)-min)*c;

end;
end;
A=uint8(B);
imwrite(A,'Lena2c.bmp','bmp');

Rysunek 6.3: Zwi¦kszony kontrast.

Cz¦st¡ operacj¡ jest korekta kontrastu tylko w pewnym zakresie jasno±ci.
Na przykªad przeksztaªcenie B(i, j) 7→ B(i, j)γ zwi¦ksza kontrast w zakresie
czerni je»eli γ < 1 i w zakresie jasnym, je»eli γ > 1 (obraz musi by¢ wcze±niej
znormalizowany, tak aby 0 ≤ B(i, j) ≤ 1).

Zmniejsz kontrast
Warto±ci pikseli pomno»ymy przez 0.8 i dodamy do nich 25:
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A=imread('Lena.bmp','bmp');
B=double(A);
for i=1:512

for j=1:512
B(i,j)=25+0.8*B(i,j);

end;
end;
A=uint8(B);
imwrite(A,'Lena2d.bmp','bmp');

Rysunek 6.4: Zmniejszony kontrast.

Binaryzacja
Ka»demu pikselowi przyporz¡dkowujemy warto±¢ 0 je»eli jego warto±¢ jest
poni»ej progu i 255 je»eli powy»ej.

Powiel obraz, u»ywaj¡c odbicia
Rozszerzymy obraz w poziomie, uzupeªniaj¡c praw¡ poªówk¦ lustrzanym od-
biciem lewej:

B=zeros(512,1024);
A=imread('Lena.bmp','bmp');
for i=1:512

for j=1:512
B(i,j)=A(i,j);
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Rysunek 6.5: Binaryzacja na poziomach 50, 100, 150 i 200.

B(i,1025-j)=A(i,j);
end;

end;
A=uint8(B);
imwrite(A,'Lena2e.bmp','bmp');

Wyci¦cie fragmentu
Wytniemy kwadratowy fragment obrazka, zast¦puj¡c reszt¦ biaªym tªem:

A=imread('Lena.bmp','bmp');
for i=1:128

for j=1:512
A(i,j)=255;
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Rysunek 6.6: Odbicie poziome.

A(513-i,j)=255;r
A(j,i)=255;
A(j,513-i)=255;

end;
end;
imwrite(A,'Lena2f.bmp','bmp');

Rysunek 6.7: Wyci¦cie fragmentu.
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Wyci¦cie gªadkie
Wytniemy kwadratowy kawaªek obrazka, ale tym razem przej±cie do biaªego
tªa b¦dzie pªynne:

A=imread('Lena.bmp','bmp');
B=double(A);
mask=zeros(512,1);
for i=1:256

if (i>108)\&(i<129)
mask(i)=(i-108)/21;
mask(513-i)=mask(i);

end;
if i>128
mask(i)=1;
mask(513-i)=1;

end;
end;
for i=1:512

for j=1:512
B(i,j)=255-mask(i)*mask(j)*(255-B(i,j));

end;
end;
A=uint8(B);
imwrite(A,'Lena2g.bmp','bmp');

Rysunek 6.8: Wyci¦cie fragmentu z gªadkim przej±ciem do tªa.
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Zaszumienie
Dodamy do obrazka tak zwany �biaªy szum�, to znaczy do ka»dego piksela
niezale»nie dodamy liczb¦ losow¡ o rozkªadzie normalnym o ±redniej 0 i ja-
kim± odchyleniu. W Matlabie jest funkcja randn która generuje liczb¦ pseu-
dolosow¡ o rozkªadzie normalnym (gaussowskim), o ±redniej 0 i odchyleniu
standardowym 1. Mo»na te» u»y¢ skªadni randn(512), która od razu ge-
neruje tablic¦ 512 × 512 liczb pseudolosowych, niezale»nych o tym samym
rozkªadzie. W naszym przykªadzie tak wygenerowane liczby mno»ymy przez
20, w ten sposób rozkªad generowanych zmiennych ma odchylenie standar-
dowe 20. Wielko±¢ odchylenia jest zwi¡zana ze stopniem zaszumienia. Takie
zaszumienie symuluje znieksztaªcenie obrazka cz¦sto wyst¦puj¡ce w praktyce,
przy przesyªaniu sygnaªów, lub przy rejestracji bardzo sªabych sygnaªów.

A=imread('Lena.bmp','bmp');
B=double(A);
for i=1:512

for j=1:512
B(i,j)=B(i,j)+20*randn;

end;
end;
A=uint8(B);
imwrite(A,'Lena2h.bmp','bmp');

Rysunek 6.9: Zaszumienie obrazka, σ2 = 20.
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Rozmycie
Obrazek zostaje rozmyty, pozbawiony ostro±ci. Jest to zabieg stosowany
na przykªad jako wst¦pna obróbka przed algorytmem wykrywania kraw¦dzi.
Efektem rozmycia jest osªabienie niektórych rodzajów szumu (na przykªad
szumu biaªego). Kraw¦dzie te» zostaj¡ osªabione (rozmyte), ale z reguªy w
mniejszym stopniu ni» szum.

A=imread('Lena.bmp','bmp');
B=double(A);
C=zeros(512);
mask=[2 4 5 4 2;4 9 12 9 4;5 12 15 12 5;4 9 12 9 4;2 4 5 4 2];
mask=mask/159;
for i=1:512

for j=1:512
suma=0;
for k=-2:2

for l=-2:2
if (i-k<513)\&(j-l<513)\&(i-k>0)\&(j-l>0)

prod=B(i-k,j-l);
else

prod=0;
end;
suma=suma+mask(k+3,l+3)*prod;

end;
end;
C(i,j)=suma;

end;
end;
A=uint8(C);
imwrite(A,'Lena2i.bmp','bmp');

Dwa cz¦sto stosowane �ltry Gaussa (maski), 3× 3 i 5× 5:




1 2 1
2 4 2
1 2 1


 ,




2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2




,

�ltry te nale»y podzieli¢ przez sum¦ wspóªczynników, odpowiednio 16 i 159.

133



Rysunek 6.10: Rozmycie �ltrem Gaussa 5x5.

Rysunek 6.11: Rozmycie �ltrem Gaussa 3x3.

Filtr medianowy
Czasem chcieliby±my osªabi¢ szum w obrazku, ale bez ogólnego �zmi¦kcza-
nia�. Mo»na wtedy zastosowa¢ tak zwany �ltr medianowy. Odczytujemy
warto±¢ piksela i jego s¡siadów (na przykªad najbli»szych s¡siadów). Tak
otrzymane warto±ci sortujemy. Pikselowi przypisujemy warto±¢ znajduj¡c¡
si¦ w ±rodku posortowanej listy (je»eli mamy parzy±cie wiele warto±ci, to
pikselowi przyporz¡dkowujemy ±redni¡ arytmetyczn¡ warto±ci w ±rodku po-
sortowanej listy. Filtr medianowy dobrze usuwa niektóre rodzaje szumu, na
przykªad tak zwany �speckle noise�, bez ogólnego �zmi¦kczenia� obrazka.

A=imread('Lena.bmp','bmp');
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B=double(A);
C=zeros(512);
lista=zeros(9,1);
for i=2:511

for j=2:511
m=1;
for k=-1:1

for l=-1:1
lista(m)=B(i+k,j+l);
m=m+1;

end;
end;
for k=1:8

for l=1:9-k
if lista(l)>lista(l+1)

t=lista(l);
lista(l)=lista(l+1);
lista(l+1)=t;

end;
end;

end;
C(i,j)=lista(5);

end;
end;
A=uint8(C);
imwrite(A,'Lena2j.bmp','bmp');

Zastosowanie �ltru medianowego, podobnie jak �ltru Gaussa daje efekt osªa-
bienia szumu biaªego. Efekt ten najlepiej wida¢ na obrazku kontrastowym.
Obrazek test skªada si¦ z pikseli o warto±ci 80 i 180 (dosy¢ ciemne i dosy¢
jasne), i ma wyra¹ne kraw¦dzie. Do obrazka dodajemy nieco szumu (odchy-
lenie standardowe 5), a nast¦pnie stosujemy �ltr Gaussa z mask¡ 5 × 5, oraz
�ltr medianowy, te» o gª¦boko±ci 5 × 5. Na obrazkach mo»emy porówna¢
efekty.

Oba �ltry osªabiaj¡ szum, ale �ltr Gaussa zmi¦kcza kraw¦dzie, natomiast �ltr
medianowy pozostawia kraw¦dzie nienaruszone, jedynie �obgryza� naro»niki.
�atwo sobie wytªumaczy¢ jak to si¦ dzieje.

135



Rysunek 6.12: Filtr medianowy, obejmuj¡cy najbli»szych s¡siadów.

Rysunek 6.13: Obraz testowy, bez szumu i z lekkim szumem, σ2 = 5.

Transformata Fouriera
Transformata Fouriera to jest nasze gªówne narz¦dzie na wykªadzie. W prak-
tycznej obróbce obrazków nie b¦dziemy stosowali transformaty Fouriera. W
praktyce lepsza jest transformata falkowa. Spróbujmy obliczy¢ transformat¦
Fouriera obrazka. W Matlabie s¡ funkcje fft i fft2 obliczaj¡ce 1� i 2�
wymiarow¡ transformat¦ Fouriera, u»ywaj¡ce algorytmu szybkiej transfor-
maty. Transformata ma warto±ci zespolone, nawet dla sygnaªów, które maj¡
warto±ci tylko rzeczywiste. �eby zwizualizowa¢ transformat¦ osobno wy±wie-
tlimy tablic¦ moduªów warto±ci, i osobno tablic¦ argumentów (faz) warto±ci.
Do obliczania moduªu u»ywamy funkcji abs(X), któr¡ mo»na stosowa¢ do
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Rysunek 6.14: Z lewej zastosowano �ltr medianowy, a z prawej �ltr Gaussa,
oba o wielko±ci 5 × 5.

zmiennych typu rzeczywistego i zespolonego, a do obliczania argumentu u»y-
wamy funkcji angle, która zwraca argument jako k¡t w zakresie (−π, π].

A=imread('Lena.bmp','bmp');
B=double(A);
C=fft2(B);
A=uint8(abs(C)/20);
imwrite(A,'Lena3a.bmp','bmp');
A=uint8((pi+angle(C))*128/pi);
imwrite(A,'Lena3b.bmp','bmp');

Na obrazku 3.1 wspóªczynniki odpowiadaj¡ce niskim cz¦stotliwo±ciom
rozmieszczone s¡ w rogach obrazka. Czasem obraz cz¦stotliwo±ciowy przed-
stawia si¦ ze wspóªczynnikami niskich cz¦stotliwo±ci umieszczonymi w cen-
trum. W Matlabie jest specjalna funkcja do takiego przesuni¦cia obrazka
fftshift(C). Na obrazku 3.2 przedstawiona jest tak przesuni¦ta transfor-
mata Fouriera.

Transformata Fouriera nie jest lokalna. To znaczy, »e nawet je»eli dwa
obrazki ró»ni¡ si¦ tylko na jakim± maªym obszarze, to ich transformaty ró»ni¡
si¦ wsz¦dzie. Na obrazku 3.3 widzimy obraz Leny, z niewielk¡ mody�kacj¡ w
okolicach ±rodka. Obok przedstawiony jest obraz moduªu ró»nicy transfor-
maty Fouriera Leny zwykªej i zmody�kowanej.
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Rysunek 6.15: Moduª i argument transformaty Fouriera Leny.

Rysunek 6.16: Moduª i argument transformaty Fouriera, niskie cz¦stotliwo±ci
w ±rodku obrazka.

Kodowanie pasmowe
Typowym przeksztaªceniem obrazka jest tak zwane kodowanie pasmowe. Ze-
rujemy te wspóªczynniki transformaty Fouriera, które le»¡ w wybranych ob-
szarach. Tradycyjnie ró»ne obszary geometryczne transformaty Fouriera na-
zywaj¡ si¦ pasmami, i st¡d nazwa. Typowym przykªadem kodowania pasmo-
wego jest �ltr dolnoprzepustowy. Zerujemy wszystkie wspóªczynniki trans-
formaty Fouriera, które le»¡ poza pewnym, powiedzmy kwadratowym oto-
czeniem pocz¡tku ukªadu. Fig. 3.4 pokazuje mask¦ przykªadowego �ltru
dolnoprzepustowego, oraz prze�ltrowany obraz. Obraz jest zupeªnie dobrej
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Rysunek 6.17: Lena z niewielk¡ mody�kacj¡ (prawe oko). Obok moduª ró»-
nicy transformaty Fouriera Leny zwykªej i zmody�kowanej.

jako±ci, je»eli wzi¡¢ pod uwag¦, »e zostaª odtworzony z 12544 wspóªczynni-
ków (pozostaªe zostaªy wyzerowane), co stanowi ok. 4,78% caªo±ci. Jedyne
co optycznie przeszkadza, to okresowo powielone, �drgaj¡ce"kraw¦dzie.

Rysunek 6.18: Maska �ltru dolnoprzepustowego, i przeksztaªcona Lena. Sto-
pie« kompresji. wynosi ok. 21 (obraz po prawej ma w rezultacie ok. 0,38
bita na piksel (bpp))

clear;
mask=zeros(512);
for i=200:311
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for j=200:311
mask(i,j)=1;

end
end;
A=imread('Lena.bmp','bmp');
B=double(A);
C=fft2(B);
C=fftshift(C);
C=mask.*C;
C=ifftshift(C);
B=ifft2(C);
A=uint8(abs(B));
imwrite(A,'low.bmp','bmp');
mask=255*mask;
A=uint8(mask);
imwrite(A,'mask.bmp','bmp');

Rice Wavelet Toolbox
Naszym narz¦dziem do analizy falkowej obrazków jest darmowy toolbox fal-
kowy (Rice wavelet toolbox) napisany przez grup¦ ludzi na uniwersytecie
Rice. Mo»na go znale¹¢ w sieci u»ywaj¡c sªowa kluczowego �rwt�. B¦dziemy
u»ywali nast¦puj¡cych funkcji z tego pakietu: mdwt - transformata falkowa,
midwt - odwrotna transformata falkowa oraz daubcqf - program generuj¡cy
�ltry falkowe Daubechies. Funkcji u»ywamy nast¦puj¡co

h0=daubcqf(N);

lub

[h0,h1]=daubcqf(N);

N jest dªugo±ci¡ �ltru, musi by¢ liczb¡ parzyst¡. Dªu»sze �ltry powinny da-
wa¢ lepsze rezultaty, ale dziaªaj¡ wolniej, i generuj¡ wi¦ksze bª¦dy zaokr¡gle«.
Typowe dªugo±ci to 2,6,10. B¦dziemy porównywa¢ nasze algorytmy dla ró»-
nych dªugo±ci �ltrów. Uzyskane przy pomocy funkcji daubcqf �ltry stanowi¡
parametr transformaty falkowej i transformaty odwrotnej. Podajemy tylko
wspóªczynniki �ltru h0 (dolnoprzepustowego), Matlab sam wyliczy wspóª-
czynniki pasuj¡cego �ltru h1.

[B,L]=mdwt(A,h0,L); [A,L]=midwt(B,h0,L);
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Rysunek 6.19: Transformata falkowa gª¦boko±ci 1 i gª¦boko±ci 9 (silnie roz-
ja±niona)

A jest obrazkiem, który powinien by¢ kwadratowy o boku b¦d¡cym pot¦g¡ 2.
L jest parametrem okre±laj¡cym gª¦boko±¢ transformaty. Warto±¢ parametru
L powinna by¢ taka sama dla transformaty i transformaty odwrotnej � w
przeciwnym razie obraz nie b¦dzie prawidªowo zrekonstruowany. Warto±¢ L
mo»e si¦ zawiera¢ w przedziale od 1 do log2 N , gdzie N jest dªugo±ci¡ (w
pikslach) boku obrazu. Transformata mdwt i transformata odwrotna midwt
wymagaj¡ danych typu double. Je»eli zastosujemy j¡ do danych typu uint8
(takich, jakie zwraca imread), to transformaty albo b¦d¡ ¹le policzone, albo
program si¦ wysypie. Przetransformowany obraz mo»emy obejrze¢ instrukcj¡
image, pami¦taj¡c o ustawieniu odpowiedniej colormapy, i o ewentualnym
przeksztaªceniu zakresu warto±ci transformaty do przedziaªu [0,255].

Kompresja obrazów
Nasze podej±cie do kompresji b¦dzie bardzo proste. Pierwsza obserwacja jest
taka, »e transformata falkowa obrazu jest prawie caªa czarna. Wi¦kszo±¢
wspóªczynników (dla realistycznego obrazu, takiego jak fotogra�a) jest bar-
dzo maªa. Ustalimy sobie próg ε, i wszystkie wspóªczynniki o warto±ci bez-
wzgl¦dnej poni»ej progu zmienimy na 0. W ten sposób w obrazku pozostanie
niewiele niezerowych wspóªczynników. Format obrazu z którym pracujemy
(.bmp) nie kompresuje danych, wi¦c efektów kompresji nie zauwa»ymy w roz-
miarze kompresowanego pliku. Dlatego b¦dziemy obliczali stopie« kompresji
w sposób uproszczony. Ka»dy wyzerowany wspóªczynnik policzymy, i na
koniec podzielimy przez ilo±¢ wszystkich pikseli.
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Zerowanie wspóªczynników o warto±ciach poni»ej ustalonego progu b¦-
dziemy nazywa¢ progowaniem (po angielsku �thresholding�). B¦dziemy roz-
wa»a¢ dwa rodzaje progowania, tak zwane progowanie twarde i progowanie
mi¦kkie. Ró»nic¦ obja±niaj¡ wykresy funkcji proguj¡cych. Programowa-
nie twarde jest koncepcyjnie prostsze, ale wprowadza do obrazka sztuczne
nieci¡gªo±ci. Z kolei progowanie mi¦kkie obni»a kontrast transformaty, i w
przypadku wysokich progów nale»y kontrast wyrówna¢ przed zastosowaniem
transformaty odwrotnej.

−eps 0 eps

−eps

0 

eps

−eps 0 eps

0 

Rysunek 6.20: Progowanie twarde i mi¦kkie

B¦dziemy porównywa¢ subiektywn¡, optyczn¡ jako±¢ obrazów skompre-
sowanych �ltrami Daubechies ró»nej dªugo±ci, o ró»nym stopniu kompresji,i
kompresowanych z u»yciem obu metod progowania. Przykªadowe procedury
mog¡ wi¦c by¢ nast¦puj¡ce.

A=imread('Lena.bmp','bmp');
A=double(A);
N=6;\% 2,10 itp
h0=daubcqf(N);
L=9;
[B,L]=mdwt(A,h0,L);
eps=50;\% 30, 100 itp
il=0;
for i=1:512

for j=1:512
if abs(B(i,j))<eps
B(i,j)=0;
il=il+1;
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end;
end;

end;
A=midwt(B,h0,L);
image(A);
100*il/(512*512)

Progowanie mi¦kkie mo»emy zaimplementowa¢ nast¦puj¡co

if B(i,j)>0
B(i,j)=B(i,j)-eps;
if B(i,j)<0
B(i,j)=0;
il=il+1;

end;
else;

B(i,j)=B(i,j)+eps;
if B(i,j)>0
B(i,j)=0;
il=il+1;

end;
end;

Je»eli b¦dziemy u»ywa¢ du»ej warto±ci progu ε, to nale»y wyrówna¢ poziomy.
To znaczy, nale»y przed progowaniem znale¹¢

M = max
i,j

|B(i, j)|,

a nast¦pnie, po progowaniu pomno»y¢

B(i, j) = B(i, j) ∗M/(M − ε).

Powinni±my eksperymentowa¢ z ε tak, aby uzyska¢ typowe warto±ci stop-
nia kompresji: 90%, 95%, 98%. W przypadku tra�enia we wªa±ciwy stopie«
kompresji obraz skompresowany nale»y zapisa¢, nadaj¡c mu nazw¦ umo»li-
wiaj¡c¡ identy�kacj¦ stopnia kompresji, dªugo±ci �ltru i rodzaju progowania.
postarajmy si¦ wyci¡gn¡¢ wnioski na temat roli dªugo±ci �ltru oraz stopnia
progowania. Porównajmy wyniki dla kilku ró»nych obrazków. Wypróbujmy
ten algorytm równie» na obrazkach typu gra�ka komputerowa.
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