MATHEMATICAL ANALYSIS

PROBLEMS LIST 7

13.11.08

- (1) Sketch the graph of the function f(x) given by the formula ([...] denotes the integer part, and $\{...\}$ denotes the fractional part):
 - (a) $f(x) = |x^2 1| |x^2 4|$, (b) $f(x) = |x^2 8x + 15|$,
 - (c) $f(x) = x^2 + x + 2 |x^2 x 2|$, (d) $f(x) = {\cos x}$,
 - (e) $f(x) = \left[\frac{4}{\pi} \arctan x\right]$, (f) $f(x) = 2\{\sin x\} \{2\sin x\}$.
- (2) Solve the following equations and inequalities:
 - (a) $\sin x \ge \frac{1}{2}$, (b) $|\cos x| \le \frac{\sqrt{2}}{2}$,
 - (c) $[\sin x] = 0$, (d) $\{\cos x\} = \frac{1}{2}$,
 - (e) $\{\frac{4}{\pi} \arctan x\} = 0$, (f) $\{\frac{3}{\pi} \arctan x\} \le \frac{1}{2}$,
 - (g) $(x^2 4) \cdot \cos x \ge 0$, (h) $(\frac{3}{2} + \sin x)^{\sin x} = 1$.
- (3) Compute the limits:
 - (a) $\lim_{x \to +\infty} \frac{x \sqrt{x}}{x + \sqrt{x}}$, (b) $\lim_{x \to -\infty} \frac{x}{\sqrt{x^2 + 1}}$, (c) $\lim_{x \to 0+} \frac{\log x}{1 + \log x}$, (d) $\lim_{x \to 0+} \frac{2^{1/x} + 1}{2^{-1/x} 1}$, (e) $\lim_{x \to 0-} \frac{2^{1/x} + 1}{2^{-1/x} 1}$, (f) $\lim_{x \to +\infty} \frac{2^{1/x} 1}{2^{-1/x} + 1}$.
- (4) Determine the domain of the function f(x), and verify at which points it is continuous and at which discontinuous ($\operatorname{sgn} x$ is the sign of x: for x > 0 $\operatorname{sgn} x = 1$, for x < 0 $\operatorname{sgn} x = -1$, and for x = 0 $\operatorname{sgn} x = 0$):
 - (a) $f(x) = \operatorname{sgn}(\sin x)$, (b) $f(x) = \{x\} (\{x\})^2$
 - (c) $f(x) = \begin{cases} 0 & : & x < 0 \\ x & : & 0 \le x < 1 \\ -x^2 + 4x 2 & : & 1 \le x < 3 \\ 4 x & : & x \ge 3, \end{cases}$

(d)
$$f(x) = \begin{cases} x & : \quad x \neq 2 \\ \operatorname{sgn} x & : \quad x = 2, \end{cases}$$

(e)
$$f(x) = \frac{x^3 - 1}{x^2 - 1}$$
, (f) $f(x) = \operatorname{sgn}(x^3 - x)$, (g) $f(x) = [x] - [\sqrt[3]{x}]$, (h) $f(x) = x^3 \operatorname{sgn}(x)$, (i) $f(x) = \frac{1}{\sqrt{x^2 + 4x + 4} + 1}$, (j) $f(x) = [x^2]$, (k) $f(x) = \{\log_2 x\}$, (l) $f(x) = \frac{1}{\{x\}}$,

(g)
$$f(x) = [x] - [\sqrt[3]{x}],$$
 (h) $f(x) = x^3 \operatorname{sgn}(x),$

(i)
$$f(x) = \frac{1}{\sqrt{x^2 + 4x + 4 + 1}}$$
, (j) $f(x) = [x^2]$

(k)
$$f(x) = \{\log_2 x\},$$
 (l) $f(x) = \frac{1}{\{x\}},$

(m)
$$f(x) = \left| \left[x + \frac{1}{2} \right] - x \right|$$
.

(5) For which values of the parameters a and b the function f(x) is continuous? Sketch the graph of f(x) for such a and b.

(a)
$$f(x) = \begin{cases} ax + b : & x < 1 \\ x^2 : & 1 \le x < 2 \\ ax - b : & 2 \le x. \end{cases}$$

(b)
$$f(x) = \begin{cases} x & : x < 1 \\ x^2 + ax + b & : 1 \le x < 2 \\ x + 3 & : 2 \le x. \end{cases}$$