MATHEMATICAL ANALYSIS

PROBLEMS LIST 2

9.10.08

- (1) Find the natural powers f the number i, that is write out the complex numbers of the form i^n for all natural n.
- (2) For given complex numbers $z, w \in \mathbf{C}$ compute: $\Re(z+w), \Im(z+w), \Re(zw), \Im(zw)$, in terms of $\Re(z), \Im(z), \Re(w)$ and $\Im(w)$.
- (3) Compute $\Re(1/z)$ in terms of $\Re(z)$ and $\Im(z)$.
- (4) Prove the following properties of the complex conjugation:
 - (i) $\overline{(\overline{z})} = z$;
 - (ii) $\overline{z+w} = \overline{z} + \overline{w}$;
 - (iii) $\overline{(zw)} = \overline{z}\overline{w};$
 - (iv) $\Re(z) = (z + \overline{z})/2$, $\Im(z) = (z \overline{z})/2i$.
- (5) Find the moduli of the complex numbers z = -2 3i and z = 1 i.
- (6) Prove that arbitrary numbers $z, w \in \mathbf{C}$ have the properties:
 - (i) $|z| \ge 0$ and |z| = 0 if and only if z = 0;
 - (ii) |zw| = |z| |w|;
 - (iii) $|z w| \ge ||z| |w||$.
- (7) Describe geometrically (sketch on the plane) the set $\{z \in \mathbb{C} : |z-1|=1\}$.
- (8) Sketch on the plane the set of numbers $z \in \mathbf{C}$ satisfying the inequality $|z+4-2i| \leq 3$.
- (9) Find the trigonometric form of the following complex numbers: -6+6i, 2i, 1+i, $\sqrt{6}+i$.
- (10) Find the trigonometric form of the complex numbers of modulus 1.

(11) Prove that for $z = r(\cos \varphi + i \sin \varphi)$ and $z = s(\cos \psi + i \sin \psi)$ we have

$$z \cdot w = r \cdot s (\cos(\varphi + \psi) + i \sin(\varphi + \psi)).$$

- (12) Prove that for $z \in \mathbf{C}$, $z \neq 0$ there exists $w \in \mathbf{C}$, its inverse, that is such that $z \cdot w = 1$.
- (13) Prove that for any $n \in \mathbb{N}$ and any $z \in \mathbb{C}$ with the trigonometric form $z = r(\cos \varphi + i \sin \varphi)$ we have the formula

$$z^n = r^n (\cos(n\varphi) + i \sin(n\varphi)).$$

- (14) Find all different roots of order 3 and 4 of numbers 1, -1, 1 + i and 2-2i (in the trigonometric and in the normal forms). Show their location on the plane.
- (15) Let $\epsilon_1, \ldots, \epsilon_n$ be different roots of order n of the number 1. What is the sum $\epsilon_1 + \cdots + \epsilon_n$? And what is the sum of all n different rootos of order n of the number i?
- (16) Prove the equality $|z+w|^2 + |z-w|^2 = 2|z|^2 + 2|w|^2$.
- (17) Let $a, b, c \in \mathbf{C}$ be arbitrary, and let $d \in \mathbf{C}$ be one of the roots $\sqrt{b^2 4ac}$. Prove that the roots of the equation $az^2 + bz + c = 0$ have the form

$$z = \frac{-b \pm d}{2a}.$$